
RESEARCH ARTICLE

Stoichiometric Representation of Gene–
Protein–Reaction Associations Leverages
Constraint-Based Analysis from Reaction to
Gene-Level Phenotype Prediction
Daniel Machado1¤*, Markus J. Herrgård2, Isabel Rocha1

1 Centre of Biological Engineering, University of Minho, Braga, Portugal, 2 The Novo Nordisk Foundation

Center for Biosustainability, Technical University of Denmark, Horsølm, Denmark

¤ Current address: Structural and Computational Biology Unit, European Molecular Biology Laboratory,

Heidelberg, Germany

* dmachado@deb.uminho.pt

Abstract
Genome-scale metabolic reconstructions are currently available for hundreds of organ-

isms. Constraint-based modeling enables the analysis of the phenotypic landscape of

these organisms, predicting the response to genetic and environmental perturbations.

However, since constraint-based models can only describe the metabolic phenotype at the

reaction level, understanding the mechanistic link between genotype and phenotype is still

hampered by the complexity of gene-protein-reaction associations. We implement a model

transformation that enables constraint-based methods to be applied at the gene level by

explicitly accounting for the individual fluxes of enzymes (and subunits) encoded by each

gene. We show how this can be applied to different kinds of constraint-based analysis: flux

distribution prediction, gene essentiality analysis, random flux sampling, elementary mode

analysis, transcriptomics data integration, and rational strain design. In each case we dem-

onstrate how this approach can lead to improved phenotype predictions and a deeper

understanding of the genotype-to-phenotype link. In particular, we show that a large frac-

tion of reaction-based designs obtained by current strain design methods are not actually

feasible, and show how our approach allows using the same methods to obtain feasible

gene-based designs. We also show, by extensive comparison with experimental 13C-flux

data, how simple reformulations of different simulation methods with gene-wise objective

functions result in improved prediction accuracy. The model transformation proposed in

this work enables existing constraint-based methods to be used at the gene level without

modification. This automatically leverages phenotype analysis from reaction to gene level,

improving the biological insight that can be obtained from genome-scale models.
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Author Summary

Genome-scalemodels of metabolism enable the exploration of the phenotypic landscape
of an organism. Unlike probabilistic approaches such as genome-wide association studies,
these models describe the mechanistic link between genotype and phenotype, predicting
the response to genetic and environmental perturbations.However, this connection is
hampered by the complexity of gene-protein-reaction associations. In this work, we imple-
ment a model transformation method that untangles this complexity by allowing gene-
wise phenotype predictions using genome-scalemodels. The transformedmodel explicitly
accounts for the individual flux carried by the enzyme or subunit encoded by each gene.
Previously published simulation methods are automatically leveraged by this transforma-
tion, enabling new features such as the formulation of objectives and constraints at the
gene/protein level. We demonstrate the application of different kinds of analysis and simu-
lation methods, showing in each case how the gene-wise formulation can result in higher
prediction accuracy in comparison to experimental data and improve the biological insight
that can be obtained from available models.

Introduction

The advances in high-throughput sequencing techniques and genome annotation methods
have enabled the construction of genome-scalemodels for hundreds of organisms [1]. At the
same time, the constraint-based framework, with its wide variety of methods, has become a
widely used tool to perform in silico experiments and predict cellular responses to different
kinds of genetic and environmental perturbations [2, 3]. Studies using constraint-basedmodels
cover a wide range of applications from biomedical research to industrial biotechnology,
including the study of cancer metabolism [4], drug target discovery for cancer cell lines [5] and
pathogenic microorganisms [6], and the design of microbial cell factories [7] and synthetic
microbial communities [8].
Understanding the complex relation between the genotype and phenotype of an organism is

a fundamental part of systems biology research. Unlike statistical approaches such as genome-
wide association studies (GWAS) [9], genome-scale reconstructions provide a mechanistic link
between genotype and phenotype. The first component of this link is a list of gene-protein-
reaction (GPR) associations that determines the set of metabolic reactions encoded in the
genome. Another component is the stoichiometric matrix representing these reactions. This
matrix is at the core of every constraint-basedmethod, allowing the computation of the meta-
bolic phenotype as describedby metabolic fluxes at steady-state. Navigating back and forth in
the space of genotype-to-phenotype relationships is hampered by the complex association
between genes, enzymes and reactions. From the perspective of the central dogma of biology
the simplest genetic mechanism is: one gene—one protein—one function.However, most GPR
associations in a genome-scalemetabolic network are quite complex due to the presence of
enzyme complexes (multiple genes—one protein), isozymes (multiple proteins—one function)
and promiscuous enzymes (one protein—multiple functions).
Since most constraint-basedmethods do not explicitly account for GPR associations, they

can only provide analysis at the reaction level. For instance, simulating a steady-state flux dis-
tribution predicts the rates of all metabolic reactions for a given phenotypic state, but fails to
elucidate the contribution of individual genes/enzymes to that phenotype. GPR associations,
typically implemented as Boolean rules, can be used to interpret the results of constraint-based
analysis in an ad-hoc fashion. This is the case in rational strain design, where optimization
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procedures are used to find optimal interventions to maximize the production of a given com-
pound [7, 10]. With a few exceptions [11–13], such methods can only compute reaction-based
modifications that must be translated to gene-level modifications a posteriori, without guaran-
tee that the optimality of the predicted phenotype is preserved.Undesired side-effectsmay
arise if any of the target reactions involve promiscuous enzymes.
In this work, we present a model transformation that generates a stoichiometric representa-

tion of GPR associations that can be directly integrated into the stoichiometricmatrix. We
show that the results obtained with the transformedmodel are consistent with those obtained
from reaction-levelmodels, and highlight the advantages of performing different kinds of anal-
ysis at the gene level. We also propose new variants of existing methods that take advantage of
this representation to formulate gene-wise objective functions and test their predictive ability
using experimental datasets.

Results

The proposedmodel transformation to encodeGPR associations into the stoichiometricmatrix
is depicted in Fig 1. This transformation changes the Boolean representation of gene states (on/
off) to a real-valued representation. Essentially, the enzyme (or enzyme subunit) encoded by
each gene becomes a species in the model, and the participation of an enzyme in a reaction is
encoded by adding the respective (pseudo-)species to the left-hand side of that reaction (Fig
1b). Reversible reactions and reactions catalyzed by multiple isozymes are decomposed into
individual reactions. A set of artificial reactions, denoted as enzyme usage reactions (u), are
added to the model. For each gene, this variable accounts for the total amount of flux carried
by the respective enzyme (or enzyme subunit). This model transformation can be represented
by an extended stoichiometricmatrix (Fig 1c).
The iAF1260 genome-scalemodel for E. coli was used as case study [14]. A statistical analy-

sis of the structure of the GPR associations reveals the complexity of the underlying topology
(Fig 2). Over 16% of the enzymes are formed by protein complexes (up to 13 subunits), with
many subunits being common to different complexes. About one third of the reactions (31%)
are catalyzed by multiple isozymes (up to 7), and more than two thirds (72%) are catalyzed by
at least one promiscuous enzyme. Four genes (phoE, ompC, ompN, ompF) stand out as outliers
with regard to promiscuity due to their participation in nearly 250 transport reactions.
The proposed transformation was applied to the model after pre-processing to remove

blocked reactions (determined by flux variability analysis for aerobic growth on glucosemini-
mal medium). The simplifiedmodel contains 914 genes, 1532 reactions, and 1032 metabolites
(including external metabolites and respective exchange reactions). After transformation, the
extended stoichiometric matrix contains 3853 (pseudo-)reactions and 1946 (pseudo-)metabo-
lites. The increase in the size of the stoichiometricmatrix is caused by introducing the genes as
species in the model, decomposing reversible and isozyme-catalyzed reactions, and introducing
the artificial “enzyme usage” reactions (seeMethods). In the following subsections, we exem-
plify the application of this extendedmodel to different types of constraint-based analysis.

Flux distribution prediction

Wild-type. Simulating steady-state flux distributions using flux balance analysis (FBA) is
the most common application of constraint-basedmodels. FBA requires the definition of an
objective function based on evolutionary assumptions [15]. The maximization of rate of bio-
mass formation has shown agreement with experimental observations [16] and is often used.
The solution obtained by FBA simulation for the transformedmodel is the same as for the orig-
inal model, since the transformedmodel does not contain additional constrains compared to
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Fig 1. GPR transformation method. Transformation of GPR associations to a stoichiometric representation: a) Boolean

representation of different types of GPR associations including isozymes (purple), promiscuous enzymes (red), protein

complexes (orange); b) Continuous representation accounting for the individual flux carried by each enzyme (the arrow

thickness represents a possible solution for the distribution of fluxes); c) Extended stoichiometric matrix highlighting the

occurrence of particular GPR association cases highlighted in panel a.

doi:10.1371/journal.pcbi.1005140.g001
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the original model. However, the solution vector obtained from the FBA simulation is now
more informative due to the enzyme usage variables, which determine the amount of flux car-
ried by each individual enzyme.
FBA results are usually affected by solution degeneracy, as different flux distributions can

have the same objective value. Parsimonious FBA (pFBA) is a two-step variant of FBA that
determines the flux distribution that satisfies the optimal objective while also minimizing total
absolute flux through all reactions. It is based on the assumption that the cell tries to achieve its
goal with the most efficient allocation of resources [17]. Although pFBA is usually imple-
mented as the minimization of reaction fluxes, with our extended representation it can be
more naturally formulated as the minimization of enzyme usage (see methods). Testing both
methods for a simple simulation (with default model conditions) resulted in similar solutions,
except for different choices in a few central carbon reactions (Fig 3). It can be observed that
pFBA also uses an alternative route to convert fructose-6-phospate (f6p) to dihydroxyacetone-
phosphate (dhap) and glyceraldehyde-3-phosphate (g3p), which has the side-effect of

Fig 2. Complexity of GPR associations. Frequency distribution of the GPR associations in the iAF1260 model with respect to: a) number of

subunits per enzyme complex; b) number of isozymes per reaction; c) number of reactions catalyzed per enzyme.

doi:10.1371/journal.pcbi.1005140.g002

Fig 3. pFBA simulation of a single solution. Difference in simulation results for: A) pFBA and B) gene-pFBA.

Simulations performed using the iAF1260 model with default model conditions (aerobic growth on glucose

minimal medium with a maximum glucose uptake rate of 10 mmol/gDW/h). The values of the respective objective

functions for this particular subsystem are indicated.

doi:10.1371/journal.pcbi.1005140.g003
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converting phosphoenolpyruvate (pep) to pyruvate (pyr), eliminating the need to use pyruvate
kinase (PYK). This removes one step in the functional pathway, decreasing the total sum of
fluxes. The gene-based approach does not use this alternative route, resulting in a slightly
higher sum of fluxes, but reducing the total enzyme allocation. The increased enzyme usage in
the first case is caused by the DHAPT reaction, which is catalyzed by a complex formed by 5
subunits, therefore increasing the overall enzyme allocation for that pathway. Considering that
glycolytic fluxes are commonly measured in vivo, if such a considerable deviation of flux would
occur, it would have been frequently reported. Hence the pFBA prediction seems less plausible
(a systematic comparison with experimental data will be considered later in this section).
We compared our simulation results with those obtained using the recent E. coliME-model

[18] under the same conditions (S4 Fig). ME-models account for the operational costs of the
translational machinery required to produce metabolic enzymes In these models, the reaction
fluxes are coupled to the synthesis rate of the respective enzymes.We observe a significant cor-
relation between the translation rates predicted by the ME-model and the enzyme usage pre-
dicted with our gene-pFBA approach (Pearson R = 0.84, P<5e-57). Interestingly, the flux
distribution predicted with theME-model seems to be degenerate with regard to the alternative
routes detected between pFBA and gene-pFBA, with small parameter perturbations leading to
one or the other. This indicates that the cost of the two alternatives must be similar. In fact,
although our method assumes that the PYK route is cheaper, this reaction is catalyzed by two
isozymes (PykA, PykF), which are both tetramers. Since the number of subunit copies per
enzyme is not reported in GPR associations, the enzyme usage is underestimated for multimeric
enzymes. If this information becomes systematically available in genome-scale reconstructions,
it can be easily accounted for in the stoichiometric coefficients of the extendedmatrix.

Deletionmutants. Multiple alternative methods to standard FBA simulations have been
proposed for prediction of phenotypic effects of gene deletions in the constraint-based frame-
work [19–21]. Such methods assume that the mutant cell will minimize its regulatory and met-
abolic adjustment with respect to the wild-type phenotype. Again, these assumptions can be
represented in a more biologicallymeaningful way at the gene/enzyme level using the trans-
formedmodel. Hence, we implemented gene-based versions of MOMA and linearMOMA (see
methods).
In order to evaluate the simulation accuracy of the proposedmethods we performed a

systematic evaluation using a fluxomics dataset for 24 single gene E. colimutants [22] (see
methods). Fig 4 shows a comparison of the prediction error for each method across all mutant
strains. It can be observed that, in general, all reaction-basedmethods have higher prediction
error than their gene-level counterparts. In particular, gene-pFBA stands out as the most accu-
rate method in this case study.

Over/under-expression. The effects of modulating gene or protein expression can also be
simulated by constraint-basedmethods. This is performed by imposing lower/upper bounds in
the flux of the respective reactions. However, the limitations of this approach must be carefully
considered. It assumes a linear effect between the expression level of a gene and the rate of the
respective reactions (i.e. fully transcriptional control), which is only the case under particular
circumstances [23]. Also, it does not consider the potential side-effects of enzyme promiscuity.
The gene-level formulation alleviates these problems, since the constraints can be imposed
directly on the enzyme usage variable of the respective gene, rather than directly at the reaction
level (see methods).
To illustrate this concept, we simulated the over/under-expression of the lpd gene (Fig 5, see

methods). This gene encodes an enzyme subunit that participates in three different reactions.
It is possible to observe that the effect of gene modulation on the respective reactions is not lin-
ear. For instance, the gradual down-regulation of lpd is predicted to initially decrease the rate
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of pyruvate dehydrogenase (PDH) and only afterwards affect the rate of 2-oxoglutarate-dehy-
drogenase (AKGDH). Using reaction-based constraints to simulate the over/under-expression
of any of these reactions would predict a linear effect between the regulation level and the
respective flux, disregarding the potential redistribution of flux between promiscuous enzymes
and isozymes. Considering the large fraction of promiscuous enzymes (Fig 2c), this non-linear
redistribution of flux becomes particularly relevant for strain designmethods that account for
over/under-expression at the reaction level [24–29]. This particular application will be further
discussed in the strain design section.

Gene essentiality analysis

Gene essentiality analysis consists of the identification of conditionally lethal gene deletions
[30]. This type of analysis can be used to find drug targets for pathogenic microbes [31] and
particular types of cancer cells [5]. It can also be used to improve model reconstructions by
comparison with experimental data, and to exclude undesirable gene deletions from the search
space of strain design algorithms.
Gene essentiality analysis is usually performed by simulating the knockout of each gene in

two stages, which requires evaluating the respective GPRs followed by FBA simulation to test

Fig 4. Knockout simulation benchmark. Distribution of the normalized prediction error for the flux distribution of 24

single deletion mutants (Ishii2007 dataset) generated by pFBA, MOMA, linearMOMA (blue) and their respective gene-

level counterparts (green).

doi:10.1371/journal.pcbi.1005140.g004
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the model for growth.With the extended stoichiometricmatrix, gene essentiality analysis can
be directly performed by flux variability analysis (FVA) (see methods). For each gene, the flux
range of the respective enzyme usage variables indicates the minimum and maximum amount
of flux that can be carried in the given experimental conditions (S1 Fig). In this case, any gene
with a minimal enzyme usage above zero for a given minimal biomass production is essential.
This approach can also be generalized to find synthetic lethal pairs by systematic computation
of the minimum sum of fluxes of all pairs of enzyme usage variables.
This analysis is more informative then traditional determination of essentiality (binary test)

as it reveals the minimal (and maximal) flux that can be carried by each enzyme.With this
approach one can also determine “blocked” genes (i.e. genes encoding enzymes that cannot be
used under any conditions), which can be used to guide the model reconstruction process. Fur-
thermore, one can use the shadow price and reduced costs information to analyse the sensitiv-
ity of the results with respect to internal (biological) and external (environmental) constraints.
For instance, the non-zero shadow prices for an essential gene represent the set of precursor
metabolites that cause the essentiality, whereas the reduced costs of exchange reactions repre-
sent the effect of changing the medium composition with regard to essentiality.

Flux space sampling

Random sampling of the flux solution space is a suitable strategy to analyse all possible physio-
logical states describedby a model [32]. Like FVA, it is an unbiasedmethod to describe the flux
solution space. However, while FVA only describes the admissible flux range for a given reac-
tion, random flux sampling generates a probability distribution for each reaction, providing
insight into the shape of the solution space. Flux sampling has been used to analyse global prop-
erties of metabolic networks [33] and to determine flux variation in perturbed conditions [34].
One limitation of flux sampling is that it does not account for the flux load distribution

between isozymes or the overall flux carried by promiscuous enzymes.With the extended
representation, it is now possible to analyse flux sampling results at the gene/enzyme level. An

Fig 5. Effects of over/under-expression. Modulating the expression of the ldp gene: a) reaction participation of the enzyme subunit encoded by lpd;

b) effect of modulating the expression of lpd in the rate of the respective reactions (the circles represent the reference state for the wild-type

simulation).

doi:10.1371/journal.pcbi.1005140.g005
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illustrative example for a model of core metabolism of E. coli [35] is presented (S2 Fig). Flux
sampling results are compared for two conditions: a wild-type phenotype and a succinate pro-
ducing phenotype (see methods). It is possible to observe significant differences between both
phenotypes at the gene level. There is an increased flux in enzymes involved in lower glycolysis
and the glyoxylate shunt, and an overall decrease of flux for enzymes in the pentose-phosphate
pathway and the respiratory chain. Note that one can observe gene level differences that would
not be captured by purely reaction-based sampling, such as the different utilization of Lpd rela-
tive to other enzyme subunits (AceE, AceF, SucA, SucB) given its simultaneous participation in
different enzyme complexes.
Flux sampling at the gene level can be used to guide rational strain design, since non-over-

lapping sampling distributions for a given gene betweenwild-type and the desiredmutant indi-
cate that the flux carried by the respective enzymemust necessarily change. We compared
these results with those obtained by strain designmethods that account for modulation of gene
expression [25–28]. Some of the most significant changes observed (deletion of sdh� and over-
expression of frd�, ppc, and aceA) are commonly proposed interventions to increase succinate
production. It is also possible to observe some extent of agreement between our sampling
results and gene expression measurements of succinate producing mutants [36], most notably
the down-regulation of aceE, aceF, icd, pykA and pykF.

Omics data integration

The continuous improvement of high-throughput techniques to measure different kinds of
omics data has fostered the development of constraint-basedmethods that make use of these
data to improve predictions. In a recent work, we evaluated several methods for integration of
transcriptomics (and proteomics) data into constraint-based simulations, and observed that
none of the methods resulted in consistent improvement of flux predictions compared to sim-
ple FBA simulation under the assumption of optimal growth and parsimonious enzyme usage
[37]. This limitation arises from the underlying assumption of proportionality between gene
expression and reaction rates, which does not seem to be generally valid [38, 39].
It seems natural to reformulate some of these methods to take advantage of the flux simula-

tion at the enzyme level. In this work, we propose gene-wise reformulations of two commonly
usedmethods, GIMME and E-Flux [40, 41]. In the reformulated versions, the expression level
of a gene is mapped to its respective enzyme usage variable (see methods). The original and
reformulated versions of the methods were evaluated using two experimental datasets contain-
ing transcriptomics and fluxomics data [22, 42] (see methods).
Similarly to our previous study, the results reveal that none of the transcriptomics-based

methods outperforms pFBA (Fig 6). However, as observed earlier, gene-pFBA shows better
performance than pFBA for the Ishii dataset. The gene-wise version of GIMME is generally
more accurate than the original version in both datasets. This improvement can be attributed
to the fact that the gene-wise formulation is less affected by the lack of correlation between
gene expression and reaction rates. No improvement could be observed for the gene-wise ver-
sion of E-Flux.

Elementary mode analysis

Elementarymode analysis provides an unbiased description of the flux solution space of a met-
abolic network by determining all minimal pathways that can operate at steady-state, so-called
elementary flux modes (EFMs) [43]. Elementarymode analysis reveals multiple properties of
metabolic networks, including pathway yields, reaction usage frequency, and correlated reac-
tion sets [44]. Common applications include analysis of cellular robustness [45], detection of
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fragility points in metabolic networks as potential drug targets [46], and elimination of unde-
sired phenotypes to design optimal cell factories [47].
Since EFM computation does not account for GPR associations, they do not entirely reflect

the topology of a metabolic network, disregarding that a promiscuous enzyme is a common
link between different pathways and that isozymes provide alternative routes within the same
pathway. Our stoichiometric representation of GPRs solves this problem by explicitly account-
ing for this complexity in the computation of EFMs. This concept is illustrated in Fig 7.
Although EFM computation algorithms differ with regard to specific implementation details,
the manipulation of support vectors is a common denominator. Support vectors are binary
representations of the minimal set of reactions included in an EFM.With the network transfor-
mation, the artificial enzyme usage reactions become part of the support vector of EFMs, being
automatically computed by any EFM computation algorithm. This extended support vector
contains a gene-wise representation of each EFM, denoting the genes that participate in the
given pathway.

Fig 6. Transcriptomics-based simulation benchmark. Distribution of the normalized prediction error for intracellular fluxes

generated by pFBA, GIMME, E-Flux (blue) and their respective gene-level counterparts (green), by integration of gene

expression data from two datasets (Ishii2007, Gerosa2015).

doi:10.1371/journal.pcbi.1005140.g006

Fig 7. EFM analysis overview. Gene-wise elementary mode analysis illustrated: a) Toy model of a small

metabolic network, where r2 is catalyzed by an enzyme encoded by gene gx and r3 is catalyzed by two

isozymes encoded by genes gy and gz b) Transformed version of the toy model; c) Elementary modes

calculated for the original network (E), and the transformed network (E0).

doi:10.1371/journal.pcbi.1005140.g007
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We applied this analysis to a simplified central carbonmodel of E. coli (Fig 8a). The model
contains a total of 12 EFMs. After transformation the number of EFMs raises to 11085. This dras-
tic increase is caused by splitting isozymes into separate reactions, which leads to a large combina-
tion of possible routes. Fig 8b shows the gene participation in the set of EFMs. It can be observed
that pgk, gapA, and eno participate in every pathway. These would be the best targets in a drug
design application. On the other hand, pgi has the lowest participation (16.4%). The deletion of
this gene would cause the least impact in the network.We also compared the frequency of each
reaction in the originalmodel and the transformedmodel (Fig 8c). There is an overall increase in
the frequency of reactions in the pentose-phosphate pathway due to the alternative routes created
by the presence of isozymes. The frequency of glycolytic reactions remains the same, with the
exception of PGI with a significant decrease (from 67% to 16%). These results show that account-
ing for GPRs can shed a different perspective on the relative importance of different reactions,
with a potential impact in methods that search for the most important pathway disruptions to
block undesired phenotypes [46, 47]. Although the increase in the number of EFMs hampers
large-scale EFM computation, this approach is still amenable to the application of EFM-based
methods that do not require complete enumeration of the full EFM set (see discussion).

Rational strain design

Designing optimal cell factories for production of industrially relevant compounds is one of
the most common applications of constraint-basedmodeling. Genome-scalemodels can be

Fig 8. Gene-wise EFM analysis results. Gene-wise elementary mode analysis results: a) Simplified central carbon model of E. coli including

glycolysis, pentose-phosphate pathway, and the production of lactate, acetate and ethanol; b) frequency analysis of the pathway participation of each

gene; c) comparison of the reaction frequency between the original and the transformed model (circle size indicates the number of reactions in that

region), elements above or below the diagonal indicate, respectively, an increase or decrease in the frequency of those reactions when GPR

associations are considered.

doi:10.1371/journal.pcbi.1005140.g008
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used to guide rational strain design by predicting the phenotype of mutant strains, which can
be iteratively improved until economically viable product yields, titers and productivities are
attained. The countless combinations of manipulations that could be tested require the imple-
mentation of powerful optimization methods to search the genetic design space [7, 10].
Although a large number of methods (*50) have been published so far, very few allow gene-
basedmodifications [11–13]. The vast majority of methods determine optimal sets of reaction-
basedmodifications (deletions or up/down-regulations) that must be a posteriori translated
into gene-based designs for in vivo implementation. Given that enzyme promiscuity can affect
a major fraction of the reactions in a model (Fig 2), it can be expected that many reaction-
based designs will result in undesired side-effectswhen implemented at the gene level.
MCSEnumerator is a recently published method that enumerates all minimal sets of reac-

tion deletions up to a given size, so-called constrainedminimal cut sets (cMCSs), that are
guaranteed to couple product formation to growth [48]. This method represents a break-
through in the field, allowing unprecedented enumeration of the design space at the genome

Fig 9. Reaction-based strain design with MCSEnumerator. Reaction-based strain design using MCSEnumerator for growth-coupled ethanol

production in E. coli under anaerobic conditions (μ� 0.001 h−1, Yeth/glc� 1.4). a) Required workflow to generate and validate reaction-based cMCSs;

b) Computed cMCSs up to size 7; c) Total number of potential gene-wise solutions for the computed cMCSs; d) Average number of gene deletions for

each cut sizes; e) Total number of feasible and infeasible solutions for each cut size; f) Average number of effective reaction deletions for each cut

size.

doi:10.1371/journal.pcbi.1005140.g009
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scale.We reproduced the results presented by the authors for growth-coupled ethanol produc-
tion (scenario 1), and performed a deeper analysis of the feasibility of the strain designs when
mapping the reaction-based solutions to gene-based ones (Fig 9).
Given that any gene encoding a subunit of an enzyme complex can be deleted to disable

the respective function, the number of potential designs significantly increases when convert-
ing reaction to gene deletions (Fig 9c). This mainly results from the presence of reactions cat-
alyzed by multiple complex isozymes. For instance, formate hydrogen lyase (FHL) can be
catalyzed by two different complexes, with 11 and 7 subunits each, resulting in 77 possible
combinations of gene deletions to disable this reaction. Other notable cases include the PTS
system (57 combinations) and ATP synthase (44 combinations). It can also be observed that
the total number of required gene deletions can be significantly larger than the respective
number of reaction deletions. For instance, a strain design of 4 reaction deletions may require
up to 13 gene deletions (Fig 9d).
In order to test the feasibility of each design, accounting for possible side-effects,we calcu-

lated the actual set of reactions effectively disabled by the gene deletions required to implement
a given cMCS.We then evaluated each phenotype and observed that only a small fraction of
the original set of solutions (*7%) are valid with respect to the original production constraints
(Fig 9e). This drastic effect is mainly caused by the deletion of highly promiscuous enzymes
(such as those involved in transporters), which can result in the deletion of hundreds of side-
effect reactions (Fig 9f).
The shortcomings of reaction-baseddesign can be avoided by directly searching for gene-

based designs.We applied MCSEnumerator to the transformedmodel and computed all mini-
mal gene-based cut sets up to 8 deletions (Fig 10). It can be observed that the total number of
gene-based designs is now much lower. In this case, all designs are necessarily feasible since all

Fig 10. Gene-based strain design with MCSEnumerator. Gene-based strain design using MCSEnumerator for growth-coupled ethanol

production in E. coli under anaerobic conditions (μ� 0.001 h−1, Yeth/glc� 1.4): a) Steps required to generate and analyse gene-based cMCSs; b)

Computed cMCSs up to size 8; c) Total number of reaction-based solutions generated by the gene-wise cMCSs; d) Average number of reaction

deletions for each cut size.

doi:10.1371/journal.pcbi.1005140.g010

Leveraging Constraint-Based Analysis: From Reaction to Gene Level Phenotype Prediction

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005140 October 6, 2016 13 / 24



potential side-effects are implicitly accounted for. Nonetheless, we confirmed the feasibility of
each design by testing the respective reaction deletions in the originalmodel. Note that the
total number of reaction-baseddesigns is actually lower, since different gene cut sets generate
the same reaction deletions (Fig 10c). Furthermore, it can be observed that the number of
deleted reactions is generally higher than the number of respective gene deletions without
compromising the feasibility of the strain design (Fig 10d).
Finally, we tested cRegMCSs, a recent extension of MCSEnumerator that accounts for reac-

tion up/down-regulation [29]. With our approach it is possible to apply constraints directly at
the gene level, correctly accounting for the limitations discussed earlier and without any modi-
fication to the originalmethod. Using a core metabolic model for E. coli and the same produc-
tion goals as before, thousands of designs were found with as few as 3 gene manipulations (see
S3 Fig).

Discussion

We presented a model transformation technique that integrates GPR associations into the stoi-
chiometricmatrix of a metabolic model. This allows the application of a wide-range of con-
straint-basedmethods to the transformedmodel, automatically extending these methods from
reaction to gene-based analysis. This was illustrated by application of different kinds of meth-
ods to a genome-scalemodel of E. coli. We illustrated how gene essentiality can be determined
by flux variability analysis, and how flux sampling can be used to reveal the flux solution space
at the enzyme level, taking into account the flux load distribution between isozymes and the
cumulative flux of promiscuous enzymes.
We also proposed reformulated versions of existingmethods for phenotype prediction

(gene-pFBA, gene-MOMA) and methods for integration of transcriptomics data (gene-
GIMME, gene-EFlux), where the objective function and model constraints are reformulated in
a gene-based representation. Systematic evaluation of these methods by comparison with
experimental flux data revealed that the newmethods have higher average prediction accuracy
than their original versions. This shows that not only it is possible to reformulate the evolution-
ary assumptions that support these methods in a more biologicallymeaningful way, but doing
so can actually improve flux predictions.
Predicting the effect of gene-level modificationswith our extendedmodel representation

can be directly performedby constraining the respective enzyme usage variables. This represen-
tation is more accurate than applying these constraints at reaction level. For instance, deleting
a single isozyme has no effect in a reaction-based representation, whereas the gene-based repre-
sentation accounts for the redistribution of flux among other isozymes of the affected reaction.
We also demonstrated the non-trivial consequences of performing over/under-expression of
promiscuous enzymes. Forcing an increased or decreased activity in a promiscuous enzyme
results in an uneven redistribution of flux among the respective reactions in order to reach a
new optimal phenotype. This effect would not be predictable by current methods.
The integration of GPR associations reveals a distinct topology of the metabolic network. It

accounts for the fact that promiscuous enzymes provide a common link between different
pathways, and that isozymes provide alternative routes within a pathway. We demonstrated
how this affects the characterization of the network in terms of its elementary flux modes. The
EFMs computed for the transformedmodel have an extended support vector that accounts for
the genes that must be active to support the respective pathways. This enables different types of
elementarymode analysis (e.g: frequency distribution,minimal cut sets) to be performed at the
gene level. One disadvantage of the extended representation is the combinatorial explosion of
EFMs caused by the decomposition of isozyme-catalyzed reactions. Nonetheless, gene-wise
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EFM computation is still amenable to the application of EFM-basedmethods that do not
require complete enumeration of the full EFM set [49–51].
Rational strain design is likely the application where our proposed transformation will be

most useful. The large number of strain designmethods published so far (*50) can be automati-
cally used to search for gene-basedmanipulations without any modification to the underlying
method by first applying our transformation to the model. This provides several significant
advantages compared with reaction-baseddesign. First, reaction-baseddesign ignores the side-
effects of enzyme promiscuity and requires careful post hoc analysis of proposed designs.We used
MCSEnumerator to determine all minimal reaction cut sets (up to size 7) for ethanol production
in E. coli. We tested the feasibility of these cut sets when GPR associations are considered, and
observed that only less than 10% of the solutions are actually feasible. Since many of these reac-
tion-based solutions would also be determined by other strain designmethods, this problem
affects such methods as well. Another advantage of computing gene-based designs is to effectively
minimize the number of genetic interventions, which is the desired scenario for in vivo construc-
tion of the mutant strain.We observed that determiningminimal reaction deletions can result in
a large number of gene deletions. On the other hand, gene-baseddesign effectivelyminimizes the
number of gene deletions regardless of the number of affected reactions. In terms of computation
costs, one would expect the increasedmodel size to be detrimental for efficiency. However, the
complexity of MILP problems (used inMCSEnumerator and many other strain designmethods)
is related to the number of decision variables (deletion targets). Since the number of genes is
lower than the number of reactions, we were able to compute gene-based cMCS up to size 8 with
the same computational resources used to compute reaction-basedcMCSs up to size 7.
It is important to note that other strategies to integrate GPR associations in constraint-

based simulations have been proposed. All methods that integrate transcriptional regulatory
networks and metabolic networks need to account for GPRs, as they provide the connection
layer between the two types of network. In SR-FBA, genes are encoded as integer variables and
the GPR associations are encoded as linear inequalities, transforming the model into an MILP
formulation [52]. This approach was also implemented in the strain designmethodOptORF
[12], and later generalized by the TIGER toolbox that automates the generation of integrated
models [53]. This approach differs from ours by representing genes as integer variables and
implementing the GPRs as MILP constraints, which limits the applicability of the formulation
and increases computational demands significantly. A recent method called Logic Transforma-
tion of Model (LTM) implements a network transformation that expands a metabolic network
in such a way that the gene-reaction associationmatrix (GRAM) unambiguously represents
GPR associations [54]. The GRAM is binarymatrix often used to encode GPR associations. It
loses information by ambiguously representing AND and OR relationships. The artificial reac-
tions introduced by LTM solve this ambiguity, and the GRAM can be used to map gene dele-
tion vectors directly to reaction deletion vectors. The authors show how this method can also
be used to leverage strain designmethods from reaction to gene level, and present two such
methods (OptGeneKnock and FastGeneSL). However, LTM presents some disadvantages com-
pared to our approach. The artificialmetabolites and reactions introduced are mathematical
artifacts without biologicalmeaning. The gene levels are interpreted in a binary fashion and
can only be used to compute reaction knockouts. This reduces the applicability of the approach
to deletion-basedmethods. Also, it requires a reformulation of each method to account for the
transformed GRAM.Our transformation generates a purely metabolic representation of GPR-
encodedmodels that can be represented using standard formats (such as SBML) and directly
used by the myriad of metabolic modeling tools currently available [55].
Finally, it is important to note the potential pitfalls of using a gene-based analysis. In this

work, we used a highly curated genome-scalemodel of E. coli [14]. Nowadays, automatic
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reconstruction tools can generate newmodels in a short time [56–58]. While different methods
exist to curate the model at the reaction level (with regard to elemental balance, thermody-
namic feasibility, gap filling, etc), GPR associations can only rely on the quality of gene annota-
tions. With our approach, incorrect assignment of GPR associations will be reflected in the
extended stoichiometric matrix and may generate misleading results. On the positive side, our
proposed approach may also facilitate the development of newmethods for curation of GPRs
(e.g.: gene-wise gap-filling). Another potential disadvantage of performing gene-level analysis
is the increased computational cost of working with an extended stoichiometric matrix.
Although the effect is barely noticeable for single simulations (* 1.5-fold increase in simula-
tion time) it may be undesirable for more computationally intensive types of analysis such as
random flux sampling or flux variability analysis.

Final remarks

The integration of GPRs directly into the stoichiometric matrix enables bidirectional analysis
between the gene and reaction levels. In one direction it is possible to observe the impact of
gene perturbations on reaction fluxes. In the other direction one can perturb the environmental
conditions and observe the required adaptations at the gene level. The complexity of GPR asso-
ciations and their evolution has been recently analysed considering the role of environmental
adaptation in driving enzyme specificity [59]. A recent reconstruction of the underground
metabolism of E. coli revealed an even larger number of metabolic reactions available in the cell
as a result of enzymatic side activities, playing an important role in the fitness landscape of the
organism [60].
Our framework provides a mechanistic link between genotype and phenotype and should

facilitate the development of newmethods to integrate multi-omics datasets into genome-scale
models, as well as methods to integrate metabolismwith other biological processes. In this
work, we explored the reformulation of previously published simulation methods with gene-
wise constraints. It would be interesting to explore other suitable applications, such as the for-
mulation of simulation methods that account for enzyme production costs [61, 62].
A new generation of genome-scalemodels and simulation methods is on the rise [63]. This

includes genome-scalemodels that account for gene expression and protein production [18,
64, 65], models that account for protein structure [66], and methods that predict the effect of
genetic variation in protein function [67]. While such detailedmodels are not readily available
for every organism, our method provides a suitable approach to leverage existingmodels to a
new level.
All the source code,models, and generated data are publicly available in the following repos-

itory: https://github.com/cdanielmachado/GPRTransform.

Methods

Models and tools

Unless otherwise stated, all simulations were performed using the iAF1260 genome-scalemeta-
bolic model for E. coli [14] and the Gurobi solver (version 6.5). The core metabolism version of
this model [35] was used for random flux sampling and strain design with cRegMCS [29].

Model transformation

The model transformation to explicitly include GPRs in the stoichiometricmatrix (as exempli-
fied in Fig 1) is defined as follows. Let S be the original stoichiometricmatrix, v the steady-state
flux vector (after decomposition of reversible reactions and isozyme-catalyzed reactions), and
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ub the respective vector of flux bounds, such that S � v = 0 and 0� v� ub. The extended stoi-
chiometricmatrix S0, flux vector v0, and flux bounds ub0 are defined as:

S0 ¼
S 0

Sgpr Ik

�
�
�
�
�

�
�
�
�
�

v0 ¼
v
u

�
�
�
�

�
�
�
� ub0 ¼

ub
þ1

�
�
�
�

�
�
�
�

where Sgpr is the stoichiometric representation of GPRs (with si, j = −1 if gene i participates in
reaction j), Ik is the identity matrix for k genes, and u is the enzyme usage vector. This trans-
formedmodel can be readily used by any kind of constraint-basedmethod with the general
form:

min=max f ðv0Þ
s:t:

S0 � v0 ¼ 0

0 � v0 � ub0

where f is a given objective function.

Gene-wise method reformulation

The gene-wise reformulations differ from the originalmethods by expressing the objective
functions and genetic constraints using the enzyme usage variables instead of reaction fluxes,
and are defined as follows.

gene-pFBA. Let vmaxgrowth be the maximum growth rate determined by FBA:

min
Xk

i¼1

ui

s:t:
S0 � v0 ¼ 0

0 � v0 � ub0

vgrowth ¼ vmaxgrowth

gene-MOMA. LetD be the set of deleted genes, and uwt the wild-type enzyme usage vector
obtained by pFBA:

min
Xk

i¼1

ðui � uwti Þ
2

s:t:
S0 � v0 ¼ 0

0 � v0 � ub0

ui ¼ 0 8i 2 D:

Leveraging Constraint-Based Analysis: From Reaction to Gene Level Phenotype Prediction

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005140 October 6, 2016 17 / 24



gene-lMOMA. LetD be the set of deleted genes, and uwt the wild-type enzyme usage vec-
tor obtained by pFBA:

min
Xk

i¼1

ui � uwt
i

�
�

�
�

s:t:
S0 � v0 ¼ 0

0 � v0 � ub0

ui ¼ 0 8i 2 D

Over/under-expression. Let λ be the relative expression level of gene i and uwt the wild-
type enzyme usage vector obtained by pFBA:

max vgrowth
s:t:

S0 � v0 ¼ 0

0 � v0 � ub0

ui � l � uwti if l > 1

ui � l � uwti if l < 1

gene-GIMME. Let e be the gene expression vector, ecutoff the 25th percentile of e, and
vmaxgrowth the maximum growth rate determined by FBA:

min
Xk

i¼1

ðci � uiÞ

s:t:
S0 � v0 ¼ 0

0 � v0 � ub0

vgrowth ¼ 0:85 � vmaxgrowth

ci ¼
ecutoff � ei if ecutoff > ei
0 otherwise

(

gene-EFlux. Let e be the gene expression vector and vexpglc the experimentally determined
glucose uptake rate:

ðstep 1Þ
v max vgrowth

s:t:
S0 � v0 ¼ 0

0 � v � ub
0 � ui �

ei
max ðeÞ

8i

ðstep 2Þ
v v � ðvexpglc =vglcÞ
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Benchmark

The methods to predict mutant phenotypes (pFBA [17], MOMA [19], linearMOMA, gene-
pFBA, gene-MOMA, gene-lMOMA) were tested and compared with fluxomics data from the
Ishii2007 dataset [22] that includes 24 single deletionmutants in chemostat cultivation at
D = 0.2 h−1. In each case, the glucose uptake rate is constrained to the experimental value. The
predicted fluxes are then compared to the experimental values, and the normalized prediction
error is calculated as follows:

error ¼
jjvsim � vexpjj
jjvexpjj

where vexp are the experimental fluxes, vsim are the simulated fluxes for the experimentallymea-
sured reactions, and the vector norm is the l1-norm (Manhattan distance).
The methods for integration of gene expression data were tested using the transcriptomics

and fluxomics data from twomulti-omics datasets for E. coli [22, 42]. For the Ishii2007 dataset,
all experimental conditions were used (wild-type at 5 different dilution rates and the 24 deletion
mutants). The Gerosa2015 dataset includes data from shake flask cultivation under 8 different
carbon sources. In this case, we constrained the uptake rate of the respective carbon source.
The prediction error for transcriptomics-basedmethods was also calculated as described

above. However, we observed that for this kind of methods, the degeneracy of the optimal solu-
tion can influence the prediction error, hampering the reproducibility of results. To address
this problem, in all the methods we add a second step that, after each simulation, determines
the optimal solution with the smallest norm.

Gene essentiality

Gene essentiality for each gene i was determined by flux variability analysis of the respective
enzyme usage variable as follows:

min=maxui

s:t:
S0 � v0 ¼ 0

0 � v0 � ub0

vgrowth � 0:1 � vmaxgrowth

where vmaxgrowth is the maximal growth rate determined by FBA.

Flux sampling

Random flux sampling was performed using the artificially centered hit-and-run (ACHR)
method of the COBRA toolbox [68]. The wild-type phenotype was sampled under the assump-
tion of a minimum biomass yield of 90% of the maximum theoretical value. The succinate pro-
ducing mutant was sampled using a minimum of 10% for the biomass yield, and a minimum
of 90% of the maximum succinate production (at 10% of biomass yield). Each phenotype was
sampled for 10000 flux distributions with a step size of 100 jumps per sample.

EFM computation

EFMs for the simplified glycolysis model were computed using CellNetAnalyzer version 2015.1
[69].
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MCSEnumerator

MCSEnumerator [48] was tested using the API interface from CellNetAnalyzer. We used the
same model that was applied in the original publication (a version of iAF1260 customized for
anaerobic growth). The list of targetable reactions was also defined as in the original publica-
tion. For the gene-wise version, the transformation was applied to the model, and the list of tar-
getable reactions was defined to be the list of enzyme usage reactions. Computations were
performedwith CPLEX 12.6.3 using a 6-core Intel i7 processor with 64 GB of RAM.

cRegMCS

cRegMCS [29] was tested using the API interface from CellNetAnalyzer. The problem setup
was performed similarly to MCSEnumerator, except in this case the E. coli core model [35] was
used due to the higher computational cost of the method. The number of regulatory steps was
set to 3 levels for every gene (except those participating in futile cycles).

Supporting Information

S1 Fig. Gene essentiality analysis results.Gene essentiality determined by the flux variability
analysis of the enzyme usage variables, calculated for a minimum biomass production of 10%
of the maximum theoretical yield on glucoseminimal media.
(TIFF)

S2 Fig. Random flux sampling results. Flux sampling results for the core metabolism of E.
coli. For each gene, the curves represent the probability distribution of the flux carried by the
respective enzyme. Two scenarios are considered: wild-type phenotype near optimal growth
(blue curves) and succinate overproduction near optimal yield (green curves).Genes where the
blue and green distributions do not overlap are targets for modulation of gene expression.
(TIFF)

S3 Fig. Gene-wise cRegMCS results.Gene-based strain design using cRegMCS for growth-
coupled ethanol production in E. coli under anaerobic conditions (μ� 0.001 h−1, Yeth/glc�

1.4): a) size of the solution pool for each cut size; b) total number of interventions of each type
in the solution pool.
(TIFF)

S4 Fig. ME-model simulation results.Comparison between the protein translation rates pre-
dicted by the ME-model and the respective enzyme usage predicted with gene-pFBA for a
wild-type strain growing under aerobic conditions on glucoseminimal mediumwith a glucose
uptake rate of 10 mmol/gDW/h.
(TIFF)
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55. Dräger A, Palsson BØ. Improving collaboration by standardization efforts in systems biology. Frontiers

in Bioengineering and Biotechnology. 2014; 2(61). doi: 10.3389/fbioe.2014.00061 PMID: 25538939

56. Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL. High-throughput generation,

optimization and analysis of genome-scale metabolic models. Nature Biotechnology. 2010; 28(9):977–

982. doi: 10.1038/nbt.1672 PMID: 20802497

57. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J. The RAVEN toolbox and its use for

generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Computational Biolol-

ogy. 2013; 9(3):e1002980. doi: 10.1371/journal.pcbi.1002980 PMID: 23555215

58. Dias O, Rocha M, Ferreira EC, Rocha I. Reconstructing genome-scale metabolic models with merlin.

Nucleic acids research. 2015;p. gkv294. doi: 10.1093/nar/gkv294 PMID: 25845595

59. Nam H, Lewis NE, Lerman JA, Lee DH, Chang RL, Kim D, et al. Network context and selection in the

evolution to enzyme specificity. Science. 2012; 337(6098):1101–1104. doi: 10.1126/science.1216861

PMID: 22936779

Leveraging Constraint-Based Analysis: From Reaction to Gene Level Phenotype Prediction

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005140 October 6, 2016 23 / 24

http://dx.doi.org/10.1038/msb.2013.66
http://www.ncbi.nlm.nih.gov/pubmed/24281055
http://dx.doi.org/10.1371/journal.pcbi.1000082
http://www.ncbi.nlm.nih.gov/pubmed/18483554
http://dx.doi.org/10.1371/journal.pcbi.1000489
http://www.ncbi.nlm.nih.gov/pubmed/19714220
http://dx.doi.org/10.1016/j.cels.2015.09.008
http://www.ncbi.nlm.nih.gov/pubmed/27136056
http://dx.doi.org/10.1142/S0218339094000131
http://dx.doi.org/10.1007/s00253-008-1770-1
http://www.ncbi.nlm.nih.gov/pubmed/19015845
http://dx.doi.org/10.1093/bioinformatics/btv649
http://www.ncbi.nlm.nih.gov/pubmed/26543173
http://dx.doi.org/10.1093/bioinformatics/btg395
http://www.ncbi.nlm.nih.gov/pubmed/14734314
http://dx.doi.org/10.1016/j.ymben.2006.07.006
http://dx.doi.org/10.1016/j.ymben.2006.07.006
http://www.ncbi.nlm.nih.gov/pubmed/16997589
http://dx.doi.org/10.1371/journal.pcbi.1003378
http://www.ncbi.nlm.nih.gov/pubmed/24391481
http://dx.doi.org/10.1093/bioinformatics/btp564
http://www.ncbi.nlm.nih.gov/pubmed/19793869
http://dx.doi.org/10.1093/bioinformatics/bts401
http://dx.doi.org/10.1093/bioinformatics/bts401
http://www.ncbi.nlm.nih.gov/pubmed/22962475
http://dx.doi.org/10.1038/msb4100141
http://dx.doi.org/10.1038/msb4100141
http://www.ncbi.nlm.nih.gov/pubmed/17437026
http://dx.doi.org/10.1186/1752-0509-5-147
http://www.ncbi.nlm.nih.gov/pubmed/21943338
http://dx.doi.org/10.1093/bioinformatics/btv134
http://dx.doi.org/10.1093/bioinformatics/btv134
http://www.ncbi.nlm.nih.gov/pubmed/25735769
http://dx.doi.org/10.3389/fbioe.2014.00061
http://www.ncbi.nlm.nih.gov/pubmed/25538939
http://dx.doi.org/10.1038/nbt.1672
http://www.ncbi.nlm.nih.gov/pubmed/20802497
http://dx.doi.org/10.1371/journal.pcbi.1002980
http://www.ncbi.nlm.nih.gov/pubmed/23555215
http://dx.doi.org/10.1093/nar/gkv294
http://www.ncbi.nlm.nih.gov/pubmed/25845595
http://dx.doi.org/10.1126/science.1216861
http://www.ncbi.nlm.nih.gov/pubmed/22936779


60. Notebaart RA, Szappanos B, Kintses B, Pál F, Györkei Á, Bogos B, et al. Network-level architecture
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