
Maria Estrela Ribeiro Ferreira da Cruz

julho de 2016U
M

in
ho

|2
01

6

Universidade do Minho

Escola de Engenharia

M
ar

ia
 E

st
re

la
 R

ib
ei

ro
 F

er
re

ira
 d

a
C

ru
z

D
e

ri
va

ti
o

n
 o

f
D

a
ta

-D
ri

ve
n

 S
o

ft
w

a
re

 M
o

d
e

ls
fr

o
m

 B
u

si
n

e
ss

 P
ro

c
e

ss
 R

e
p

re
se

n
ta

ti
o

n
s

Derivation of Data-Driven Software Models
from Business Process Representations

Tese de Doutoramento Tecnologias e Sistemas de Informação

Trabalho efetuado sob a orientação do

Professor Doutor Ricardo J. Machado

e da

Professora Doutora Maribel Y. Santos

Maria Estrela Ribeiro Ferreira da Cruz

julho de 2016

Derivation of Data-Driven Software Models
from Business Process Representations

Universidade do Minho

Escola de Engenharia

Acknowledgements

I would like to thank every person that helped and supported me during this
PhD reseach work. In particular, I would like to express my gratitude to:

• Prof. Ricardo J. Machado and Prof. Maribel Y. Santos for their supervi-
sion, guidance and support since the beginning of this PhD journey.

• Prof. João Álvaro Carvalho, from Department of Information Systems,
University of Minho, and to Prof. Alexandre Bragança from the Polytechnic
Institute of Porto (IPP), for providing supportive comments about this PhD
research work and for their ideas.

• Prof. Rui da Silva Gomes, from the Polytechnic Institute of Viana do
Castelo (IPVC), where I work since 2007, for the encouragement and the
initial thrust.

Finally I would like to thank to all my family for their understanding.
A very special thanks goes to my husband Miguel and to my son André for

their support, understanding and encouragement. I want to dedicate this work
to them.

v

vi

Abstract

Derivation of Data-Driven Software Models from Business
Process Representations

Organizations are constantly being challenged with new demands imposed by
markets and have to respond to new requirements imposed by governments. Or-
ganizations need to be prepared to face those challenges and demands in order
to survive. Business Process Management (BPM) allows organizations to know
themselves and to be prepared to fight new challenges and easily adapt to new
situations. BPM is being seen as a key for innovation helping in the simulation
of possible scenarios. For these and other reasons, business process management
and modeling is being increasingly used by organizations.

A business process model usually is created under the supervision, clarifi-
cation, approval and validation of the business stakeholders. Thus, a business
process model is a proper representation of the reality, having lots of useful in-
formation that can be used in the development of the software system that will
support the business.

Several authors proposed approaches to derive software models based on busi-
ness process models. Nevertheless, the generation of a data model based on busi-
ness process models has been constantly ignored mostly because business process
models did not support, until recently, the identification of the persistent data.
However, interest in the data and its preservation have increased in the BPMN
(Business Process Model and Notation) most recent version, which allows iden-
tifying the persistent data manipulated within business processes.

This research work presents and discusses two approaches to derive a data
model from business process models: directly, by piecing together information
from a set of business process models; and indirectly, by adapting the 4SRS
(Four Step Rule Set) method to generate a logical software architecture from
business process models and extending it to derive the data model from the log-
ical software architecture. The direct approach is suitable to deal with complete
business process models, whereas the indirect approach is more suitable to deal
with complex systems, being prepared to detect incomplete business process mod-
els and to complete the information derived from business process models with
information from other sources.

The derived data model will serve as a basis for the software development,
helping reducing time and efforts spent in software design, ensuring the align-
ment between the software and the business processes, and enabling traceability
between the elements in software models and the corresponding business process
models.

vii

viii

Resumo

Derivação de modelos de software orientados a dados a
partir de representações de processos de negócio

O aumento da dimensão, complexidade e exigências impostas às organizações
tem levado a que estas optem, cada vez mais, pela gestão dos processos de negócio
(BPM - Business Process Management). A gestão dos processos de negócio per-
mite a otimização e agilização dos processos de negócio dando possibilidade às
organizações de se adaptar com mais facilidade e rapidez às alterações impostas
pelas exigências de mercado. A gestão dos processos de negócio é considerada
crucial para a inovação uma vez que permite simular posśıveis senários.

A modelação dos processos de negócio é, normalmente, feita sob a supervisão,
clarificação, validação e aprovação dos stakeholders de negócio. Desta forma,
podemos afirmar que os modelos dos processos de negócio são uma correta re-
presentação da realidade, tendo muita informação útil que pode ser usada no
desenvolvimento do software de suporte ao negócio.

Vários autores propuseram abordagens para derivar modelos de software ba-
seados em modelos de processos de negócios. No entanto, a geração do modelo
de dados com base nos modelos de processos de negócio têm sido negligenciada
principalmente porque os modelos de processos de negócios não suportavam a
identificação dos dados que devem ser armazenados de uma forma persistente.
No entanto, nota-se um crescente interesse nos dados e na preservação destes, na
versão mais recente da linguagem BPMN (Business Process Model and Notation),
a qual permite a identificação dos dados persistentes que são manipulados nos
processos de negócio.

Este trabalho de investigação apresenta e discute duas abordagens para gerar
o modelo de dados com base na informação existente nos modelos de proces-
sos de negócio: uma abordagem direta, que agrega toda a informação existente
num conjunto de processos de negócio; e uma abordagem indireta, que adapta o
método 4SRS (Four Step Rule Set) para gerar a arquitetura lógica com base num
conjunto de modelos de processos de negócio e estende-o para gerar o modelo de
dados com base na arquitetura lógica gerada. A abordagem direta é mais apro-
priada para lidar com modelos de processos de negócio completos. A abordagem
indireta é mais apropriada para lidar com sistemas complexos e com modelos
de processos de negócio incompletos, uma vez que permite complementar a in-
formação extráıda desses modelos com informações provenientes de outras fontes
de informação.

O modelo de dados gerado serve como base para o desenvolvimento de soft-
ware, assegurando o alinhamento entre o software e os processos de negócio, e
possibilitando a rastreabilidade entre os elementos nos modelos de software e os
elementos correspondentes nos modelos de processos de negócio.

ix

x

Contents

Acronyms . xiii
List of Figures . xv
List of Tables . xvii

1 Introduction 1

1.1 Research Motivation . 4

1.2 Research Questions . 5

1.3 Research Objectives . 6

1.4 Research Method . 7

1.5 Overview of the Document . 13

2 Notations and Languages for Modeling Information Systems 15

2.1 Introduction . 15

2.2 Business Process Management . 16

2.3 Business Models . 19

2.4 Business Process Modeling . 20

2.5 Modeling Languages . 21

2.6 Final Remarks . 46

3 Deriving Models in Information Systems Development 49

3.1 Introduction . 49

3.2 From Business Process Models to Software Models 50

3.3 From Business Process Models to Data Models 53

3.4 From Business Process Models to Use Case Models 55

3.5 From Use Case Models to other Software Models 57

3.6 Use Case Models Decomposition 60

3.7 The 4SRS method . 62

3.8 Final Remarks . 64

4 Deriving a Data Model from Business Process Models 67

4.1 Introduction . 67

4.2 Deriving a Data Model from one Business Process Model 70

4.3 Demonstration Cases with one Business Process Model 73

xi

4.4 Deriving a Data Model from a Set of Interrelated Business Process
Models . 78

4.5 Demonstration Case with a Set of Business Process Models 83
4.6 Analyzing the Results . 88
4.7 Final Remarks . 90

5 Deriving a Data Model from a Logical Software Architecture 93
5.1 Introduction . 93
5.2 From Business Process Models to a Use Case Model 95
5.3 Getting Use Case Descriptions of the Nobel Prize Demonstration

Case . 109
5.4 Adapting and Extending the 4SRS to Derive a Data Model 111
5.5 Demonstration Case Aggregating a Set of Business Process Models 119
5.6 Final Remarks . 122

6 Deriving a Logical Software Architecture from Business Process
Models 125
6.1 Introduction . 125
6.2 Extending the UML 2.5 Use Case Meta-model 127
6.3 The Decomposition Triangle approach 130
6.4 The 4SRS Method and the Decomposition Triangle 141
6.5 Deriving a Use Case Model from a Set of Interrelated Business

Process Models . 143
6.6 Demonstration Case Aggregating a Set of Business Process Models 147
6.7 Final Remarks . 150

7 Conclusion and Future Work 153
7.1 Overview of the Undertaken Work 153
7.2 Results and Contributions to the State of the Art 157
7.3 Future Work . 159

References 161

Appendix 179

A Use Cases Model of the Library Demonstration Case 179

xii

Acronyms

AD Activity Diagram (UML)

ARIS ARchitecture of Integrated Information Systems

BDV Business Domain View

BI Business Intelligence

BPD Business Process Diagram

BPEL Business Process Execution Language

BPEL4WS Business Process Execution Language for Web Services

BPM Business Process Management

BPMDS Business Process Management Systems

BPMI Business Process Management Initiative

BPMN Business Process Model and Notation

BRV Business Requirements View

BTV Business Transaction View

B2B Business-to-Business

CORBA Common Object Request Broker Architecture

CREWS Co-operative Requirements Engineering With Scenarios

DEMO Dynamic Essential Modelling of Organization

DFD Data Flow Diagram

DSR Design Science Research

EPC Event-driven Process Chains

ERD Entity-Relationship Diagram

IDEF Integrated Definition Methods

ISO/IEC ISO - the International Organization for Standardization and the In-
ternational Electrotechnical Commission

IT Information Technology

xiii

MDD Model Driven Development

MOF Meta Object Facility

NL Natural Language

OMG Object Management Group

OCL Object Constraint Language

OO Object-Oriented

QVT Query View Transformer

SPEM Software & Systems Process Engineering Meta-Model Specification

UML Unified Modeling Language

UMLEWM UML Extended Workflow Metamodel

UMM UN/CEFACT’s Modeling Methodology

UN/CEFACT United Nation’s Centre for Trade Facilitation and Electronic
Business

UP Unified Process

WFM Workflow Management

WfMC Workflow Management Coalition

WSFL Web Services Flow Language

XLANG Web Services for Business Process Design

XML Extensible Markup Language

XPDL XML Process Definition Language

4SRS Four Step Rule Set

xiv

List of Figures

1.1 The Build-Evaluate cycle (adapted from (Hevner et al., 2004)) . . 10
1.2 DSR activities (adapted from (Peffers et al., 2006)) 11
1.3 Research phases . 12

2.1 BPM life cycle ((van der Aalst, 2004; Ko, 2009)) 18
2.2 The business process modeling process (adapted from (Ko, 2009)) 20
2.3 A Class diagram example . 25
2.4 A UML use case diagram example 28
2.5 Activity Diagram example (adapted from (Silva and Videira, 2005)) 29
2.6 Process diagram example (adapted from (Eriksson and Penker,

2000)) . 31
2.7 A BPMN choreography example (extracted from (OMG, 2011a)) . 33
2.8 Data representation elements (adapted from (OMG, 2011a)) . . . 35
2.9 A Petri-net example (adapted from (Dong and Chen, 2005)) . . . 37
2.10 Example of a Little-JIL diagram (extracted from (Wise et al., 2000)) 39
2.11 A XPDL file excerpt (extracted from (van der Aalst, 2003)) . . . 43
2.12 A BPEL file excerpt (extracted from (Juric, 2015)) 44

4.1 A BPMN process example (adapted from (OMG, 2011a)) 73
4.2 Business process diagram focused on data 74
4.3 Doctor’s Office Data Model . 75
4.4 The Nobel Prize Process Diagram (adapted from (OMG, 2010a)) 76
4.5 Nobel Prize Data Model . 77
4.6 Receiving information from a participant 81
4.7 Sending information to a participant 81
4.8 Relating two data stores . 82
4.9 Exclusive decision gateway example 83
4.10 Exclusive merging gateway example 83
4.11 Register User business process model 84
4.12 Lend a Book business process model 84
4.13 Reserve a Book business process model 85
4.14 Renew a Loan business process model 85
4.15 Return a Book business process model 85
4.16 Penalty treatment business process model 87

xv

4.17 The resulting data model . 88

5.1 The Nobel Prize Use Case Diagram 98
5.2 splitting and merging gateways 102
5.3 The 4SRS table (an excerpt) . 116
5.4 The resulting logical architecture 117
5.5 The resulting data model . 120
5.6 The resulting logical architecture 121
5.7 The resulting library data model 122

6.1 Extended UML use case meta-model 129
6.2 The first iteration result . 132
6.3 The second iteration result . 134
6.4 The library system decomposition triangle 137
6.5 “{1.1} Select books to acquire” use case diagram (level 3) 138
6.6 A tree structure example . 142
6.7 The 4SRS transformation . 142
6.8 A generic decomposition scheme 145
6.9 Actors diagram (level 0) . 147
6.10 Use Case diagram (level 1) . 147
6.11 Purchase a Book business process model 148
6.12 Lend a Book business process model 148
6.13 Return a Book business process model 148
6.14 Penalty Treatment business process model 148
6.15 Complete Use Case model (level 3) 149

A.1 A use case diagram of the Library Demonstration Case 183

xvi

List of Tables

2.1 Different perspectives of business processes modeling languages
(based on (Giaglis, 2001)) . 47

3.1 Summary of approaches that make the relationship between models 65
3.2 Summary of approaches that obtain the UML use cases model . . 66

4.1 The Data handling . 69
4.2 Entities and Relationships . 87
4.3 Entities manipulation . 89

5.1 The template for describing use cases 99
5.2 The use case sentences originated by Data Associations 101
5.3 The use case pre-condition originated by gateways 103
5.4 Generic sentences originated by events 104
5.5 The sentences originated by Start and Catching events 105
5.6 The use case descriptions originated by End and Throwing events 106
5.7 The use case descriptions originated by Intermediate Interrupting

events . 107
5.8 The use case descriptions originated by Intermediate Non-Interrupting

events . 108
5.9 Send Nomination Form use case description 109
5.10 Send List of Preliminary Candidates use case description 110
5.11 Submit Report Recommendations use case template 110
5.12 The descriptions of the use cases using the defined template (part I)112
5.13 The descriptions of the use cases using the defined template (part

II) . 113

6.1 Use cases descriptions (level 1) - first proposal 133
6.2 Use cases description (level 1) - second iteration 135
6.3 “{1} Purchase books” use cases description (level 2) 136
6.4 “{1.1} Select books to acquire” use cases description (level 3) . . 139

7.1 Comparing the two presented approaches to derive a data model
from business process models . 156

xvii

xviii

Chapter 1

Introduction

Markets globalization and the constant increase of competition between com-
panies demand constant changes in organizations in order to adapt themselves
to new circumstances and to implement new strategies. Organizations need to
have a clear notion of their internal processes in order to increase their efficiency
and the quality of their products or services, enhancing the benefits for their
stakeholders1 (Schmiedel and vom Brocke, 2015; van der Aalst, 2015).

According to Schmiedel and Brocke, business process management can be seen
as a key for innovation (Schmiedel and vom Brocke, 2015) helping companies and
organizations to simulate possible scenarios. For this and other reasons, many
organizations adopt a business process management (BPM) approach (Batoulis
et al., 2015). BPM includes methods, techniques, and tools to support the design,
enactment, management, and analysis of the operational business processes of an
organization (van der Aalst, 2004).

A business process is a set of interrelated activities that are executed by one
organization to create a product or service (Hammer and Champy, 2001). It is
important to note that activities belonging to a business process are not per-
formed by a single individual or department, but typically involve many people,
machines and systems of an organization or different organizations, working to-
gether to achieve a common business purpose (Ko, 2009).

The BPM supports the business processes using methods, techniques and
software to design, approve, monitor and analyze operational processes involving
people, organizations, applications, documents and other information sources (ter
Hofstede et al., 2003). The BPM can be considered as an extension to the Work-
flow Management (WFM) classic method, which is, according to the Workflow
Management Coalition (WfMC), an automation of a business process in which
information passes from one participant to another, suffering actions according
to a set of procedural rules (Coalition, 2011; Ko, 2009; Weske et al., 2004; Alter,
2015).

1Who affects or can be affected by an organization’s actions.

1

There are several languages and tools that can be used to model business
processes such as Petri nets (Weske, 2012), EPC (Event-driven Process Chains)
(van der Aalst, 1999; Kindler, 2004), IDEF (Integrated Definition Methods)
(Aguilar-Savén, 2004), BPMN (Business Process Model and Notation) (OMG,
2011a; Allweyer, 2010), some extensions of UML (Unified Modeling Language),
such as the Eriksson and Penker extension (Eriksson and Penker, 2000), among
others. In this research the BPMN language, currently in version 2.0 (OMG,
2011a), is selected because it is a widespread OMG (Object Management Group)
standard that is actually used both in academia and in organizations, and is
a language easy to understand and usable by people with different roles and
training from top managers to Information Technology (IT) professionals (OMG,
2011a; Magnani and Montesi, 2009; Braun and Esswein, 2014). According to
Andreas Meyer, BPMN is a modeling language well accepted in companies and
that receives the influence from them, as is the case of SAP, Unisys, Oracle and
Software AG (Meyer et al., 2011).

The constant changes imposed to business processes demands adaptations to
the software that supports the business. For many years, the software develop-
ment teams faced serious difficulties in compiling the list of requirements. Like
Pankaj Jalote states, “the software often does not do what is supposed to do
or does something it is not supposed to do” (Jalote, 2008). This is because, on
the one hand, companies create systems to support their business, on the other
hand, software engineers, focused on the development process, usually define the
functional requirements list based on the users’ needs. Other indicated reasons
for software projects failure are the poor understanding of the business by the
software engineer, and the fact that business owners do not understand the lan-
guage used by software engineers debilitating the understanding between them
(Jalote, 2008; Barjis, 2008).

If on one side the business process management and modeling are increasing
their relevance, on the other side the software development teams still have serious
difficulties in performing elicitation and defining the applications requirements
(Jalote, 2008; Barjis, 2008; Redlich et al., 2014; van der Aa et al., 2015). In
fact, one of the main software quality objectives is to assure that a software
product meets the business needs (Jalote, 2008). For that, the software product
requirements need to be aligned with the business needs, both in terms of business
processes and in terms of the informational entities those processes deal with.
This drives us to the question: “How can Business Process Models be used as a
basis to design the software applications’ data model that supports the business?”.

Researchers and professionals in information systems have recognized that
understanding the business process is the key for identifying the user require-
ments of the software that supports it (Mili et al., 2003; Scott, 2007; Cardoso
et al., 2009). True cost-benefits advantages can only occur when software pro-
cesses are aligned with organizational processes (Russell et al., 2006). As Van
der Aalst wrote in (van der Aalst, 2004), about business process support, “to

2

support business processes an enterprise information system needs to be aware of
these processes and their organizational context”. However, the tasks of business
process analysis and software development are managed by different groups of
people and typically use different languages.

Giaglis says that although the benefits of aligning business process with their
information systems modeling is studied in theory, such integrated design strate-
gies have rarely been implemented (Giaglis, 2001; Cardoso et al., 2009). Tradi-
tionally, business analysts and information systems professionals perform distinct
roles within organizations, each equipped with its own tools, techniques, skills and
even different terminology (Giaglis, 2001; van der Aa et al., 2015).

Ko states that, for people who design and maintain information systems that
support BPM, within and between enterprises, it is very beneficial and advanta-
geous to understand the fundamentals of the BPM discipline (Ko, 2009; Cardoso
et al., 2009).

One of the advantages of business process modeling is that it is understood
by all actors involved, and this allows to achieve results closer to reality (Dorn
et al., 2009). According to Yue et al., business experts and software experts need
to use a common language, to communicate, and to understand each other. That
language can be the BPMN language. The BPMN is a complete language, easy
to learn and easy to understand (Yue et al., 2011).

Once the BPM already analyzes the business processes, conducting meetings
with stakeholders, using a language and a notation understood by everyone, why
not using the information obtained during this process (modeled in business pro-
cess models) as the basis for the identification of the data needs of the software
that supports these businesses? This PhD research aims to create a systematic
approach able to generate a data model based on the set of business processes
(modeled in BPMN) that will be supported by the software under development.

Ideally, in a Model Driven Development (MDD) context, some software model
aspects should be derived from the existing aspects of business process models of
an organization (Paradkar and Sinha, 2015).

When we are dealing with a business process it is inevitable to mention the
data involved, or the information that flows throughout the process. So, to enable
process control and business supporting software development, that information
must be stored. However, as referred by OMG, data modeling is not a BPMN
2.0 goal (OMG, 2011a). Nevertheless, data is a key component whose relevance
has increased, not only as a support to the business itself, but also for Business
Intelligence (BI) operations (Meyer et al., 2011). Therefore, the data model is a
fundamental model for designing software applications. Van der Aalst states that
the data collected during a process execution can be used to “analyze running
processes, discover bottlenecks, waste, and deviations” (van der Aalst, 2015).

The main research motivations are presented in the next section.

3

1.1 Research Motivation

The motivation for this PhD research work is based on the following observations,
which can be drawn from the study summarized in chapter 3:

• The number of organizations that use the business process management and
modeling is increasing (Aguilar-Savén, 2004; Ko, 2009; Kalenkova et al.,
2014; Alter, 2015; Schmiedel and vom Brocke, 2015).

• Information systems researchers and professionals have recognized that un-
derstanding a business process is the key to identify the user needs of the
software that supports it (Mili et al., 2003; Shishkov et al., 2002; Scott,
2007).

• It is recognized that the business process modeling shall provide the basis
for the development of the software products that support the business
(Yue et al., 2009). Ideally, and in the context of the model-based software
development, some software model aspects should be able to be derived
from existing aspects of the business process models (Paradkar and Sinha,
2015).

• Some of software development processes, like Unified Process, already re-
fer to business process modeling as a pre-requisition to the next steps of
software development (Štolfa and Vondrák, 2008; Jacobson et al., 1999).

• The languages used by business process modelers are not the same languages
used by software modelers (Cardoso et al., 2009).

• Software development still reveals difficulties, and spends too much time, in
identifying user requirements and in the creation of software design models,
which are based in different sources of information and sometimes prove to
be inconsistent and even contradictory between them (Dobing and Parsons,
2006; Jalote, 2008; van der Aa et al., 2015).

• Within the various modeling languages, BPMN is an OMG standard very
widespread and effectively used in business process modeling in companies
(Meyer et al., 2011; Muehlen and Recker, 2008; Kalenkova et al., 2014;
Braun and Esswein, 2014; Kocbek et al., 2015).

• BPMN is consolidating the position of the language used by default in
the business process modelling field (Kocbek et al., 2015; Baumann et al.,
2015).

• When it comes to activities involved in the business process it is inevitable
to talk about the data involved, or about the information that circulates

4

throughout the processes. Therefore, it is necessary to store the vast major-
ity of information involved both, for process analysis and for the develop-
ment of applications that support the business. Thus, approaches covering
the data modeling will be very useful since the data model is one of the
most important software development models and none of the current ap-
proaches generates a complete data model based on the existing information
in business process models (Brdjanin and Maric, 2013).

• There are several approaches that link business process modeling and soft-
ware modeling. However, none of the approaches generates the data model
based on business process models. Moreover and most importantly, to our
knowledge, none of the approaches aggregates in a data model the data
information that can be extracted from the set of business process models
that will be supported by the software under development.

In short, from a software development point of view, it makes sense to think
of an approach that, based on a set of interrelated business processes models,
extracts useful information in order to define the data model used in the devel-
opment of business supporting software.

All the approaches cited in chapter 3, generating software models from busi-
ness process models, base their analysis in only one business process model. But,
typically, in a real situation, a software product does not support only one pro-
cess, but a reasonable set of processes. So, in order to generate useful software
models, it will be necessary to consider the set of business process models that
will be supported by the data model of the software product in development.

1.2 Research Questions

A business processes model, in BPMN, allows identifying information like: the
activities performed in the process; who performs each activity; in what circum-
stances the activities are performed; what resources are involved; who is involved
in the processes; which data circulates through the process and which is the
provenance of the data; which data should be stored in a persistent manner,
among other content. Thus, will it be possible to model these data in a useful
perspective for developing software that supports the business?

In fact, the business processes modeling is increasingly used and disclosed. At
the same time, the software development continues to have problems in designing
software supporting systems and continues to spend much time and effort to elicit
relevant requirements. At this point the following questions can be posed:

1. How to obtain the data model of the software products that support the
business from a set of business process models?

5

Despite the data structure being considered, in most cases as the most
important part of a software product, there are few authors that present
approaches to get the data model from the business process models. And
the existing ones, base their approach in only one business process model.

The authors who focus on this issue, as (Sturm, 2008; Brambilla et al., 2008;
Magnani and Montesi, 2009), faced problems, especially with the inability
to identify the data that must be stored in a persistent manner.

In BPMN, this obstacle was overcome with the inclusion of the new graph-
ical element data store on the latest release (BPMN 2.0). The data store
allows identifying the data that must be maintained in a persistent manner,
i.e., data that must remain beyond the process life cycle (Allweyer, 2010;
OMG, 2011a).

2. Is it possible to directly obtain the data model from a set of business process
models?

The BPMN most recent version allows identifying the data that must be
kept in a persistent manner. However, the approach must be able to iden-
tify not only the entities but also the entity attributes and the relationship
between those entities. Information about relationships is not modeled in
business process models, so rules must be define to derive those relation-
ships.

3. Is it possible to create an approach that allows complementing the infor-
mation obtained from business process models with information from other
sources and generate a proper data model in high complexity information
systems?

Some studies reveal that, usually, business process models have bad quality
or are incomplete (Weber et al., 2011). Hence, the existing information
in the BPMN models may not be enough to directly generate a complete
data model. The 4SRS (Four Step Rule Set) is an iterative method that in-
crementally verifies and validates the elicited requirements modeled as use
cases, and creates a logical software architectural model (Machado et al.,
2006). The 4SRS has proved to be capable of dealing with complexity
(Machado et al., 2006; Ferreira et al., 2012) and allows detecting and com-
pleting lacking information.

1.3 Research Objectives

In the context of model-based software development, some aspects of the software
model should be derived from existing features in the model of the business
processes of an organization.

This PhD research work intends to achieve two main objectives:

6

1. Definition of an approach, including a set of heuristics and rules, for gener-
ating a data model based on a set of interrelated business process models
that will be supported by the software under development.

Often data is modeled as a support to the requirements previously defined.
However, the data is, in most cases, a main element of a software product.
This work intends to create a systematic approach to derive a data model
that includes all data that must be maintained in a persistent manner, and
that provides support to the requirements previously defined and identified
based on the same set of business process models.

2. Definition of a method, comprising a set of heuristics and rules, that is able
to obtain a data model from the logical software architecture derived from
the information existing in a set of interrelated business process models.

The 4SRS is a method that generates the logical software architecture from
use case models. This work intends to adapt and extend the 4SRS in order
to work with the information existing in a set of business process models
and to derive the data model. To do that, it is intended to create an
approach to generate the use case model, including descriptions, based on
the set of business process models that are intended to be supported by the
software application in development, thus ensuring the implementation of
all requirements that come directly from the business process models. The
generated use case model is used to feed the 4SRS tabular transformation.
After that, another approach will be created to derive a data model from
the logical software architecture.

The generated models must be consistent with each other, meaning that the
data entities referred to in the use case model must be represented in the data
model. This way, business and software modeling efforts can be joined together,
reducing the analysis time and avoiding forgetting functional or even data re-
quirements. To be possible, business process modelers should include in business
process models all relevant information. More precisely, to obtain a complete
data model, the business process model should contain the information about all
data involved in the processes including the identification of the persistent data.

1.4 Research Method

There is a large number of research methods. Nevertheless, as indicated by
Avison et al., the best methods depend on the research topic and on the research
questions addressed (Avison et al., 1999).

In the information systems area, research often has a practical nature, which
is often the application of theories traditionally used in other areas such as eco-
nomics, management or computer science, to solve problems that intersect Infor-
mation Technology (IT) and organizations (Peffers et al., 2006).

7

In the information systems discipline design is crucial. To March and Storey,
information systems professionals are typically engaged in the design and imple-
mentation of IT artifacts that improve the business performance of organizations
and might have an impact on economic gains (March and Storey, 2008). In
this type of research IT artifacts that extend the known boundaries of IT are
developed, addressing important issues that hitherto no one has thought to com-
puterize (Hevner et al., 2004; March and Storey, 2008).

This PhD research work is structured according to the Design Science Re-
search (DSR) methodology. The DSR methodology is usually applied in the
design and development of artifacts, in order to solve specific problems of organi-
zations, giving possibility to, directly or indirectly, increase their profits (Hevner
et al., 2004). Thus, a research project that uses DSR requires the intentional
creation of an innovative artifact to solve a specific problem in a given domain
(Hevner et al., 2004; Carvalho, 2012).

An IT artifact is created to allow a representation, analysis, understanding
(March and Storey, 2008) and development of information systems success within
an organization.

Research projects using the DSR in information systems produce basically
four types of IT artifacts (March and Storey, 2008; Vaishnavi and Jr., 2008):
constructs, models, methods and instantiations.

• Constructs - a constructor is a set of vocabulary and symbols used to
define the problem and to specify the solution. This set allows the definition
of a language that can be used to communicate knowledge within the area
(March and Smith, 1995). The language definition has a strong impact on
how the tasks and problems are designed. The constructors arise in the
problem design and can be refined throughout the design cycle.

• Models - a model is a set of propositions that express the relationship
between constructors (March and Smith, 1995). Models use constructs to
represent situations (Hevner and March, 2003). A model is a represen-
tation of the real-world. As stated by Giaglis, modeling allows filtering
the real-world complexity aimed to direct the effort to the important and
more relevant aspects (Giaglis, 2001). A model should be able to capture
the structure of reality so that their representation becomes useful (Peffers
et al., 2006). Thus, models help to understand the problem and to relate
the problem to the solution.

• Methods - a method is a set of steps used to perform a task (March and
Smith, 1995). A method is a procedure that provides a guide to the prob-
lem resolution (Hevner et al., 2004). A method is based on the constructs
and models previously defined. A method can be linked to a specific model
where the steps are entry points into the model, or can be used to transform
(or translate) into another model. The methods can be formal, specified by

8

using mathematical methods or algorithms, or informal, specified through
approaches that are textually or graphically described. The obligation to
use certain methods can influence the definition of the constructs and mod-
els developed.

• Instantiations - an instantiation is the operationalization of the con-
structs, models and methods of a system (Vaishnavi and Jr., 2008). An
instantiation is the realization of the artifact in its environment. Instan-
tiation involves a full articulation of language and models and embodying
methods (March and Smith, 1995). Therefore, an instantiation can demon-
strate the feasibility and effectiveness of the models and methods involved.
The instantiations provide operational artifacts that can be used to study
and improve new ideas and developments in the area.

The artifacts are often built in the form of prototypes. The artifact shall be
innovative and useful for problem solving, so its evaluation is essential (Hevner
et al., 2004).

To Hevner et al., DSR forwards the research by building and evaluating the
designed artifacts (Hevner et al., 2004). The artifacts are built to meet the
business needs. In (Venable, 2006; Peffers et al., 2006; March and Smith, 1995),
the authors opinions are that research in design science is essentially a problem-
solving paradigm. In this type of research, there are two activities that deserve
special attention, namely to build and evaluate:

• Develop/Build - refers to the artifact design and construction. The ar-
tifact is built to perform a specific task. The construction shows that the
artifact is feasible. Once built, the artifact can become an object of study.
Constructs, models, methods and instantiations are a technology that, once
built, can and should be scientifically evaluated (March and Smith, 1995).

• Justify/Evaluate - refers to the definition of criteria and evaluation met-
rics. Also refers to assessment of the artifact performance with respect to
defined criteria. Metrics define what one intend to perform or improve.
A metrics failure may lead to a failure in the performance measurement
artifact and thus a misjudgment (March and Smith, 1995). In addition to
the criteria and evaluation metrics it is necessary to ensure an appropriate
environment for the evaluation. The environment can include all technical
infrastructures and data needed to the assessment. Finally, it is necessary
to identify the situations and environments in which the artifact works, in
what situations it does not work, and it is necessary to identify how and
why this happens. This leads to a deeper and detailed knowledge about the
artifact which can lead to the creation of new ideas to change the artifact.

An IT artifact can be evaluated in terms of functionality, completeness,
consistency, accuracy, performance, reliability, usability, fit for the organi-

9

zation’s requirements, and other relevant quality attributes (Hevner et al.,
2004). For J. Carvalho, the success of an artifact can be measured by
its usability, efficiency and effectiveness (Carvalho, 2012). When the arti-
fact refers to a software product, ultimately, its success can be assessed by
using the ISO/IEC2 25010 quality attributes: functional suitability, per-
formance and efficiency, compatibility, usability, effectiveness, reliability,
security, maintainability, etc. (IEC, 2010).

Figure 1.1: The Build-Evaluate cycle (adapted from (Hevner et al., 2004))

As shown in Figure 1.1, the Build-Evaluate activities constitute an iterative
process. On the one hand, to Justify/Evaluate the artifact can motivate, or
suggest changes to its design and construction (Develop/Build). On the other
hand, when the artifact design and construction is modified, the artifact should be
reevaluated to determine if progress exists. Progress exists when one technology
is replaced by a more efficient one (March and Smith, 1995).

The Build-Evaluate cycle of an artifact commonly occurs several times dur-
ing the research. During the various iterations weaknesses in the artifact and
refinement needs can be identified and reevaluated. The development of several
iterations forward research to meet the business needs (Hevner et al., 2004).

The artifact construction is complete when it satisfies the problem require-
ments and constraints that it seeks to solve. However, sometimes redefinition
and reevaluation can be proposed for future work (Hevner et al., 2004).

2ISO - the International Organization for Standardization and IEC - the International Elec-
trotechnical Commission

10

The DSR uses an iterative approach that consists in six main activities (Peffers
et al., 2006): problem identification and motivation; definition of objectives for
the solution; design and development; demonstration; evaluation and reporting.

Figure 1.2 represents the activities performed during the DSR research pro-
cess.

Figure 1.2: DSR activities (adapted from (Peffers et al., 2006))

Process activities can be performed in sequence, i.e. by order, from 1 to 6,
or may follow a different order in which some of the activities can be performed
several times. The activity 5 (evaluation) or 6 (communication) can induce the
research to get back to activities 2 (defining objectives) or 3 (design and imple-
mentation).

The created artifacts’ utility, quality and effectiveness must be rigorously
demonstrated and assessed. The assessment of an IT artifact requires the defi-
nition of metrics and the creation of appropriate environment and data. DSR,
through the artifacts’ build-evaluate iterations, guides the research to meet busi-
ness needs.

This PhD research work aims to create an approach to obtain a data model
based on the information existing in a set of business process models serving for
the development of the software that will support the business.

To accomplish the research objectives, the steps shown in Figure 1.2 are fol-
lowed. The first step, the problem identification and motivation, has already been
presented herein (section 1.1). The remaining steps have been executed several
times. Thus, the investigation is divided in several phases, where each phase is
constituted by the steps 2 to 6 shown in Figure 1.2. To each phase specific goals
are defined, drawing and implementing, demonstrating, evaluating and commu-
nicating the obtained results. The steps that integrate the research are shown
in Figure 1.3. In this figure, the solid arrows represent new steps created during
this PhD research work. The dashed arrows represent existing steps that were
adapted in this research work.

Thus, the research work is divided into the following phases:

1. Explore the possibility to get the data model from one business process

11

Figure 1.3: Research phases

model, modeled in BPMN language. This approach is presented in chapter
4, section 4.2, and demonstrated in section 4.3.

2. Improve, complete and extend the approach presented in the previous phase
in order to aggregate in one data model the information available in a set of
interrelated business process models, modeling the business processes that
will be supported by the software under development. This approach is
presented in section 4.4 and demonstrated in section 4.5.

3. Extend the 4SRS to derive a data model from the logical software archi-
tecture. The 4SRS will be adapted to work based on the use case model
previously derived from the set of business process models that will be sup-
ported by the software under development. This way the data model will
be created based on the set of business process models. This approach is
presented in section 5.4.

4. Derive the use case model by aggregating all information available in a set
of business process models. This use case model will be used to feed 4SRS
method. This phase will be divided in three sub-phases:

(a) Create an approach to derive a use case model, focused on use case
descriptions, from one business process model. A structured and con-

12

trolled language is defined to be used in use case descriptions. The
use case descriptions are “extracted” from the information presented
in the BPMN model. This approach is presented in section 5.2.

(b) Create an approach to refine the UML use case model in order to de-
compose the use cases to be used by the 4SRS method. The approach,
named as “the decomposition triangle”, is presented in section 6.3.

(c) Define an approach (presented in section 6.5) to integrate in one UML
use case model all the information existing in a set of business process
models. To derive the use case model “the decomposition triangle”
approach is used. This new approach gives special attention to the
generation of the use cases descriptions (textual structured informa-
tion) in order to provide complete information for the 4SRS. This way
it will be possible to generate the software logical architecture based
on a set of business process models.

Each phase is assessed by applying the created approach in demonstration
cases and ends with the communication of the results. Thus, six papers were
presented in scientific conferences after being approved through a peer reviewing
process.

1.5 Overview of the Document

This PhD dissertation is organized into a total of seven chapters:
Chapter 1 -This is the current chapter. It presents some introductory notes,

the motivation and goals of this research work, along with the research questions
and objectives and the methodological approach used in this PhD dissertation.

Chapter 2 - This chapter addresses concepts and definitions that are needed
throughout the research. It briefly points out software modeling and business
process modeling and management concepts. This chapter also presents the soft-
ware models and the business process models and notations more significant for
this research.

Chapter 3 - This chapter presents several approaches for establishing rela-
tionships between different software models and business process models. Ap-
proaches that approximate the software development area with the business pro-
cess modeling area are highlighted.

Chapter 4 - This chapter presents two approaches, integrating the research
work being presented here, to derive a data model from business process models.
The first approach deals with only one business process model, while the second
approach aggregates in one data model all the information about persistent data
that can be extracted from a set of business process models.

Chapter 5 - This chapter presents an approach to support the construction
of use case models based on business process models highlighting the derivation

13

of the use case descriptions, which are created using a set of predefined struc-
tured sentences (in natural language) mapped from BPMN model elements. The
generated use case model is used to feed the 4SRS tabular transformation.

In the second part of this chapter the 4SRS is adapted to deal with the derived
use case model from business process models and extended to generate a data
model supporting the generated logical architecture and the elicited requirements.

Chapter 6 - This chapter presents two more approaches, integrating the
research work being presented here: The decomposition triangle approach and
an approach to generate a use case model from a set of business process models.
The decomposition triangle decomposes and refines UML use case models as
a mean to organize and manage use cases to be used by the 4SRS method.
The decomposition triangle is then used in the second approach presented in
this chapter to aggregate in one use case model all the information that can be
extracted from a set of business process models. The approaches presented in
this chapter are preparing the requirements (modeled as a use case model) to be
used by the 4SRS to generate the logical software architecture.

Chapter 7 - This chapter summarizes the obtained results, presents conclu-
sions and points out future work.

A list of references and an appendix are also included at the end of the doc-
ument.

14

Chapter 2

Notations and Languages for
Modeling Information Systems

This chapter presents some concepts and definitions that are used throughout the

dissertation. It points out business models, business process management, business

process modeling, software modeling and the main reasons that lead to the increasing

demand of these methodologies by organizations. It also presents several languages

that can be used in business processes modeling and in software modeling.

2.1 Introduction

BPM is increasingly being used by organizations as a means to improve their
products or services quality and to improve their productivity (van der Aa et al.,
2015; Redlich et al., 2014). Business process modelling is used to detect bottle-
necks, waste, and deviations and to simulate possible improvements to business
processes (Schmiedel and vom Brocke, 2015).

The increasing interest in BPM led to an increasing number of languages and
notations used in this area. Some of them, considered as most important, are
presented in this chapter.

Fettke et al. say that modeling is the main vehicle to analyze, develop and
implement information systems (Fettke et al., 2005). However, the modeling pro-
cess is most of the times, time consuming, resources consuming and an imperfect
process. A model is a simplified view of the complex reality. Modeling allows the
decision makers to filter the complexity of the real world so that the effort can
be directed only to aspects considered important (Giaglis, 2001).

In the software development process several models are used to represent
different points of view. Nowadays, talking about software modeling, is talk-
ing about UML (Olivé, 2010; Marshall, 1999; Lange et al., 2006). However,
when it comes to modeling databases, in most cases, one still speaks of relational
databases, represented by the traditional Entity-Relationship Diagrams (ERD)

15

(Silva and Videira, 2005; Silingas and Butleris, 2008). According to Dobing and
Parsons, UML use in information systems development has increased significantly
and is now the second most widely used technique, after Entity-relationship dia-
grams (Dobing and Parsons, 2009).

The remainder of this chapter is structured as follows. Next section presents
business process management and its current trends. Section 2.3 presents some
examples of business models. Business process modeling is presented in section
2.4. Modeling notations and languages are presented in section 2.5. This chapter
ends with a brief discussion about business process modeling languages.

2.2 Business Process Management

BPM helps organizations to improve the perception of their own business, helping
to improve the quality of their products or the efficiency of their services and thus
increasing the benefits for their stakeholders. This justifies the current trends of
BPM.

The business process management, in recent years, has revealed four essential
tendencies (Dong and Chen, 2005; Redlich et al., 2014; van der Aa et al., 2015):

1. BPM is becoming more important;

2. The organizations that use BPM are increasing in number;

3. Business processes are becoming increasingly complex;

4. Business processes are subject to constant changes.

But what is exactly Business Process Management? There are various defini-
tions of BPM, including some mentioned below. To White and Miers the business
process management is a way of thinking, a management philosophy focused on
a continuous improvement of organization’s processes (White and Miers, 2008).

In (ORACLE, 2011), BPM is a management model of continuous improve-
ment, which should always be aligned with strategic business objectives, and for
that reason, it spans different departments, areas and business units across an
organization.

The BPM supports the business processes using methods, techniques, tools
and software applications to design, approve, monitor and analyze operational
processes involving humans, organizations, applications, documents and other
information sources (ter Hofstede et al., 2003; Ko, 2009).

Summing up, BPM manages the business processes. But, what is a business
process? A process can be defined as a set of activities performed in parallel or in
sequence, related to each other, with a beginning and an end in order to achieve
a common goal.

16

Ryan Ko defines process as a specification of a sequence of work activities
over time and place, with a beginning and end, and inputs and outputs clearly
identified (Ko, 2009).

In the context of software development, a process specifies how the activities
are organized, managed, measured, supported and improved to achieve a goal
(Estublier, 2006). In the context of business, a business process is a set of related
activities, developed by one organization for the creation of their products or the
execution of their services (Hammer and Champy, 2001).

To Aguilar-Savén a business process is the combination of a set of activi-
ties within a company, with a structure that describes their logical order and
dependencies, whose goal is to produce a desired result (Aguilar-Savén, 2004).

It is important to note that a business process, being a structured sequence
of specific activities, is not performed by a single individual or department, but
it involves several people, machines and systems of an organization or different
organizations to work together to achieve one common business goal (Ko, 2009).

The business processes can be divided into two major groups (Ko, 2009; OMG,
2011a):

• Private Business Processes - A private process is a process internal to a
specific organization. It represents processes internal to the company, which
include strategic management processes, and processes at the operational
level;

• Public Processes - A public process represents the interactions between
a private Business Process and other Processes or Participants. They are
also known as collaborative business processes, involving the participation
of external organizations, for example, delivery of goods, materials require-
ments, etc..

Information technologies (IT) are, often, used to support the management
of business processes. Software tools that support the business processes man-
agement became known as Business Process Management Systems (BPMS). The
BPMS software systems are generic, guided by explicit process plans to manage
operational business processes (ter Hofstede et al., 2003). The system should
be generic and process-oriented to allow constant changes to the processes it
supports. Thus, the BPM is a cycle that is constantly changing.

In general the authors are unanimous in what concerns to BPM lifecycle main
steps. As shown in Figure 2.1, the BPM life cycle involves four essential steps
(Ko, 2009; Weske, 2012; Aguilar-Savén, 2004; van der Aalst, 2004):

1. Process Modeling - at this stage the business processes are modeled using a
Business process modeling language like BPMN or other; Usually the BPM
requires the modeling of an existing (“as-is”) or desired (“to-be”) process.
The process models may include several perspectives like control-flow, data-
flow, etc.;

17

Figure 2.1: BPM life cycle ((van der Aalst, 2004; Ko, 2009))

2. System configuration - at this stage, based on the process design, the
process-aware enterprise information system is realized. The BPMS is con-
figured.

3. Process enactment - at this stage, the designed business processes are de-
ployed;

4. Diagnosis - at this stage the business processes (and activities) are analyzed
and monitored. The BPM analysis can identify improvements, bottlenecks
and potential gaps in business processes. This way, organizations can im-
prove performance, support new processes, explore new technologies, etc.
in a controlled way.

After identifying the weaknesses and potential improvements, the processes
are redesigned, and the cycle continues.

A wide variety of paradigms and methodologies of the organizational man-
agement theory, computer science, mathematics, linguistics, semiotics and phi-
losophy were adopted, making the BPM a transversal discipline (Ko, 2009).

Over the last decades it was noticed an increasing number of standards, new
models and new tools to model business processes. BPM tools are used to create
and validate the business process models and to store it in databases so that they
can be updated whenever necessary (Delgado et al., 2015). BPM tools can be
also used to provide meaningful metrics to business analysts for measuring and
optimizing business processes (Delgado et al., 2015). These tools allow process
managers to change and improve the process whenever necessary and possible
(III, 2014).

18

2.3 Business Models

A business model is an abstract representation of how an organization makes
money (representing the organization “as-is”) or how an organization intends to
make money (representing the organization “to-be”). According to Osterwalder
and Pigneur, a business model describes “how an organization creates, delivers,
and captures value” (Osterwalder and Pigneur, 2010).

The business model includes core aspects of a business such as business pur-
pose, target customers, infrastructure, organizational structures, strategies, trad-
ing practices, business process, etc. (Osterwalder and Pigneur, 2010). CANVAS
and DEMO (Dynamic Essential Modelling of Organization) are two examples of
business models.

Jan Dietz defined DEMO as a theory about constructing and operational-
izing organizations and is also a methodology for modelling, (re)designing and
(re)engineering organizations (Dietz, 2001). CANVAS is one of the most popu-
lar framework for business models. The CANVAS business model was applied,
tested and successfully used in many organizations to create new business strate-
gic alternatives (Barquet et al., 2011).

Comparing CANVAS business model with DEMO, Steven Alter states that
the CANVAS business model is more informal than DEMO. CANVAS produces
“brief and informal summaries of business models” and DEMO produces “formal,
rigorous, carefully documented, and internally consistent” models (Alter, 2015).

The ARIS (ARchitecture of Integrated Information Systems) is framework
for the description of the organizational structure and business processes (Scheer
and Nüttgens, 2000). The ARIS framework is composed of the four levels of pro-
cess engineering, process planning and control, workflow control and application
systems (Scheer and Nüttgens, 2000; Bork and Fill, 2014).

The ARIS framework is one of the most used in organizations and is very well
accept within business community (Cardoso et al., 2009). Traditionally ARIS
and Event-driven Process Chains (EPCs), usually, are used together (Bork and
Fill, 2014). Nevertheless, in recent versions of the ARIS Toolset also support the
BPMN to model business processes.

According to Dorn et al., the business model research focus has changed over
time. It began by creating taxonomies of business models, then passed to the
description of the business models elements and then to the construction of busi-
ness models ontologies (Dorn et al., 2009). These ontologies provide vocabulary
and a set of concepts, which is used to describe the business logic that is under-
stood by all stakeholders, facilitating, this way, the understanding between them.
The business modeling follows a set of methods and techniques that helps the
organization in formalizing their business, offering a uniform representation of
the organization. The business model may serve as a business guide to improve
how the business is operated (Eriksson and Penker, 2000).

Next section addresses business process modeling.

19

Figure 2.2: The business process modeling process (adapted from (Ko, 2009))

2.4 Business Process Modeling

A model is a simplified view of the complex reality, so modeling allows the de-
cision makers to filter the complexity of the real world so that the effort can be
directed only to aspects considered important (Giaglis, 2001). A process model
can provide a detailed understanding of a process (Aguilar-Savén, 2004). To
Eriksson and Penker, working with models increases understanding about the
business and provides a better insight on how to improve business (Eriksson and
Penker, 2000). The business process modeling enables a common understanding
of the analysis of a business process by all stakeholders. A business process model
is an abstract description of the flow of one or more business processes with ac-
tivities and resources. Resources can be people, equipment, machinery, software,
and others (Hammer and Champy, 2001). Contrary to the models used in the
software process, which are understood only by specialists, the business process
models should serve as the basis for communication between all people involved,
so they must be understood by all (Becker et al., 2000).

To Andersson et al. a business process model describes and visualizes the
transfer of value between agents. An agent can be a person, an organization, a
department or someone that is capable of controlling, acquiring, and providing
resources (Andersson et al., 2005).

To Ryan Ko the process of business modeling involves essentially six phases,
as shown in Figure 2.2 (Ko, 2009):

1. The first phase is the identification of business needs;

2. The second phase identifies the organization’s mission. Management should
present the high-level requirements to business analysts;

20

3. In the third phase, business processes are modeled using detailed diagrams.
Typically, this stage uses a graphical language easy to understand, for ex-
ample BPMN;

4. In the fourth phase the business processes models are translated to software
or, in other words, the software that will support the business is developed.
Usually a prototype is created.

5. At the fifth phase the experts evaluate the software and, if needed, add
logical detail.

6. In the last phase the software that supports the business process is put into
practice.

Several languages and tools have been proposed, and used, for the modeling
of business processes. Most are based on graphical notations, such as data flow
diagram, state transition diagrams, Petri nets, among others.

Next section is a survey of languages and tools for business process and soft-
ware modeling.

2.5 Modeling Languages

This section presents the mains business process modeling languages and software
modeling languages. The languages or models considered with more interest to
the research are emphasized.

DFD - Data Flow Diagram

The Data Flow Diagrams (DFDs) were widely used in the information systems
analysis, especially in the 70s and 80s of the twentieth century.

These diagrams can be used during the analysis phase allowing the users a
better understanding of the system (Jalote, 2008). A DFD represents how the
data flows within an organization. In this type of diagrams the system is seen
as a function that transforms input data into the desired output data. A DFD
provides a description of how the input data are processed to produce the output
data (Jalote, 2008).

A DFD is composed by the following graphics components (Jalote, 2008):

• Process: represents a task that processes data or performs an action based
on the data (Abi-Antoun et al., 2007). Graphically, a process is represented
by a circle;

• External Entities: graphically represented by a rectangle, represents an
organization or individual outside the scope of the system that sends or
receives data that the system uses or produces.

21

• Data store: is graphically represented by two horizontal lines and represents
a repository where the data is stored and retrieved.

• Data flows: graphically represented by an arrow, represents the data flow
between the remaining elements: processes, data stores or external entities.

Besides the graphical elements the DFD also comprise a data dictionary. In
the data dictionary, all components of the system are described.

In most cases it is not possible to describe with clarity, all data transforma-
tions that occur in a system in a single DFD (Jalote, 2008). To overcome these
situations, the DFDs can be organized hierarchically at several levels. Usually
the first diagram being drawn is the context diagram. In the context diagram,
the whole system is represented as only one process with all its inputs, outputs
and sources. This process is, then, refined (and detailed) in DFD level 0, which
can give rise to various processes. Each of these processes can be expanded and
detailed in a higher-level DFD and so on. The refinement stops if each process is
considered to be “atomic” (Jalote, 2008). The detail level increases when a pro-
cess in a higher-level DFD is refined into a lower-level DFD (Abi-Antoun et al.,
2007).

ERD - Entity Relationship Diagram

The Entity Relationship Diagram (ERD) was created in the 70s of the last cen-
tury, and it has been very well accepted since the beginning (Silingas and But-
leris, 2008). Actually it is considered the default diagram used for planning and
designing relational databases.

The ERD is a static view of the entities, their attributes and the relationships
between them (Davis and Yen, 1999; Chen, 1976; Jalote, 2008).

An entity is something identifiable, or a concept in the real world that is
important to the modeling purpose (Weske, 2012). The entities can be seen as
types describing elements with common properties (Jalote, 2008). An entity is
graphically represented by a rectangle and corresponds to a table in the database.
The information, or the properties, about an entity are expressed through a set
of attributes (Weske, 2012). These attributes can be instantiated into concrete
values on the database. A relationship between two entities is represented through
an association between those entities (Chen, 1976). The role of an entity in a
relationship is the function that it executes in that relationship. Between two
entities, we can distinguish three types of relationship (Chen, 1976):

• (n : 1) relationships: the existence of n elements in one side of the relation-
ship is dependent on the existence of 1 element of the entity in the other
side.

22

• (m : n) relationships: the existence of m elements in one side of the re-
lationship may correspond to the existence of 1 or more elements of the
entity in the other side.

• (1 : 1) relationships: an univocal relationship is represented. The existence
of 1 element in one side of the relationship corresponds to one and only one
element of the entity in the other side.

The data model is often the basis for designing an application’s database.
Additionally, it may also be used to represent the business data structure (Weske,
2012), which is very important for the business processes management. However,
the ERD does not specify how the data is manipulated or changed in the system
(Jalote, 2008).

Domain Model

The domain model is used to structure the knowledge about a specific domain and
is a way to leverage the elements (or concepts) of most interest on that domain
(Evans, 2011). It represents the key concepts of the problem domain and the
relationships between them. The key concepts are also called domain entities.
Usually the entities attributes are also represented in the domain model. The
Domain Model describes and constrains the scope of the problem domain.

Evans says that the domain model “is not just the knowledge in a domains
expert’s head, it is a rigorously organized and selective abstraction of that knowl-
edge” (Evans, 2011).

According to (Jacobson et al., 1999) the domain model captures the most sig-
nificant “things” belonging to the system scope. These “things” are represented
as objects or classes and can represent business objects; real-world objects and
events. The domain model aim is to understand and describe the most important
classes within the system context (Jacobson et al., 1999). Usually the domain
model is represented as a UML class diagram (Savié and da Silva, 2012).

UML - Unified Modeling Language

In 1997, the UML has emerged as a OMG (Object Management Group) standard
and is currently considered as the modeling language used by default in companies
(Olivé, 2010; Lange et al., 2006; Marshall, 1999; Bork and Fill, 2014).

According to Dobing & Parsons the use of UML in software development has
“increased significantly and is now the second most widely used technique, after
Entity-relationship diagrams” (Dobing and Parsons, 2009).

UML follows the object oriented paradigm and is more suited to model the
technical side of information systems than the business side of an organization
(Rittgen, 2008). UML is a graphical notation for expressing object-oriented de-
signs (Fowler, 2004).

23

Some software development processes, such as UP (Unified Process), use the
UML to support the modeling and documentation of the entire software devel-
opment process (Jacobson et al., 1999; Marshall, 1999). A software development
process is the set of activities needed to transform user requirements in a software
system (Jacobson et al., 1999).

The UML 2.0 provides thirteen types of diagrams that allow the modeling
of different points of view of the system and with different levels of abstraction
(Lange et al., 2006; Yue et al., 2011). The UML allows to completely cover the en-
tire software development cycle from requirements capture, through the use case
diagram, to the way the various components fit together through the installation
diagram (Pilone and Pitman, 2005; Sendall and Kozaczynski, 2003). Russell et
al. Compare the UML to a “Swiss army knife” in terms of modeling and de-
sign (Russell et al., 2006). With its 13 different modeling notations (UML2.0),
the UML allows representations from high abstraction level through the use case
diagram, to the concrete representation of objects in the objects diagram.

UML diagrams can be grouped into two main categories (Yue et al., 2011):
structure diagrams that are used to capture the physical organization of the
system, and behavioral diagrams that focus on the behavior of system elements.

The diagrams are briefly described below:

• Class Diagrams - Class diagrams describe the system structure, i.e., iden-
tify existing entities, its internal structure and the relationships between
them (Berardi et al., 2005; Yue et al., 2011). This type of diagram is one
of the most widespread used UML diagrams.

The main graphical elements present in the class diagram are:

– Class - A definition of objects that share given structural or behavioral
characteristics. Each class has attributes (a typed value attached to
each instance of a classifier) and operations (a method or function
that can be performed by instances of a classifier).

– Relationships - represents the relationships between classes. A rela-
tionship could have a name and can represent an association, aggre-
gation, composition, generalization, etc..

A class diagram example is presented in Figure 2.3. This type of diagram is
one of the most frequently used and well known UML diagrams. According
to P. Fettke, UML class models describe the static structure of an Object-
Oriented (OO) model and “are considered to be the most popular UML
diagram used in practice”(Fettke, 2009).

• Object diagrams - These diagrams have the same syntax as the class
diagrams and describe how instances of a class diagram are related at a
given moment (Marshall, 1999).

24

Figure 2.3: A Class diagram example

• Package diagrams - These diagrams are a particular type of class dia-
grams that focus on how the interfaces and classes are grouped together
(Marshall, 1999).

• Composite structure diagrams - this type of diagrams appeared for the
first time in UML2.0 in order to make the integration between the different
existing class diagrams (Pilone and Pitman, 2005).

• Components diagrams - such diagrams describe the organization and
dependencies of various software components (Jacobson et al., 1999). Can
group small elements such as classes, or major elements such as sets of
executable files.

• Deployment diagrams - this type of diagrams describe the various soft-
ware components configuration (Pilone and Pitman, 2005), i.e., describes
how the system runs and how each component is distributed through ex-
pected hardware.

The behavioral diagrams focus on the behavior of system elements. Among
the behavior diagrams we have (Jacobson et al., 1999):

• Use case diagrams - use cases diagrams allow to describe the behavior of
the system from the users point of view (Booch et al., 1998). This type of
diagrams are detailed in section 2.5.

• Activity diagrams - These diagrams allow to capture the flow of activities
in a process. Therefore, as can be read in section 2.5, these diagrams are
often used to model business processes.

• State machine diagrams - this type of diagrams describe the sequence of
states through which an element of the system passes. The elements may
be small elements as a class, or the whole system (Gomma, 2011).

25

• Interaction diagrams - such diagrams are simplified views of the activity
diagram in which, instead of emphasizing the activity performed, the ele-
ments involved in performing the activity are emphasized (Gomma, 2011).
There are three types of iteration diagrams (Gomma, 2011):

1. Communication diagram - is an interaction diagram that focuses
on the messages exchanged by the elements involved in a particular be-
havior. The diagram gives particular attention to the objects involved
rather than the order and nature of messages exchanged (Gomma,
2011).

2. Sequence diagrams - this type of diagram emphasizes the type and
order of messages exchanged between participants or objects during
the execution. The sequence diagram captures the behavior (messages
exchanged) of a single scenario (Fowler, 2004). The main graphical
elements present in the sequence diagram are:

– Lifeline - A vertical line that represents the sequence of events
that occur in a participant during an interaction;

– Actor - A participant that is external to the system in develop-
ment;

– Synchronous message - The sender waits for a response to a syn-
chronous message before it continues;

– Asynchronous message - A message that does not require a re-
sponse before the sender continues;

– Execution occurrence - A message that returns back to a partici-
pant that is waiting for the return from an earlier call.

3. Timing diagrams - are a type of interaction diagrams that detail and
specify the time of the messages. These diagrams are often used to
show the change in state of an object over time in response to accepted
events or stimuli (OMG, 2012). These diagrams are frequently used
to model real-time systems since they allow you to specify how long
the system has to process and respond to a particular message, events
or stimuli.

The different diagrams give an insight of the system in different perspectives:
the design perspective, development, implementation, process and use cases (Pi-
lone and Pitman, 2005). But, as stated by Roussev, modeling the system in
different perspectives and using successive refinements can give rise to consis-
tency problems (Roussev, 2003). Thus, the different models must be consistent
and compatible in order to the implementation become viable (Roussev, 2003).
The study described in (Dobing and Parsons, 2006) concluded that the diagrams
most commonly used are the class diagram, the use case diagram and the sequence
diagram.

26

UML - Use Case Diagram

Use case models aim to capture and describe the functional requirements of a
system (Hull et al., 2011; Yue et al., 2011). Booch et al. say that use case
models, when defined by Ivar Jacobson, aimed to describe the behavior of the
system from the users point of view (Booch et al., 1998). So, it is expected that a
use case model specifies what a system is supposed to do (OMG, 2012). In (OMG,
2012), a use case is defined as a specification of a set of behaviors performed by
an actor.

Among the thirteen diagrams provided by UML, the class model and the use
case model are the most used (Dobing and Parsons, 2006). UML use case mod-
els are one of the most popular ways of capturing and describing the functional
requirements of a system. This type of models have become even more popu-
lar with its inclusion in the Unified Process (also known as RUP) (Bittner and
Spence, 2003a; Booch et al., 1998).

A use case model is a set of use case diagrams and the corresponding use case
descriptions (Bittner and Spence, 2003a).

A use case model describes a sequence of interactions between the system and
its users (Dijkman and Joosten, 2002a; Cockburn, 2001). The use case model
is used in requirements elicitation and specification as a means to facilitate the
dialog with the customer about what the system is supposed to do (OMG, 2012).

Whittle and Jayaraman (Whittle and Jayaraman, 2006) define use cases as a
set of scenarios where a scenario is “an expected execution trace of a system”.
In fact, one possible approach to model a system, using a use case model, starts
by identifying all possible scenarios and then generalizes them in order to create
the use case model (Issa, 2007).

According to A. Cockburn “a use case is a description of the possible se-
quences of interactions between the system under discussion and its external
actors, related to a particular goal” (Cockburn, 2001).

A use case model should identify the system boundaries (marked by a rectan-
gle) and identify the actors which are represented by a “stickman” icon outside
the system boundaries (Hull et al., 2011; OMG, 2012). An actor is someone or
something that interacts with the system (OMG, 2012). So, an actor is always
related to one or more use cases. A use case is graphically represented by an
ellipse and contains a brief description of the action (Bittner and Spence, 2003a)
as can be seen in Figure 2.4.

A use case diagram is composed by actors and use cases. Each use case shall
have an associated description and can have pre-conditions and post-conditions.
There are some alternatives that can be used to describe a use case, like informal
text, numbered steps, pseudo-code, among others (Machado et al., 2005).

Use cases can be related through include and extend relationships. A use case
can include another use case and can be extended by other use cases (Berenbach,
2004).

27

Figure 2.4: A UML use case diagram example

UML - Activity diagrams

UML is a modeling language widely disclosed and actually used in companies,
particularly in software development companies (Dobing and Parsons, 2006). But
despite UML being traditionally used to model software applications, its flexibil-
ity and extensibility attracted modelers and business analysts. Thus, the UML
activity diagram (AD) has also been used to describe the behavior of business
processes. The sequence diagram can also be used to specify, at a lower level, the
interactions between the participants (Dorn et al., 2009).

Within the set of diagrams provided by UML, the activity diagram is named
as the most important for business modeling (Dijkman and Joosten, 2002a). The
activity diagram can show the activities in sequence or in parallel, the objects
produced or consumed by an activity, who is responsible for the activity and
the relationship, or dependencies, between activities. All this is essential in the
business process modeling (Eriksson and Penker, 2000), which as we saw earlier,
is a set of related activities designed to produce a result (product or service).

The activity diagram (Linzhang et al., 2004) represents mainly the following
concepts:

• actions - atomic executions, not interruptible with irrelevant runtime;

• Activities - ongoing non-atomic execution, interruptible, where the execu-
tion time is usually relevant;

• Transitions - represent the control flow between two activities;

• Objects - Can be divided in two types of objects: object flow and object
state;

28

Figure 2.5: Activity Diagram example (adapted from (Silva and Videira, 2005))

• Decision points and junction points;

• Transitions - diffusion points (fork) and joint or synchronization;

• swimlanes - a partition for organizing responsibilities for activities.

The activities are graphically indistinguishable from actions and are repre-
sented by a rectangle with rounded corners. Transitions are represented by solid
arrows. The fork and join are represented by a solid line. The initial state is
represented by a solid ball and the final state by a ball within a full circle.

The activity diagram also provides the concept of partitions (or swimlanes)
as an element that allows grouping activities that are from a participant respon-
sibility. Each group is separated by a dashed line.

In Figure 2.5, an example is presented of an activity diagram with swimlanes,
of a “prepare proposal” business process.

Despite its usefulness and clarity, certain aspects of business processes are
not mappable to activity diagrams. However, the standard UML has concepts
as stereotypes, tagged values and restrictions, which allow to create extensions

29

relatively easily. For these reasons, several extensions have been proposed, of
which three are discussed in the following subsections.

UML - Eriksson and Penker extension

Eriksson and Penker claim that there are several similarities between the business
modeling and software modeling. However there are also some differences. The
business management involves factors such as people, equipment, rules, among
others, which are not transformable into executable programs. For this reason,
Eriksson and Penker propose an extension to UML in order to more clearly cover
and visualize important concepts for business process objectives, resources and
business rules (Eriksson and Penker, 2000).

Eriksson and Penker use stereotypes, tagged values and constraints as base to
the proposed extension. A business process can have the following tagged values:
objectives, goals, resources, products, events, order in which the activities are
performed, among others.

The Eriksson and Penker extension uses five models for business description
(Eriksson and Penker, 2000):

• Conceptual model - uses the UML class diagram for the identification and
definition of the business key concepts;

• Goal/problem model - uses the UML object diagram to represent the goals
or business objectives to be achieved;

• Resources model- represented by a class diagram, identifies the resources
(or product information) involved in the business;

• Information model - represented by a UML class diagram or by an ob-
ject diagram, is a particular case of the resource model and represents the
information in a structured manner to facilitate its understanding;

• Organizational model - represented by the a class diagram or by an object
diagram, represents the organizational structures of business.

Eriksson and Penker, also propose a new set of diagrams, such as assembly line
diagram, process diagram (represented by UML activity diagram), goal-problem
diagram, etc.. To this end, the authors also propose a set of new graphical
objects, some of them can be seen in Figure 2.6 which presents an example of a
process diagram based on the UML activity diagram and applied to the prepare
a proposal business process for a web site development.

With the proposed models and diagrams, the Eriksson and Penker extension
allows to fully model a business process.

30

Figure 2.6: Process diagram example (adapted from (Eriksson and Penker, 2000))

UMM - UN/CEFACT

UMM (UN/CEFACT’s Modeling Methodology)1 is a business modeling method-
ology based on standard UML which includes three different model views (Dorn
et al., 2009; Hofreiter et al., 2010):

• The business domain view (BDV) - used to collect the knowledge from
stakeholders;

• The business requirements view (BRV) - used to capture the requirements
for exchanging business documents between organizations;

• The business transaction view (BTV) - is used to express the global ex-
changes of document between the potential business partners.

The UMM was especially designed to support the modeling of B2B (Business-
to-Business) processes (Hofreiter et al., 2010). The UMM allows to capture the
semantics of the business in terms of pre-defined templates. This approach allows
us to differentiate the definition of web services from their technological imple-
mentation (Karakostas et al., 2006). The UMM also allows to model the business
data exchanged in a business process (Hofreiter et al., 2010).

1UN/CEFACT - United Nation’s Centre for Trade Facilitation and Electronic Business

31

UMLEWM - UML Extended Workflow Metamodel

The UML activity diagram allows the modeling of business processes, however,
the level of detail is not enough to support the detail level demanded by a work-
flow process (Debnath et al., 2006). Thus UMLEWM (UML Extended Workflow
Metamodel) incorporate the ability to model the workflow process by extending
UML meta-model with new meta-classes. The new meta-classes represent ele-
ments present in the workflow meta-model and absent in the UML meta-model.

BPMN - Business Process Model and Notation

The BPMN language was originally developed by a software companies consor-
tium, the BPMI (Business Process Management Initiative) (Allweyer, 2010). The
development of the first version, published in 2004, was led by Stephen A. White
from IBM Company. By that time, the BPMI became part of the OMG. The
OMG is the organization responsible for developing various software standards
such as UML and CORBA (Common Object Request Broker Architecture). In
2006, the BPMN was officially accepted as a standard of OMG (Allweyer, 2010).
Version 2.0 was completed into early 2011 (OMG, 2011a).

BPMN is a graphical language for modeling business processes (Lam, 2009)
that calls itself the “lingua franca” to document, visualize, specify and model
the business process. This language provides a set of graphical symbols that
facilitates the construction of business process model (Liang et al., 2008). For
Dorn et al., BPMN provides a small but clear notation for modeling business
process (Dorn et al., 2009).

The BPMN modeling language was developed with the aim of providing a no-
tation understandable by all stakeholders involved in the business process (OMG,
2011a). BPMN 2.0 provides three main types of diagrams (OMG, 2011a):

• Process diagrams - Define a set of business activities carried out by an
organization for the concretization of a goal (product or service). The
business process includes the flow and use of information and resources.

• Choreography diagrams - This is a type of process diagram that de-
scribes how participants coordinate their interaction. Such diagrams can
be used to analyze how the participants exchange information in order to
coordinate their actions, as we can see in the example in Figure 2.7. A
choreography defines a set of interactions between the participants. A par-
ticipant, in general, defines a role in the organization or a business partner
and is represented in a pool. A Pool represents a participant or a group
of participants in the process and graphically is represented by a rectangle.
Thus, choreography involves at least two pools. The exchanged information
is represented by the incoming and outgoing messages.

32

This diagram can be seen as the business contract between two or more
organizations, or business partners.

• Collaboration diagrams - This type of diagram focuses on the exchange
of information between participants, represented by pools. The collabo-
rations are modeled with two or more pools, each containing a separate
process. The processes communicate by exchanging messages (Allweyer,
2010). Collaborations are permitted in all combinations of pools, processes
and choreographies.

Figure 2.7: A BPMN choreography example (extracted from (OMG, 2011a))

The basic process models can be grouped into two types of processes (OMG,
2011a):

• Private Business Processes - A private process is a process internal to
a specific organization. Each private process is represented within a Pool.
The process flow must be in one pool and should never cross the boundaries
of that Pool. The interaction between distinct private business processes
can be represented by incoming and outgoing messages. The message flow
can cross the pool boundaries.

• Public Processes - A public process represents the interactions between a
private business process and other processes or participants. Only activities
that are used to communicate with the other participants must be included
in the public process. Thus, a public process shows to the outside world
the origin of the messages needed to interact with that process and the
messages flow order, but can keep private the remaining activities.

Public processes can be modeled separately or within a Collaboration to
show the flow of messages between participants and external process activ-
ities.

The BPMN captures business processes by defining the Business Process Dia-
grams (BPD). The notation used by BPMN diagrams became influenced by other

33

notations such as UML activity diagrams, IDEF, EPCS, among others (OMG,
2011a).

The business process diagrams use a set of graphical objects that can be
grouped into five basic categories (OMG, 2011a):

• Flow Objects - are the main graphical elements to define the behavior of a
business process. There are three kinds of Flow Objects: Events, Activities
and Gateways.

• Data - represent the data involved in a business process.

• Connecting Objects - model the connection between the several process
elements. There are four types of connecting objects: Sequence Flows,
Message Flows, Associations and Data Associations.

• Swimlanes - represent the participants in the process. A participant is a
person, or something, involved in the process. Participants in the process
can be grouped into pools or, more particularly, in Lanes. A pool can be
divided into several Lanes, for example, to represent the different depart-
ments of an organization involved in the process. A Lane is a sub-partition
of a pool, so it is always within a Pool.

• Artifacts - are used to provide additional information to the process, such
as a note (“Text Annotation”). The artifacts can be used to define possible
extensions to the BPMN language.

The following subsection addresses data in BPMN 2.0, mainly its representa-
tion and flow.

Data in BPMN

Process modeling must be able to model the data items (physical documents
or electronic information) that are created, manipulated, and used during the
execution of a process (OMG, 2011a). The data involved in the process can be
considered persistent or not persistent (volatile). The persistent data is the one
that remains beyond the life cycle, or the scope, of the process (OMG, 2011a).

In BPMN 2.0 the data can be represented in a process diagram by the elements
presented in Figure 2.8. Data manipulation elements can be grouped into:

• Data Objects - data objects represent the information that flows through
a process. A data object can be referenced by DataObjectReference. A
data object reference is a way to reuse one data object in the same di-
agram. A data object reference can represent a different state of the
same data object at different points in the process. On a process di-
agram this is represented by (OMG, 2011a) < DataObjectName > [<
DataObjectReferenceState >].

34

Figure 2.8: Data representation elements (adapted from (OMG, 2011a))

• Data Object Collection - represents a set of data objects.

• Data Inputs - data external to the process that can be read or received
by an activity.

• Input Set - represents the data needed for the process to work properly.

• Data Outputs - data available as a result of a process activity.

• Output Set - represents the information produced by the process and
exported abroad (Allweyer, 2010).

• Data Store - a data store is a means to handle persistent data. It provides
a mechanism for an activity to store information or use the information
stored. A data store can be referenced by DataStoreReference which can
be used to represent the same data store at different points in the process.

35

A data object can represent any type of information, such as electronic data,
documents, forms or other physical data (Allweyer, 2010; List and Korherr, 2006).
A data store can represent paper documents (a file folder, an agenda, a notebook,
etc.) or an electronic database. Data objects and data stores are exclusively used
in process diagrams (OMG, 2011a).

The next subsection describes the data flow representation.

Data Flow

During the process execution, resources and/or data are consumed and produced.
The transmission of the data created or used during a process execution can be
represented by:

• Messages - A Message is used to represent the contents of a communication
between two participants. Each participant is represented by a different
pool. So, a message crosses the pool boundary to show the interactions
between separate private business processes (OMG, 2011a). A message can
represent any kind of information like an email, a fax, a letter, a phone call,
etc. (Allweyer, 2010). Graphicaly, an initiating message is represented by a
white envelope. An non-initiating message is represented by a gray envelope
(OMG, 2011a). A message can only be transmitted between different pools.
It is not allowed to use messages within the same pool.

• Data Associations - A Data Association can be used to model how data
comes and goes from activities or events. This way it is possible to identify
the activity that produces a certain data object and the activity that uses
a given data object. This also allows the possibility to identify the activity
that sends data to a data store and the activity that gets data from a data
store. A Data Association can only be used within a pool. Data associations
can be divided into two types:

– Data Input Association - represents the input data.

– Data Output Association - represents the output data.

A data store can also be considered as a mean for transmitting information
when the information written by an activity is read by another. In this situation,
all the activities involved must have access to the same data store, so, they should
be represented within the same Pool if we are dealing with activities belonging
to the same process (Allweyer, 2010).

Kocbek et al. concluded that the BPMN is being increasingly used and is
consolidating the position of “de facto standard in the business process modelling
field” (Kocbek et al., 2015).

It is strongly recommend the use of modelling tools to create BPMN models
allowing preventing errors by enhancing the syntax validation. Currently there

36

are several tools on the market that enable the creation and verification of syn-
tactic correctness of designed models, as well as export/import these models.
Examples of these tools are ECLIPSE - Model Development Tools (MDT), the
Modelio - Modeling and Implementing software and systems 2, WebRatio BPM
Free3, Bizagi process modeler4, among others.

Petri-nets

The Petri nets, which name is due to the German mathematician Carl Adam
Petri, are graphical mathematical representations, traditionally used for the sys-
tems representation and modeling. Currently they may also be used for modeling
business processes (Giaglis, 2001).

According to Dong and Chen, Petri nets are one of the most popular and pow-
erful models to represent the system analysis that allow competition, parallelism,
non-determinism and sharing resources (Dong and Chen, 2005).

The authors suggest three reasons for the use of Petri nets:

• Include formal semantics;

• They are based in states;

• They have an abundance of analysis techniques.

Petri nets are graphs composed of a set of places and a set of transitions. The
places (or states) are usually represented by circles and transitions by rectangles
(or bars). The states are connected to the transitions through directed arcs, as
we can see in the simple Petri net example in Figure 2.9.

Figure 2.9: A Petri-net example (adapted from (Dong and Chen, 2005))

A Petri net may be defined as a tuple R = (P, T, AE, AS), where:

2www.modelio.com
3www.webratio.com
4www.bizagi.com

37

1. P = { p1, p2, ..., pm} is a finite set of places;

2. T = { t1, t2, ..., tn} is a finite set of transitions. The sets L and T are
disjoint;

3. AE: is a set of arcs incoming for transitions;

4. AS: is a set of arcs outgoing of the transitions;

Dijkman et al. say that Petri nets are particularly suited to model a system
behavior in terms of flow. It could refer to the flow of control or flow of objects
or information (Dijkman et al., 2008).

According to Giaglis, Petri nets are not sufficiently succinct to be used in
processes modeling of high-level complex business, so several Petri nets extensions
have been studied and developed (Giaglis, 2001), such as High-Level Petri nets
(Buscemi and Sassone, 2001; Eike et al., 1998), colored Petri nets (Giaglis, 2001),
hierarchical Petri nets (Oswald et al., 1990), Time Petri nets (Ling and Schmidt,
2000), etc..

High-level Petri nets allow a more compact specification thus making possible
its application to more complex systems (Giaglis, 2001; Buscemi and Sassone,
2001).

The colored Petri nets contain information on the tokens, represented by colors
(Giaglis, 2001). The transitions are labeled with expressions which evaluate the
set of colors after each color is assigned to a variable. An input arch symbolizes
the need for resources and a output arc symbolizes the creation of resources.
Resources are graphically represented by small black circles within the places to
which we give the name brand.

The time Petri nets allow the transitions to “hold” token for a given range
of times. This type of Petri nets allows to model interaction between activities
taking into account their start and end times and allows modeling of shared
resources available at different times (Ling and Schmidt, 2000).

Little-JIL

Little-JIL is a high-level programming language, with a formal syntax and a
rigorous operational semantics. This language is executable, and can be used to
coordinate processes (Cass et al., 2000).

According to Lerner et al., Little-JIL uses a clear and precise graphical nota-
tion, which supports the processes definition (Lerner et al., 2010).

Little-JIL is a language to coordinate agents. The program describes the order
and communication made between the various units of work, called steps. The
step can be associated with an agent (Group, 2006). An agent in this context is
an independent entity that specializes part of the process. An agent is responsible
for performing a job and report the success or failure when it ends.

38

Figure 2.10: Example of a Little-JIL diagram (extracted from (Wise et al., 2000))

An agent may be human or software, the Little-JIL does not distinguish them.
Both human and software agents have an agenda. What distinguishes them is
how each type of agent connects to the agenda. Thus human agents use a GUI
(Grafical User Interface), which interacts as interpreter for the API (Application
Programming Interface) as software agents are connected directly to the API.

Little-JIL is a language easy to use (Wise et al., 2000), understandable by non-
programmers, and supports the coordination of complex processes of software
engineering. A coordination language must support a wide variety of process
abstractions such as organizations, activities, artifacts, resources, events, agents
and exceptions, which can easily make a large and complex language.

In Little-JIL a step is the central point of coordination and provides a mecha-
nism for scoping, control data flow, exceptions and resource allocation to agents.
The steps are organized in a hierarchical static manner, but can have a highly dy-
namic execution structure including the possibility of recursion and concurrency
(Cass et al., 2000).

A program in Little-JIL is a tree constituted by various kinds of steps, each
one could be multi-instantiated at runtime. The leaves represent the smallest
unit of specific work. The structure of the tree represents the way in which this
work will be coordinated (Cass et al., 2000), as shown in Figure 2.10.

The activities coordination involves (Cass et al., 2000):

• A group of agents, each capable of performing one or more tasks in support
of the activity;

• A communication mechanism that allows the sharing of information among
agents;

• A distribution mechanism that allows agents to operate on separate ma-
chines;

39

• A process of allocating tasks among agents;

• A coordination process that links the agents to tasks in a favorable manner
to the activity.

The language has a number of features that allows specifying the program
and coordinating the process steps. The six main characteristics are described
below (Wise et al., 1999):

1. Four different types of steps: sequential, parallel, try and choice (see Figure
2.10);

2. Requirements: are mechanisms to add checks before (5) and after (4) a
step being executed, to verify if all the necessary conditions to start the
step are satisfied and if the step was correctly performed;

3. Exceptions and handlers: are flow control arguments. Are used to indicate
and correct errors or exceptional conditions that may occur during the
execution of the program;

4. Messages and responses: identical to exceptions, the difference is that it is
not possible to propagate messages by trees, unlike exceptions. Messages
have a global scope;

5. When passed between steps allow the transmission of the information. A
step can receive information by a parameter and returns the execution
results a step being executed;

6. Resources: are represented as entities that are required during the step
execution.

The Little-JIL provides support for complex processes coordination and is a
language easy to use and understandable by non-programmers. For those reasons
its use and disclosure tends to increase.

EPCs - Event-driven Process Chains

Event-driven Process Chains (EPCs) is a graphical language, intuitive, used to
describe the business process. This language is more focused on the logic level of
the business process (van der Aalst, 1999).

An EPC model is based on a sequence of events and activities (functions) that
constitute the business process. The logical connectors (and, or and xor) allow
the description of the branching actions and conditions to execute the activities in
parallel (van der Aalst, 1999). In these models, actors that perform activities are
represented by ellipses. The activities executed by an actor are placed in his/her

40

respective swimlane and are represented by rectangles. Events are represented
by hexagons (Cardoso et al., 2009).

EPCs are process oriented modeling techniques and are used to define pro-
cesses in SAP/R3 and other ERP systems (Dorn et al., 2009). EPCs are sup-
ported by the ARIS toolset (Dorn et al., 2009; van der Aalst, 1999).

IDEF - Integrated Definition Methods

The IDEF (Integrated Definition for Function Modelling) is a modeling tech-
niques family developed as a set of notational formalisms to represent and model
processes and data structures (Giaglis, 2001).

To Aguilar-Saven, IDEF is a family of methods that supports a paradigm
capable of dealing with the modeling needs of a company and its business areas
(Aguilar-Savén, 2004).

Dorn et al. claims that IDEF is a set of modeling languages used especially
by the U.S. government (Dorn et al., 2009). Each IDEF family member is used
according to different applications. The most important are: IDEF0, IDEF1,
IDEF1X, IDEF2, IDEF3, IDEF4 and IDEF5. To the business process modeling
the most suitable are IDEF0 and IDEF3 (Aguilar-Savén, 2004). Next, the main
IDEF family members are described according to (Aguilar-Savén, 2004; Dorn
et al., 2009; Giaglis, 2001):

• The IDEF0 was designed to model decisions, actions and activities of an
organization and its goal is to model the functional perspective. The model
represents the activities of high-level processes and indicates their inputs
and control outputs. These models are composed of three kinds of infor-
mation, graphic diagrams, text and glossary. The main component is the
graphical diagram, but the three components are connected.

• The IDEF3 was developed to overcome some limitations of IDEF0. The
IDEF3 describes the process as an ordered sequence of activities or events.
This model uses two complementary diagrammatic representations of the
process model: process flow diagram that describes the flow of process
activities and the state transition diagram of an object, which represents
how the different states of an entity flows in a process. IDEF3 is suitable
both to modeling small processes and complex processes.

IDEF3 is also used in various other areas such as the Business Process
Engineering (BPE), the Business Process Reengineering (BPR) and in the
definition, development and software maintenance.

• The IDEF1 is used to model information.

41

• The IDEF1x was designed as a technique for modeling and analyzing data
structures for defining the requirements of information systems. It is based
on the entities and relationships model (ERD).

• The IDEF2 is a method for designing simulation models and is used to
represent the behavior, over time, of the resources involved in a production
system.

• The IDEF4 is a method of object-oriented design, developed to support the
object orientation paradigm.

• The IDEF5 provides a method theoretically and empirically well grounded,
specifically designed to assist in the creation, modification and maintenance
of ontologies5.

Since they belong to the same family of techniques, IDEF models complement
each other and when combined can provide a full perspective of the modeling
system. However, the development and maintenance of this set of different models
can be complex and time consuming.

XPDL - XML Process Definition Language

O XPDL (XML Process Definition Language) is a language based on XML (Ex-
tensible Markup Language)6. XPDL was proposed by WfMC to exchange process
definitions between different products workflows (van der Aalst, 2003; Coalition,
2011).

XPDL is a standard for exchange of business process definitions between dif-
ferent products (Dorn et al., 2009). The purpose of this language is to provide a
“lingua franca” for the workflow domain, allowing import and export process def-
initions between different modeling tools and management systems of workflows
(van der Aalst, 2003).

The main XPDL elements are (van der Aalst, 2003): Package, Application,
Workflow-Process, Activity, Transition, Participant, DataField and DataType.
A simple example of a XPDL file can be seen in Figure 2.11.

The XPDL has been widely used to support simulation. This is mainly, be-
cause the XPDL package is complemented by a number of additional schemes
which provide additional information necessary for the simulation, including de-
tails about the performance of activities (e.g., information on life), arrival times of
work, the characteristics of the resources (cost, etc.) and a variety of simulation
options.

The XPDL provides a standard format for files to support the exchange (im-
port/export) of BPMN diagrams. The XPDL does not typically serves to model

5Ontology is a part of philosophy whose goal is to divide the “world” among different objects.
6XML is considered a standard for data exchange

42

Figure 2.11: A XPDL file excerpt (extracted from (van der Aalst, 2003))

processes, but can be used to export BPMN processes, providing capacity for
portability among various tools.

BPEL - Business Process Execution Language

BPEL (Business Process Execution Language) is essentially an extension to im-
perative programming languages with constructs related to the implementation of
process-oriented web services. BPEL is a language based on XML (Ouyang et al.,
2006) that supports structured programming instructions as if, while, among oth-
ers, which allow the execution of instructions in sequence and in parallel. Once
its focus is process-based business services, BPEL provides support for sending
messages.

BPEL combines features from IBM’s WSFL (Web Services Flow Language)
and Microsoft’s XLANG (Web Services for Business Process Design) (Bichier and
Lin, 2006).

A BPEL process definition comprises two categories of activities: basic activi-
ties and structured activities. Basic activities correspond to atomic actions, such
as a service invocation, a message reception, reply to a request, assign a value
to a variable, or terminate a process. Structured activities are related to the
behavioral constraints imposed on the implementation of a set of activities, such
as the definition of an execution order, the execution flow in parallel, conditional
execution, or group of activities in a block.

Throughout the times new versions of the BPEL were created. Thus, the
version BPEL4WS (Business Process Execution Language for Web Services) was
widely used until the appearing of the latest version, the WS-BPEL 2.0 standard.
The two versions are incompatible at several points. Hofstede et al. state that
BPEL4WS is a web services composition languages that can be used to “glue”
services previously defined (ter Hofstede et al., 2003).

43

The WS-BPEL, originally introduced by IBM, Microsoft and BEA, is an ex-
ecutable language for specifying the business processes behavior based on Web
services, which can create a new Web service from existing ones (Liang et al.,
2008).

To describe complex business processes, BPEL defines several activities in-
cluding the invocation of services, operations on data, among others. The process
is defined based on the interaction between partners. A process may require a
service, can provide a service or can interact in both directions.

A simple example of a BPEL file can be seen in Figure 2.12.

Figure 2.12: A BPEL file excerpt (extracted from (Juric, 2015))

For Liang et al., BPEL is an executable language for specifying business pro-
cesses that are not easily understood by business stakeholders (Liang et al., 2008).
BPEL provides a way to model the behavior of both executable processes and
abstract processes (Bichier and Lin, 2006).

According to M. Juric, BPEL (or BPEL4WS) enables the realization of service
oriented architecture through “composition, orchestration, and coordination of
web services” (Juric, 2015).

44

SPEM - Software & Systems Process Engineering Meta-
Model Specification

SPEM (Software & Systems Process Engineering Meta-Model Specification) was
defined by OMG for developing modeling processes (OMG, 2008). The SPEM
2.0 Meta-Model is a MOF-based model (OMG, 2008). A meta-model is a model
that represents the language used by other models (Bézivin, 2006). The MOF
(Meta Object Facility) is an OMG standard for the definition of the abstract
syntax of modeling languages (meta-models) (OMG, 2011c).

Debnath et al. claim that, in the context of SPEM, a meta-model is used as a
language to describe a concrete software development process or family of related
software development processes (Debnath et al., 2006).

According to (OMG, 2008), “SPEM 2.0 is used to define software and systems
development processes and their components”.

The SPEM aim is to support the definition of software development processes,
including processes that involve the use of UML, and RUP. In SPEM, a software
development process is the collaboration between the roles involved in the process,
activities and work products.

The SPEM is basically formed by two groups of packages: the SPEM Foun-
dation and the SPEM Extensions. The SPEM Foundation is a subset of UML
1.4 which describes the static structure of the model. The SPEM Extensions
adds constructors and semantics required by the engineering of software processes
(Debnath et al., 2006).

According to (OMG, 2008), SPEM 2.0 meta-model is structured into seven
main meta-model packages:

• Core: this package contains the set of classes present in all other meta-model
packages.

• Process Structure: this package defines the base for all process models,
supporting the creation of simple and flexible process models.

• Process Behavior: allows extending process structure with behavioral mod-
els, providing “links” to existing externally-defined behavior models.

• Managed Content: Contains concepts for managing the textual content of
natural language descriptions used in development processes.

• Method Content: provides the concepts for SPEM 2.0 users and organiza-
tions to build up a development knowledge base that is independent of any
specific processes and development projects.

• Process With Methods: this package defines new and redefines existing
structures for the integration process.

45

• Method Plugin: This package introduces concepts for the design and man-
agement of libraries and configurable content repositories and processes
method.

2.6 Final Remarks

All the languages referred to above have equivalent aspects and to some extent
they complement each other. Several authors present studies evidencing this
observations, some of which are considered of more interest in the scope of this
work, and are presented next:

• Debnath et al. presents an approach that maps between SPEM and UM-
LEWM (Debnath et al., 2006).

• Dijkman et al. studied the equivalence between BPMN and Petri nets in
(Dijkman et al., 2008).

• Liang et al. propose a method for mapping the changes made in BPMN
models to BPEL (Liang et al., 2008).

• In (Raedts et al., 2007) the authors present the semantic and behavioral
equivalence between BPMN models and Petri nets.

• In (Lam, 2009) V. Lam proves that two different graphical representations
of business processes are behaviorally equivalent.

• Ouyang et al. present a technique to generate BPEL from a subset of
BPMN models and from UML (Ouyang et al., 2006).

Other authors extend the existing notations, adapting them to particular
cases. Others create new tools, such as the example of (Kees van Hee et al.,
2006). The Yasper is a tool for modeling, simulating and analyzing systems
workflow based on Petri nets.

A business process modeling language should be able to provide information
to their users on elements such as: what activities constitute a process, who
performs those activities, when and where those activities should be performed
and what data are involved. Thus, to provide all the necessary information,
the modeling language should be able to represent one or more of the following
perspectives (Giaglis, 2001):

• Functional - represents which activities (process elements) can be per-
formed;

• Behavioral - represents when and how the activities should be performed;

46

Language Functional Behavioral Organizational Informational

BPMN 2.0 Yes Yes Yes Yes

Petri nets Yes Yes No No

Activity diagram
(UML)

Yes Yes No No

Eriksson-Penker
extension

Yes Yes Yes Yes

IDEF Yes Yes Yes Yes

EPCs Yes Yes Yes No

Little-Jil Yes Yes No No

Table 2.1: Different perspectives of business processes modeling languages (based
on (Giaglis, 2001))

• Organizational - represents where and by whom the activities should be
executed, the physical communication mechanisms used to transfer entities
and physical locations and means for storing;

• Informational - represents the data (informational entity) handled by a
process and their inter-relationships.

The different studied languages and approaches have different ways of provid-
ing information on the different perspectives, as we can see in Table 2.1. Looking
to the Table 2.1 we may conclude that the BPMN, IDEF family, Eriksson and
Penker extension languages are more complete than the others. However, the lan-
guage more appropriate to a problem resolution depends on the characteristics
of the system being modeled.

Some languages can be used either for business process modeling as well as for
software modeling, however, some are considered better suited to model business
processes and others to model software.

The BPMN language, besides being a complete language, is a standard, easy
to learn and to use, and is considered as a language used by default in business
process modeling (Kocbek et al., 2015). For this reasons the BPMN language is
used in this research work.

The next chapter addresses existing approaches that make the relationship,
or conversion between different models.

47

48

Chapter 3

Deriving Models in Information
Systems Development

In this chapter we will focus on existing approaches that make the linkage between

software models and business process models, more specifically on approaches that

approximate the software development area with the business process modelling area.

3.1 Introduction

A business process model identifies the activities, resources and data involved in
the creation of a product or service, integrating several useful information that
can be used to create software models for the supporting software system.

It is recognized that the software that supports the business must be aligned
with the business processes. Therefore, it is natural to try an approximation
between business process modeling and software modeling.

Following this idea, several authors proposed approaches to derive software
models based in business process models. Some of the created approaches are
presented next in this chapter.

We start by presenting the approaches that, in general, attempt to go from the
business process models to software models (section 3.2). Section 3.3 addresses
approaches that try to get the data model based on business process models. Then
we will focus on approaches which goal is to obtain the use case diagrams based
on the business process models (section 3.4). Approaches that try to obtain the
class diagrams, most of them based on use case models, are addressed in section
3.5. Approaches to decompose and refine use case models are presented in section
3.6. Section 3.7 presents the 4SRS method. The final remarks are presented in
section 3.8.

49

3.2 From Business Process Models to Software

Models

This section refers to approaches that, in one way or another, relate the business
processes modeling and software modeling.

• Korherr and List (Korherr and List, 2006), align software with business
processes through the relationship between EPCs and UML 2.

The authors establish a link between the business process activities (in
EPCs) and the UML use cases and component diagrams. The use case
diagrams are used to identify the software requirements, whereas the com-
ponent diagram represents the structure of the computer system modules.
Use cases diagram represent the software in an abstract way, while the com-
ponents diagram represent the software physical aspects (Korherr and List,
2006). The authors use the dependencies to relate the use cases actions
with the components, since the dependencies enable us to relate behavioral
diagrams with elements of UML structural diagrams (Korherr and List,
2006).

• Liang et al. propose a method to map automatically the changes made on
BPMN to BPEL in order to support and enable real-time BPEL reconfig-
uration (Liang et al., 2008).

The method builds a relationship between the business process key points
and the BPEL process. Thus, it helps users to adjust the business pro-
cess with simple operations and automatically map these changes to BPEL
(Liang et al., 2008).

BPMN provides a set of graphic symbols which make the construction of
a business process a relatively easy task, however, users need to do a large
number of configurations to map these changes to the BPEL process (Liang
et al., 2008). BPEL is a language for the specification of executable business
processes, so it is not easily understood by stakeholders from business area
(Liang et al., 2008).

The authors also present an algorithm designed to ensure the consistency
of the changes made to the BPEL standard.

• The requirements engineering is a key component in the software develop-
ment process (Castro et al., 2000). However, in Castro et al. opinion, the
UML is not well prepared to model the initial requirements (early phase).
The UML is best suited to capture the final requirements (late phase) of a
system.

The initial requirements are identified at an early stage and are typically
informal, non-functional and organization oriented. The final requirements

50

are identified at a later stage and are usually complete, consistent and tar-
geted for automatic verification of requirements. Thus, the authors propose
a set of general guide lines to transform the initial requirements into final
requirements.

For the initial requirements specification, the authors use the i* technique
and for the final requirements specification they adopted the pUML (pre-
cise UML), which is used in the OCL (Object Constraint Language) for
specifying constraints such as invariants and pre-conditions. The i* is a
technique that provides a good understanding of the organization relation-
ships in the business domain (Castro et al., 2000). The pUML provides
semantics for the UML basic elements, such as relationships, associations
and generalizations. The OCL is a textual language that allows to describe
in a precise way the constraints of an object-oriented model (Castro et al.,
2000).

The transformation process follows six general lines related to: actors, tasks,
resources, goals, decomposition tasks and links. Briefly, actors, tasks and
resources are transformed into classes, goals are mapped to class attributes.
The decomposition tasks, pre and post conditions are expressed in OCL.

• Martinez et al. propose an approach for obtaining a information system
conceptual scheme based on the organizational model. The organizational
model is specified in i* (Martinez et al., 2003).

• Truscan et al. suggest an approach to integrate DFDs and some UML di-
agrams, namely the use case diagram, object diagram and class diagram
(Truscan et al., 2004). Thus, the authors propose, among others, the fol-
lowing transformations between models:

– Use case diagram and object diagram;

– DFDs and object diagram;

– DFDs and class diagram;

– Object diagram and DFDs.

The transformations considered of most interest are detailed below. For
the transformation of use cases into object diagram, the authors opt by the
following approach:

– Firstly, each actor in use case diagram is transformed into an instance
of the object diagram.

– For each use case three objects are created in the object diagram:
interface, data and control.

51

– In the objects diagram, the associations are created between the in-
terface object and control object from the same use case. The same
happens, in the opposite direction, between the interface object and
the control object of the same use case.

– Finally, an association between the use case actor and interface object
generated by the use case is created.

To obtain the object diagram from DFDs, the authors propose the following
approach:

– Each data processing element in DFD gives rise to a class instance in
object diagram.

– Associations between objects come from the DFD flow transforma-
tion: class instances originating from the process that receives an input
stream are complemented with a method set () and the corresponding
attributes.

– The method run() is appended to the active objects

– The method send() is added to the objects that send a flow

– Each data repository is transformed into a class/object with methods
read() or write() depending on the direction of the flow that connects
to the data store (output/input).

To obtain the class diagram the authors focus on data, namely on data
stores and data flow. So, they start by classifying the data flows and data
stores according to a type. Each type identified in DFD gives rise to a class
of the class diagram. Each data repository gives rise to a separate class as
well as each external entity. The methods are identified based on the data
flows between processes, external entities and data stores.

• Rungworawut and Senivongse propose a set of guide lines for obtaining the
UML class diagram from a business process. To model the business process
the authors use the BPMN language (Rungworawut and Senivongse, 2005).

In this approach, the classes identification is based on the identification of
key concepts. The strategy to identify the key concepts involves research
on the domain knowledge data bases to identify potential classes for the
application. In the last phase, the software modelers can select among the
potential class which will actually be part of the class diagram.

The same authors propose an enrichment of the approach presented above
in (Rungworawut and Senivongse, 2006).

• Rodrigues et al. propose a model transformation approach using QVT
(Query View Transformer) and apply it to BPMN to UML activity diagram

52

transformation and in UML activity diagram to class diagram transforma-
tion (Rodŕıguez et al., 2010). QVT is a transformation language proposed
by OMG (OMG, 2011b). In general terms a QVT transformation starts by
identifying the source model (or language) meta-model and the destination
model (language) meta-model. Each pattern identified in the source model
is transformed into one or more target meta-class instances in the target
model, by applying a set of rules and constraints. The rules can be speci-
fied or written using declarative or imperative syntax. Constraints can be
specified using OCL.

To transform BPMN diagrams into an activity diagram the authors identi-
fied the BPMN meta-model, the UML Activity Diagram meta-model and
a set of seven rules. The same steps were followed to obtain a class dia-
gram from an activity diagram: the activity diagram and the class diagrams
meta-models were defined and also a set of five rules to transform elements
defined in the activity diagram meta-model (source) into other elements
defined in class diagram meta-model (target).

3.3 From Business Process Models to Data Mod-

els

The importance of data in business process modeling is increasing motivated by
the need of controlling the business process and the improvement of technical BI
(Business Intelligence) whose results are used by organizations to support and
planning business (Meyer et al., 2011).

Data are not the focus of business process modelers nevertheless, all business
process involves information that must be kept in a persistent manner. Thus,
some authors try to obtain the data model based on business process models.
Some of these approaches are described below.

• Brambilla et al. (Brambilla et al., 2008) explore BPMN for the generation
of the data design, business logic, communication and representation. The
authors separate the different concerns in different model types and inter-
pret the BPMN in order to meet the needs of a Rich Internet Application
(RIA). With respect to the data, the authors use BPMN data objects to
identify the data involved. To distinguish between persistent and volatile
data, the authors have chosen to identify, in the process model itself, per-
sistent data with a ‘P’ and volatile data with a ‘V’. In BPMN most recent
version (BPMN2.0) the notion of persistent data can be represented by a
data store (OMG, 2011a).

• Magnani and Montesi (Magnani and Montesi, 2009), after identifying the
gaps in data modeling using BPMN, proposed an extension to BPMN 1.2

53

with the aim of improving the representation of data. The extension was
named BPDMN (Business Process and Data Modeling Notation). Some of
the concepts proposed, namely a way to identify the existence of persistent
data were included in BPMN 2.0 (Magnani and Montesi, 2009) with the
introduction of the data store, although with a different graphic symbol.

• Wohed et al. (Wohed et al., 2006) make an assessment of BPMN capabili-
ties, its strengths and weaknesses, to model a business process and conclude
that, in BPMN 1.2, data is only partially represented.

• The approach presented by de la Vara et al. extends the BPMN 1.2 with
task description improvements. The approach also presents guidelines for
the specification of the domain classes diagram (de la Vara et al., 2009). The
approach works with the BPMN 1.2 version where the distinction between
persistent and non-persistent data was not possible. Meyer et al. extend
BPMN data objects with annotations to allow data dependency represen-
tation and data instance differentiation (Meyer et al., 2013). The presented
approach is able to generate SQL queries from BPMN data objects (Meyer
et al., 2013).

• Brdjanin et al. propose an approach to obtain a database design based
on the information existing in a UML activity diagram (Brdjanin et al.,
2011). The authors propose a direct mapping of all business objects to the
respective classes. Each participant is also mapped to a class. Associations
between business objects and business process participants are based on the
activities performed on those objects (Brdjanin et al., 2011).

• Arnon Sturm sugests a method for building a data warehouse schema for
specifying business processes in order to allow the off-line analysis of busi-
ness processes’ execution. The data warehouse schema is composed of a
small set of “snowflakes” (Sturm, 2008). A snowflake is the basic struc-
ture of the data warehouse. For each data object affected by the process
a snowflake schema is created. The method comprises two steps: the first
step is the creation of the data schema of each snowflake, the second popu-
lates the database with relevant data. The proposed method can generate
schemas for all “snowflakes” of the business process specification. However,
the creation of multiple schemes will overwhelm the design of the ware-
house, so Arnon Sturm argues that one must carefully select the business
processes to consider.

54

3.4 From Business Process Models to Use Case

Models

UML use case models are one of the most popular adopted techniques to capture
and describe the functional requirements of a system.

The use case model is used in requirements elicitation and specification as
a means to facilitate the dialog with the customer about “what” the system is
supposed to do (OMG, 2012). But a use case model can take months or even years
to complete (Cockburn, 2001) and usually involve many resources. To solve this
problem some authors have developed approaches to generate use case diagrams
based on the business process modeling.

The most relevant of the existing approaches that approximate the use case
models and the business process modeling are presented next:

• Lübke and Schneider propose an approach to generate a business process
model (modeled in BPMN) from UML use case diagrams (Lubke et al.,
2008). The authors justify the need for this approach with the increasing
number of use cases and with the possibility of losing the execution order
of the various use cases (Lubke et al., 2008).

For the generation of the business process in BPMN, from a set of use cases,
the authors propose the following approach (Lubke et al., 2008):

– The first step is to generate a plan use case diagram, i.e., all include
and extend use case relationships are replaced by different scenarios of
these use cases.

– Then a BPMN process is generated for each use case.

– In the next step, all BPMN processes generated are grouped. This
is based on the preconditions and on the success guarantees of the
respective use cases.

– Finally, the resulting BPMN process is restructured, i.e. when there
are multiple representations of a constructor only one remains.

• Dijkman and Joosten propose an approach for mapping a business process
models to use case diagrams (Dijkman and Joosten, 2002b). For the repre-
sentation of the business process model the authors choose to use the UML
activity diagram.

• Dijkman and Joosten also propose an algorithm for obtaining the use cases
diagram from the business process modeled with the UML activity dia-
gram (Dijkman and Joosten, 2002a). To achieve their goals, Dijkman and
Joosten start by defining the activity diagram and the use case diagram
meta-models. Then, the authors establish a relation between the “role”

55

from the activity diagram and the “actor” in a use case diagram and a
“step” (a sequence of tasks) from the activity diagram originates a “use
case” in a use case diagram (Dijkman and Joosten, 2002a). A step is de-
fined as a sequence of tasks that can be grouped into sub-diagrams. Each
step gives rise to a use case. The sub-diagrams are used to detail the use
cases. It is created an association between the actor and the use case where
there is an association between the role representing the actor and the step
that is represented in the use case. The mapping between the two associa-
tions is represented by an OCL constraint (Dijkman and Joosten, 2002a).

• Rodriguez et al. propose a systematic approach for obtaining the use case
and class diagrams from the business process modeling using, once again,
the UML activity diagram (Rodŕıguez et al., 2008). This approach does
not allow the identification of the relationship between classes in a complete
way, neither the relationship between obtained use cases.

• Rodriguez et al. also suggest an approach for the generation of use case
diagram based on business process modeling in BPMN (Rodŕıguez et al.,
2007). In this approach a BPMN diagram gives rise to a use case diagram
as follows (Rodŕıguez et al., 2007):

– The main actor is the participant who initiates the process (lane with
the start event);

– The remaining participants are secondary actors;

– When a pool is divided into several lanes, each lane gives rise to an
actor who inherits from the actor originated by the pool;

– A BPMN activity gives rise to a use case in the use case diagram.

• Stolfa and Vondrák propose an approach to generate a use case model based
on a business process model using the UML activity diagram (Štolfa and
Vondrák, 2008). The approach allows to identify actors, use cases and
the relationships (include and extend) between use cases. A swim-lane
belonging to an activity diagram is used to represent who is responsible
for executing activities. Thus, a swimlane is represented as an actor in use
case diagram. Activities are grouped in use cases, allowing to structure use
cases by relationships extends, include and generalization.

• Paradkar and Sinha proposed an approach to derive business process models
from business use case models (Paradkar and Sinha, 2015). The approach
transforms textual use cases descriptions (using Natural Language) into
BPMN models. In the presented approach one use case model is mapped
to one or more BPMN models. The authors sate that both, business process
models and use case models, are useful and coexist (Paradkar and Sinha,

56

2015). The approach helps to maintain consistency between the two forms.
This is especially important when the source model is updated (Paradkar
and Sinha, 2015). Besides, the generated BPMN models can be used as
input to the BPEL “execution engine”.

• Ditze and Henninger propose an approach that combines UML 2.0 with
BPMN 2.0(Ditze and Henninger, 2010). In this approach the BPMN is
used to detail, or describe, the use cases from a use case model.

The approach starts by identifying the actors involved in the various busi-
ness processes. The actors are identified here as those to whom the orga-
nization serves. The actors and the different business cases (or use cases)
are grouped in a use case diagram. Then each identified use case is detailed
using a BPMN model.

In respect to the information involved in the processes, it is modeled using
the class diagram. The information exchanged between the actors and the
system is modeled in BPMN, through the exchange of messages flowing
in collaborations. The data within the processes are modeled on the data
objects and data repositories.

All messages, data objects and data repositories must correspond to indi-
vidual elements in the information model and are represented as a class.
Relationships are identified by the data associations in BPMN. In the class
diagram relationships are modeled as dependencies.

3.5 From Use Case Models to other Software

Models

Model transformation is one of the basic principles of Model Driven Architecture
(MDA) (Yue et al., 2011). Several authors propose approaches to derive software
models (data models and class models) from requirements representations (use
case models).

The use case model describes the functionality of the system while the class
diagram describes the system architecture (Fernandes et al., 2000). The class dia-
gram is extremely useful for the static characteristics specification of the software
being produced.

Next we describe some approaches that intend to obtain the class diagram
based on the use case model:

• In (Christiansen et al., 2007) the authors propose a method to obtain the
class diagram directly from the textual description of use cases. To do
that, the authors use grammatical analysis of natural language used in
the requirements description. Briefly, for a given sentence, the subject of

57

the sentence is represented by a class, the verb gives rise to a method of
the class that represents the subject. The classes attributes are obtained
through sentences with verbs like “have”. The relationship between classes
is achieved by identifying verbs like “be”.

The authors point to the fact that the syntax of the language used in the
use cases textual description shall avoid ambiguity, for example adverbs or
adjectives should not be used.

• Santos and Machado propose an approach for obtaining a class diagram
based on a use case model by extending the 4SRS method (Santos and
Machado, 2010). This approach is detailed in section 3.7.

• Ying and Liang propose an approach for obtaining a class diagram based
on a use case model (Ying and Liang, 2003).

The authors begin by identifying candidate classes through the identifica-
tion of nouns in sentences that describe the use cases. Then select the most
significant classes among the candidates. In a later stage, the authors ver-
ify (or validate) if the nouns found, on the use case description, fit in the
traditional class categories such as roles, concepts, events, etc..

The proposed approach can be summarized in the following steps:

1. Determine the use case main purpose.

2. Identify entities with the same purpose of the use case.

3. Specify entities as classes and their properties as attributes of the class.

4. Specify the associations between classes based on the use cases rela-
tionships.

5. Identify collaboration between use cases and entities.

6. Specify collaborations as class methods.

• B. Roussev proposes a process for generating formal object-oriented spec-
ifications in OCL and class diagrams from the use case model (Roussev,
2003). For this, the author uses a series of well-defined models and trans-
formations and presents an algorithm to convert the use case to a set of
OCL expressions. The OCL specification provides a simple language for
writing constraints to model elements (Pilone and Pitman, 2005; OMG,
2010b).

The process begins by converting each use case, for each actor, in a state
transition machine. To create the class diagram, each actor gives rise to a
class, as well as each state through which the process passes. The associa-
tions are derived from the relationship between the actors performing the
state transition and the states.

58

The generated OCL constraints allow validating the obtained model. In the
obtained model the attributes are not identified neither the classes methods.

A use case model is constituted by actors, use cases and corresponding de-
scriptions. Most of the information is in use case descriptions. Following this
idea, some authors proposed approaches to derive software models based on the
use cases descriptions dealing with NL. Some of those approaches are presented
next:

• Samarasinghe and Somé propose an approach to create a Domain model
from a Use Case model (Samarasinghe and Somé, 2005). To describe use
cases the authors use a controlled NL to which they propose a grammar.
The authors state that automatic processing of use cases described in full
NL is not possible so, they propose a restricted form of natural language
grammar for use case descriptions (Samarasinghe and Somé, 2005).

• Drazan and Mencl proposed a method for process based in a schema pre-
viously defined (Drazan and Mencl, 2007). The proposed method allows
dealing with complex structured sentences which may be used to verify the
requirements and to derive the initial design of the system. Working with
structured sentences in use case descriptions allows automating the textual
processing.

• In (Ilieva and Ormandjieva, 2006) the authors propose the generation of the
domain model and UML activity diagram from requirements specification.
The authors consider unlimited NL, but they rewrite it in a different format
using a tabular presentation of the text. They start with a syntactical
analysis of the text, and then build a tabular presentation and a semantic
network. The construction of models are conducted in four stages: syntax
categorization, tabular modeling of the text, semantic processing of the
text, and interpretation of the text for diagrammatic modeling (Ilieva and
Ormandjieva, 2006).

• Yue et al. (Yue et al., 2009) to avoid NL ambiguity, propose a set of
restriction rules and a new template to describe use cases. The authors
aim is to facilitate the textual analysis, allowing the automatic extraction
of the UML class model. The restriction rules and the template are to be
used during the requirements elicitation phase.

A restricted and controlled NL reduces ambiguity, redundancy, and complex-
ity of the documents, allowing to automatize the translation into other languages
(Bera and Evermann, 2014).

59

3.6 Use Case Models Decomposition

A use case model may be created with a high abstraction level or with a low
abstraction level. Low abstraction level use cases can be much more useful,
in software development, than high abstraction level use cases. Some authors
propose approaches to decompose the UML use cases model, which are described
next:

• Collins-Cope considers three different categories of use cases: requirement,
service and interface (Collins-Cope, 1999):

– The requirement use cases, that are used to document the business
processes, serving as a guide to the system development.

– The service use cases, which provide a description of the functionality
the system will offer. That includes the objective of the service, the
list of input and output parameter, pre and post-conditions among
other details.

– The interface use cases, that provide a description of the interface
presented to the system actors.

Collins-Cope approach uses very detailed use cases and, at the end, these
use cases are targeted to be implemented in a three layers architecture
product. Nevertheless, the author does not explain how use cases can be
managed when this approach is applied in real working scenarios.

• Regnell et al. (Regnell et al., 1996) explore the use case model benefits of
a graphical representation that have support for descriptions at different
levels of abstraction. They propose an approach to decompose use case
models that divides the use cases in three abstraction levels:

– At the environment level, each use case is described and associated
with related actors. In this level, the use cases can be organized into
packages.

– At the structured level, each use case is described as a graph of episodes.
One episode is a coherent part of a use case. Each episode is composed
by events.

– At the event level, each episode is detailed and described as a flow of
events, represented in a sequence diagram.

The authors propose to organize the use cases into packages, at the environ-
ment level, to facilitate the use case management. But, in our opinion, at
this software development process stage it is too soon to identify the correct
packages, because the identified partitions do not obey to any conceptual
principle (Berenbach, 2004).

60

• Glinz states that UML cannot model a rich system context (Glinz, 2000).
Glinz identifies several problems and deficiencies of UML, most of them re-
lated to use case models and system decomposition. In what concerns to the
relationships between use cases, Glinz stands that the UML specification is
inconsistent and contradictory (Glinz, 2000). To overcome this deficiency
he proposes four new relationships between use cases: sequence, alterna-
tive, iteration and concurrency. To overcome the problem concerning use
case decomposition, Glinz proposes to decompose the system into several
subsystems, and model each subsystem using use case models. However,
Glinz concludes that it will originate a very complex structure and that the
consistency between use cases cannot be ensured.

• Approaches like (Quartel et al., 1995; Darimont and van Lamsweerde, 1996)
were proposed to refine use cases using formal methods. The approach pro-
posed by Quartel et al. aims to refine use cases by replacing abstract actions
for concrete activities (Quartel et al., 1995). The replacement is based on
a list of rules. The approach proposed by Darimont and van Lamsweerde
aims to refine by reusing generic refinement patterns (Darimont and van
Lamsweerde, 1996). To Greenfield and Short, refinement is a transforma-
tion that maps models based on a more abstract modeling language to
models based on a more concrete one (Greenfield and Short, 2004).

• Ayman Issa identified several problems in use case modeling. Problems like
granularity, inconsistency, and ambiguity are very common because use case
modeling methods do not specify the level of detail that should be used in
use cases, neither the scope that each use case should cover (Issa, 2007).
Ayman Issa proposed an approach to refactor use cases, i.e, to synthesize
and refine use case models. The approach is divided in two different types
of use case refactoring: behavioral refactoring and structural refactoring.
To do so, Ayman Issa itemizes a list of refactoring activities to each one of
the refactoring types (Issa, 2007). The identified activities aim to guide the
authors to create better use case models. Nevertheless Ayman Issa does not
explain how the use cases are refined. The paper focus its attention on the
bottom-up approaches, i.e., approaches that start with concrete examples
of usage scenarios and generalize them to create the use cases.

• Pons and Kutsche (Pons and Kutsche, 2004) studied the refinement as a way
to enable traceability. The refinement is established between class models
and between use case models. To refine use cases, Pons and Kutsche use
the include relationship between use cases.

• Hausmann et al. (Hausmann et al., 2002) agree that the decomposition of
a complex problem into smaller problems is a very well accepted task, but
the re-integration and re-merging of the resulting models is a problematic

61

and challenging task, especially because the consistency between the mod-
els is difficult to maintain. This is particularly important in requirement
specification models because the late detection of requirement errors in the
development process could cause very expensive re-iterations through all
phases (Hausmann et al., 2002).

• Azevedo et al propose an extension to the UML use case meta-model for rep-
resenting a refinement of use cases (Azevedo et al., 2010), but the refine rela-
tionship presented by Azevedo et al is between two use cases. Azevedo et al
highlight the differences between include and refine relationships (Azevedo
et al., 2010). The refine relationship implies lowering the abstraction level,
the include relationship does not imply increasing the detail level.

• Cockburn (Cockburn, 2001) does not present an approach to decompose use
cases but he distinguishes different use case abstraction levels by assigning
different colors to the use cases. The author discerns black and white use
cases. The first being low detail level use cases, and the latter being very
detailed use cases with a clear intention. Cockburn claims that “non-white”
use cases are not trustable as functional requirements for the system being
built (Cockburn, 2001).

From another point of view, Cockburn categorizes use cases as business use
cases and system use cases (Cockburn, 2001). Cockburn sees business use
cases as black use cases and system uses cases as white use cases and advises
the use case writers to start by the business use cases and “unfolding”
them continuously until they become system use cases (Cockburn, 2001).
The approach presented in chapter 6 is aligned with Cockburn’s points of
view, helping use case writers in transforming high level (black) use cases
into low-level (white) use cases, and helping them in keeping track of the
transformations (unfolding) of the use cases.

3.7 The 4SRS method

The 4SRS (Four Step Rule Set) is a method organized in four steps to transform
use cases into architectural elements (Machado et al., 2005). Use cases do not have
a direct mapping to architectural elements, since a use case can give rise to various
architectural elements and several use cases can give rise to the same architectural
element (Fernandes et al., 2000). The method consists in the following set of four
steps (Machado et al., 2005; Machado et al., 2006; Ferreira et al., 2012):

• Step 1: Architectural elements identification or component creation - each
use case is transformed into three architectural elements: one interface, one
data and one control element. Each element is labeled with the name of the
use case followed by the appropriate type (i-interface, d-data and c-control);

62

• Step 2: Architectural elements elimination - based on the textual description
of each use case, it is necessary to decide which of the three elements created
in step 1, must be maintained; This step is divided into seven micro steps:

– Step 2i: Use cases classification - In this micro step each use case is
classified. With the three types of architectural elements identified in
the precious step, it is possible to form eight different combinations
(0, i, c, d, ic, di, cd and dci). This classification aims to facilitate the
transformation of each use case in architectural elements as it provides
clues about which categories of elements to use and how they relate.

– Step 2ii: Local elimination - the purpose of this micro step is to check
if each architectural element created in step 1 makes sense for the
problem domain. Those that do not make sense should be eliminated.

– Step 2iii: Architectural element naming - Each architectural element
created, and that has not been eliminated in the micro step 2ii, should
receive a name befitting its original use case as well as the role that it
has in the system.

– Step 2iv: Architectural element description - Each architectural ele-
ment that received a name in the micro step 2iii should be described
according to the corresponding system requirements, in order to be
included in the logic model (depicted by objects diagram). The de-
scription must be based on the original description of the use case.

– Step 2v: Architectural element representation - This micro step, through
an analysis of each element, ensures the semantic consistency of logic
model, eliminates redundancy and enables the discovery of anomalies
in use case models, namely missing requirements.

– Step 2vi: global elimination - In this step all micro architectural ele-
ments that are represented by others architectural elements are elim-
inated, since the requirements that correspond to these architectural
elements no longer belong to them.

– Step 2vii: Architectural elements renaming - This micro step aims
to rename all the remaining architectural elements. The new name
to assign must be according the system requirements related to the
architectural element.

• Step 3: Architectural elements aggregation and packaging - for architectural
elements that remain after the elimination, and those in which it is possible
and exist advantages in its unification, are aggregated;

• Step 4: Architectural elements association - associations must link the el-
ements resulting from the aggregation based on use cases textual descrip-
tions.

63

The 4SRS generates the logic architectural model based on user requirements
represented trough a use case model (Machado et al., 2006). The method ap-
plies successive transformations to software architecture in order to meet user
requirements.

In (Santos and Machado, 2010), the authors propose an extension to the 4SRS
method in order to obtain the class diagram based on the use case model and
on the logical architecture that results from the application of the 4SRS method.
The proposed extension adds two main steps to 4SRS:

• Step 5: class creation - a class is created for each object (or architectural
element) on the object diagram.

• Step 6: class characterization - in this phase the attributes and methods
belonging to each class are identified. This identification is accomplished by
analyzing textual description of the requirements made in natural language.
This step is divided in two micro-steps:

– Step 6i: methods creation - This step identifies the methods that belong
to each class. The methods correspond to verbs presented in use case
textual description.

– Step 6ii: attributes creation - This step identifies the attributes that
should belong to each class. The attributes correspond to the names
existing in the refined use case textual descriptions.

3.8 Final Remarks

As we saw earlier, there are several approaches that try to obtain one model
from other models. Other approaches use models to complement other models,
as is the case of (Ditze and Henninger, 2010; Lubke et al., 2008) where the
BPMN language is used to specify each use case in the use case diagram. Other
approaches attempt to automate conversion processes, such as (Liang et al., 2008)
approach whose goal is to propagate changes made in BPMN to BPEL.

The approaches that relate, or convert, a model to another are summarized
in Table 3.1, presenting the authors, the source model and the derived model(s).

Some of the studies cited above, as is the case of (Ying and Liang, 2003;
Roussev, 2003; Christiansen et al., 2007), propose approaches for obtaining the
objects diagram and/or classes from use case models.

The connection between use cases and business processes is studied in several
ways. Some authors propose approaches to get use cases from business processes
models, as is the case of (Rodŕıguez et al., 2007; Dijkman and Joosten, 2002a).
Others try to obtain a business process model from a use case model, as is the
case of (Lubke et al., 2008). Others use the use case diagram to describe business
processes (Nawrocki et al., 2006).

64

Approach Source Destination

Korherr and List
(Korherr and List, 2006)

EPCs w
UC model
Component diagram

Truscan et al.
(Truscan et al., 2004)

DFDs w
Class diagram
Object diagram

Rungworawut and Senivongse
(Rungworawut and Senivongse, 2005)

BPMN 1.2 w Class diagram

Rodriguez et al.
(Rodŕıguez et al., 2007)

BPMN 1.2 w
UC model
Class diagram

Rodriguez et al.
(Rodŕıguez et al., 2008)

AD (UML) w
UC model
Class diagram

Rodriguez et al.
(Rodŕıguez et al., 2010)

AD (UML) w Class diagram

Dijkman and Joosten
(Dijkman and Joosten, 2002b)

AD (UML) w UC model

Stolfa and Vondrák
(Štolfa and Vondrák, 2008)

AD (UML) w UC model

Jan Dietz
(Dietz, 2003) DEMO w UC model

Christiansen et al.
(Christiansen et al., 2007) UC model w Class diagram

4SRS
(Santos and Machado, 2010) UC model w

Component diagram
Class diagram

Samarasinghe and Somé
(Samarasinghe and Somé, 2005) UC model w Domain model

Boris Roussev
(Roussev, 2003) UC model w

Class diagram with
OCL constraints

Brdjanin et al.
(Brdjanin et al., 2011)

AD (UML) w Data model

de la Vara et al.
(de la Vara and Sánchez, 2009)

BPMN 1.2 w Domain model

Paradkar and Sinha
(Paradkar and Sinha, 2015) UC model w BPMN

Lübke and Schneider
(Lubke et al., 2008) UC model w BPMN

Table 3.1: Summary of approaches that make the relationship between models

65

Approach Source
Use
cases

Actors

Actors
hierar-
chy

Include
Extend

Descri-
ptions

Dijkman and Joosten
(Dijkman and Joosten,
2002b)

AD + + – + –

Dijkman and Joosten
(Dijkman and Joosten,
2002a)

AD + + – + –

Rodriguez et al.
(Rodŕıguez et al., 2008)

AD + + – + –

Rodriguez et al.
(Rodŕıguez et al., 2007)

BPMN + + + + –

Stolfa and Vondrák
(Štolfa and Vondrák,
2008)

AD + + – + –

Table 3.2: Summary of approaches that obtain the UML use cases model

Approaches that aim to get a use case models based on business process
models are summarized in Table 3.2, where a ’+’ indicates that the approach
supports the corresponding use case model element, and a ’-’ means the opposite.
Analyzing the Table 3.2, it can be concluded that none of the approaches presents
a proposal for obtaining the use cases description. Nevertheless, the use case
descriptions are one the most important part of a use case model. Besides that,
none of the cited approaches aggregates a set of business process models in one
use case model.

Although some of the presented approaches focus data, none of them is able
to derive a complete data model based on business process models. The same
conclusion was drawn by Brdjanin and Maric in the survey presented in (Brdjanin
and Maric, 2013), which points that none of the existing approaches generates
a complete data model based on business process models (Brdjanin and Maric,
2013), including the first approach presented next in this research work, in section
4.2.

66

Chapter 4

Deriving a Data Model from
Business Process Models

Business process modeling and management approaches are increasingly used and dis-
closed between organizations as a means of optimizing and streamlining the business
activities. A business process model identifies the activities, resources and data in-
volved in the creation of a product or service, integrating useful information that can
be used to create a data model for the supporting software system. A data model is
one of the most important models used in software development.

Among the various existing modeling languages, we stress the BPMN, currently
in version 2.0. BPMN is a widespread OMG standard that enables business process
modeling, but does not facilitate the modeling of the information infrastructure involved
in the process. However, interest in the data and its preservation has increased in
BPMN’s most recent version.

This chapter first presents an approach to get the data model based on one BPMN
model. This approach is then extended and improved to generate a data model, based
on a set of interrelated business processes, modeled in the BPMN language. This
extension is needed mostly because an organization usually deals with several business
processes and therefore a software product does not usually support only one business
process, but rather a set of business processes.

This extended approach allows getting a complete data model aggregating all the
information about persistent data that can be extracted from the set of business process
models, serving as a basis for the development of the software that will support the
business.

4.1 Introduction

Markets’ globalization and the constant increase of competition between compa-
nies demand constant changes in organizations in order to adapt themselves to
new circumstances and to implement new strategies. Organizations need to have
a clear notion of their internal processes in order to increase their efficiency and

67

the quality of their products or services, increasing the benefits for their stake-
holders. For this reason, many organizations adopt a BPM approach (van der
Aa et al., 2015; Redlich et al., 2014; Kalenkova et al., 2014; Alter, 2015).

Among the various existing modeling languages, we opted for the Business
Process Model and Notation (BPMN), currently in version 2.0 (OMG, 2011a),
because it is a widespread OMG standard that is very well accepted and actually
used in companies and organizations (Recker, 2008; Aagesen and Krogstie, 2015;
Alter, 2015). Besides, it is a complete language that allows creating detailed
business process models (OMG, 2011a).

Usually, a business process model is created with a level of abstraction higher
than the one needed in software models (Cockburn, 2001). In BPMN’s most
recent version, the number of graphical element has increased, including now the
data store element representing persistent data (OMG, 2011a). This is an impor-
tant update if one intends to use BPMN models as a basis for the development
of the software product that supports the business processes. The approaches
presented in this chapter benefit from detailed business process models, as highly
detailed business process yields to more complete data models.

During a business process execution, resources and/or data are used and pro-
duced. In fact, the information about the data that flows through the process
is very important to the software development. The data received, created or
used during a process execution can be represented by message flows or data
associations as shown in Table 4.1.

A message flow connects two pools, representing the message exchange be-
tween the two participants (OMG, 2011a). Data associations connect activities
and data objects or data stores as represented in Table 4.1. A participant rep-
resents a role played in the process by a person, an organization’s department
or something involved in the process. A message represents the content of a
communication between two participants.

Data that flows through a process are represented by data objects. Persistent
data are represented by data stores. Persistent data are the ones that remain
beyond the process life cycle, or after the process execution ends (OMG, 2011a).
Data objects and data stores are exclusively used in private process diagrams
(OMG, 2011a). That’s the main reason why the first approach presented in this
chapter is based on private business processes.

In software development different models are usually used to represent differ-
ent perspectives. The data model is one of the most important models for de-
signing software applications, representing and organizing data, how it is stored
and accessed, and the relationships among different entities.

An entity is something identifiable, or a concept in the real world that is
important to the modeling purpose (Weske, 2012). The information, or the prop-
erties, about an entity are expressed through a set of attributes (Weske, 2012). A
relationship between two entities is represented through an association between
those entities (Chen, 1976).

68

Data
Graphical

representation
Meaning

Data Store
The activity reads information from
the data store

Data Store
The activity writes information in the
data store

Data Object The activity receives a data object

Data Object The activity sends a data object

Message
The participant (activity) sends a
message to an external participant

Message
The participant (activity) receives a
message from an external participant

Table 4.1: The Data handling

A relationship between two entities can be classified in two aspects, Cardinal-
ity and Optionality. Both terms are used to denote the number of attributes in a
relation. Cardinality represents the maximum number of instances (one or many)
of an entity in relation to another entity. Relationship optionality represents the
minimum number of elements that exist on that side of the relationship. It may
be 1 (the relation is mandatory) or 0 (the relation is not mandatory).

In what concerns to cardinality, three types of relationships can be identified
(Chen, 1976): mappings (1 : n), (m : n) and (1 : 1). Focusing in one side of
a relationship type, and considering the optionality and cardinality together, we
may have: 0 or 1 (represented as), 1 (), 0 to many () and 1 to many
().

From a data point of view, a business process model has lots of information
that can be used to create a data model. But can a data model be created based
on the information we have in a set of interrelated business process models?

This chapter presents approaches for deriving a data model from business
process models. First we worked with only one business process model. After
that, the approach is extended and generalized to work with a set of interrelated
business process models.

The approach to obtain the data model based on a single BPMN private
business process model was presented and published in (Cruz et al., 2012). Some

69

limitations were identified in this approach, namely the impossibility of iden-
tifying some of the relationships between the entities represented in the data
model, the optionality of some association ends is not addressed, and the most
significant limitation is the fact that this approach deals with only one business
process model. However, a software application usually supports more than one
single business process. Consequently, the approach presented in (Cruz et al.,
2012) could not integrate in one data model all the data involved in all business
processes that must be supported by the software under development.

The approach was extended and completed allowing the aggregation of the
existing information spanning several related business process models into one
data model. This extended approach allows identifying the entities involved, the
corresponding attributes and the relations, including cardinality and optionality,
between the entities.

The approach to obtain the data model based on a set of interrelated business
process models was presented and published in (Cruz et al., 2015b). In this
improved approach we are able to extract the existing information about data
(focusing our attention in persistent data) from a set of interrelated business
process models and create a data model that can be used as a basis for developing
a supporting software system.

The remainder of this chapter is structured as follows. Next section describes
the approach to generate a data model from one business process model. The
application of this approach is illustrated through two demonstration cases in
section 4.3. Section 4.4 extends the approach for data model creation based
on a set of business process models. The application of the extended approach
is illustrated through a demonstration case in section 4.5. Finally, section 4.6
analyzes the generated data model, and section 4.7 draws some conclusions.

4.2 Deriving a Data Model from one Business

Process Model

Although previous work about data modeling within BPMN already exists (see
section 3.3), some previous work is related with BPMN versions prior to 2.0 and,
to our knowledge, none of them addresses the attainment of a data model that
operationally supports a set of business processes. In some of these studies some
flaws have been identified, by the authors, especially in distinguishing persistent
from non-persistent data.

In (Borger, 2011), Borger claims that a notion of state is missing in BPMN,
and consequently the specification of data dependence conditions is poorly sup-
ported. To overcome this fact, we opted by involving BPMN participants in the
process. A BPMN participant is always related with all activities where he/she
participates and, consequently, with the data stores manipulated by these activ-

70

ities.
This first approach is based on the following considerations:

• The information about the participants in the process is relevant to the pro-
cess, especially for its control, so all participants involved in data exchanges
shall be represented in the data model.

• The pool representing the organization (company, department, etc.) that
is designing the process shall disclose all internal roles involved. The other
pools, as they represent entities outside the organization, do not have that
need. It is only needed to show the input and output flow of information,
e.g. through messages.

• Since a data store represents the persistent data, all data stores involved in
the process shall be represented in the data model.

• If one wants to focus on different states in the same data store, the data store
name shall be given by < DataStoreName > [< DataStoreReferenceState >],
similarly to what happens with the data object.

• If there is involvement of data within a sub-process, the data flow shall be
viewed with the subprocess extended, i.e., within the subprocess.

• Data objects may represent electronic data as well as physical data. How-
ever, in both cases data must be stored. For example, if a data object
represents the arrival of a shipment, the data about the shipment must be
stored.

Our approach is organized into a set of three groups of rules. Each group
is devoted to a particular goal: the first group (R1) identifies the data model
entities, the second group (R2) identifies the relationships between entities, and
in the third group (R3) the entities’ attributes are identified.

The first group of rules is explained below:

• R1.1: Each data store, identified by a name, must be represented by an
entity in the data model. The entity name is the name of the data store.

• R1.2: When two data stores have the same name, it is considered that they
represent the same data store, so it will be represented by the same entity
in the data model.

• R1.3: A role played by a participant (represented by a Lane or a Pool) must
be represented by an entity in the data model:

– If the pool is divided into several lanes, each lane will be represented
by a data model entity. The name of each entity will be the name of
the corresponding lane.

71

– If the pool is not divided, the pool will result in an entity. The entity
name will be the Pool name.

• R1.4: If a participant has the same name as a data store it will be repre-
sented by the same entity in the data model.

The second group of rules is explained below:

• R2.1: When a participant is responsible for an activity that manipulates a
data store, the entity that represents the participant must be related with
the entity that represents the data store. Each participant can perform
the same activity several times, so the relationship between the entity that
represents the participant and the entity that represents the data store, by
default, will be (1 : n).

• R2.2: If, in R2.1, the activity that handles the data store is a cyclical activ-
ity, or “Multi-instantiable”, i.e., it may be repeated several times within the
process instance, then the relationship between the entity that represents
the participant and the entity that represents the data store is (m : n).

• R2.3: If the activity that handles the data store sends or receives informa-
tion to/from another participant, this means that the participant provides
or uses information from that data store. Therefore, there must be an “in-
direct” relationship between the entity that represents this participant and
the entity that represents the data store. By default, the relationship type
will be (1 : n).

• R2.4: If, in R2.3, the activity fulfills the conditions presented in R2.2, the
relationship type will be (m : n).

Two rules have been created to identify the entities attributes. One to identify
the attributes of the entities that represent the participants and the other to
identify the attributes of the entities that represent the data stores:

• R3.1: A data store is an “Item-Aware element”, so, as mentioned before,
the data structure definition of these elements could be specified as a XML
file. The definition of the structure will be used to identify each item that
belongs to the data store. Each item identifies an attribute of the entity
that represents the data store.

• R3.2: In Swimlanes only the name is identified. Consequently, the at-
tributes of an entity that represents a role played by a participant are
static and are described next:

– ID - it represents the participant identification (code number). It could
be the number of the employee, the code of business partner, etc.

72

– Name - it represents the participant name, for example the name of
the employee.

In the presented approach, the data stores and the roles played by participants
give origin to entities in the data model. The relationship between the identified
entities is deduced from the information exchanged between participants and the
activities that manipulate the data store in two ways: directly by the participant
that performs the activity and indirectly by the participant that sends or receives
information to/from the activity that operates the data store.

From the business modeling point of view, it can be argued that the business
process perspective is affected because the model complexity is increased and
that the description of the business process essential features can become vaguer
due to the introduction of this extra data modeling perspective. A modeler either
focuses on the business process description, or he/she focuses on the data model
perspective, but not in both of them at the same time. So, this approach should
be applied as a further step to modeling the business process and the resulting
model should be kept as a branch.

4.3 Demonstration Cases with one Business Pro-

cess Model

In this section, two examples demonstrating the application of the presented
approach are described.

Doctor’s Office Demonstration case

Figure 4.1, represents a process of appointment scheduling and attendance at a
doctor’s office.

Figure 4.1: A BPMN process example (adapted from (OMG, 2011a))

The same diagram can be redrawn in order to consider the related data. Some
information involved in the process must be stored persistently, including sched-
uled appointments, the symptoms and the made prescriptions. It is needed to

73

store the appointments scheduled in order to avoid conflict with new appoint-
ments. For this reason whenever it is required to make a new appointment it is
necessary to check the appointments already scheduled. It is also necessary to
store the symptoms and prescribed medicines in order to maintain the patient’s
history.

Within the Pool Doctor’s Office there are two roles involved, or two types
of participants in the process: the receptionist and the doctor. Thus, we can
increase the level of detail of the diagram in order to assign activities to each one
of the two involved participants. Thus, the diagram could be redrawn as shown
in Figure 4.2.

Figure 4.2: Business process diagram focused on data

Based on the diagram shown in Figure 4.2, the following entities can be iden-
tified: Receptionist, Patient and Doctor originated from participants (R1.3) and
Appt, Symptoms and Prescription originated from data stores (R1.1 and R1.2).

The relationship between the entities is described next:

• The Receptionist reads and writes the data store Appt, so there is a rela-
tionship between the entity Receptionist and the entity Appt. By R2.1, the
relationship type is (1 : n). A receptionist can make several appointments.
An appointment is made by one receptionist.

• The Doctor participant handles Symptoms, Prescription and Appt data
stores, so there is a relationship between the entity Doctor and each one of
the entities Symptoms, Prescription and Appt.

– Since a Doctor can perform the same activities several times, by R2.1,
the relationship between Doctor and Symptoms entities is (1 : n).

74

– For the same reason, the relationship between Doctor and Prescription
entities, is (1 : n) as well as the relationship between Doctor and Appt.

• The Patient participant has an “indirect relationship” with the Appt and
Symptoms data stores, since the activities that manipulate these data stores
are activated by messages sent by the Patient. Once a patient can perform
the same activities several times, by R2.3, the relationship between the
entity Patient and the entity Appt is (1 : n). For the same reason, the
relationship between the entities Patient and Symptoms is (1 : n).

• The Patient participant receives a message as a result of the activity that
manipulates the data store Prescription. So, by R2.3, the relationship be-
tween the entity Patient and the entity Prescription is (1 : n).

Figure 4.3 shows the data model resulting from the application of our approach
to the diagram shown in Figure 4.2.

Figure 4.3: Doctor’s Office Data Model

By R3.2, the entities Receptionist, Patient and Doctor will have the same
attributes: ID and Name;

By R3.1, the attributes of the entities appt, Symptoms and Prescription are
detailed in a XML file.

Nobel Prize Demonstration case

The diagram shown in Figure 4.4, adapted from (OMG, 2010a), represents the
Nobel Prize in Medicine Process Diagram.

75

Figure 4.4: The Nobel Prize Process Diagram (adapted from (OMG, 2010a))

76

Figure 4.5: Nobel Prize Data Model

As we can see in Figure 4.4, there are four roles, or participants, involved
(Nobelcommittee, NobelAssembly, Nominators and Experts) and three different
data stores (Nominators, Candidates and Recommendations). By R1.3, each
participant will be represented by an entity in the data model. By R1.1, each
data store will be represented as an entity in the data model. But, the Nominators
participant has the same name as the Nominators data store, so, by R1.4, both
are represented by the same entity (Nominators) in the data model.

Figure 4.5 shows the data model resulting from the application of the aproach
to the diagram shown in Figure 4.4.

The relationship between the entities is described next:

• The activities that manipulates the Nominators data store are cyclic, so by
R2.2, the relationship between Nobelcommittee and Nominators is (m : n).
The same happens between the entities Nobelcommittee and Candidates.

• By R2.1, the relationship between the entities Nobelcommittee and Recom-
mendations is (1 : n).

• The activities that manipulates the Candidates data store are cyclic and ex-
change information with the Expert participant, so by R2.4, the relationship
between the entities Candidates and Expert is (m : n).

• By R2.3, the relationship between the entities NobelAssembly and Recom-
mendations, is (1 : n).

By R3.1, the attributes of the entities Nominators, Candidates and Recom-
mendations are detailed in a XML format file.

By R3.2, the entities Nobelcommittee, NobelAssembly, Nominators and Ex-
perts will have the same attributes: ID and Name.

Since Nominators is a participant and a data store, its attributes will be the
joint of all.

77

4.4 Deriving a Data Model from a Set of Inter-

related Business Process Models

Typically, in a real situation, a software product does not support only one pro-
cess, but rather a set of processes. So, in order to generate a data model useful
for the development of such software product, it is necessary to assemble all data
models resulting from the application of the previous approach to each process
being supported.

This section presents and extension to the approach presented previously (sec-
tion 4.2). This extension, intends to enable the derivation of a data model directly
from a set of interrelated business process models by aggregating and merging the
information about the data derived from a set of interrelated business processes.

To do that, first it is needed to identify and specify which business processes
are to be supported by the software under development, identifying the system
scope (Cruz et al., 2015a). Then it is necessary to group, aggregate and merge
in one data model all the information about data derived from those business
processes.

When we are working with a set of interrelated business process models it is
natural to find a participant involved in several business processes. Following the
same idea, we can say that a data store can also be involved in several business
processes.

Usually, interrelated business processes complement each other, meaning for
example that when a business process reads information from a data store, that
information can be written during the execution of the same or another related
business process.

Assumptions

The approach here proposed assumes that:

• A set of private business processes is considered, and, in this scenario, each
identified business process is represented in one (main) pool that can be
divided in several lanes. The other participants (pools) involved in the
business process are considered as “external participants”.

• When an activity receives information (messages) from an “external par-
ticipant” and when that information must be kept beyond the process exe-
cution, that activity must write the received information into a data store.

• A data object represents data (a document, etc.) that an activity sends or
receives. When the information contained in that data object must be kept
beyond the process life cycle, the activity must write the information in a
data store.

78

• When a business process reads information from a data store and no other
business process writes information in this data store, this can mean that
something is wrong (for example a business process is missing) or that a
link with another application exists. The same happens when a business
process writes information in a data store that is never used (or no other
activity reads information from that data store).

Rules to generate the Data Model

To define a persistent data model one needs to identify the domain entities, their
attributes, and the relationships between those entities (Weske, 2012). Following
this reasoning, the approach is divided in three parts: first present a set of rules
to identify the entities, then the entities’ attributes are identified, and, finally, we
present a set of rules to identify the relationships between the identified entities,
including cardinality and optionality. The rules are in accordance with, and
extend, the rules already presented in section 4.2. Some of the rules are rewritten
and modified to be applied to a set of business processes.

The first set of rules, to identify the entities, is:

• R1: A data store, belonging to one of the selected business process models,
is represented by an entity (with the same name) in the data model.

• R2: Data stores with the same name, involved in several business processes,
are represented by the same entity (with the same name) in the data model.

When data stores with the same name are involved in more than one busi-
ness process we assume that they represent the same data store, so they
will be represented by the same entity in the generated data model.

• R3: Each participant involved in one of the selected business process models
originates an entity in the data model.

• R4: Participants with the same name, involved in more than one business
process, are represented by the same entity (with the same name) in the
data model.

Usually a participant is involved in several business processes of an organi-
zation. When participants with the same name are involved in more than
one business process we assume that they represent the same participant,
so they will be represented by the same entity in the data model.

• R5: Participants with the same name as data stores are represented by the
same entity (with the same name) in the data model.

When we are working with several related business processes usually the
information about “external participants” is stored during one of those

79

processes. Afterwards, when joining a group of related business processes,
we can find participants and data stores with the same name. In that case,
they will be represented by the same entity in the data model.

The rules to identify the entities’ attributes are:

• R6: The attributes of an entity derived from a data store are the integration
of all attributes involved in all the data store manipulations during the
business processes execution.

As explained previously in section 4.2 each item from a data store is rep-
resented as an entity attribute in the data model. A data store can be
manipulated by several activities belonging to different (or the same) busi-
ness processes. Each activity may involve different items giving origin to
different attributes of the entity that represents the data store in the data
model. To prevent loss of information, all involved items must be repre-
sented as entity attributes in the data model. We assume that attributes
with the same name represent the same attribute.

• R7: The initial attributes of an entity that represents a participant (involved
in one, or several business processes) are id and name. When a participant
is involved in several business processes, the participant’s name is the same,
so the entity attributes are also the same (id and name).

• R8: When an entity represents a participant and a data store, the entity
will aggregate all the attributes representing all the items involved in data
store manipulations and the attributes belonging to the participant’s rep-
resentation (id and name).

The rules to identify the relationships between the identified entities are ex-
plained next.

• R9: When a participant is responsible for an activity that writes infor-
mation in a data store, the entity that represents the participant must be
related with the entity that represents the data store.

A participant can perform a process (and an activity belonging to that
process) several times, so the relationship is (1:n) from the entity that
represents the participant to the entity that represents the data store.

The relationship is mandatory on the side of the entity that represents
the participant because the activity is always executed by someone play-
ing that role. Nevertheless it is not mandatory on the side of the entity
that represents the data store because this process may never be executed
by a particular participant. But the participant can be involved in other
processes.

80

• R10: When an activity that handles the data store exchanges information
with an “external participant” we can distinguish four different cases:

1. The activity receives information from the participant and writes in-
formation in a data store (see example in Figure 4.6). In this case, we
assume that the information stored is provided by the participant so,
the entity that represents the data store is related with the entity that
represents the participant.

Figure 4.6: Receiving information from a participant

2. The activity writes information in a data store and sends information
to the participants. We assume that the same information is stored
and sent to the participant (as for example a receipt or a certificate)
so, the entity that represents the data store is related with the entity
that represents the participant.

3. The activity reads information from a data store and sends the infor-
mation to an external participant (see Figure 4.7). We assume that
the read information is provided to the participant so, the entity that
represents the data store is related with the entity that represents the
participant.

Figure 4.7: Sending information to a participant

4. When an activity reads information from a data store and also receives
information from a participant we assume that the activity is only
checking the information provided by the participant which is already
stored (probably during the execution of another process). In this
case, there is no relationship between the identified entities.

81

In points 1, 2 and 3, the identified relationship type is (1:n) from the entity
that represents the participant to the entity that represents the data store
(Cruz et al., 2012). Nevertheless, when the activity that sends a message
to a participant is a looping activity, the relationship type is (m:n) (Cruz
et al., 2012). A Loop Activity is an activity with looping behavior (cyclical
or “multi-instantiable”) (OMG, 2011a) meaning that the activity can be
executed several times during one process instance. Each Loop Activity
instance may have different values to the identified attributes. So, if one
loop activity is sending a message to an external participant it may represent
the information being sent to several participants.

The relationship is mandatory on the side of the entity that represents
the participant because the activity always interacts with someone playing
that role. On the side of the entity that represents the data store it is
not mandatory, because this process may never be executed by a particular
participant.

• R11: When, during a process, an activity writes information in a data
store and, in a same process, a previous activity (or the same activity)
reads information from another data store (Figure 4.8), and between the
activities the process does not receive any other information, it is assumed
that the read and the written information are related. As a consequence,
the two entities (representing the two data stores) are related.

Figure 4.8: Relating two data stores

As a process can be executed several times, the same information can be
read several times, so by default the relationship type is (1:n) from the entity
that represents the read data store to the entity that represents the written
data store. If the activity that writes information is a looping activity the
relationship type is (m:n).

By default, the relationship is mandatory on both sides. But, if the exe-
cution of the activity that writes the information depends on a condition,
for example an exclusive decision gateway (see example in Figure 4.9), then
the relationship is not mandatory on the side of the entity representing the
written data store.

If the activity that writes information is performed after a merging gateway
(not a parallel join) (Figure 4.10), then the relationship is not mandatory on

82

Figure 4.9: Exclusive decision gateway example

the side of the entity representing the read data store because the activity
that reads the data store may not be executed.

Figure 4.10: Exclusive merging gateway example

• R12: All the relationships derived from the several business processes must
be preserved in the data model.

A data store may be manipulated by several activities belonging to distinct
(or to the same) business processes, giving origin to different relationships.
To prevent the loss of information all the relationships must be represented
in the generated data model (for further evaluation).

• R13: If, between two entities, there are different relationship types, the
relationship type with higher cardinality prevails.

A data store can be manipulated by different activities. If an activity is
a looping activity and another activity is not, it will originate relationship
types with different cardinalities. In that case, the relationship with higher
cardinality prevails.

• R14: If, between two entities, there are relationships with different manda-
tory types, the not mandatory type prevails.

4.5 Demonstration Case with a Set of Business

Process Models

In this section we use, as a demonstration case, a very well-known example of a
School Library System where a group of five related business process models (in

83

Figure 4.11: Register User business process model

Figure 4.12: Lend a Book business process model

BPMN) have been selected to be presented here. The selected business processes
are: Register User (Figure 4.11), Lend a Book (Figure 4.12), Reserve a Book
(Figure 4.13), Renew a Loan (Figure 4.14) and Return a Book (Figure 4.15). The
Return a Book business process model includes a sub-process, Penalty treatment
represented in Figure 4.16. In this example, we are going to see that the business
processes do not totally complement each other.

The participants involved in all the five selected business processes are the
same: Borrower and Attendant. The two corresponding entities, with the same
name, must be represented in the resulting data model.

The Register User business process model (Figure 4.11) stores information in
the Borrower data store, so the Borrower must be represented as an entity in the
data model. The Borrower entity has been identified previously as representing
a participant so, by R3, the data store and the participant will be represented
by the same entity (Borrower). The Attendant participant is responsible for
executing the activity that writes information in the Borrower data store so, by
R9, the Attendant entity is related with the Borrower entity. The relationship
type is (1:n) and it is not mandatory on the side of the Borrower entity.

84

Figure 4.13: Reserve a Book business process model

Figure 4.14: Renew a Loan business process model

Figure 4.15: Return a Book business process model

85

In the Lend a Book business process model (Figure 4.12) three data stores
are involved: Borrower, Book and Loan. Borrower has already been identified
as an entity. Book and Loan will originate new entities, with the corresponding
name, in the data model. The Attendant participant is responsible for writing
information in Loan data store so, by R9, the Attendant entity is related with
Loan entity. The relationship type is (1:n).

In the same business process model (Lend a Book), the Register Loan activity
sends information to the Loan data store and sends a message about it to the
Borrower participant so (by R10) the Loan and Borrower entities are related.
The relationship type is (1:n) because a process can be executed several times
meaning that a Borrower can have several loans. From another point of view,
during the Lend a Book business process execution, the activity Register Loan
sends information to the Loan data store after the activity Check Book Status
read information from the Book data store. So, by R11, Book and Loan entities
are related. The relationship type is (1:n). The relation is not mandatory on
the side of the Loan entity because the activity that writes information is only
executed if the gateway condition (is book available?) is true.

The Reserve a Book business process (Figure 4.13) involves three data stores:
Borrower, Book and Reservation. Borrower and Book were already identified
meaning that only Reservation will be appended as an entity to the data model.
The Attendant participant writes information in the Reservation data store so, by
R9, the Attendant entity is related with the Reservation entity. The relationship
type is (1:n). In the same business process, the Check Book activity reads infor-
mation from Book and the activity executed immediately after (Add reservation)
writes information in the Reservation data store. By R11, the two corresponding
entities are related (Book and Reservation). The relationship type is (1:n). The
relation is not mandatory on the side of the Reservation entity because the activ-
ity that writes information is only executed if the gateway condition (is possible
to reserve the book?) is true.

The Renew a Loan business process model (Figure 4.14) involves the data
stores Loan and Reservation, which are already represented in the data model.

In the Return a Book business process model (Figure 4.15), more exactly in
the Penalty Treatment sub-process (Figure 4.16), a new data store, Receipts, is
identified so, the corresponding entity must be represented in the final data model.
The Pass Receipt activity writes information on the Receipts data store and sends
information to the Borrower participant, so (by R10) the entities Borrower and
Receipts are related and the relationship type is (1:n). The Pass Receipt activity
is performed by the Attendant participant, so (by R9) the Attendant and Receipts
are related and the relationship type is (1:n).

Because none of the activities is cyclic or “multi-instantiable”, there are no
(m:n) relationship types in the resulting data model.

All identified entities (originated by participants and data stores) and the
relationships identified in each process are presented in Table 4.2.

86

Figure 4.16: Penalty treatment business process model

Business
Process

Entities Relationships

Register User
Attendant
Borrower

Attendant-Borrower(1:n), by R9

Lend a Book

Attendant
Borrower
Book
Loan

Attendant-Loan(1:n), by R9
Borrower-Loan(1:n), by R10
Book-Loan(1:n), by R11

Reserve a Book

Attendant
Borrower
Book
Reservation

Attendant-Reservation(1:n), by R9
Borrower-Reservation(1:n), by R10
Book-Reservation(1:n), by R11

Renew a Loan

Attendant
Borrower
Loan
Reservation

Attendant-Loan(1:n), by R9
Borrower-Loan(1:n), by R10

Return a Book +
Penalty treatment

Attendant
Borrower
Loan
Receipt

Attendant-Loan(1:n), by R9
Attendant-Receipt(1:n), by R9
Borrower-Receipt(1:n), by R10

Table 4.2: Entities and Relationships

87

The resulting data model is shown in Figure 4.17.

Figure 4.17: The resulting data model

4.6 Analyzing the Results

The inclusion of the data store graphical element in the BPMN most recent
version, BPMN2.0 (OMG, 2011a), allows the identification of the persistent data
involved in a business process. As a consequence, joining the set of business
processes that will be supported by the software under development, we are
capable of collecting all the information about persistent data involved in those
business processes.

Analyzing the generated data model (Figure 4.17), we may say that, from
a group of related business process models, we are able to generate a complete
data model identifying all the entities involved, attributes and all the relationships
between the entities, including optionality and cardinality.

By R12, all relationships are represented in the final data model, so in some
situations, especially when a large number of business processes are involved,
it may originate redundant relationships. As a consequence, the resulting data

88

Data Store
Process writes
information

Process reads
information

Borrower Register User
Lend a Book
Return a Book
Renew a Loan

Loan
Lend a Book
Return a Book
Renew a Loan

Return a Book
Renew a Loan

Book — Lend a Book
Reserve a Book

Reservation Reserve a Book
Lend a Book
Renew a Loan

Receipt Penalty treatment —

Table 4.3: Entities manipulation

model should be analyzed and checked before moving on to the next step of the
development process.

We mentioned previously that, usually, related business processes complement
each other. To support this idea, all operations performed during the processes’
execution, in what concerns persistent data manipulation, are summarized in
Table 4.3.

Analyzing the data presented in Table 4.3 we may conclude that the business
processes complete each other, because the information written by one process
is, most of the times, used in another business process. But, we may also see
that the Book entity (representing a data store) is not updated/inserted by any
activity of the selected business processes but it is used (read) in several business
process models.

Following the same reasoning, the Receipts entity is never used or read by any
activity of the selected business processes but, during the Penalty Treatment sub-
process execution, information is stored. The reason why this happens must be
verified. In this particular case, the most probable reason is because the selected
set of business processes is not complete. In fact, the Purchase books business
process which writes in the book data store is not included in the selected set, and
the information about receipts is accessed from an external accounting system
that supports the organization’s accounting process.

89

4.7 Final Remarks

It is recognized that detailed information about business processes can help to
ensure that the software under development will really meet business needs (Mili
et al., 2003; Giaglis, 2001; Cruz et al., 2014a). BPMN has increased its impor-
tance as a business process modeling language and it is becoming more complete.
The most recent version allows identifying detailed business process, including
distinguishing persistent from non-persistent data (OMG, 2011a). Thus, it be-
comes possible to identify data that are maintained in a persistent manner.

From a software development point of view, one of the most important, and
used models, is the data model. However, to enable the ulterior obtention of
the data model, it is necessary that the business process modeling is made taking
data into account, i.e. the modeler must monitor the data throughout the process.
Moreover, it is necessary to identify the activities that write or make use of the
information stored in the data store, and ensure that the roles responsible for
performing those activities are identified.

In the approach presented in section 4.2, data stores and participants in the
business process model give origin to entities in the data model. The relation-
ship between those entities is deduced from the information exchange between
participants and the activities that manipulate the data stores.

The extended approach, presented in section 4.4, derives a data model based
on the existing information in a set of interrelated business processes. When we
are working with only one business process, the generated data model may be
incomplete but, by joining together a set of interrelated business processes, we are
able to get a much more complete data model because usually the information
is shared by a set of related business processes, belonging to an organization.
Often, the data written by a business process is used by another (or the same)
business process.

The generated data model will help to ensure the alignment between business
processes and the software that support them. However, it is necessary to note
that if the business process models will provide the basis for the software develop-
ment, they have to cover all the relevant information, including the information
about the data involved in the process. The approach here presented needs highly
detailed business process models especially in what concerns to data. This can
make a business process model too complex and can affect its main objective,
which is the description of the business process flow in a way that is understand-
able by all stakeholders. To serve both objectives, multiple perspectives of the
model, each focusing on a specific aspect, can be created. Another solution is to
develop business process modeling tools able to allow hiding/unhiding some de-
tails to represent the several views and to improve understandability of a specific
aspect (Meyer et al., 2013).

It can be said that the BPMN models, if correctly created, support the au-
tomatic generation of the proper data model, serving as a basis to the software

90

development. The approach presented here can also be used to verify the com-
pleteness of the involved business processes (in terms of persistent data) and/or
to identify possible links with other applications.

In (Weber et al., 2011) the authors conclude that, usually, business process
models have bad quality. An effort to improve processes’ quality and completeness
is needed. The approaches presented here is a step in that direction.

91

92

Chapter 5

Deriving a Data Model from a
Logical Software Architecture

One of the most difficult, and crucial, activities in software development is the iden-
tification of system functional requirements. A popular way to capture and describe
those requirements is through UML use case models. During system analysis, most of
this information must be incorporated into use case descriptions. A business process
model identifies the activities, resources and data involved in the creation of a prod-
uct or service, having lots of useful information for developing a supporting software
system. This chapter proposes an approach to support the construction of use case
models based on business process models emphasizing use cases descriptions, which
are created using a set of predefined natural language sentences mapped from BPMN
model elements.

Transforming requirement specifications into software design models is another com-
plex and error prone software development activity. That is the 4SRS main goal. The
4SRS method generates a logical software architecture based on a use case model. The
software design usually involves several models each one representing a different per-
spective. One of those perspectives is the data perspective which can be modeled using
a data model.

In the second part of this chapter, the 4SRS method is adapted and extended in

order to generate a data model supporting the generated logical software architecture,

and the elicited requirements, based on the generated use case model, and the corre-

sponding descriptions, from business process models.

5.1 Introduction

Business process modelling is being increasingly used by organizations to de-
tect bottlenecks, waste, and deviations and to innovate by simulating possible
improvements to processes (Schmiedel and vom Brocke, 2015). Business process
management focus its attention on designing and documenting business processes,
in order to describe which activities are performed and the dependencies between

93

them (Meyer et al., 2011), having lots of useful information for starting to develop
a supporting software system.

Requirements elicitation is one of the first steps in software development pro-
cess and is a complex and longstanding but crucial activity to the software devel-
opment process (Zowghi and Coulin, 2005). A software development team needs
to understand the system context and scope before starting to plan and design
a solution. Some software development processes, such as the Unified Process,
use the UML to support the modeling and documentation of the entire software
development process (Jacobson et al., 1999). The Unified Process starts by the
business process modeling and, after that, the UML use case model is used to
model software requirements (Jacobson et al., 1999). Use case models aim to
capture and describe the functional requirements of a system (Hull et al., 2011;
Yue et al., 2011; Gomma, 2011).

A use case model comprises a set of use case diagrams and the correspond-
ing use case descriptions (Bittner and Spence, 2003a). There are some alter-
natives that can be used to describe a use case, like informal text, numbered
steps, pseudo-code, among others (Cockburn, 2001). Cockburn proposes a basic
use case descriptions template that includes the use case name, actors, scope,
context, pre-conditions, primary success scenario, alternate scenarios, amongst
others (Cockburn, 2001).

The first part of this chapter describes an approach, published and presented
in (Cruz et al., 2014b), to obtain a complete use case model based on a busi-
ness process model. All information existing in a BPMN model that cannot be
represented as an actor or as a use case will be depicted as textual use case de-
scription. Use case descriptions are, commonly, specified in Natural Language
(NL) (Fantechi et al., 2003; Cockburn, 2001). As Fantechi et al. say, NL is easy
to understand but, at the same time, could be ambiguous, redundant and with
omissions (Fantechi et al., 2003; Yue et al., 2009). However, in the approach
presented herein the generated descriptions are a set of controlled sentences pre-
viously defined in NL. According to Bera and Evermann, a restricted NL aims to
“reduce ambiguity, redundancy, and complexity” and makes computational NL
processing more “reliable, efficient, and accurate” (Bera and Evermann, 2014)
and allowing to automatize the software analysis (Yue et al., 2009).

Requirements elicitation is a key step of the software development process, but
there are other key points. One of them is the transformation of the requirements
specification, modeled as use cases, into software design models. This is mainly
because, at this stage, the problem specification starts to be transformed into a
software product solution (Bragança and Machado, 2006). That is, in fact, the
main goal of the 4SRS method.

The use case model is used in requirements elicitation and specification as
a means to facilitate the dialog with the customer about “what” the system
is supposed to do (OMG, 2012), but not “how” the system must do it. The
4SRS method ensures the transition from user requirements, specified as use case

94

models, into logical software architectures (Santos and Machado, 2010; Machado
et al., 2006). It employs successive transformations of the software architecture
in order to satisfy the elicited requirements. A logical software architecture rep-
resents the software system main components and the relation between them,
allowing to understand the organization of the system.

The 4SRS method is especially useful to make the transition from require-
ments modeled as use cases, to the architecture of large and complex software
systems (Ferreira et al., 2012), because in these cases the possibility to lose or for-
get some detail is high and it is very complex to manage the use cases. The 4SRS
method enables us to prevent these problems, but to do so it requires a use case
model with a high detail level. For this, the decomposition triangle approach,
presented in section 6.3, may be used helping in decomposing and refining use
cases to achieve a high detail.

After presenting an approach to derive a use case model, including use case
descriptions, based on the information available in business process models, we
will present another approach to use this generated use case model as input to
the 4SRS leading the logical software architecture.

The second approach presented in this chapter (section 5.4) adapts and ex-
tends the 4SRS in order to generate the data model based on the derived logical
software architecture (Cruz et al., 2016). This way, it will be possible to gener-
ate the software system logical architecture and its supporting data model. This
second approach is presented and published in (Cruz et al., 2016).

The remainder of this chapter is structured as follows. Section 5.2 describes
our approach for deriving a use case model from one business process model, spe-
cially focused in use case descriptions. Section 5.3 presents the application of this
approach to a demonstration case. In section 5.4, the 4SRS method is adapted to
deal with use case models using a structured and controlled language in use case
descriptions and is extended to generate the data model from the derived logical
software architecture. The application of this approach is illustrated through a
demonstration case, integrating a set of business process models, in section 5.5.
Finally, conclusions are presented in section 5.6.

5.2 From Business Process Models to a Use Case

Model

It is recognized that the software that supports the business must be aligned with
the business processes (Giaglis, 2001). Therefore, it is natural to try an approxi-
mation between business process modeling and software modeling. Requirements
elicitation is usually the first phase on a software development process.

Shishkov et al. states that deriving use case models from business analy-
sis models would be useful, since both reflect behavior within business/software

95

systems (Shishkov et al., 2002). Several authors already propose approaches to
derive use cases from business process models (see section 3.4). All surveyed ex-
isting approaches obtain a use case diagram based on a business process model,
but no one presents a proposal for obtaining the use cases description. Neverthe-
less, the use cases descriptions are one of the most important components of the
use case model (Cockburn, 2001; Bittner and Spence, 2003b). Moreover, without
descriptions most information presented in a business process model will be lost
when generating the use case diagram from a business process model.

Cockburn emphasizes the use case descriptions. In Cockburn’s opinion the
use case writers should spend their time and effort on use case descriptions (Cock-
burn, 2001). The use case descriptions can specify all information needed. But,
how should the use cases be written? Cockburn advises the use case writers to
use sentences with a simple structure, which should be “easy to read and follow”
(Cockburn, 2001) and describes a semi-formal structure to use cases description.

The CREWS (Co-operative Requirements Engineering With Scenarios) team
proposes two sets of guidelines to be used on use case descriptions: six guidelines
related to style and eight related to content (Rolland and Achour, 1998). Karl
Cox also presents a set of structure guidelines for use case descriptions (Cox,
2002). More exactly he proposes the CP Use Case Writing Rules, a small set of
guidelines derived from the 7 C’s (Coverage, Cogent, Coherence of logic, Con-
sistent abstraction, Consistent Structure, Consistent Grammar, Consideration of
alternatives) (Cox, 2002).

Comparing CREWS and CP guidelines, the CP guidelines number is smaller
and intends to be easier to apply than CREW guidelines (Phalp et al., 2007).
Both provide improvements on use case descriptions quality (Phalp et al., 2007)
and subsequently improve the understanding between stakeholders.

Graphically a use case diagram is very simple because it only involves actors
and use cases (stickman’s and ellipses with a brief description). A BPMN process
diagram is graphically more complex because it involves lots of graphical elements
(activities, events, gateways, data objects, pools, etc.). However a use case model
can represent as much information as a BPMN model, but most of the information
must be embodied in use case descriptions. So, the approach presented here is
specially focused on use case descriptions for which we present a template.

The approach is divided in two main parts. First we present a set of rules to
obtain a use case diagram from a BPMN model. Then we address the rules to
derive the description of the uses cases previously identified.

Use case diagram generation

The presented approach is based on the private business process, where messages
exchanged with other participants, or business partners, shall be represented.
The proposed approach is based on the following considerations:

96

• The information about the participants in the process is relevant to the
process, so all participants involved in messages exchange must be repre-
sented.

• An activity represents some work performed within a business process. An
activity may be atomic, usually represented as a task, or non-atomic, rep-
resented as a sub-process. To avoid information loss during the application
of the proposed approach, the sub-processes must be expanded.

• A manual task is a task performed without any information technology
involvement (Allweyer, 2010). Nevertheless, the information about the task
execution, like start and ending time or amount of resources produced and
consumed, can be useful to the process monitoring to support and evaluate
future decisions or improvements.

We agree with Rodriguez et al. on mapping a participant to an actor and one
activity to a use case (Rodŕıguez et al., 2007). Accordingly, the rules to generate
the use case diagram are explained below:

• R1: A role played by a participant (represented by a lane or a pool) must
be represented by an actor in the use case diagram. The actor name is the
participant name.

• R2: A lane can be the sub-division of a pool or a sub-division of another
lane. These subdivisions form the actors’ hierarchy:

– If the lane is a sub-division of a pool then the actor that represents
the lane is a specialization of the actor that represents the pool;

– If the lane is a sub-division of another lane then the actor that repre-
sents the internal lane is a specialization of the actor that represents
that lane.

• R4: Each activity will be represented as a use case in the use case diagram.
The use case name (brief description of the action) is the activity name.

• R5: An actor that represents a pool (or a lane) is related with all use cases
representing the activities that belong to the pool (or lane).

• R6: The actor that represents the participant that sends (or receives) a
message to an activity is related to the use case that represents that activity.

Next subsection applies the described rules to the Nobel Prize example.

97

Figure 5.1: The Nobel Prize Use Case Diagram

Use case diagram generation applied to the Nobel Prize
demonstration case

The diagram shown in Figure 4.4, represents the Nobel Prize BPMN Process
Diagram. The presented BPMN model comprises ten activities, consequently
(by rule R4 above) there will be ten use cases on the generated use case diagram.
Four pools are involved in the process: Nobel Committee, Nominators, Expert
and Nobel Assembly. By R1 the obtained use case diagram will have four actors
with the corresponding names. The obtained Nobel Prize use case diagram is
shown in Figure 5.1.

As can be seen in Figure 4.4, all activities are performed by Nobel Committee
participant, so, by R5, all use cases are related with Nobel Committee actor. The
Nominators participant sends a message to Send Nomination Form activity, so,
by R6, the Nominators actor is related with the Send Nomination Form use case.
The Collect Completed Forms activity receives a message from the Nominators
pool, so, by R6, the Nominators actor is related with the Collect Completed Forms
use case. The explanation for the other relationships is similar.

Getting use case descriptions

This subsection addresses the generation of use case descriptions from a private
business process model. We define a template to represent a use case description

98

Use Case name
The use case name identifies the goal as a short active verb
phrase.

Actors List of actors involved in the use case

Pre-Conditions
Conditions that must hold or represent things that hap-
pened before the use case starts.

Post-Conditions Conditions that must hold at the conclusion of the use case.

Trigger Event that starts the use case.

Scenario
Sequence of interactions describing what the system must
do to move the process forward.

Table 5.1: The template for describing use cases

which is a simplification of the template presented by Cockburn in (Cockburn,
2001). The proposed template is composed by six fields, which are named and
described in Table 5.1.

Cockburn says that a real big and complex system can be modeled with only
seven use cases (Cockburn, 2001). This yields very complex use cases with several
alternative scenarios. Our approach, by transforming each BPMN activity into
a different use case, yields much simpler use cases, each with a single scenario.
For that reason the proposed template only attend to one (main) scenario. Pre-
conditions, triggers and post-conditions enable the representation of the process
flow in the use case model.

The main elements involved in a process are participants (pool and lanes),
activities, gateways, events, messages, data objects, data stores and artifacts
(OMG, 2011a). These elements are connected by connecting objects (sequence
flow, message flow, associations and data associations). The approach being
presented intends to transform business process elements, and their associated
information, in a controlled set of sentences in NL, following the CREWS guide-
lines.

The activity name is the use case name in the use case template. The related
pools or lanes represent the actors related with the use case in the use case
template, as described previously.

Focusing our attention on a use case, all incoming connections and outgoing
message flows, data associations, and sequence flows to events of the correspond-
ing activity must be reflected in the use case descriptions, fulfilling the use case
template previously defined.

99

Sequence flows outgoing an activity to a gateway or to another activity do
not create a sentence in the source activity description because these connections
already create sentences in the activity that receives the sequence flow.

Each connecting object makes a connection between a source (sourceRef) and
a target (targetRef). Different connecting objects connect different elements. The
next sub-sections describe how incoming and outgoing connections of an activity
are represented in the corresponding use case template.

Data Associations

Data associations are used to move data between data objects (or data stores)
and activities (OMG, 2011a). The data (physical document or information) that
are created, manipulated, and used during the execution of a process are repre-
sented as data objects (or data object references) or as data stores (or data store
references). A data object reference is a way to reuse data objects in the same
diagram (OMG, 2011a). The same happens with the data store reference.

The sentences generated by data associations and associated data objects, or
data stores, are represented in Table 5.2. The sentences will be appended to the
scenario of the use case description of the use case that represents the activity.

Association

An association is used to link text annotations and other artifacts with other
BPMN graphical elements (OMG, 2011a). When an association links a text
annotation with an activity, the text is transcribed to the scenario of the use case
that represents the activity. The text remains the same. When an association
links a text annotation to a gateway, or to a sequence flow, the text is transcribed
to the scenario of the use case that represents the target activity.

Message Flow

A message flow connects two pools representing the message exchange between
the two participants (OMG, 2011a). A message represents the content of a com-
munication between two Participants (OMG, 2011a). A Message is graphically
represented as an envelope as we can see in Figure 4.4. The sentences originated
by a message flow are described next as two different rules (MR1 and MR2).

• MR1: When an activity receives a message (message input), the use case
that represents the activity will have the following sentence in its use case
scenario: Receives <message name> [with <messageRef>] from
<participant name>.

• MR2: When an activity sends a message (message output), the use case that
represents the activity will have the following sentence in its use case sce-

100

Data
Graphical

representation
Originated sentence in use case
scenario.

Data Object
as data association source

Receives <data object name>.

Data Object
as data association target

Sends <data object name>.

Data Input Receives <data object name>.

Data Input Collection
(Input set)

Receives a collection of <data
object name>.

Data Output Sends <data object name>.

Data Output Collection
(Output set)

Sends a collection of <data ob-
ject name>.

Data Store
as data association source

Reads information from <data
store name>

Data Store
as data association target

Writes information on <data
store name>

Table 5.2: The use case sentences originated by Data Associations

101

Figure 5.2: splitting and merging gateways

nario: Sends <message name> [with <messageRef>] to <participant
name>.

MessageRef defines the message that is passed via message flow. It can be any
kind of information exchanged between different pools (an email, a phone call, a
document, etc.).

Sequence Flow

A sequence flow is used to show the order that activities are performed in a process
(OMG, 2011a). A sequence flow can connect activities, events and gateways
(OMG, 2011a).

• When a sequence flow connects two activities, it originates the next sentence
as pre-condition in the use case that represents the target activity: The
<source activity name> has been completed.

• When one activity has several incoming sequence flows, the originated sen-
tence is the same as the sentence originated by Inclusive merging gateway
(Table 5.3).

Everything that occurs between two activities must be registered in the target
activity description. Involved gateways and events are treated in the next sub-
sections.

Sequence Flow and Gateways

Gateways are used to control how the process flows, by diverging (splitting gate-
ways) and converging (merging gateways) sequence flows. Splitting gateways have
one incoming sequence flow and two or more outgoing sequence flows. Merging
gateways have two or more incoming sequence flows and one outgoing sequence
flow (OMG, 2011a), as we can see in Figure 5.2.

The gateway’s outgoing sequence flows may have a Condition that allows
to select alternative paths. Each outgoing sequence flow originates a sentence

102

Gateway
Graphical

representation
Originated Pre-condition.

Exclusive Decision
The <gateway condition> is
<sequence flow condition>.

Parallel splitting
The <source name> has been com-
pleted.

Inclusive Splitting
The <sequence flow condition> is
true.

Complex Splitting
The <sequence flow condition> is
true.

Exclusive merging
The <source name> [exclusive or
<source2 name>] has been com-
pleted.

Parallel join
The <source name> [and < source2
name>] has been completed.

Inclusive merging
The <source name> [or <source2
name>] has been completed.

Complex merging
The <source name> [or <source2
name>] has been completed.

Table 5.3: The use case pre-condition originated by gateways

represented as a pre-condition in the use case description of the sequence flow
target activity. The generated sentences are represented in Table 5.3.

Sequence Flow and Events

An event is something that happens during the course of a process and that
affects the process’s flow (OMG, 2011a). These events usually have a cause or
produce an impact (OMG, 2011a). In BPMN 2.0 there is a large number of event
types, so we present a general overview of the generic sentences originated in the
use case template by the different events categories (see Table 5.4).

The identified categories are grouped in four tables to address differences that
can exist between sentences generated by the events of these groups of categories.

103

Event type category
Generic sentence originated in use case tem-
plate

Start
Trigger: The <event name - event definition>
occured.

Start (Sub-Process)
Interrupting

Trigger: The event <event name - event
definition> occured.

Start (Sub-Process)
Non-Interrupting

Trigger: The event <event name - event
definition> occurred.

Intermediate
Catching

Trigger: The <event name - event definition> is
received.

Intermediate
Boundary Interrupting

Scenario: If the <event name - event definition>
occurs, the <activity name> is interrupted.

Intermediate
Boundary Non-Interrupting

Scenario: The <event name - event definition>
occurred.

Intermediate
Throwing

Post-condition: The <event name - event
definition> is created.

End
Post-condition: The <event name - event
definition> is created. The process ends.

Table 5.4: Generic sentences originated by events

104

Catching Event Originated sentence in use case trigger.

None The event <event definiton> occurs.

Message The message <event definition> arrives from <source>.

Timer The time-date <event definition> is reached.

Escalation The <Name - Event Definition> occurs.

Conditional The condition <expression> become true.

Signal The signal <event definition> arrives.

Multiple The <event definition> [or <event definition>] occurs.

Parallel Multiple The <event definition> [and <event definition>] occurs.

Table 5.5: The sentences originated by Start and Catching events

Sentences originating a Trigger in use case description are presented in Table 5.5.
Sentences originating a Pos-condition in use case description are presented in
Table 5.6. Sentences appended to the Scenario of the use case are presented in
Table 5.7 and in Table 5.8 .

The events affect the sequence or the timing of the process’s activities. There
are three types of events: Start, Intermediate and End. Start events indicate
where a process (or a sub-process) will start. End events indicate where a path
of a process will end. Intermediate events indicate where something happens
somewhere between the start and end of a process (OMG, 2011a).

Some events are prepared to catch triggers. These events are classified as
catching events. Events that throw a result are classified as throwing events
(OMG, 2011a). All start events and some intermediate events are catching events
(OMG, 2011a). The sentence originated by a catching event is included as a
trigger in the description of the use case that represents the activity that is
started by the event. Catching events are represented as triggers because this
events cause the start of the activity. The sentences originated by the Start and
Catching events are detailed in Table 5.5.

All End events and some Intermediate events are Throwing events (OMG,
2011a). The sentences originated by the End and Throwing events are included as
a post-condition in the description of the use case that represents the activity that
throws the event. Throwing events are represented as a post-condition because

105

Throwing Event Originated Pos-condition

None The Event <Name - Event Definition> is created

Message
The message <Name - Event Definition> is sent to
<participant name>.

Error The error <Name - Event Definition> is created.

Escalation The <Name - Event Definition> is created.

Cancel
The <Name - Event Definition> is created. The trans-
action is cancelled.

Compensation The <Name - Event Definition> is created.

Signal
The signal <Name - Event Definition> is created. A
Signal is broadcasted.

Terminate
The <Name - Event Definition> is created. All Activi-
ties in the Process end.

Multiple
The <Name - Event Definition> [and <Name - Event
Definition>] are created.

Table 5.6: The use case descriptions originated by End and Throwing events

the event is a consequence (or a result) of the activity execution. The sentences
originated by the End and Throwing events are detailed in Table 5.6.

Some events can also be classified as interrupting or non-interrupting events.
Interrupting events stop its containing process whenever the event occurs. When
Non-Interrupting events occur its containing process is not interrupted (OMG,
2011a). The sentences generated by Intermediate Interrupting events, originating
a sentence in use case scenario, are presented in Table 5.7.

The sentences generated by Intermediate Non-Interrupting events, originating
a sentence in use case scenario, are presented in Table 5.8.

An event can be thrown by an activity and caught by another. In this case
the event originates a sentence in the post-condition of the use case representing
the activity that throws the event and another sentence in the trigger of the use
case representing the activity that catches the event.

In a use case scenario, several sentences may be generated from BPMN model
elements. The sentences to be appended to the use case scenario must be accord-
ing to the following order:

106

Intermediate In-
terrupting Event

Graphical
representation

Originated sentence in use case scenario

Message
The <activity name> is interrupted when
the message <Name - Event Definition> is
received from <participant name>.

Timer
The <activity name> is interrupted when
the time <Name - Event Definition> is
reached.

Error
The <activity name> is interrupted when
the error <Name - Event Definition> oc-
curred.

Escalation
The <activity name> is interrupted when
the <Name - Event Definition> occurred.

Cancel
The <activity name> is interrupted when
the <Name - Event Definition> occurred.

Compensation
The <activity name> is interrupted when
the <Name - Event Definition> occured.

Conditional
The <activity name> is interrupted when
the condition <Name - Event Definition>
become true.

Signal
The <activity name> is interrupted when
the signal <Name - Event Definition> ar-
rived.

Multiple

The <activity name> is interrupted when
the <Name - Event Definition> [or <Name
- Event Definition>] is received.

Parallel Multiple

The <activity name> is interrupted when
the <Name - Event Definition> [and <Name
- Event Definition>] are received.

Table 5.7: The use case descriptions originated by Intermediate Interrupting
events

107

Intermediate
Non-Interrupting
Event

Graphical
representation

Originated sentence in use case scenario

Message
The message <Name - Event Definition> is
received from <participant name>.

Timer
The time <Name - Event Definition> is
reached.

Escalation The <Name - Event Definition> occurred.

Conditional
The condition <Name - Event Definition>
become true.

Signal
The signal <Name - Event Definition> ar-
rived.

Multiple
The <Name - Event Definition> [or <Name
- Event Definition>] is received.

Parallel Multiple
The <Name - Event Definition> [and
<Name - Event Definition>] are received.

Table 5.8: The use case descriptions originated by Intermediate Non-Interrupting
events

108

Use Case name Send Nomination Form.

Actors Nobel Committee, Nominator

Trigger The time-date September is reached.

Scenario

Around 3000 invitations confidential nomination forms
are sent to selected Nominators.
Reads information from Nominators.
Sends the Nomination Invitation to Nominator.

Table 5.9: Send Nomination Form use case description

1. All incoming connections representing messages, associations, etc. received
by the activity.

2. All incoming connections representing data read by the activity.

3. All outgoing connections representing data written by the activity.

4. All outgoing connections representing messages, etc. sent by the activity.

In the next section the defined approach is applied to the Nobel Prize demon-
stration case.

5.3 Getting Use Case Descriptions of the Nobel

Prize Demonstration Case

To present herein we select the use cases that cover a greater number of applica-
tion scenarios.

As we can see in Figure 4.4, the Send Nomination Form activity has four
incoming connections: a sequence flow from an event, giving origin to a sentence
in use case trigger (Table 5.5), an incoming message flow, a data association
and an association, each one generating a sentence in use case scenario. The
corresponding use case descriptions are presented in Table 5.9.

The Send List of Preliminary Candidates activity has two incoming connec-
tions: a sequence flow from a gateway, giving origin to a pre-condition (Table
5.3) and a data association giving origin to a sentence in use case scenario. The
activity also has an outgoing message flow to Expert participant generating a sen-
tence in use case scenario (Table 5.2). The corresponding use case descriptions
are presented in Table 5.10.

109

Use Case name Send List of Preliminary Candidates.

Actors Nobel Committee, Expert

Pre-condition The Expert Assistance Required? is Yes.

Scenario
Reads information from Preliminary Candidates.
Sends the List of Candidates to be Assessed to Expert.

Table 5.10: Send List of Preliminary Candidates use case description

Use Case name Submit Report Recommendations.

Actors Nobel Committee, Nobel Assembly

Pre-condition The Write Recommendations is complete.

Scenario:

Receives information about Report with recommenda-
tions from Write recommendations.
Sends the message Report with Recommendations to No-
bel Assembly.

Table 5.11: Submit Report Recommendations use case template

110

The Submit Report Recommendations activity has an incoming sequence flow
from another the activity Select Final Candidates, giving origin to a pre-condition
(Table 5.3) and an incoming data association from the data object Report with
recommendations. The activity also has an outgoing message flow to Nobel As-
sembly giving origin to a sentence in the use case scenario. The corresponding
use case descriptions are presented in Table 5.11.

All use case descriptions from the Nobel committee example are summarized
in Table 5.12. All identified use cases are numbered using the tag=value UML
mechanism integrating the approach presented in previous section with the de-
composition triangle approach (presented in next chapter, section 6.3). The No-
bel committee example will be used throughout the next section as a running
example.

The next section describes an approach to obtain a data model by adapting
and extending the 4SRS method.

5.4 Adapting and Extending the 4SRS to De-

rive a Data Model

The data model is used to structure the knowledge about a specific domain and
is a way to leverage the elements (or concepts) of most interest on that domain
(Evans, 2011). It represents the key concepts of the problem and the relationships
between them. The key concepts are also called entities.

In the approach presented herein we intend to generate the data model based
on the information we have in a use case model, where each use case description is
created using the set of structured Natural Language sentences defined previously
in section 5.2.

The 4SRS method allows obtaining the architectural elements (system level
objects) of the system based on the use case names and descriptions (Fernandes
et al., 2006; Machado et al., 2006). The original 4SRS method is organized in 4
steps transforming use-case models into architectural elements (Fernandes et al.,
2006; Machado et al., 2006). The 4SRS method executes a series of validations
and adjustments to the original use case model.

In order to deal with structured sentences and allowing the generation of a
data model, the original 4SRS steps are adapted as presented next:

• Step 1 - Architectural element creation: in this step, the original 4SRS
method proposes the creation of three types of objects for each use case:
one interface, one data and one control. However, we are able to distinguish
between persistent from non-persistent data, as it happens in the BPMN
language (OMG, 2011a). Following this idea, the 4SRS is adapted to also
distinguish persistent data from non-persistent data, by creating two dif-
ferent types of elements involving data: persistent data and volatile data.

111

Use case
Name

Use case Description

{U1} Send
Nomination
Form

Actors: Nobel Committee, Nominator
Trigger: The time-date September is reached.
Scenario: Read information from <Nominator>. Around 3000 invita-
tions confidential nomination forms are sent to selected Nominators.
Sends the Nomination Invitation to <Nominator>.

{U2} Collect
Completed
forms

Actors: Nobel Committee, Nominator
Pre-condition: Send Nomination Form has been completed.
Scenario: Receives nomination Form from <Nominator>. Write in-
formation on <Nominator>.

{U3} Select
Preliminary
Candidates

Actors: Nobel Committee
Pre-condition: Collect Completed forms has been completed.
Scenario: Read information from <Nominator>. Write information
on <Candidates>.

{U4} Deter-
mine need for
Expert

Actors: Nobel Committee
Pre-condition: Select Preliminary Candidates has been completed.

{U5}Send
List of Pre-
liminary
Candidates

Actors: Nobel Committee, Expert
Pre-condition: The Expert Assistance Required? is Yes.
Scenario: Read information from <[Preliminary] Candidates>.
Sends the List of Candidates to be Assessed to <Expert>.

{U6}Collect
assessment
Report

Actors: Nobel Committee, Expert
Pre-condition: Send List of Preliminary Candidates has been com-
pleted.
Scenario: Receives assessments from <Expert>. Write information
on <Assessment>.

{U7}Select
Final Candi-
dates

Actors: Nobel Committee
Pre-condition: Collect assessment Report has been completed.
Scenario: Read information from <Assessment>.

{U8}Write
Recommen-
dations

Actors: Nobel Committee
Pre-condition: The Expert Assistance Required? is No OR Select
Final Candidates has been completed.
Scenario: Write information on <Recommendations>.

Table 5.12: The descriptions of the use cases using the defined template (part I)

112

Use case
Name

Use case Description

{U9}Submit
Report
Recommen-
dations

Actors: Nobel Committee, Nobel Assembly
Pre-condition: Write Recommendations has been completed.
Scenario: Read information from <Recommendations>. Sends Rec-
ommendations to <Nobel Assembly>.

{U10}Hold
Nobel Prize
ceremony

Actors: Nobel Committee
Pre-condition: Submit Report Recommendations has been com-
pleted.
Pos-condition: The process ends.

Table 5.13: The descriptions of the use cases using the defined template (part II)

Each element is labeled with the name of the use case followed by the ap-
propriate type: i (interface), c (control), dp (data persistent) and dv (data
volatile). This step can be automated since it does not involve decisions.

• Step 2 - Architectural element elimination: based on the textual description
of each use case, it is necessary to decide which of the four elements, created
in step 1, must be maintained. This step allows detecting and eliminating
redundancy in requirements. This step is divided into seven micro-steps:

– Step 2i - Use cases classification: In this micro step each use case is
classified as interface, data persistent, data volatile, control, or any
combination of these. This classification aims to facilitate the trans-
formation of each use case in architectural elements as it provides clues
about which categories of elements to use and how they are related.

Since we are dealing with a set of structured sentences in use case
descriptions, it is possible to classify the use case following the sugges-
tions:

∗ When a use case exchanges information with something or some-
one (usually an actor), the i-interface type must be selected. One
use case represents the interaction with an external participant
(represented as an actor) using sentences like Receives <message
name> from <actor name> or Sends <message name> to <actor
name>.

∗ When information is stored or retrieved then the type dp-data
persistent must be selected. Information is stored or retrieved
when sentences like Writes information on <data store name> or
Reads information from <data store name> are part of the use
case description.

113

∗ When in a use case description we have sentences like Receives
<document name> or Sends <document name>, this means that
we are dealing with non-persistent data, thus the type dv-data
volatile must be selected. It is natural to find non-persistent data
transformed in persistent data because in a business process, most
of the times, data received from a participant is then stored in a
data store.

∗ When a use case description has a trigger, a pre-condition or a
post-condition, then the type c-control must be selected. Besides
that, some use case names clearly identifies the use case as a c-
control element like for example use case with name begin by
Check, Verifies, etc.

Taking as example the {U6}- Collect assessment Report use case (from
Table 5.12) we may see that the use case is receiving non-persistent
data (assessments) from expert (Receives assessments from Expert),
meaning that it is interacting with someone, so this is classified as
i-interface and as dv-data volatile. Reading the use case descriptions
we may also see that we are dealing with persistent data because the
use case Writes information on <Assessment>, so the use case is also
classified as dp-data persistent. The use case has to control the use
case pre-condition (Send List of Preliminary Candidates has been com-
pleted). So, the use case is also classified as c-control. Summarizing,
this use case will be classified as c, i, dv and dp.

– Step 2ii: Local elimination - the purpose of this micro step is to check
if each architectural element created in step 1 makes sense for the
problem domain. Those that do not make sense should be eliminated.

– Step 2iii: Architectural element naming - Each architectural element
created, should receive a name fitting its original use case as well as
the role that it has in the system.

Taking as example the {06-dp}- Collect assessment Report persistent
data element created in {U6}- Collect assessment Report use case, we
may rename it to {06-dp} - Write Assessment to better fit the element
purpose.

– Step 2iv: Architectural element description - Each architectural ele-
ment that received a name in previous micro-step should be described
according to the corresponding system requirements, in order to be
included in the logic model (depicted by objects diagram).

Taking as example the {06-dp} - Write Assessment element created
in {U6}- Collect assessment Report use case, the corresponding de-
scription may be the sentence belonging to the original description
which leads to the element classification as dp-persistent data. The

114

sentence is Writes information on Assessment. The other sentences
will lead to the other types of elements. This is a manual step, so the
software architect may complement the description with other infor-
mation every time it is necessary. At this software development stage,
the stakeholders are still involved in the process so they can provide
useful information to complement the information generated based on
business process models.

– Step 2v: Architectural element representation - This micro-step, through
an analysis of each element, ensures the semantic consistency of the
logic model, detects and eliminates redundancy, and enables the dis-
covery of anomalies in use case models, namely missing requirements.

Taking as example the {U1}-Send Nomination Form and the {U3}-
Select Preliminary Candidates use cases, we may see that both have
the same dp element (dp-Read Nominator) because both are reading
information from <Nominator>. As such, both elements can be rep-
resented by the same architectural element (dp-Read Nominator).

– Step 2vi: Global elimination - In this step all micro architectural el-
ements that are represented by other architectural elements are elim-
inated, since the requirements that correspond to these architectural
elements no longer belong to them.

Continuing the example presented in previous micro-step where we
conclude that the {01.dp} Read Nominator can be represented by
{03.dp} Read Nominator architectural elements or vice-versa, one of
them must be eliminated.

– Step 2vii: Architectural elements renaming - This micro step aims to
rename all the remaining architectural elements.

Sometimes, when we have one architectural element, representing sev-
eral architectural elements (micro-step 2v), the name of this element
may be renamed to better fit its purpose.

• Step 3: Architectural elements aggregation and packaging - the architectural
elements that remain after the elimination, and those in which it is possi-
ble and exist advantages in their unification, are aggregated; At this step,
architectural elements that have similar characteristics and can be treated
in an unified way are aggregated in the same package.

In the Nobel Prize example, the architectural elements representing per-
sistent data manipulation can be package in P3 - Database Control. Ar-
chitectural elements representing controlling actions are packaged in P2 -
Business rules and elements representing user interface are packaged in P1
- User Interface. The use case model facilitates the identification of the
system functionalities provided to a specific type of user or external system

115

(actor) (Tiwari and Gupta, 2015) by identifying the relations between the
actors and use cases. This way, the P1 - User Interface package may be di-
vided in several sub-packages representing interactions with specific actors.
As such, architectural elements representing interactions with Nominator
actor are packaged in P1.1 - UI Nominator. Architectural elements rep-
resenting interactions with Expert actor are packaged in P1.2 - UI Expert
and architectural elements representing interactions with Nobel Assembly
are packaged in P1.3 - UI Nobel Assembly (see Figure 5.4).

• Step 4: Architectural elements association - associations must link the el-
ements resulting from the aggregation based on use cases textual descrip-
tions.

The 4SRS creates a tabular transformation to monitor all the steps. An
example of the table can be seen in Figure 5.3.

Figure 5.3: The 4SRS table (an excerpt)

The logical architecture resulting from the application of the 4SRS to the
Nobel Prize example, is represented in Figure 5.4.

To define a persistent data model one needs to identify the domain entities,
their attributes, and the relationships ((1 : n), (m : n) or (1 : 1)) between entities
(Weske, 2012). Therefore, the 4SRS will be extended with three additional steps,
which are:

• Step 5: Entities creation - in this step, the entities involved in each use case
are identified.

116

Figure 5.4: The resulting logical architecture

• Step 6: Relationships identification - in this step, the relationship between
the entities identified in step 5 are identified.

• Step 7: Entity attributes identification - in this step, the attributes belong-
ing to each entity are identified.

Each one of the steps is explained next.

Step 5 - Entities creation

An entity is something identifiable, or a concept in the real world that is important
to the modeling purpose (Weske, 2012). To identify the entities this step is
divided into two micro-steps, explained next:

• Micro-step 5i: Entities identification - Focusing on the -dp architectural
elements remaining in the generated logical architecture, each read, written
or updated element gives origin to an entity in the resulting data model.

Looking to the generated logical architecture represented in Figure 5.4, we
may see that we are reading or writing information in Nominator, Candi-
dates, Assessment and Recommendations thus, each one gives origin to an
entity in the resulting data model.

• Micro-step 5ii: Entities representation - This step produces the final list
of entities, by detecting and removing the repeated entities. It is usual to
find use cases reading information that is written (or updated) by other use
cases, especially when we are working with a large number of use cases. As

117

such, it is very common to identify (in the previous micro-step) the same
entity several times. These duplicated entities are eliminated.

Backing to the Nobel Prize example and looking to the generated logical
architecture (represented in Figure 5.4), in {O2.dp} - Write Nominator
architectural element, the entity Nominator is identified. The same entity
is also identified in {O1.dp} e {O3.dp} - Read Nominator architectural
element.

The Candidates entity may be identified in {O3.dp} - Write Candidates
and in {O5.dp} - Read Candidates architecture elements. Both entities are
represented by the Candidates entity. Similar reasoning may be used in
Assessment and Recommendations entities.

Step 6 - Relationships identification

A relationship between two entities is represented through an association between
those entities (Chen, 1976). The role of an entity in a relationship is the function
that it executes in that relationship. A relationship between two entities can be
classified according to two aspects, Cardinality and Optionality. Both terms are
used to denote the number of attributes in a relation. Cardinality represents the
maximum number of instances (one or many) of an entity in relation to another
entity. Relationship optionality represents the minimum number of elements that
exist on that side of the relationship. It may be 1 (the relation is mandatory) or
0 (the relation is not mandatory).

Focusing on the elements, remaining in the resulting logical architecture, that
store information (elements with name starting by write or update), we must ver-
ify in which conditions the information is stored. When an {-dp} - persistent
data element is related with a {-c} - control element that verifies the information
about another entity, we may conclude that the information stored is related with
the information checked. Usually, this verification is done by reading information
already stored. As a consequence, the entity that represents the written informa-
tion is related with the entity that represents the checked (and read) information.
The relationship is (1:n) from the entity that represents the information checked
(previously written information) to the entity that represents the written infor-
mation because the same information can be read several times and associated to
different written information items. On the other hand the information is stored
only once.

By default the relationship is mandatory on the side of the information
checked (the information must be verified) and is not mandatory on the side
of the written entity because the information may be written, or not, depending
on the verification result.

Looking to the {06.dp} - Write Assessments element we may see that it is
related with {06.c} - Check Candidates, so we may conclude the Assessments

118

entity is related with the Candidates entity. The same happens between Can-
didates and Nominator and between Recommendations and Assessments. The
relationship is (1:n) from the read to the written entity and not mandatory from
the side of the written entity.

Step 7 - Entity Attributes identification

The information, or the properties, about an entity are expressed through a set
of attributes (Weske, 2012). Since we are dealing with use cases which descrip-
tions are generated from business process models, in some cases to prevent model
complexity the properties are not identified. Nevertheless, in some cases, espe-
cially when information is stored or retrieved, the use case description may have
a document in attachment (Cruz et al., 2014b) originated from attachments in
BPMN data elements or messages. The document may identify items stored or
retrieved. In that case, each item represents an entity attribute. In cases where
the properties are not identified, the software architect may ask for more de-
tailed information, complementing this way the information generated from the
business process models.

In the 4SRS method, most of the steps are manual and some of them require
the software architect expertise (Machado et al., 2006). At this software devel-
opment process phase, the stakeholders are still involved and available to provide
answers.

The resulting data model is shown in Figure 5.5. In the resulting data model,
we are using the following syntax for each relationship end. Focusing in one side
of a relationship type and considering the optionality and cardinality together
we have: 0 or 1 (represented as), 1 (), 0 to many () and 1 to many
().

Through micro-step 5i we are able to identify the entities Nominator, Candi-
date, Assessments and Recommendations representing data stored.

Applying step 6, we are able to identify relationships between: Nominator and
Candidates, Candidates and Assessments, Assessments and Recommendations.
As previously explained, the relationships are (1:n) from first to the second entity
and the relationship is mandatory on the side of the first entity and not mandatory
on the other side.

The next section presents a second, more complete, demonstration case.

5.5 Demonstration Case Aggregating a Set of

Business Process Models

In this section we use, as a second demonstration case, the School Library System
where a group of five interrelated business process models have been selected. The

119

Figure 5.5: The resulting data model

selected business processes are: Register User, Lend a Book, Reserve a Book,
Renew a Loan and Return a Book. The Return a Book business process model
includes a sub-process, Penalty treatment. The set of business processes were
aggregated in a use case model following the approach presented in chapter 6
and in (Cruz et al., 2015a).

The second approach presented in chapter 6 starts by identifying the set of
business processes that will be supported by the software under development,
identifying the system scope. Then a use case model, divided in several abstrac-
tion levels, is created based on a set of identified business process models. In level
1, the highest abstraction level use cases are represented in the use case model,
each one representing a business process. Each use case is then decomposed and
refined in a use case model in the next level. The decomposition ends when all
use cases representing processes and sub-processes are decomposed into atomic
activities, each one being represented as a use case. All existing information,
such as data involved in the process, decisions that have to be made, exchanged
messages and so on, is depicted in use cases descriptions as presented in section
5.

The resulting use case model forms a functional requirements model, that is
especially prepared to be used as input of the 4SRS (4 Step Rule Set). This
resulting use case model may be represented as a tree structure. The 4SRS
selects all leaves from the derived tree structure obtaining, this way, the most
detailed and non-redundant information we can get. The derived use case model,
including use case diagram and corresponding use cases description, can be found
Appendix A.

The architectural elements are aggregated in three packages: P1 - User Inter-
face, P2 - Business Rules and P3 - Database Control.

The resulting logical architecture by applying the first four steps of the 4SRS

120

to the set of business processes selected from a Library system, is represented in
Figure 5.6.

Figure 5.6: The resulting logical architecture

Analyzing the generated logical architecture we may see that, by step 5i, we
are able to identify Borrower, Book, Loan, Reservation and Receipt as entities.

Looking to the logical architecture we may see that the Write Loan elements
are related with Check Borrower. Thus, by 6i, Loan entity is related with the
Borrower and the relationship is (1:n) and mandatory on the Borrower side and
not mandatory on the Loan side. The same happens with Write reservation
element and Check Borrower, so Reservation entity is related with the Borrower
and the relationship is (1:n), mandatory on the Borrower and not mandatory on
the so reservation side.

Looking to the logical architecture we may see that the Write Loan elements
are related with Check book availability. Thus, Loan entity is related with the
Book and the relationship is (1:n) and mandatory on the Book side and not
mandatory on the Loan side. The same happens with Write reservation element
and Check book availability, so Reservation entity is related with the Book and
the relationship is (1:n), mandatory on the Book and not mandatory on the so
reservation side.

Following the same idea, the Write receipt element is related with the Check

121

Loan element so, Loan is related with Receipt and the relationship is (1:n), manda-
tory on the Loan side and not mandatory on the Receipt side.

The resulting data model is presented in Figure 5.7.

Figure 5.7: The resulting library data model

5.6 Final Remarks

This chapter starts by presenting an approach to generate a use case model,
highlighting use case descriptions, from a private BPMN process diagram. This
first approach starts by presenting a set of rules to generate the use case dia-
gram in which each activity in the BPMN model gives origin to a use case and
a participant gives origin to an actor in use case model. To identify the use
cases description, a set of structured sentences are created in NL. Each sentence
represents an incoming or outgoing connection from the use case corresponding
activity.

BPMN has originally been designed to be a language easy to understand by all
stakeholders involved (Magnani and Montesi, 2009; OMG, 2011a). Nevertheless,
with the increase in the number of its graphical elements, in its most recent
version (BPMN2.0), the language has become more complex and consequently
difficult to understand (Polancic, 2015). The first approach presented herein
helps understanding BPMN models, as it translates a model to NL, promoting
the understanding between the involved stakeholders.

The BPMN2.0 allows business process models to be highly detailed. This is
good news if one intends to use BPMN models as a basis to the development of
the software that supports the business. The presented approach benefits from a
detailed business process model, as greater business process detail yields a more
complete use case model.

122

In the software development process many models are used to represent dif-
ferent points of view. Some models, like use case models, may have information
that can be used to generate other software models. Nevertheless, most of that
information is in use case descriptions, commonly specified in NL (Fantechi et al.,
2003; Cockburn, 2001). NL may be easy to understand but, at the same time,
can be ambiguous, redundant and with omissions (Fantechi et al., 2003). The
approach presented herein is dealing with a set of controlled sentences previously
defined in NL facilitating an automated analysis. The set of sentences are defined
with the purpose of transforming business process models (BPMN) into use case
models (Cruz et al., 2014b).

Generating a complete use case model from a business process model allows us
to use existing methods, techniques and tools to generate other software models
from use case models. One of those methods is the 4SRS, which generates a logical
software architecture from user requirements, represented as use cases (Machado
et al., 2006).

In the second approach presented in this chapter, the 4SRS is adapted and
extended in order to generate a data model supporting the resulting logical ar-
chitecture. Herein, we start by distinguishing persistent data from non-persistent
data allowing to create three new 4SRS steps with the aim of identifying entities,
the relationships between entities and the entities’ attributes.

The generation of the use case model, including the use case descriptions, from
business process models is prepared to be automatic as well as the construction
of the 4SRS tabular transformation and its first step.

The new steps added to the 4SRS method, to generate the data model, are also
automatable because despite we are working with NL, we are basing our work
in a structured and controlled language which is a set of sentences previously
generated from the information existing in a set of BPMN models.

Integrating the two approaches presented in this chapter and the approaches
presented in chapter 6 it is possible to generate the complete use case model, the
logical software architecture and the data model of the software that will support
the business, based on the set of business process models helping to ensure the
alignment between business process models and software models (Cruz et al.,
2014a).

In a BPMN model, a sub-process may be used to describe the common part
of different process models. Thus, when we are grouping a set of interrelated
business process models, some use cases may appear more than once on the
resulting use case model (Cruz et al., 2015a). The 4SRS method is prepared to
detect and eliminate duplicated use cases (Machado et al., 2006) (step 3) making
it suitable for dealing with complexity.

The approach presented here to derive a data model from use case models
was specially designed to be integrated with the generation of use cases from a
set of interrelated BPMN models. Nevertheless, the approach can be generalized
to use case models created using the same structured language. The generated

123

use case descriptions can be complemented with information provided by other
sources every time it is necessary.

The presented approaches enable traceability between business processes and
the corresponding elements in software models.

124

Chapter 6

Deriving a Logical Software
Architecture from Business
Process Models

Organizations, and consequently the information systems that support them and that
support their businesses, are becoming increasingly larger and complex. As a conse-
quence, the models used as basis for software development are increasingly complex and
hard to maintain. One of those models is the use case model, which is used in the be-
ginning of the software development process to model the system requirements. A use
case model can be created with a high abstraction level or a very detailed level. A use
case model with a very detailed level can be much more useful to software development
teams but, at the same time, it may become very complex and hard to understand.

This chapter starts by presenting an approach, named as decomposition triangle,
to decompose and refine use cases. The decomposition triangle is an iterative and
incremental approach to support the construction of UML use case diagrams as a first
documentation effort of the requirements elicitation activities. The approach adopts a
refinement mechanism to detail use cases, in a controlled way, as a means to obtain a
functional requirements model of the system to be designed.

The decomposition triangle approach is then used to aggregate in one use case

model the set of business process models that will be supported by the software under

development.

6.1 Introduction

In the software development process, one of the first and crucial activities is the
identification of the system scope and the understanding of what the system is
supposed to do. UML use case models are one of the most popular adopted
techniques to capture and describe the functional requirements of a system.

Real-world problems are, typically, complex and extensive. This can give
origin to very complex use case models, especially when a high detail level is

125

required. In this case, the use case models could become hard to understand and
to manage because the number of use cases tends to be large and the relationships
between them tend to be complex. On the other hand, working with use cases
with a very high abstraction level makes the verification of the correctness of the
design solution a very difficult task (Berenbach, 2004).

When a system is too large, the software being developed can be divided and
delivered to the customer in parts. However, in order to maintain the consis-
tency, the system analysis and modeling shall preferably be done at one time
(Berenbach, 2004).

A use case model also can be divided into several smaller models. But, in that
case, some connections or relationships between those models can be lost. Besides
that, keeping the consistency between them can be a problem (Hausmann et al.,
2002; Regnell et al., 1996). This drives us to the question: how can we manage
use cases when we are dealing with a large and complex system and when low
abstraction use cases are clearly more useful to the project than high abstractions
ones?

For software development teams, use cases are a way to understand the behav-
ior of the system, serving, many times, as a basis for the functional specification
of the system (Bittner and Spence, 2003a). As Dobing and Parsons say, use cases
serve, many times, to guide the whole software development process (Dobing
and Parsons, 2000). Indeed, some software development teams base the entire
software development process on the list of requirements, identified in the devel-
opment process first stage, and modeled using use case models. The use case
models are used to plan all project, including scheduling the costs, the resources
and the delivery dates (Issa, 2007). If the software development teams base their
work on abstract and ambiguous use cases, it could imply failures on the plan
and on the resulting product. On the other hand, it could be sometimes hard
to work with concrete use cases because of their large number and complexity.
Glinz agrees that every large system needs to be decomposed in order to make it
comprehensible and manageable (Glinz, 2000).

Ideally, it should be possible to decrease and increase the abstraction level
whenever it is necessary. But, how can a use case model have high abstraction
level and low abstraction level at the same time? In section 6.3, we present
an approach, named as the decomposition triangle, to decompose a use case
model into several levels of abstractions based on a top-down structured and
controlled decomposition. To do that, we need to extend the UML use case
meta-model. The decomposition triangle approach is used in the second approach
presented in this chapter to aggregate and merge the information we have in a
set of interrelated business processes into one integrated use case model.

It is recognized that the software that supports the business must be aligned
with the business processes (Rodŕıguez et al., 2007; Dietz, 2003; Giaglis, 2001).
Shishkov et al. state that deriving use case models from business analysis models
would be useful, since both reflect behavior within business/software systems

126

(Shishkov et al., 2002).

Usually an organization deals with several business processes. As a conse-
quence, a software product does not usually support only one business process,
but rather a set of business processes. This drives us to the question: “Is it pos-
sible to systematically derive a use case model from a set of interrelated business
process models?”

Approaches such as BPEL (Business Process Execution Language) allow the
execution of business processes in a service-oriented perspective by integrating
enterprise applications (Liang et al., 2008). Such approaches, however, require
the existence of services, which could be internal or external to the organization,
whose orchestration can be done using BPEL. The aim of the second approach
being presented in this chapter is to generate models that can be used as basis to
the development of software that supports the business processes. To plan and
design a suitable software supporting system, first it is necessary to know the main
requirements that must be supported by the software under development. This
identifies the functional requirements (representing them as a use case model)
based on the set of interrelated business processes.

The 4SRS method requires a use case model with a high detail level. The two
approaches we are presenting in this chapter are especially useful for preparing
data (user’s requirements) to feed the 4SRS method. The decomposition triangle
approach is presented and published in (Cruz et al., 2014c). This second approach
is presented and published in (Cruz et al., 2015a).

The remainder of this chapter is structured as follows. In the next section,
the proposal to the extension of the UML use case meta-model is presented. Sec-
tion 6.3 describes our approach for use case model decomposition and presents
a demonstration case. Section 6.4 explains the relation between the decompo-
sition triangle and the 4SRS method. In section 6.5 the decomposition tringle
approach is used to aggregate in one use case model all information we have in
the set of business process models. The application of this second approach is
illustrated through a demonstration case in section 6.6. Finally, some conclusions
are presented in section 6.7.

6.2 Extending the UML 2.5 Use Case Meta-

model

Use case models aim to capture and describe the functional requirements of a
system (Hull et al., 2011; Yue et al., 2011; Gomma, 2011). Booch et al. say that
use case models, when defined by Ivar Jacobson, aimed to describe the behavior
of the system from the users point of view (Booch et al., 1998). So, it is expected
that a use case model specifies what a system is supposed to do (OMG, 2012).
In (OMG, 2012), a use case is defined as a specification of a set of behaviors

127

performed by an actor.
Whittle and Jayaraman (Whittle and Jayaraman, 2006) define use cases as a

set of scenarios where a scenario is “an expected execution trace of a system”.
In fact, one possible approach to model a system, using a use case model, starts
by identifying all possible scenarios and then generalizes them in order to create
the use case model (Issa, 2007).

In (OMG, 2012) a use case is defined as a behaviored classifier that represents
a declaration of a set of offered behaviors. Each use case specifies some behavior,
possibly including variants, that the subject can perform in collaboration with
one or more actors.

A use case model should identify the system boundaries (marked by a rectan-
gle) and identify the actors which are represented by a “stickman” icon outside
the system boundaries (Hull et al., 2011; OMG, 2012). An actor is someone or
something that interacts with the system (OMG, 2012). So, an actor is always
related to one or more use cases. A use case is graphically represented by an
ellipse and contains a brief description of the action (Bittner and Spence, 2003a).

A use case diagram is composed by actors and use cases. Each use case shall
have an associated description and can have pre-conditions and post-conditions.
There are some alternatives that can be used to describe a use case, like informal
text, numbered steps, pseudo-code, among others (Machado et al., 2005).

Use cases can be related through include and extend relationships. A use case
can include another use case and can be extended by other use cases (Berenbach,
2004). These relationship types are controversial (Glinz, 2000; Azevedo et al.,
2010), especially the extend relationship because sometimes this relationship is
not interpreted on the same way by different team members which leads to misun-
derstandings. The study presented in (Bolloju and Leung, 2006) concludes that
most of the use case relationships’ errors are related with the extend relationship
type, and some practitioners recommend not using this type of relationship.

In the approach presented in the next section we aim to create the possibility
to “zoom in” to a use case to know the internal functional detail of that use case.
To do that, we intend to create the possibility to refine, and decompose, a use
case in a use case model, decreasing the abstraction level and, consequently, the
use case ambiguity. Nevertheless, the UML 2.5 use case meta-model (defined in
(OMG, 2012)) does not permit this type of relationship (between a use case and
a use case model). So, the UML use case meta-model must be extended by a new
refine relationship and by a new meta-class to represent the use case model. The
UML use case meta-model extension is presented in the next subsection.

In our proposed approach we refine a use case by decomposition. When we
are de-composing one use case we are dividing it into smaller parts adding new
detailed information about its functionality. So, when we are decomposing a use
case it must be decomposed into two or more use cases that have to be grouped
together. One use case cannot decompose another use case by itself, but a group
of use cases can.

128

Figure 6.1: Extended UML use case meta-model

According to (OMG, 2012) a package is used to group elements (Package-
ableElements). As referred in (OMG, 2012) a PackageableElement is a NamedEle-
ment that may be owned directly by a Package. A Package may include Packages,
Dependencies, UseCases, Classes and others.

As one can see in UML 2.5 specification, a Model class specializes Package
to specify the view point that the model intended to represent (OMG, 2012). A
Model has a set of members (PackageableElements) that together describe the
system being modeled (OMG, 2012), so, a Model will group the elements used
to represent a view point. A Model describes the relevant aspects of a system at
the appropriate level of detail. Each model is meant to be complete, but models
can have abstraction dependencies between them. The elements contained in one
model can be refined in another model (OMG, 2012). The UML 2.5 specification
do not mention if the model used to refine a model element could be the same
kind and does not prohibit it either, so we assume that a model element can be
refined in a model of the same kind.

129

We propose a new meta-class element named UseCaseModel to support the
idea of grouping the elements used to represent the use case point of view. A
UseCaseModel specializes Model, constraining the possible PackageableElements
to use cases, actors and relationships in order to represent the use case point of
view.

As represented in figure 6.1, a use case is a BehavioredClassifier, which is a
specialization of Classifier and Classifier is a RedefinableElement (OMG, 2012).
This means that a use case can be redefined differently in the context of another
Classifier. The Classifier symbol for the use case is an ellipse as a replacement
for the standard rectangle notation (OMG, 2012).

A use case represents a behavior performed by one or more actors (OMG,
2012). So, each use case must be related with one, or more actors, and one actor
must be related to one, or more use cases.

The proposed extension to the UML use case meta-model is represented in
figure 6.1. The meta-model elements that are extensions to UML 2.5 use case
meta-model are presented in gray in Figure 6.1.

We also propose a new DirectedRelationship specialization, named Refine. In
our proposed meta-model the Refine relationship is unidirectional and represents
a relationship between a use case and a UseCaseModel. A use case can only
be refined in one UseCaseModel and a UseCaseModel can only refine one use
case. This new relationship means that the use case being decomposed is related
with all the use cases represented in the UseCaseModel. A UseCaseModel must
include, at least, two use cases.

The UML meta-model does not distinguish between abstract use cases and
concrete use cases (Metz et al., 2001). In fact, when we need to see the system
as whole, the abstract use cases are more useful. But when we need to know
the details of the system, the concrete use cases are more useful. The approach
presented next starts with abstract use cases and refines them (by decomposing)
in order to become concrete use cases. This way we can relate the abstract use
cases with corresponding concrete use cases.

The next subsection describes the construction of the decomposition triangle,
the name that we have adopted for the method described in next chapter.

6.3 The Decomposition Triangle approach

Azevedo et al. propose an extension to the UML meta-model to represent the use
case refine relationship (Azevedo et al., 2010). As Azevedo et al. say, refining use
cases means decomposing and simultaneously detailing use cases (Azevedo et al.,
2010). This means that when we are decomposing a use case we are adding more
details or information about what happens in the system, or how the system
should behave.

We are presenting here a top-down decomposition approach based on succes-

130

sive use case refinement steps. Each use case presented in a use case diagram
can, itself, be decomposed in a new use case diagram that refines the use case.
The decomposition results in a structure that looks like a triangle, because when
we go down in the decomposition, the number of use case diagrams increases.

The decomposition triangle is structured into several levels, starting by a
context diagram, and it typically goes down to 3 or 4 levels. The number of
levels depends on the system complexity, since, formally, there is no limit.

Next, we are referring to the use case that is to be refined as the “base use
case”.

The decomposition process is as follows:

• Level 0: The purpose of level zero is to capture the context where the
system is going to operate. The system context is defined based on actors
and is represented as a context diagram. At this level, the system scope
and frontier must be identified as well as the system name. At this level, no
use case is identified. The diagram is empty, but all involved actors must
be identified and represented. The context diagram description should be
a general overview of the system.

• Level 1: At the first level, the high-value requirements (that address major
functionalities of the system) can be represented. At this level, the first use
case diagram is created with the highest abstraction level. At this point,
one must think about “which functionalities will satisfy the actor’s needs?”.
So, for each actor identified on level 0 it is necessary to discover the main
functionalities that the system will provide to satisfy the actor needs. Each
functionality is represented as a use case, in the use case diagram, with
which relations with the corresponding actor (or actors) are established.
The use cases description should be a general overview of the functionalities
they address. The system purpose must be well characterized as well as the
system scope.

• Level (i+1): Each use case identified in level (i) can be detailed in another
use case diagram, represented in the next level (i+1). The procedure is
as follows: for each use case identified on level i it is necessary to verify if
the use case description is concrete, short and easy to understand. If so,
it is not necessary to detail the use case, otherwise the use case should be
refined and decomposed in a use case diagram. We must assure that there
is no information lost during the decomposition process. All information
included in the description of the base use case must be included in the
description of the use cases that belong to the diagram that decomposes
it. The abstraction level decreases from one level (i) to another (i+1) until
the last level is reached. While increasing the detail in the use cases, they
become more concrete.

131

Figure 6.2: The first iteration result

The decomposition is an iterative and incremental process and typically
ends when the CRUD (Create, Retrieve, Update and Delete) operations
are identified. Each iteration may imply a review of all previous levels.

For better illustrating the proposed approach, we are going to use a running
example from a School Library System. In this example when an actor is related
with all use cases in a use case diagram, the established association between the
actor and the use cases are represented by a single link to the diagram boundary,
to simplify the representation. If an actor is associated to only some of the use
cases that belong to the use case diagram, the link is established between the
actor and the related use cases.

The main purpose of the School Library System is to manage books and
loans from a School Library. In the first iteration two actors have been identified:
Librarian and Attendant. The Librarian is responsible for managing the books,
buy new books, catalog them, check the books’ status and so on. The Attendant
is responsible for meeting borrowers and for managing the books’ loans to the
borrowers.

A first proposal for the context diagram and the use case diagram level 1 is
shown in figure 6.2. On the first use case diagram (level 1) two main use cases
are identified: “Manage books” and “Manage loans”. The use case descriptions
are presented in Table 6.1.

Sometimes the first assessment about “who the actors are” is not correct.
Moreover, during the decomposition process the knowledge about the system
increases. For instance, new actors can be identified, existing actors may be
specialized, new relationships between existing actors and use cases can be found.
Occasionally, the very name of the system may be modified to well fitting the

132

{1} Manage books: The Librarian is responsible for purchasing new books to
the library. To do that, the Librarian examines the requests made by Teachers,
for the acquisition of new books. The Librarian shall be able to list the books
information.

{2} Manage loans: The Attendant is responsible for the books’ loans manage-
ment. Only Students and Teachers can borrow books. A book can only be borrowed
by a given number of days. After this number of days the book must be returned. If
a book is already lent to someone else, the Borrower could reserve it to himself/her-
self by appending his/her name to the reservation list. When a book is reserved
to someone the delivery date can’t be postponed. Otherwise, the Borrower can
postpone the delivery date or can ask to the attendant to do that.
The Attendant, as well as the Borrower, can list the books available on the library
or consult the information about a specific book.

Table 6.1: Use cases descriptions (level 1) - first proposal

system purpose, and the use cases have to be redesigned. As a consequence, each
process iteration may imply changes to all levels.

In our running example, reading the “{1}Manage books” use case description
(Table 6.1) we can clearly identify the Librarian as an actor, but Teachers are
also involved in the use case because the Teachers make requests for new books
acquisition. This way we may conclude that the Teacher interacts with the sys-
tem, so, Teacher is also an actor. In the next iteration, the Teacher should be
added as an actor in every level.

Every time an actor specialization is identified, the context diagram must be
updated because all actors must be represented at the context level, including all
actors’ hierarchies.

In our running example, analyzing the “{2}Manage loans” use case description
in Table 6.1, we can perceive that the Borrower can renew a loan, list information
about the books and about the loans, reserve a book, so the Borrower interacts
with the system. Consequently, the Borrower should be considered as an actor.
Moreover the Borrower can be specialized as a Student or as a Teacher, so we
have an actor’s hierarchy. This actor’s hierarchy must be reflected in the context
diagram on the next iteration (see Figure 6.3).

In the first iteration’s, level 1 diagram (Figure 6.2), we can see that the use
case names are too general, and based on the use case description we can identify
more use cases. Since we only have two use cases in that diagram, it needs to
be redesigned. These changes are also reflected in the next iteration (level 1) use
case diagram (Figure 6.3).

Figure 6.3 represents the result of the second iteration, where the context

133

Figure 6.3: The second iteration result

134

{1} Purchase books: The Librarian is responsible for purchasing new books to
the library. To do that, the Librarian examines the requests made by the Teachers,
for the acquisition of new books. The Librarian also verifies the financial plan,
elaborates the order to buy the books and manages the books’ payment. After the
books arrival the librarian catalogues them.

{2} List books: The Librarian shall be able to list the books information. The
Attendant and the Borrower can check the books available on the library. They
can list the books of an author, by book title, by ISBN, etc. They can also consult
a book details including a summary about the book’s content.

{3} Register loan: The Attendant is responsible for the books’ loans management.
Only Students and Teachers can borrow books. Only the Attendant can register a
loan because she/he must verify the Borrower identification. The Borrower must
be registered, otherwise the book cannot be lent. But the Attendant can register a
new Borrower if she/he has the identification. Before lending a book it is necessary
to verify if the book is available. If the book is available the loan can be registered.
If the book has a reservation list the Attendant needs to verify if the borrower is
the next on the list and the list must be updated.

{4} List loans: The Attendant can list all loans and can view a specific loan
details. The Attendant can check all loans whose delivery date is exceeded and can
send a warning (by email) to all Borrowers that have loans out of date. A Borrower
can only list her/his own loans.

{5} Make reservation: The Students and Teachers can reserve a book for them-
selves by appending their name to the book reservation list. Teachers have priority
over students.

{6} Renew loan: A Borrower or the Attendant can postpone the delivery date
but only if the book does not have a reservation list, otherwise the book must be
returned. When the delivery date is exceeded it cannot be postponed.

{7} Return a book: When a Borrower returns a book the delivery date must be
checked. If the planed delivery date is exceeded, the Borrower must pay a fine. The
fine value depends on the number of days exceeded. The Attendant calculates the
fine value, presents a bill and receives the payment.
The total payments received must be checked at the end of the day or when the
Attendant finishes his/her job and is replaced by other Attendant.

Table 6.2: Use cases description (level 1) - second iteration

135

{1.1} Select books to acquire: Whenever it is necessary to buy a new book,
teachers fill out a form with the identification of the book with title, ISBN, author,
publisher and edition. Periodically the Librarian examines those forms, verifies if
there are duplicated requests, and prioritize the requests in order to select the list
of books to acquire.

{1.2} Order books: The librarian selects the suppliers, agrees with them the
payment mode, and sends the orders to them. The system shall track the money
spent on the acquisition of new books.

{1.3} Catalog books: The librarian shall determine the correct shelf to put the
book.

{1.4} Add books: The librarian inserts the books information in the system. The
book information must be complete (title, ISBN, author, publisher and edition)
including the shelf identification and a summary about the book content.

Table 6.3: “{1} Purchase books” use cases description (level 2)

diagram has been updated, as explained above, to include the new identified
actors and use cases. Since new use cases were identified, the use case descriptions
were also transformed. The new use cases descriptions are represented in Table
6.2.

The evaluation about the need of decomposing is firstly based on the use cases
description, but the details to be added can be discussed with the stakeholders
because at this software development process’ stage the stakeholders are still
involved in the process. The stakeholders that help to identify the level 1 use cases
must have a global view of the system. When the use cases are being decomposed,
the involved stakeholders must know deeply the use cases in discussion to correctly
identify all necessary details.

Based on the use case descriptions the modeler should verify which use cases
need to be refined. In our example, the “{5} Make reservation” use case cor-
responds to a creation operation, so it is a CRUD operation. Moreover, the
description of this use case is short, concrete, and easily understood, so, this use
case doesn’t need to be further refined.

The other use cases descriptions are broad, complex and, in some cases, am-
biguous. Such descriptions leave us with doubts to be resolved. So, we have to
deepen the knowledge about these use cases, i.e., these use cases should be refined
in the next level.

The refinement result can be seen in Figure 6.4.
The decomposition process continues with the evaluation of use cases level 2

descriptions.

136

Figure 6.4: The library system decomposition triangle

137

Use cases like “{1.4} Add books”, “{2.2} View book details”, “{3.3} Add
loan”, “{3.4} Remove reservation”, “{4.3} View loan details”, “{6.2} Update
delivery date” or “{7.4} Update loan” clearly represent CRUD Operations so
they do not need to be refined. The remaining use cases have to be analyzed.

To avoid extending the text too much, we are going to proceed our example
by focusing our attention on the “{1} Purchase books” use case. Thus, only
the descriptions of the use cases belonging to the “{1} Purchase books” use case
diagram are presented in Table 6.3.

Figure 6.5: “{1.1} Select books to acquire” use case diagram (level 3)

The “{1.3} Catalog books” and “{1.4} Add books” use case descriptions are
clear and short. The other two use cases need to be refined. The refinement
of “{1.1} Select books to acquire” use case is represented in Figure 6.5 and the
descriptions are presented in Table 6.4.

The refinement process of the branch initiated in the use case “{1} Purchase
books” ends because all use cases descriptions are short, concrete and are almost
CRUD operations. When all branches decomposition reach such status, the whole
decomposition triangle will be complete.

The refinement rules

In this subsection we enumerate and explain the rules used in the proposed ap-
proach:

1. The refine relationship is unidirectional. The relationship is established
between use case diagram represented in the next level (i+1), and a base
use case, represented in level i, which it refines. The use case diagram has
the same name, and number, as the base use case. For example, we can
see in Figure 6.4 that the “{3} Register loan” base use case is decomposed,

138

{1.1.1} Fill out request: Teachers fill out a form with the identification of the
book with title, ISBN, author, publisher and edition. The Teacher must be regis-
tered on the system. The registration must include the Teacher number, name and
department.

{1.1.2} Collect requests: Periodically, the Librarian collects all requests and
check for books requested that are already on the Library.

{1.1.3} Verify duplications: The Librarian should check for duplicate requests.
For each duplicate request the Librarian should increase the number of request for
the book.

{1.1.4} Prioritize books to buy: The Librarian may prioritize the requests by
several criteria: by number of request, by request date, by department.

{1.1.5} Make a list to purchase: Depending on the budget the Librarian can
order all books or order only the books with highest priority.

Table 6.4: “{1.1} Select books to acquire” use cases description (level 3)

and refined, in the “{3} Register loan” use case diagram. This relationship
means that the set of use cases, represented in the use case diagram (level
(i+1)), together decomposes and refines the base use case (level i).

2. When a use case is refined, the use case diagram that refines it must have,
at least, two use cases, each one with a more detailed description, as we
can see in the “School Library System” example.

3. All identified use cases are numbered using the tag=value UML mechanism.
The use case number identifies the use case level in the decomposition
triangle and vice-versa. For example, the use cases {1}, {2}, {3}, {4}, {5},
{6} and {7} are represented in level 1. The use cases {1.1}, {1.2}, {2.1},
{2.2} are represented in level 2, the use cases {1.1.1}, {1.1.2}, etc. belong
to level 3.

The numbering identifies the decomposition chain from the diagram level 1
to each use case. The last numbering level distinguishes the use cases that
belong to the same diagram. For example, the use cases {1.1.1} and {1.1.2}
belong to the diagram that decomposes the {1.1} use case. The {1.1} use
case belongs to the diagram that decomposes the {1} use case.

4. If an actor is related with a base use case (level i), this actor (or a special-
ization of it) must be related with, at least, one use case in the use case
diagram that decomposes it on level (i+1) and vice-versa. As we can see

139

in our example (Figure 6.4), Teacher and Librarian are related with “{1}
Purchase books” base use case (level 1), so this two actors are also related
with the use cases belonging to “{1} Purchase books” diagram (level 2).

5. If a use case is related with only one actor, this actor (or specializations of it)
must be related with all use cases in the use case diagram that decomposes
it. In our example we can see that the Attendant is the only actor related
with “{3} Register loan” use case, so, the Attendant is related with all uses
cases in the “{3} Register loan” use case diagram.

6. During the decomposition we have to ensure that every decomposed use
case leads to a progress in terms of knowledge about the use case, without
loss of information. The information contained in the set of use cases,
represented in one use case diagram (level (i+1)), together, must exceed
the base use case information (level i).

7. In the end of the decomposition, all actors must be represented in the
context diagram, including all actors’ hierarchies, and all actors must be
represented on the first decomposition triangle level (level 1), as we can see
in Figure 6.4.

The use case decomposition originates a tree structure. The context diagram
represents the tree root and serves as an entry point to the navigable structure.
The tree root corresponds to the maximum abstraction level. The set of all tree
leaves corresponds to the maximum detail we can reach about one possible use
case-driven functional description of one system.

The use cases numbering can be used to relate the use cases in a navigable
tree structure, helping (this way) to drill down and trace back from a leaf use
case to the root and helping to relate and to reintegrate the use case diagrams.

This approach allows us to ensure that no use case (and no actor) is forgotten
and no use case (or actor) appears from nowhere. Furthermore this way the
uses cases can be easily traced back and the use case diagrams reintegration is
possible.

The resulting decomposition triangle can be very useful in many circumstances
in the following stages of the software development process. However, in all real
cases in which this approach has been used by our research team, the decompo-
sition results were mainly used by the 4SRS method. In fact, the decomposition
triangle and the 4SRS method complement each other.

In the next section, we briefly explain how the results from the decomposition
triangle can be used within the adoption of the 4SRS method.

140

6.4 The 4SRS Method and the Decomposition

Triangle

One of the most complex activities during software systems development is the
transformation of a requirements specification into architectural design models
(Fernandes et al., 2000). This is the main purpose of the 4SRS method. The 4SRS
method ensures the transition from user requirements specified in use case models
into software logical architectures, objects and class models. These models serve
as a basis to the software development teams.

The 4SRS is a method organized in 4 steps that transforms use case models
into architectural elements (Fernandes et al., 2006; Machado et al., 2006). A
complete description of the 4SRS method can be found in (Machado et al., 2005).

This method was created in 2000 (Fernandes et al., 2000) and since then the
method has been used in several projects and was extended in several ways. The
extension proposed in (Santos and Machado, 2010) appends two more steps to
the method in order to generate the class diagram, namely class creation and
class characterization.

The decomposition triangle starts with high abstraction level use cases. The
abstraction level decreases in every use case decomposition. When the abstraction
level decreases the use case description shall be enriched with details that may
become useful to the 4SRS purpose which is the generation of architectural models
to be used as a basis for software development. When we are refining a use case,
all information we have must be represented on the use case diagram that refines
it and preferentially with more detail. During the refinement process we do not
lose any information.

As we said before the use case decomposition triangle originates a tree struc-
ture. If we bring together all tree leaves’ use cases, and their descriptions, we will
collect the most detailed and complete information we can get.

The resulting decomposition triangle represented in Figure 6.4, assuming that
the refinement process ends at this decomposition level, originates the tree struc-
ture represented in Figure 6.6.

From the tree structure represented in Figure 6.6, the 4SRS will select and
manage all use cases painted in gray (the leaf use cases) and only with the leaves,
to avoid working with redundant information, since during the decomposition
process all information that we have in a use case (level i) must be carried to its
refining use case diagram (level i+1).

Based on the use case names and descriptions, the 4SRS allows to obtain the
class diagrams, as described in (Santos and Machado, 2010) and the architectural
elements (Fernandes et al., 2006; Machado et al., 2006). Figure 6.7 illustrates
the application of the 4SRS method that transforms leaf use cases, resulting from
the decomposition triangle approach, into a logical software architecture.

The 4SRS method executes a series of validations and adjustments to the

141

Figure 6.6: A tree structure example

Figure 6.7: The 4SRS transformation

142

original use case set, so it is important to have a well-established decomposition
triangle. This may, sometimes, demand changes to the resulting decomposition
triangle before applying the 4SRS, which may imply an additional iteration of the
decomposition process or a decomposition review. On the other hand there are
some issues like the use cases duplication that are handled by the 4SRS method.
In our example we can see (Figure 6.4) that the “{2.3} Check book reservation
list” and “{6.1} Check book reservation list” use cases are clearly the same use
case. The 4SRS will detect that and deal with it, as explained in (Fernandes
et al., 2006; Machado et al., 2006; Machado et al., 2005).

The 4SRS method and the decomposition triangle process are interrelated.
The 4SRS method performs a set of validations to verify if the set of use cases
resulting from the decomposition process is consistent. If it is not the case it may
demand a decomposition process review. On the other hand, the decomposition
process does not need to worry about use case reuse or reintegration because the
4SRS will handle it.

The presented approach has already been used and tested in several real and
complex projects like (Ferreira et al., 2012; AAL4ALL, 2012). In all that real
projects, the decomposition triangle approach and the 4SRS method were used
together. First the decomposition triangle approach decomposes the use cases
in order to prepare the user requirements to be used by the 4SRS method to
generate the logical software architectural design.

By combining the 4SRS with the second approach presented in next section
it is possible to generate the software logical architectures and class diagrams
based on a set of interrelated business process models allowing tracing back from
software models to the business processes models and from the business processes
to the corresponding software models.

6.5 Deriving a Use Case Model from a Set of

Interrelated Business Process Models

In the approach presented in this section we intend to aggregate and merge the
information we have in a set of interrelated business processes into one integrated
use case model. To do that we are using a decomposition triangle approach
presented in section 6.3.

A business process model identifies the activities, resources and data involved
in the creation of a product or service, having lots of useful information for
starting to develop a supporting software system. With regard to software de-
velopment, one of the most difficult and crucial activities is the identification of
system functional requirements. A popular way to capture and describe those
requirements is through UML use case models. Usually an organization deals
with several business processes. As a consequence, a software product does not

143

usually support only one business process, but rather a set of business processes.

This section presents an approach that allows aggregating in a use case model
all the information that can be extracted from the set of business process models
that will be supported by the software under development. The generated use case
model serves as a basis for the software development process, helping reducing
time and efforts spent in requirements elicitation. This approach also helps to
ensure the alignment between business and software, and enables traceability
between business processes and the corresponding elements in software models.

Cockburn (Cockburn, 2001) distinguishes different use case abstraction levels.
The low detail level use cases, and the very detailed level use cases with a clear
intention. Cockburn states that low detail level use cases are not trustable as
functional requirements for the system being built (Cockburn, 2001).

From another point of view, Cockburn categorizes use cases as business use
cases and system use cases (Cockburn, 2001). Cockburn sees business use cases
as low detail level (high abstraction) use cases and system uses cases as high
detail level (low abstraction) use cases and advises the use case writers to start
with the business use cases and “unfold” them continuously until they become
system use cases (Cockburn, 2001).

The approach we are presenting herein is aligned with Cockburn’s points of
view, helping in transforming business process models (low detail level use cases)
into system level functional requirements (high detail level use cases), and helping
in keeping track of the transformations of the use cases.

All surveyed existing approaches (section 3.4) obtain a use case diagram based
on a single business process model. None of the surveyed approaches aggregates
a set of business processes models in one use case model including the use case
descriptions1. But, typically, in a real situation, a software product does not
support only one process, but a reasonable set of processes. In order to generate
useful use case model it will be necessary to consider the set of business process
models that will be supported by the software under development.

The set of business processes, belonging to an organization, being supported
by the software under development must be grouped in a single use case model
because a software development team needs to understand the system context and
scope before starting to plan and design a solution. Following this reason, first
it is needed to identify and specify which business processes are to be supported
by the software under development.

A use case model can be created with a high abstraction level or low abstrac-
tion level (Cockburn, 2001; Cruz et al., 2014c). The approach we are presenting
in this section starts with high abstraction level use cases and ends with lower
abstraction level use cases. The approach starts by grouping all processes that
will be supported by the software under development in one use case diagram

1The generation of use case descriptions from business process models is highlighted in
section 5.2.

144

Figure 6.8: A generic decomposition scheme

where each process is represented as a use case. Each use case is then refined
and decomposed in a use case model as described in section 6.3. All identified
use cases are numbered using the tag=value UML mechanism. A generic scheme
of applying the decomposition is shown in Figure 6.8.

Similarly to what happens in the decomposition triangle approach, the ap-
proach represented in this section the use case models in different abstraction
levels:

• Level 0 : At this level, the system scope and frontier must be identified
as well as all the actors involved, so the set of business processes that will
be supported by the software under development must be identified. Each
participant in a business process model (represented as a pool or a lane)
is transformed in an actor (with the same name) in the use case diagram
(see Figure 6.8, level 0). The subdivision of a pool in several lanes, or a
lane in other lanes originates an actor’s hierarchy (Cruz et al., 2014b), as
described in section 5.2. Thus, at this level all participants involved in the
set of business processes are represented, as actors, in the actor’s diagram.

Usually a participant is involved in several business processes belonging
to an organization. When participants with the same name are involved
in more than one business process we assume that they represent the same
participant, and, as consequence, they will be represented by the same actor
in the use case model.

• Level 1 : At this level, the first use case model is created with the highest

145

abstraction level where each top level business process is transformed into
a use case, in the use case model (a business use case) (see Figure 6.8,
level 1). Each use case, representing a business process, is related with the
corresponding actors representing the participants involved in the process.
The use cases are numbered sequentially. The use case description is a
general overview of the process it addresses.

Monsalve et al. state that a business process model does not allow iden-
tifying business process goals or main objectives, but that is important to
software requirements elicitation (Monsalve et al., 2012). At this level, the
use case description can be used to represent the business process goal and
objective helping to understand the business process purpose. That can be
accomplished by talking/discussing with stakeholders since at this software
development process’ stage the stakeholders are still actively involved in
the process.

• Level 2 : At this level, each process (represented as a use case in level
1) is mapped to a use case model following the rules described in section
5.2. Basically one activity from a business process is transformed into a
use case and each participant is transformed into an actor. All incoming
and outgoing connection flows from the activity originate a NL sentence in
the description of the use case that represents the activity. Each generated
use case model in level 2 refines and decomposes a corresponding use case
in level 1 (see Figure 6.8, level 2). The number of use case models, at this
level, is the same as the number of use cases existing in the diagram at level
1. The use cases identified are numbered using a leveled numbering.

• Level (i+1), (i≥2): At this level, each use case that represents a sub-
process in level i is decomposed and refined in a use case model in level (i+1)
(see Figure 6.8, level 3). BPMN has two types of activities: a task (atomic
activity) and a sub-process (OMG, 2011a). A sub-process is a process
consequently the use case that represents the activity can be decomposed
and mapped to a use case model. The decomposition ends when all use
cases representing processes or sub-processes are decomposed and refined.

In the presented approach, refining a use case means detailing all activities
involved in the corresponding process, including all resources and/or data that are
consumed and produced, messages exchanged, decisions that have to be taken,
events that can occur, etc.

The decomposition results in a tree structure where the leaf nodes represent
the tasks and the non-leaf nodes represent the processes and sub-processes. The
decomposition tree has high abstraction level use cases at level 1. The abstraction
level decreases in every use case decomposition. The approach allows to relate
use cases belonging to different abstraction levels allowing to drill down and up

146

Figure 6.9: Actors diagram (level 0)

Figure 6.10: Use Case diagram (level 1)

between different abstraction levels. This way, the approach allows tracing back
from requirements to the business processes and from the business processes to
the corresponding requirements.

6.6 Demonstration Case Aggregating a Set of

Business Process Models

In this section we use, as a demonstration case, the example of a School Library
System where some of the business process more commonly used have been se-
lected to present here: Register User, Lend a Book, Purchase a Book, Return a
Book and Renew Loan. The Return a Book business process model includes the
sub-process, Penalty treatment.

Figure 6.9 shows the use case diagram level 0 (actors diagram) with four
actors, which were derived from the business process participants. The actors
are also depicted in diagram level 1 as seen in Figure 6.10.

In the Purchase a Book business process model (represented in Figure 6.11) the

147

Figure 6.11: Purchase a Book business process model

Figure 6.12: Lend a Book business process model

Figure 6.13: Return a Book business process model

Figure 6.14: Penalty Treatment business process model

148

participants involved are Librarian and Supplier. Following the rules presented
previously, Librarian and Supplier must be represented as actors in the actors
diagram level 0 and in use case diagram level 1 (see Figure 6.10).

Figure 6.15: Complete Use Case model (level 3)

In Lend a Book business process model (Figure 6.12) two participants are
identified, Borrower and Attendant. The two corresponding actors (with the
same name) will be also represented in the actors diagram and in the use case
diagram level 1 (see Figure 6.10).

In Return a Book business process (Figure 6.13), the participants involved
are Borrower and Attendant already identified in Lend a Book business process
model. So, the actors belonging to the actors diagram and use case diagram level
1 remain the same.

149

The Register User and Renew Loan business process models are not presented
here, but in both processes the participants involved are the same Borrower
and Attendant. The corresponding actors are already represented in the actors
diagram and in the use case diagram level 1.

Summarizing, and looking at the business processes we have selected for our
demonstration case, we can see that Librarian and Supplier are the participants
involved in Purchase a Book business process, Borrower and Attendant are the
participants involved in all the other processes. Thus, these four participants are
represented as actors in the actors diagram (level 0), as seen in Figure 6.9.

In the use case diagram level 1 (refer to Figure 6.10), each selected business
process is represented as a use case connected with the actors that represent the
corresponding participants. So, Purchase a Book business process is related to
actors Librarian and Supplier. Lend a Book, Return a Book, Renew Loan and
Register User use cases are related with the actors Borrower and Attendant. The
use cases are numbered sequentially. Each use case, which represents a process,
is then detailed in a use case model at level 2, as we can see in Figure 6.15.

By analyzing the Return a Book business process model (refer to Figure 6.13),
we can see that the process comprises five activities: Receive returned book, Search
for book’s active loan, Check for delivery delay, Update Loan Info and Penalty
treatment, each one giving origin to a use case in the use case model that refines
the Return a Book use case (level 2). All activities belong to the Attendant pool,
so all use cases representing the activities are related with the Attendant actor.
Receive returned book activity receives a message from the Borrower participant
and Penalty treatment activity also exchange messages with the Borrower partici-
pant, so the Borrower actor is related with both corresponding use cases. Similar
line of reasoning can be applied to explain the Lend a Book (refer to Figure 6.12)
and Purchase a Book (Figure 6.11) business process models transformation.

The Penalty Treatment use case represents a sub-process (represented in Fig-
ure 6.14), so it can be represented as a use case model in the next level (level 3),
detailing and refining the use case (level 2) as we can see in Figure 6.15.

6.7 Final Remarks

This chapter presented two approaches, the decomposition triangle approach and
an approach that, using the decomposition triangle, aggregates in one use case
model all the information available in a set of business process models.

The decomposition triangle approach is a top-down use case decomposition
that starts with high abstraction level use cases and ends with very detailed level
and concrete use cases. The approach is iterative and incremental and starts
by identifying the system scope and actors. In the second iteration, the main
functionalities the system shall provide are identified and represented as use cases.
In this context, we propose an extension to the UML 2.5 use case meta-model

150

in order to support the refinement of one use case into a use case model. Based
on the use case description and, if necessary, by obtaining stakeholders feedback,
each use case can be decomposed in a use case model represented on the next
decomposition level, decreasing this way the abstraction level and increasing the
specification detail of the use cases at that level.

In the second approach presented in this chapter we conclude that using the
decomposition triangle approach it is possible to systematically derive a com-
plete use case model from a set of interrelated business process models, helping
to ensure that the software requirements really meet business needs. This decom-
position process generates a use case tree structure which is especially prepared
to feed the tabular transformation table of the 4SRS method, allowing the gen-
eration of the logical software architecture and other software models based in
business process models and allowing traceability between business processes and
use cases.

This second approach starts by identifying the set of business processes that
will be supported by the software under development, identifying the system
scope. Then a use case model, divided in several abstraction levels, is created
based on the set of identified business process models. In level 0, all actors and all
actors’ hierarchies are identified, representing the involved participants. In level
1, each use case represents a business process being supported by the software
system under development. Each use case is then decomposed and refined in
a use case model (level 2). The approach ends when all use cases representing
processes and sub-processes are decomposed into atomic activities, each one being
represented as a use case.

Using the decompositions triangle we can easily “zoom in” to a use case
to see the details and “zoom out” to understand the context where the use case
appears. Or, by other words, we can easily decrease the abstraction level entering
into concrete details or increase the abstraction level when we need to understand
the system as a whole.

The decomposition triangle also allows the division of the requirements elic-
itation task in parts because the reintegration of the parts becomes easy and
secure.

Both approaches presented in this chapter are especially useful in a real in-
dustrial scenario which complexity and dimension will benefit from a systematic
approach for generating the use case model and other software models.

151

152

Chapter 7

Conclusion and Future Work

The constant change and rising complexity of organizations, mainly due to the trans-
forming nature of their business processes, has driven the increase of interest in BPM
by organizations, leading to the growth of BPM’s relevance and importance (van der
Aa et al., 2015; Redlich et al., 2014). This increase has been accompanied by the
increasing number of theories, modeling processes, modeling languages and notations,
and software applications that support BPM.

It is recognized that knowing business processes can help to ensure that the software
under development will really meet business needs. Some of software development
processes (like Unified Process) already refer to business process modeling as a pre-
requisite to the next steps of software development. Although most of them do not
clarify how the business processes can be used, they see the potential and recognize the
advantages of using business modeling for software development (Štolfa and Vondrák,
2008). A business process model is a proper representation of the reality, having several
useful information that can be used in the development of the software that will support
the business.

The research work presented here uses the information existing in business process
models to derive a data model and other software models that can be useful to identify
the data model, mainly in contexts of high complexity systems through the use of the
4SRS method. With the goal of obtaining a data model, two approximations have been
proposed. Both yield the data model based on a set of business process models, but
one of them also obtains other software models, as intermediate models for obtaining
the data model, including a use case model and a logical software architecture model.

This chapter discusses and summarizes the obtained results, presents conclusions

and points out future research work.

7.1 Overview of the Undertaken Work

The BPMN most recent version has consolidated its importance as a business pro-
cess modeling language and it is becoming more complete allowing distinguishing
persistent from non-persistent data (Aagesen and Krogstie, 2015). This made
possible the derivation of data models from business process models, which is the

153

main aim of this PhD research work. As already mentioned, this was achieved
following two different approaches.

A first approach to obtain a data model directly from one business process
model is presented in section 4.2. Nevertheless, the presented approach was
not able to identify all relationships between the identified entities in the data
model, mostly because, in a real situation, a software product does not typically
support only one business process, but rather a set of business processes. To
generate complete and useful data models for the development of software that
will support the business, it is necessary to aggregate the set of processes that
comprise a business. Thus, this approach has been extended and improved as
presented in the section 4.4. This enhancement aggregates, in one complete data
model, the data involved in a set of business processes models.

Because some business process models have bad quality, and in order to deal
with high complex systems, another approach to generate a data model based
on business process models has been proposed based on the 4SRS method. The
4SRS method has been adapted to deal with a use case model derived from a set
of business process models and extended to generate a data model supporting
the derived logical architecture (section 5.4). When necessary the generated use
case model may be complemented with information from other sources allowing
deriving a more complete data model. At this software development stage, the
stakeholders are still involved in the process so they can provide useful informa-
tion to complement the information provided by business process models.

To use the 4SRS, a use case model is needed. Thus, an approach to generate
a use case model from a business process model is presented in section 5.2. The
approach is focused on obtaining the descriptions of the use cases, approach that
uses a set of sentences defined in NL.

A use case model can be created with high abstraction level or with a low
abstraction level. A use case model with a very detailed level can be very complex,
hard to understand and to manage. In that sense, a process to decompose and
refine use cases has been created in order to organize the use cases. The resulting
process has been named as “the decomposition triangle”, and is presented in
section 6.3. The presented process is very useful to any software development
team in order to manage use cases, because it allows the coexistence of both
high and low abstraction level use cases, and it enables to trace back and forth
between use cases at different abstraction levels.

The decomposition triangle process has been specially designed to aggregate
in one use case model, the use cases derived from a set of business processes, which
was presented in section 6.5. The process starts by high abstraction level use cases
(each use case representing a business process) and ends with low abstraction level
use cases (each use case representing an atomic activity). The resulting use case
model is especially useful to the 4SRS method, where it can be used to feed the
tabular transformation.

Summarizing up, two approaches to derive a data model from business process

154

models have been proposed in the research work presented herein:

1. A direct approach - by deriving a data model directly from the existing
information in business process models.

2. An indirect approach - by using the 4SRS method, which has been adapted
to work with a use case model derived from a set of business process models
and extended to derive a data model.

The two approaches are able to generate a complete data model including
entities, entity attributes and the relationships between those entities, including
cardinality and optionality. Still some differences may be pointed out between
the two approaches. In Table 7.1 we are comparing the two approaches according
to the following aspects:

• Generated models - set of generated software models.

• Degree of automation - level of automation of the created approaches.

• Completeness - level of completeness of the generated software models.

• Correctness - level of correctness of the generated software models.

• Consistency - level of consistency between the derived software models.

• Traceability - level of traceability between the derived software models and
the business processes.

• Difficulty - level of difficulty of applying the approach.

• BPMN dependency - level of dependency between the generated software
models and the business process models, modeled in BPMN.

Analyzing the table we may see that the direct approach is automatable,
demands less work but is totally dependent on the existing information in the
BPMN models because the BPMN models are the only source of information. As
a consequence, we may say that the direct approach is able to generate correct and
complete data models if the BPMN models are complete and correct. Otherwise,
the correctness and completeness of the data model are not assured.

The 4SRS extended approach is only partially automatable mostly because
the derived software models need to be analyzed and validated by a software engi-
neer and the existent information on BPMN models may be complemented with
information from other sources. The 4SRS extended approach generates not only
the data model but also the use case model and the logical software architecture
based on business process models, which can be used to the development of the
software that will support the business.

155

Aspect Directly Using the 4SRS method

Generated
software
models

Data model.
Use case model (including use case de-
scriptions), logical software architecture
and data model.

Degree of
automation

Fully automatable.

Partially automatable. The generation
of the use case model from business pro-
cess models is prepared to be automatic
as well as the construction of the 4SRS
tabular transformation and its first step.
The other steps need a software engineer
intervention.

Completeness

It can be complete, but
relies on existing infor-
mation in business pro-
cesses models.

The software models can be more com-
plete since the information derived from
BPMN models may be complemented
with information provided by other
sources.

Correctness

It can be correct, but
relies on existing infor-
mation in business pro-
cesses models.

It can be more correct because the infor-
mation can be analyzed and validated by
the software engineer during the 4SRS ex-
ecution.

Consistency
Only the data model is
derived.

The use case model, logical software ar-
chitecture and the data model are consis-
tent between them.

Traceability Direct.

Direct from BPMN models to correspond-
ing elements in software models. Less
direct in the opposite direction because
software models may have added informa-
tion provided by other sources.

Difficulty Low.
High. The approach involves the partici-
pation of a software engineer.

BPMN de-
pendency

Totally dependent.
The BPMN models
are the only source of
information.

Very dependent. All process is based on
the information available in the BPMN
models. However, the information can be
complemented with information provided
by other sources.

Table 7.1: Comparing the two presented approaches to derive a data model from
business process models

156

Both approaches allow traceability from elements in software models to the
business processes and from the business processes to the corresponding elements
in software models. Nevertheless, using the 4SRS, the traceability between the
software models and business process models may not be direct because of the
information that can be provided by other sources.

7.2 Results and Contributions to the State of

the Art

This research work derives a data model and a set of other software models, serv-
ing as the basis for software development starting from business process modeling
using BPMN. The proposed approaches have been validated through demon-
stration cases. The research results have been published and discussed in six
conference papers and in one doctoral symposium. The published papers are
enumerated next:

1. E. F. Cruz, R. J. Machado, and M. Y. Santos, “From business process
models to data model: A systematic approach,” in 8th International Con-
ference on the Quality of Information and Communications Technology
(QUATIC2012), pp. 205-210, IEEE Compute Society, September 2012.

2. E. F. Cruz, R. J. Machado, and M. Y. Santos, “From business process mod-
els to use case models: A systematic approach,” in Advances in Enterprise
Engineering VIII (D. Aveiro, J. Tribolet, and D. Gouveia, eds.), vol. 174 of
Lecture Notes in Business Information Processing, pp. 167-181, Springer
International Publishing, May 2014.

3. E. F. Cruz, R. J. Machado, and M. Y. Santos, “On the decomposition of
use cases for the refinement of software requirements,” in 14th International
Conference on Computational Science and Its Applications (ICCSA), pp.
237-240, IEEE Compute Society, June 2014.

4. E. F. Cruz, R. J. Machado, and M. Y. Santos, “Derivation of data-driven
software models from business process representations,” in 9th International
Conference on the Quality of Information and Communications Technology
(QUATIC2014), pp. 276-281, IEEE Compute Society, September 2014.

5. E. F. Cruz, R. J. Machado, and M. Y. Santos, “Bridging the gap between
a set of interrelated business process models and software models,” in 17th
International Conference on Enterprise Information Systems, pp. 338-345,
April 2015.

157

6. E. F. Cruz, R. J. Machado, and M. Y. Santos, “Deriving a Data Model
from a Set of Interrelated Business Process Models,” in 17th International
Conference on Enterprise Information Systems, pp. 49-59, April 2015.

7. E. F. Cruz, R. J. Machado, and M. Y. Santos, “Deriving Software De-
sign Models from a Set of Business Processes,” in 4th International Confer-
ence on Model-Driven Engineering and Software Development, pp. 489-496,
February 2016.

As a conclusion we may say that the objectives of this research work have
been accomplished and exceeded. Two ways to derive a data model from business
process models have been developed. A direct approach to generate a data model
based on a set of business process models, that not only derives a data model but
also allows verifying the completeness of the involved business processes (in terms
of persistent data) and/or to identify possible links with other applications.

In what concerns to persistent data, interrelated business processes usually
complete each other, meaning that the information written by one process is,
most of the times, used in another (or the same) business process. Thus, working
with a set of interrelated business process models is crucial to be able to derive
much more complete software models than when working with only one business
process.

However, it is worth noting that if the business process models will provide
the basis for the software development, they have to contain relevant information
for the development of this software, including the information about the data
involved.

Some studies reveal that, usually, business process models have bad quality
(Weber et al., 2011). To overcome this issue, a second approach to derive a data
model from business process models has been presented, which adapts the 4SRS
method to work with the use case model derived from business process models,
and extends it to generate a data model. This way the 4SRS allows deriving
a logical architecture and a data model supporting the selected set of business
process models.

Hence, the resulting contributions to the state-of-art are:

• When the goal is to obtain a data model from a set of complete BPMN
models, i.e. containing all information about persistent data, or when the
goal is to obtain a data model even if not a complete one, the direct ap-
proach presented in chapter 4 is the most useful one. In fact, the direct
approach is automatable, and allows deriving a data model from the mod-
eled information available in a set of business process models.

• When the goal is to obtain a data model from a set of BPMN models,
which were built at a high abstraction level (business level), neglecting
information about persistent data, or when the software that will support

158

the business is of complex nature, because of the complexity of the business
itself or because of the high number of data sets or business roles involved,
the approach involving the 4SRS is more suitable, and yields better results.
Indeed, this approach derives an intermediate use case model from the set
of business process models ((sub)approaches presented in chapter 6), which
are used as input to the 4SRS method. The iterative nature of the 4SRS
method allows to complete the information about use cases, which were
initially derived from the business process models, with information from
other sources. This enables completing information that was missing in
the initial business process models, and allows obtaining a logical software
architecture model, which may then be used to obtain a data model. This
demanded an extension to the 4SRS method, presented in chapter 5.

The 4SRS needs the intervention of an expert to analyze and validate the in-
formation provided by the set of BPMN models and the derived software models.
If necessary, the information provided by the BPMN models may be comple-
mented with information provided by other sources. Thus, the derived software
models may be more complete and correct than the software models derived di-
rectly from a set of BPMN models, but, at the same time, it can involve much
more work and it can be more time-consuming in implementing.

In this case, the generation of a use case model, including use cases descrip-
tions, based on a set of business process models ensures the implementation of
all requirements that come directly from the process models. The generated use
case model may be used to feed the 4SRS tabular transformation but also can be
very useful to a software development team.

In this research we use the DSR research method as is being considered the
most suitable because useful artifacts (approaches) were developed helping in
closing the gap between the business process modeling and software develop-
ment. The DSR method focuses on the development of artifacts that extend the
current IT limits to drive an improvement of the businesses and organizations per-
formance. In the research presented in this dissertation, two useful approaches
have been created, enabling a reduction of the time spent on analysis and mod-
eling software for business support, capitalizing resources, and reducing the risk
of creating software products that do not correspond to the real business needs.

7.3 Future Work

As we previously stated, the generation of the use case, including use case de-
scriptions, and the derivation of the data model directly from a set of business
process models can be automatized. In the future, it is intended to create a
prototype to generate a use case model and the supporting data model based
on the same set of business process models. As future work, we intend to apply
this research in a real industrial scenario, which complexity and dimension will

159

benefit from a systematic approach to the identification of the use case model
and the supporting data model.

Another future research direction is to extract the data model for decision sup-
port systems based on the business process models. These data models involve
information for assessing and analyzing the processes, measuring the processes’
efficiency and possible delays, allowing to identify bottlenecks and possible needs
of business processes reengineering. In that sense, the information for decision
support systems is different, although related, from the information for the sys-
tems that support the business processes.

When we are designing a logical architecture of an application, we can di-
vide the application into several layers. The communication between those layers
needs to be well defined and documented, enabling a good communication be-
tween the teams responsible for each layer’s development. In every application,
internal communication between the distinct architectural layers may be identi-
fied, and also external communication between the application being built and
other applications.

In BPMN process models, an external participant may represent an external
application or someone using the application, such as a customer or a supplier
with access to the application, providing or requesting a service, which often may
trigger a process execution. Usually, the software that supports the business pro-
cesses has to interact with applications supporting business partners’ processes.
In that sense, a software development team needs to know what information is
received from, and what information must be sent to external software appli-
cations. BPMN language allows identifying the messages and data exchanged
between a business process and an external participant. BPMN allows identify-
ing what is received by the business process, from an external participant, and
what is sent to the external participant. The identification of the data received
by a business process from an external participant and the data sent by the
business process to an external participant enables the derivation of the services
APIs (Application Program Interface) for interaction between the organizational
system, whose processes are modeled by the private BPMN models, and external
systems, that support the public BPMN models. As future work we also intend
to create an approach to generate these services APIs from the business process
models, consistent with the generated data model and with the derived logical
architecture.

160

References

Aagesen, G. and Krogstie, J. (2015). BPMN 2.0 for modeling business processes.
In vom Brocke, J. and Rosemann, M., editors, Handbook on Business Pro-
cess Management 1, International Handbooks on Information Systems, pages
219–250. Springer Berlin Heidelberg.

AAL4ALL (2012). http://www.aal4all.org.

Abi-Antoun, M., Wang, D., and Torr, P. (2007). Checking threat modeling data
flow diagrams for implementation conformance and security. In Proceed-
ings of the twenty-second IEEE/ACM international conference on Automated
software engineering, ASE ’07, pages 393–396, New York, NY, USA. ACM.

Aguilar-Savén, R. S. (2004). Business process modelling: Review and framework.
International Journal of Production Economics, 90(2):129 – 149. Production
Planning and Control.

Allweyer, T. (2010). BPMN 2.0 - Introduction to the standard for business process
Modeling. Books on Demand GmbH, Norderstedt.

Alter, S. (2015). How should business informatics integrate service, process,
work system, and enterprise orientations? IEEE Conference on Business
Informatics, I:1–8.

Andersson, B., Bergholtz, M., Edirisuriya, A., Ilayperuma, T., and Johannesson,
P. (2005). A declarative foundation of process models. In Pastor, O. and
Falcão e Cunha, J., editors, Advanced Information Systems Engineering,
volume 3520 of Lecture Notes in Computer Science, pages 233–247. Springer
Berlin Heidelberg.

Avison, D., Lau, F., Myers, M., and Nielsen, P. A. (1999). Action research.
Communications of the ACM., 42.

Azevedo, S., Machado, R. J., Braganca, A., and Ribeiro, H. (2010). The UML
�include� relationship and the functional refinement of use cases. In 36th
EUROMICRO Conference on Software Engineering and Advanced Applica-
tions.

161

Barjis, J. (2008). The importance of business process modeling in software sys-
tems design. Science of Computer Programming, 71(1):73 – 87.

Barquet, A. P. B., Cunha, V. P., Oliveira, M. G., and Rozenfeld, H. (2011).
Business model elements for product-service system. In Functional Thinking
for Value Creation, pages 332–337. Springer.

Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., and Weske, M. (2015). Ex-
tracting decision logic from process models. In Zdravkovic, J., Kirikova, M.,
and Johannesson, P., editors, Advanced Information Systems Engineering,
volume 9097 of Lecture Notes in Computer Science, pages 349–366. Springer
International Publishing.

Baumann, F., Hussein, R. E., and Roller, D. (2015). State of the art of bpm
- approach to business process models and its perspective. International
Journal of Electronics Communication and Computer Engineering, 6:649–
457.

Becker, J., Rosemann, M., and von Uthmann, C. (2000). Guidelines of business
process modeling. In van der Aalst, W., Desel, J., and Oberweis, A., editors,
Business Process Management, volume 1806 of Lecture Notes in Computer
Science, pages 241–262. Springer Berlin Heidelberg.

Bera, P. and Evermann, J. (2014). Guidelines for using uml association classes
and their effect on domain understanding in requirements engineering. Re-
quirements Engineering, 19(1):63–80.

Berardi, D., Calvanese, D., and Giacomo, G. D. (2005). Reasoning on UML class
diagrams. Artificial Intelligence, 168:70 – 118.

Berenbach, B. (2004). The evaluation of large, complex UML analysis and de-
sign models. In Software Engineering, 2004. ICSE 2004. Proceedings. 26th
International Conference on, pages 232 – 241.

Bichier, M. and Lin, K. J. (2006). Service-oriented computing. Computer,
39(3):99–101.

Bittner, K. and Spence, I. (2003a). Applying use cases: a practical guide. Pearson
Education Inc.

Bittner, K. and Spence, I. (2003b). Use Case Modeling. Pearson Education Inc.

Bolloju, N. and Leung, F. S. K. (2006). Assisting novice analysts in develop-
ing quality conceptual models with UML. Communications of the ACM.,
49(7):108–112.

162

Booch, G., Rumbaugh, J., and Jacobson, I. (1998). The Unified Modeling Lan-
guage User Guide. Addison Wesley.

Borger, E. (2011). Approaches to modeling business processes: a critical analysis
of BPMN, workflow patterns YAWL. In Software and Systems Modeling -
Springer.

Bork, D. and Fill, H.-G. (2014). Formal aspects of enterprise modeling methods:
A comparison framework. In System Sciences (HICSS), 2014 47th Hawaii
International Conference on, pages 3400–3409. IEEE.

Bragança, A. and Machado, R. J. (2006). Extending UML 2.0 metamodel for
complementary usages of the �extend� relationship within use case variabil-
ity specification. In 10th International Software Product Line Conference
(SPLC’06).

Brambilla, M., Preciado, J. C., Linaje, M., and Sanchez-Figueroa, F. (2008).
Business process-based conceptual design of rich internet applications. Web
Engineering, International Conference on, 0:155–161.

Braun, R. and Esswein, W. (2014). Classification of domain-specific BPMN
extensions. In Frank, U., Loucopoulos, P., Pastor, O., and Petrounias, I.,
editors, The Practice of Enterprise Modeling, volume 197 of Lecture Notes in
Business Information Processing, pages 42–57. Springer Berlin Heidelberg.

Brdjanin, D. and Maric, S. (2013). Model-driven techniques for data model
synthesis. Electronics, 17(2):130–136.

Brdjanin, D., Maric, S., and Gunjic, D. (2011). Adbdesign: An approach to
automated initial conceptual database design based on business activity di-
agrams. In Advances in Databases and Information Systems, pages 117–131.
Springer.

Buscemi, M. and Sassone, V. (2001). High-level petri nets as type theories in
the join calculus. In Honsell, F. and Miculan, M., editors, Foundations of
Software Science and Computation Structures, volume 2030 of Lecture Notes
in Computer Science, pages 104–120. Springer Berlin Heidelberg.

Bézivin, J. (2006). Model driven engineering: An emerging technical space. In
Generative and Transformational Techniques in Software Engineering, vol-
ume 4143 of Lecture Notes in Computer Science, pages 36–64. Springer Berlin
Heidelberg.

Cardoso, E. C. S., Almeida, J. P. A., and Guizzardi, G. (2009). Requirements
engineering based on business process models: A case study. In Enterprise
Distributed Object Computing Conference Workshops, 2009. EDOCW 2009.
13th, pages 320–327. IEEE.

163

Carvalho, J. A. (2012). Validation criteria for the outcomes of design research. In
IT Artefact Design & Workpractice Intervention, a Pre-ECIS and AIS SIG
Prag Workshop.

Cass, A. G., Lerner, A. S., McCall, E. K., Osterweil, L., Jr., S. M. S., and Wise,
A. (2000). Little-jil/juliette: a process definition language and interpreter.
In Software Engineering, 2000. Proceedings of the 2000 International Con-
ference on, pages 754 –757.

Castro, J., Alencar, F., and Cysneiros, G. (2000). Closing the gap between
organizational requirements and object oriented modeling. Journal of the
Brazilian Computer Society, 7.

Chen, P. P.-S. (1976). The entity-relationship model toward a unified view of
data. ACM Trans. Database Syst., 1:9–36.

Christiansen, H., Have, C. T., and Tveitane, K. (2007). From use cases to UML
class diagrams using logic grammars and constraints. Proc. of the Recent
advances in Natural Language Processing. Bulgaria.

Coalition, W. M. (2011). Web site. http://www.wfmc.org/. Visited in February
2011.

Cockburn, A. (2001). Writing Effective Use Cases. Addison Wesley.

Collins-Cope, M. (1999). The requirements/service/interface (RSI) approach to
use case analysis (a pattern for structured use case development). In Technol-
ogy of Object-Oriented Languages and Systems, 1999. Proceedings of, pages
172 –183.

Cox, K. (2002). Heuristics for use case descriptions. PhD Thesis, Bournemouth
University.

Cruz, E. F., Machado, R. J., and Santos, M. Y. (2012). From business process
modeling to data model: A systematic approach. In QUATIC 2012, The-
matic Track on Quality in ICT Requirements Engineering, IEEE Computer
Society Press, Los Alamitos, California, U.S.A., pages 205–210.

Cruz, E. F., Machado, R. J., and Santos, M. Y. (2014a). Derivation of data-driven
software models from business process representations. In 9th International
Conference on the Quality of Information and Communications Technology
(QUATIC2014), pages 276–281. IEEE Compute Society.

Cruz, E. F., Machado, R. J., and Santos, M. Y. (2014b). From business process
models to use case models: A systematic approach. In Aveiro, D., Tribo-
let, J., and Gouveia, D., editors, Advances in Enterprise Engineering VIII,

164

volume 174 of Lecture Notes in Business Information Processing, pages 167–
181. Springer International Publishing.

Cruz, E. F., Machado, R. J., and Santos, M. Y. (2014c). On the decomposition
of use cases for the refinement of software requirements. In Computational
Science and Its Applications (ICCSA), 2014 14th International Conference
on, pages 237–240. IEEE - Compute Society.

Cruz, E. F., Machado, R. J., and Santos, M. Y. (2015a). Bridging the gap
between a set of interrelated business process models and software models.
In 17th International Conference on Enterprise Information Systems, pages
338–345.

Cruz, E. F., Machado, R. J., and Santos, M. Y. (2016). Deriving software design
models from a set of business processes. In 4th International Conference
on Model-Driven Engineering and Software Development, MODELSWARD
2016.

Cruz, E. F., Santos, M. Y., and Machado, R. J. (2015b). Deriving a data model
from a set of interrelated business process models. In 17th International
Conference on Enterprise Information Systems, pages 49–59.

Darimont, R. and van Lamsweerde, A. (1996). Formal refinement patterns for
goal-driven requirements elaboration. In SIGSOFT’96 CA, USA.

Davis, W. S. and Yen, D. C. (1999). The systems development life cycle in The
Information System Consultant’s Handbook: Entity-relationship diagrams.
CRC Press, New York.

de la Vara, J., Fortuna, M., Sánchez, J., Werner, C., and Borges, M. (2009).
A requirements engineering approach for data modelling of process-aware
information systems. In Abramowicz, W., editor, Business Information Sys-
tems, volume 21 of Lecture Notes in Business Information Processing, pages
133–144. Springer Berlin Heidelberg.

de la Vara, J. and Sánchez, J. (2009). BPMN-based specification of task descrip-
tions: Approach and lessons learnt. In Glinz, M. and Heymans, P., editors,
Requirements Engineering: Foundation for Software Quality, volume 5512 of
LNCS, pages 124–138. Springer Berlin Heidelberg.

Debnath, N., Riesco, D., Cota, M. P., and Romero, D. (2006). Supporting the
SPEM with a UML extended workflow metamodel. IEEE, 1:1151–1154.

Delgado, A., Calegari, D., Milanese, P., Falcon, R., and Garćıa, E. (2015). A
systematic approach for evaluating bpm systems: case studies on open source
and proprietary tools. In Open Source Systems: Adoption and Impact, pages
81–90. Springer Berlin Heidelberg.

165

Dietz, J. (2003). Deriving use cases from business process models. In Song, I.-Y.,
Liddle, S., Ling, T.-W., and Scheuermann, P., editors, Conceptual Modeling -
ER 2003, volume 2813 of LNCS, pages 131–143. Springer Berlin Heidelberg.

Dietz, J. L. (2001). Demo: Towards a discipline of organisation engineering. Eu-
ropean Journal of Operational Research, 128(2):351 – 363. Complex Societal
Problems.

Dijkman, R. M., Dumas, M., and Ouyang, C. (2008). Semantics and analysis of
business process models in BPMN. Information and Software Technology,
50(12):1281 – 1294.

Dijkman, R. M. and Joosten, S. M. (2002a). An algorithm to derive use cases from
business processes. In 6th International Conference on Software Engineering
and Applications (SEA), pages 679–684.

Dijkman, R. M. and Joosten, S. M. (2002b). Deriving use case diagrams from
business process models. Technical report, CTIT Technical Report, The
Netherlands.

Ditze, A. and Henninger, T. (2010). Methodical approach for business analyst
with BPMN. Modeling Magazine 5.

Dobing, B. and Parsons, J. (2000). Understanding the Role of Use Cases in UML:
A Review and Research Agenda., volume 11, chapter 8, pages 28–36. Journal
of Database Management (JDM).

Dobing, B. and Parsons, J. (2006). How UML is used. Communications of the
ACM., 49:109–113.

Dobing, B. and Parsons, J. (2009). Dimensions of uml diagram use: practitioner
survey and research agenda. Principle Advancements in Database Manage-
ment Technologies: New Applications and Frameworks, pages 271–290.

Dong, M. and Chen, F. F. (2005). Petri net-based workflow modelling and
analysis of the integrated manufacturing business processes. The Inter-
national Journal of Advanced Manufacturing Technology, 26:1163–1172.
10.1007/s00170-004-2089-4.

Dorn, J., Grün, C., Werthner, H., and Zapletal, M. (2009). From business to
software: a B2B survey. Information Systems and E-Business Management,
7:123–142. 10.1007/s10257-008-0082-4.

Drazan, J. and Mencl, V. (2007). Improved processing of textual use cases:
Deriving behavior specifications. In van Leeuwen, J., Italiano, G., van der
Hoek, W., Meinel, C., and Sack, H., editors, SOFSEM 2007: Theory and

166

Practice of Computer Science, volume 4362 of Lecture Notes in Computer
Science, pages 856–868. Springer Berlin Heidelberg.

Eike, B., Wojciech, F., P., H. R., Hanna, K., Pelz, and Elisabeth (1998). M-nets:
An algebra of high-level petri nets, with an application to the semantics of
concurrent programming languages. Acta Informatica, 35:813–857.

Eriksson, H.-E. and Penker, M. (2000). Business modeling with UML. Technical
report, Open Training.

Estublier, J. (2006). Software are processes too. In Li, M., Boehm, B., and Os-
terweil, L., editors, Unifying the Software Process Spectrum, volume 3840 of
Lecture Notes in Computer Science, pages 25–34. Springer Berlin Heidelberg.

Evans, E. (2011). Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional.

Fantechi, A., Gnesi, S., Lami, G., and Maccari, A. (2003). Applications of linguis-
tic techniques for use case analysis. Requirements Engineering, 8(3):161–170.

Fernandes, J. M., Machado, R., Monteiro, P., and Rodrigues, H. (2006). A
demonstration case on the transformation of software architectures for ser-
vice specification. In From Model-Driven Design to Resource Management
for Distributed Embedded Systems, volume 225 of IFIP International Feder-
ation for Information Processing, pages 235–244. Springer Boston.

Fernandes, J. M., Machado, R. J., and Santos, H. D. (2000). Modeling industrial
embedded systems with UML. In Proceedings of the eighth international
workshop on Hardware/software codesign, CODES ’00, pages 18–22, New
York, NY, USA. ACM.

Ferreira, N., Santos, N., Machado, R. J., and Gasevic, D. (2012). Derivation
of process-oriented logical architectures: An elicitation approach for cloud
design. In PROFES’2012, LNCS Series, Springer-Verlag, Berlin Heidelberg,
Germany.

Fettke, P. (2009). How conceptual modeling is used. Communications of the
Association for Information Systems, 25:571–592.

Fettke, P., Loos, P., and Zwicker, J. (2005). Business process reference mod-
els: Survey and classification. In First International Workshop on Business
Process Reference Models (BPRM05).

Fowler, M. (2004). UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Professional.

167

Giaglis, G. M. (2001). A taxonomy of business process modeling and information
systems modeling techniques. International Journal of Flexible Manufactur-
ing Systems, 13:209–228.

Glinz, M. (2000). Problems and deficiencies of UML as a requirements specifica-
tion language. In Proceedings of the 10th International Workshop on Soft-
ware Specification and Design, IWSSD ’00, Washington, DC, USA. IEEE
Computer Society.

Gomma, H. (2011). Software modeling and design: UML, Use cases, Patterns,
and Software Architectures. Cambridge University Press.

Greenfield, J. and Short, K. (2004). Software factories: Assembling applications
with patterns, frameworks, models and tools.

Group, L. P. W. (2006). Little-jil 1.5 - language report. Technical report, LASER
Process Working Group.

Hammer, M. and Champy, J. (2001). Reengineering the corporation: a manifesto
for business revolution. Harper Business.

Hausmann, J., Heckel, R., and Taentzer, G. (2002). Detection of conflicting func-
tional requirements in a use case-driven approach. In Software Engineering,
2002. ICSE 2002. Proceedings of the 24rd International Conference on, pages
105 –115.

Hevner, A. and March, S. (2003). The information systems research cycle. Com-
puter, 36(11):111 – 113.

Hevner, A. R., March, S. T., Jinsoo, P., and Ram, S. (2004). Design science in
information systems research. MIS Quarterly, 28(1):75 – 105.

Hofreiter, B., Huemer, C., Liegl, P., Schuster, R., and Zapletal, M. (2010). UMM
Add-In: A UML Extension for UN/CEFACT Modeling Methodology. Tech-
nical report, Vienna University of Technology.

Hull, E., Jackson, K., and Dick, J. (2011). Requirements Engineering. Springer
Science & Business Media.

IEC, I. (2010). Systems and software engineering, systems and software quality,
requirements and evaluation (square) system and software quality models.
Technical report, The International Organization for Standardization and
the International Electrotechnical Commission.

III, J. G. D. (2014). Aligning customer needs: Business process management
(bpm) and successful change management in the l. tom perry special collec-
tions. Library Leadership & Management, 29(1).

168

Ilieva, M. G. and Ormandjieva, O. (2006). Models derived from automatically
analyzed textual user requirements. In Software Engineering Research, Man-
agement and Applications.

Issa, A. A. (2007). Utilising refactoring to restructure use-case models. In Pro-
ceedings of the World Congress on Engineering, WCE 2007.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Devel-
opment Process. Addison-Wesley.

Jalote, P. (2008). A concise Introduction to Software Engineering. Springer
Science & Business Media.

Juric, M. B. (2015). A hands-on introduction to bpel. ORACLE.

Kalenkova, A. A., de Leoni, M., and van der Aalst, W. M. (2014). Discovering,
analyzing and enhancing BPMN models using prom*. In Business Process
Management-12th International Conference, BPM, pages 7–11.

Karakostas, B., Zorgios, Y., and Alevizos, C. (2006). Automatic derivation of
BPEL4WS from IDEF0 process models. Software and Systems Modeling,
5:208–218.

Kees van Hee, Olivia Oanea, R. P., Somers, L., and an der Werf, J. M. (2006).
Yasper: a tool for workflow modeling and analysis. Application of Concur-
rency to System Design, International Conference on, 0:279–282.

Kindler, E. (2004). On the semantics of EPCs: A framework for resolving the
vicious circle. In Desel, J., Pernici, B., and Weske, M., editors, Business
Process Management, volume 3080 of Lecture Notes in Computer Science,
pages 82–97. Springer Berlin Heidelberg.

Ko, R. K. L. (2009). A computer scientist’s introductory guide to business process
management (bpm). Crossroads, 15:4:11–4:18.

Kocbek, M., Jošt, G., Heričko, M., and Polančič, G. (2015). Business process
model and notation: The current state of affairs. Computer Science and
Information Systems, 1(00):1–35.

Korherr, B. and List, B. (2006). Aligning business processes and software con-
necting the UML 2 profile for event driven process chains with use cases and
components. 18th Int. Conf. on Advanced Information Systems Engineering
CAiSE´06. Luxembourg, pages 19–22.

Lam, V. (2009). Equivalences of BPMN processes. Service Oriented Computing
and Applications, 3:189–204. 10.1007/s11761-009-0048-5.

169

Lange, C., Chaudron, M., and Muskens, J. (2006). In practice: UML software
architecture and design description. Software, IEEE, 23(2):40 – 46.

Lerner, B. S., Christov, S., Osterweil, L. J., Bendraou, R., Kannengiesser, U., and
Wise, A. (2010). Exception handling patterns for process modeling. IEEE
Transactions on Software Engineering, 99(RapidPosts):162–183.

Liang, Y., Tian, J., Hu, S., Song, Y., and Zhang, Y. (2008). A template-based ap-
proach for automatic mapping between business process and BPEL process.
Wuhan University Journal of Natural Sciences, 13:445–449. 10.1007/s11859-
008-0413-9.

Ling, S. and Schmidt, H. (2000). Time petri nets for workflow modelling and
analysis. In Systems, Man, and Cybernetics, 2000 IEEE International Con-
ference on, volume 4, pages 3039–3044.

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., and Guoliang,
Z. (2004). Generating test cases from UML activity diagram based on gray-
box method. In Software Engineering Conference, 2004. 11th Asia-Pacific,
pages 284–291.

List, B. and Korherr, B. (2006). An evaluation of conceptual business process
modelling languages. In Proceedings of the 2006 ACM symposium on Applied
computing, SAC06, pages 1532–1539, New York, NY, USA. ACM.

Lubke, D., Schneider, K., and Weidlich, M. (2008). Visualizing use case sets as
BPMN processes. In Requirements Engineering Visualization, pages 21–25.
IEEE.

Machado, R., Fernandes, J., Monteiro, P., and Rodrigues, H. (2005). Transforma-
tion of UML models for service-oriented software architectures. In Engineer-
ing of Computer-Based Systems, 2005. ECBS ’05. 12th IEEE International
Conference and Workshops on the, pages 173 – 182.

Machado, R., Fernandes, J. a., Monteiro, P., and Rodrigues, H. (2006). Re-
finement of software architectures by recursive model transformations. In
Münch, J. and Vierimaa, M., editors, Product-Focused Software Process Im-
provement, volume 4034 of LNCS, pages 422–428. Springer Berlin Heidelberg.

Magnani, M. and Montesi, D. (2009). BPDMN: A conservative extension
of BPMN with enhanced data representation capabilities. arXiv preprint
arXiv:0907.1978.

March, S. T. and Smith, G. F. (1995). Design and natural science research on
information technology. Decision Support Systems, 15(4):251 – 266.

170

March, S. T. and Storey, V. C. (2008). Design science in the information systems
discipline: An introduction to the special issue on design science research. In
Design Science in the Information Systems, volume 32, pages 725–730. MIS
Quarterly.

Marshall, C. (1999). Enterprise Modeling with UML: Designing Successful Soft-
ware through Business Analysis. Addison-Wesley.

Martinez, A., Castro, J., Pastor, O., and Estrada, H. (2003). Closing the gap
between organizational modeling and information system modeling. Paper
presented at the WER03-VI.

Metz, P., O Brien, J., and Weber, W. (2001). Against use case interleaving. In
Gogolla, M. and Kobryn, C., editors, UML The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, volume 2185 of LNCS, pages 472–
486. Springer Berlin Heidelberg.

Meyer, A., Pufahl, L., Fahland, D., and Weske, M. (2013). Modeling and enact-
ing complex data dependencies in business processes. In Daniel, F., Wang,
J., and Weber, B., editors, Business Process Management, volume 8094 of
Lecture Notes in Computer Science, pages 171–186. Springer Berlin Heidel-
berg.

Meyer, A., Smirnov, S., and Weske, M. (2011). Data in business processes. Uni-
versitätsverlag Potsdam.

Mili, H., Jaoude, G. B., Éric Lefebvre, Tremblay, G., and Petrenko, A. (2003).
Business process modeling languages: Sorting through the alphabet soup. In
OOF 22 NO. IST-FP6-508794 (PROTOCURE II) September.

Monsalve, C., April, A., and Abran, A. (2012). On the expressiveness of business
process modeling notations for software requirements elicitation. In IECON
2012 - 38th Annual Conference on IEEE Industrial Electronics Society, pages
3132–3137.

Muehlen, M. and Recker, J. (2008). How much language is enough? theoretical
and practical use of the business process modeling notation. In Bellahsene,
Z. and Leonard, M., editors, Advanced Information Systems Engineering,
volume 5074 of Lecture Notes in Computer Science, pages 465–479. Springer
Berlin Heidelberg.

Nawrocki, J., Nedza, T., Ochodek, M., and Olek, L. (2006). Describing business
processes with use cases. In BIS, pages 13–27.

Olivé, A. (2010). Conceptual Modeling of Information Systems. Springer Science
& Business Media.

171

OMG (2008). Software & systems process engineering meta-model specification,
version 2.0. Technical report, Object Management Group.

OMG (2010a). BPMN 2.0 by example. Technical report, Object Management
Group.

OMG (2010b). Object constraint language. Technical report, Object Manage-
ment Group.

OMG (2011a). Business process model and notation (BPMN), version 2.0. Tech-
nical report, Object Management Group.

OMG (2011b). Meta object facility (MOF) 2.0 query/view/transformation spec-
ification. Technical report, Object Management Group.

OMG (2011c). OMG meta object facility (MOF) core specification. Technical
report, Object Management Group.

OMG (2012). Unified modeling language (OMG UML), version 2.5. Technical
report, Object Management Group.

ORACLE (2011). http://blogs.oracle.com/bpmbrasil/bpm/. Web site. Accessed
January 27, 2011.

Osterwalder, A. and Pigneur, Y. (2010). Business model generation: a handbook
for visionaries, game changers, and challengers. John Wiley & Sons.

Oswald, H., Esser, R., and Mattmann, R. (1990). An environment for specifying
and executing hierarchical petri nets. In Proceedings of the 12th international
conference on Software engineering, pages 164–172. IEEE Computer Society
Press.

Ouyang, C., Dumas, M., Breutel, S., and ter Hofstede, A. (2006). Translating
standard process models to BPEL. In Dubois, E. and Pohl, K., editors,
Advanced Information Systems Engineering, volume 4001 of Lecture Notes
in Computer Science, pages 417–432. Springer Berlin Heidelberg.

Paradkar, A. M. and Sinha, A. (2015). Deriving process models from natural
language use case models. US Patent 8,949,773.

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui, W., Virtanen, V.,
and Bragge, J. (2006). The design science research process: a model for
producing and presenting information systems research. In Proceedings of
the first international conference on design science research in information
systems and technology (DESRIST 2006), pages 83–106.

172

Phalp, K., Vincent, J., and Cox, K. (2007). Improving the quality of use case
descriptions: empirical assessment of writing guidelines. Software Quality
Journal, 15(4):383–399.

Pilone, D. and Pitman, N. (2005). UML 2.0 in a nutshell. O‘Reilly.

Polancic, G. (2015). What makes bpmn complex? BPMN Series ATL001:15.

Pons, C. and Kutsche, R.-D. (2004). Traceability across refinement steps in UML
modeling. In UML Workshop in Software Model Engineering WiSME.

Quartel, D., Pires, L., Franken, H., and Vissers, C. (1995). An engineering
approach towards action refinement. In Distributed Computing Systems,
1995., Proceedings of the Fifth IEEE Computer Society Workshop on Future
Trends of, pages 266–273.

Raedts, I., Petkovic, M., Usenko, Y. S., van der Werf, J. M., Groote, J. F., and
Somers, L. (2007). Transformation of BPMN models for behaviour analysis.
MSVVEIS.

Recker, J. C. (2008). BPMN Modeling – Who, Where, How and Why. BPTrends,
5(3):1–8.

Redlich, D., Blair, G., Rashid, A., Molka, T., and Gilani, W. (2014). Research
challenges for business process models at run-time. In Bencomo, N., France,
R., Cheng, B., and Abmann, U., editors, Models at run.time, volume 8378 of
Lecture Notes in Computer Science, pages 208–236. Springer International
Publishing.

Regnell, B., Andersson, M., and Bergstrand, J. (1996). A hierarchical use case
model with graphical representation. In Engineering of Computer-Based
Systems,1996. Proceedings., IEEE Symposium and Workshop on, pages 270–
277.

Rittgen, P. (2008). From business process model to information systems model:
Integrating DEMO and UML. In Modern Systems Analysis and Design Tech-
nologies and Applications.

Rodŕıguez, A., de Guzmán, I. G.-R., Fernández-Medina, E., and Piattini, M.
(2010). Semi-formal transformation of secure business processes into analysis
class and use case models: An MDA approach. Information and Software
Technology, 52(9):945 – 971.

Rodŕıguez, A., Fernández-Medina, E., and Piattini, M. (2007). Towards CIM to
PIM transformation: From secure business processes defined in BPMN to
use-cases. In Business Process Management, pages 408–415.

173

Rodŕıguez, A., Fernández-Medina, E., and Piattini, M. (2008). Towards obtain-
ing analysis-level class and use case diagrams from business process models.
In Advances in Conceptual Modeling Challenges and Opportunities, volume
5232 of Lecture Notes in Computer Science, pages 103–112. Springer Berlin
Heidelberg.

Rolland, C. and Achour, C. B. (1998). Guiding the construction of textual use
case specifications. Data & Knowledge Engineering, 25:125 – 160.

Roussev, B. (2003). Generating ocl specifications and class diagrams from use
cases: A newtonian approach. In Proceedings of the 36th Annual Hawaii
International Conference on System Sciences, pages 10–pp. IEEE.

Rungworawut, W. and Senivongse, T. (2005). A guildeline to mapping business
process to UML class diagrams. In WSEAS Transactions on Computer,
volume 4, pages 526–1533.

Rungworawut, W. and Senivongse, T. (2006). Using ontology search in the design
of class diagram from business process model. In World Academy of science,
Engineering and Technology, volume 12, pages 165–170.

Russell, N., van der Aalst, W. M. P., ter Hofstede, A. H. M., and Wohed, P.
(2006). On the suitability of UML 2.0 activity diagrams for business process
modelling. In Proceedings of the 3rd Asia-Pacific conference on Conceptual
modelling - Volume 53, APCCM ’06, pages 95–104, Darlinghurst, Australia,
Australia. Australian Computer Society, Inc.

Samarasinghe, N. and Somé, S. S. (2005). Generating a domain model from a use
case model. In Intelligent and adaptive systems and software engineering.

Santos, M. Y. and Machado, R. J. (2010). On the derivation of class diagrams
from use cases and logical software architectures. In 2010 Fifth International
Conference on Software Engineering Advances.

Savié, D. and da Silva, A. R. (2012). Use case specification at different levels
of abstraction. In 2012 Eighth International Conference on the Quality of
Information and Communications Technology.

Scheer, A.-W. and Nüttgens, M. (2000). ARIS architecture and reference models
for business process management. Springer Science & Business Media.

Schmiedel, T. and vom Brocke, J. (2015). Business process management: Poten-
tials and challenges of driving innovation. In vom Brocke, J. and Schmiedel,
T., editors, BPM - Driving Innovation in a Digital World, Management for
Professionals, pages 3–15. Springer International Publishing.

174

Scott, J. E. (2007). Mobility, business process management, software sourcing,
and maturity model trends: Propositions for the is organization of the future.
Information Systems Management, 24(2):139–145.

Sendall, S. and Kozaczynski, W. (2003). Model transformation the heart and
soul of model-driven software development. Technical report, Swiss Federal
Institute of Technology in Lausanne (EPFL).

Shishkov, B., Xie, Z., Liu, K., and Dietz, J. L. (2002). Using norm analysis to
derive use cases from business processes. In Proceedings of the 5th Workshop
On Organizational Semiotics.

Silingas, D. and Butleris, R. (2008). UML-intensive framework for modeling
software requirements. In Proceedings of International Conference on Infor-
mation Technologies, pages 334–342.

Silva, A. and Videira, C. (2005). UML Metodologias e ferramentas CASE, vol-
ume 1. CentroAtlantico.pt, 2a edition.

Štolfa, S. and Vondrák, I. (2008). Mapping from business processes to require-
ments specification. Retrieved on 7th Aug.

Sturm, A. (2008). Enabling off-line business process analysis: A transformation-
based approach. Proceedings of BPMDS, 8:67.

ter Hofstede, A., van der Aalst, W., and Weske, M. (2003). Business process
management: A survey. In Weske, M., editor, Business Process Management,
volume 2678 of Lecture Notes in Computer Science, pages 1–12. Springer
Berlin Heidelberg.

Tiwari, S. and Gupta, A. (2015). A systematic literature review of use case
specifications research. Information and Software Technology, 67:128 – 158.

Truscan, D., Fernandes, J. M., and Lilius, J. (2004). Tool support for DFD-UML
model-based transformations. In Engineering of Computer-Based Systems,
2004. Proceedings. 11th IEEE International Conference and Workshop on
the, pages 388 – 397.

Vaishnavi, V. K. and Jr., W. K. (2008). Design Science Research Methods and
Patterns Innovating Information and Communication Technology. Auerbach
Publications.

van der Aa, H., Leopold, H., Mannhardt, F., and Reijers, H. (2015). On the
fragmentation of process information: Challenges, solutions, and outlook.
In Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., and Ma, Q., editors,
Enterprise, Business-Process and Information Systems Modeling, volume 214

175

of Lecture Notes in Business Information Processing, pages 3–18. Springer
International Publishing.

van der Aalst, W. (1999). Formalization and verification of event-driven process
chains. Information and Software Technology, 41(10):639–650.

van der Aalst, W. (2004). Business process management demystified: A tuto-
rial on models, systems and standards for workflow management. In Desel,
J., Reisig, W., and Rozenberg, G., editors, Lectures on Concurrency and
Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 1–65.
Springer Berlin Heidelberg.

van der Aalst, W. (2015). Business process simulation survival guide. In vom
Brocke, J. and Rosemann, M., editors, Handbook on Business Process Man-
agement 1, International Handbooks on Information Systems, pages 337–370.
Springer Berlin Heidelberg.

van der Aalst, W. M. (2003). Patterns and XPDL: A critical evaluation of the
XML process definition language. Technical report, Department of Technol-
ogy Management Eindhoven University of Technology, The Netherlands.

Venable, J. R. (2006). The role of theory and theorising in design science research.
First International Conference on Design Science Research in Information
Systems and Technology, Claremont, California., 1:1–18.

Weber, B., Reichert, M., Mendling, J., and Reijers, H. A. (2011). Refactoring
large process model repositories. Computers in Industry, 62(5):467–486.

Weske, M. (2012). Business Process Management Concepts, Languages, Archi-
tectures. Springer Science & Business Media.

Weske, M., van der Aalst, W., and Verbeek, H. (2004). Advances in business
process management. In Data & Knowledge Engineering, 50.

White, S. A. and Miers, D. (2008). BPMN Modeling and Reference Guide. Future
Strategies Inc.

Whittle, J. and Jayaraman, P. (2006). Generating hierarchical state machines
from use case charts. In Requirements Engineering, 14th IEEE International
Conference, pages 19–28.

Wise, A., Cass, A. G., Lerner, B. S., and McCall, E. K. (2000). Using little-jil to
coordinate agents in software engineering. Technical report, HP Laboratories
and IBM T. J. Watson Research Center.

176

Wise, A., Lerner, B. S., McCall, E. K., Osterweil, L. J., and Jr, S. M. S. (1999).
Specifying coordination in processes using little-jil. Department of Computer
Science, University of Massachusetts at Amherst, Technical Report, pages
99–71.

Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A., and Russell, N.
(2006). On the suitability of BPMN for business process modelling. In Dust-
dar, S., Fiadeiro, J., and Sheth, A., editors, Business Process Management,
volume 4102 of Lecture Notes in Computer Science, pages 161–176. Springer
Berlin Heidelberg.

Ying and Liang (2003). From use cases to classes: a way of building object model
with UML. Information and Software Technology, 45(2):83 – 93.

Yue, T., Briand, L., and Labiche, Y. (2009). A use case modeling approach to
facilitate the transition towards analysis models: Concepts and empirical
evaluation. In Schurr, A. and Selic, B., editors, Model Driven Engineering
Languages and Systems, volume 5795 of LNCS, pages 484–498. Springer
Berlin Heidelberg.

Yue, T., Briand, L., and Labiche, Y. (2011). A systematic review of transforma-
tion approaches between user requirements and analysis models. Require-
ments Engineering, 16:75–99.

Zowghi, D. and Coulin, C. (2005). Requirements elicitation: A survey of tech-
niques, approaches, and tools. In Aurumand, A. and Wohlin, C., editors,
Engineering and Managing Software Requirements, pages 19–46. Springer
Berlin Heidelberg.

177

178

Appendix A

Use Cases Model of the Library
Demonstration Case

Use case
Name

Use case Description

{U1.1} Check
Borrower
Documents

Actors: Borrower, Attendant
Trigger: Borrower wants to register
Scenario: Receives documents from <Borrower>.

{U1.2} Stores
Borrower

Actors: Borrower, Attendant
Pre-condition: Are Borrower documents OK? Is Yes.
Scenario: Writes information on <Borrower>.
Sends register confirmation to <Borrower>.

{U1.3}
Reject Regis-
tration

Actors: Borrower, Attendant
Pre-condition: Are documents OK? Is No.
Scenario: Sends message <documents not OK> to <Borrower>.

{U2.1} Check
Borrower
Identification

Actors: Borrower, Attendant
Trigger: The message request a book arrives from <Borrower>.
Scenario: Receives Borrower identification from <Borrower>.
Reads information from <Borrower>.

{U2.2} Check
Book status

Actors: Borrower, Attendant
Pre-condition: Borrower is register as member? is yes.
Scenario: Receives Book information from <Borrower>.
Reads information from <Book>.

179

Use case
Name

Use case Description

{U2.3} Regis-
ter Loan

Actors: Borrower, Attendant
Pre-condition: Is book available? is yes.
Scenario: Writes information on <Loan>.
Sends loan information to <Borrower>.

{U.2.4} Deny
Loan

Actors: Borrower, Attendant
Pre-condition: Borrower is register as member? is No.
Scenario: Sends message you must be registered to <Borrower>.

{U2.5} In-
form book
not available

Actors: Borrower, Attendant
Pre-condition: Is book available? is no.
Scenario: Sends message book not available to <Borrower>.

U3.1 Receives
reservation
request

Actors: Borrower, Attendant
Trigger: The event start process occurs.
Scenario: Receives the message I want to reserve a book from
<Borrower>.

{U3.2} Check
Book

Actors: Attendant
Pre-condition: Is borrower registered as a member? Is yes.
Scenario: Reads information from <Book>.

{U3.3} Check
Borrower

Actors: Attendant
Pre-condition: Receives reservation request is completed.
Scenario: Reads information from <Borrower>.

{U3.4} Add
reservation

Actors: Borrower, Attendant
Pre-condition: Is it possible to reserve the Book? is Yes.
Pos-condition: The event End process is created.
Scenario: Writes information on <Reservation>.
Send the message Book is reserved to <Borrower>.

{U3.5} Deny
reservation

Actors: Borrower, Attendant
Pre-condition: Is it possible to reserve the Book? is No.
Scenario: Send the message You must be registered to
<Borrower>.
Send message book is not available to <Borrower>.

{U4.1}
Receive re-
turned book

Actors: Attendant
Trigger: The message return a book arrives from <Borrower>.

180

Use case
Name

Use case Description

{U4.2} Check
for delivery
delay

Actors: Attendant
Pre-condition: Search for book’s active loan is completed.
Scenario: Reads information from <Loan>.

{U4.3.1} cal-
culate fine

Actors: Borrower, Attendant
Pre-condition: Get loan info is completed.
Scenario: Send value of the fine to <Borrower>.

{U4.3.2} Col-
lects payment

Actors: Borrower, Attendant
Pre-condition: Calculate fine is completed.
Scenario: Receives payment from <Borrower>.

{U4.3.3} Pass
receipt

Actors: Borrower, Attendant
Pre-condition: Collects payment is completed.
Scenario: Writes information on <Receipt>.
Send receipt to <Borrower>.

{U4.3.4} Get
loan info

Actors: Attendant
Pre-condition: The delivery date has been exceeded? is yes.
Scenario: Reads information from <Loan>.

{U4.4} Up-
date Loan
info

Actors: Borrower, Attendant
Pre-condition: The Penalty treatment is completed OR The de-
livery date has been exceeded? is no.
Pos-condition: The event End process is created.
Scenario: Writes information on <Loan>.

{U4.5}
Search for
book’s active
loan

Actors: Attendant
Pre-condition: The receive returned book is completed.
Scenario: Reads information from <Loan>.

{U5.1} Re-
ceive renew
loan request

Actors: Borrower, Attendant
Trigger: The message I want to renew a loan arrives from
<Borrower>.
Scenario: Receives Loan infromation from <Borrower>.

181

Use case
Name

Use case Description

{U5.2} Check
for reserva-
tions

Actors: Attendant
Pre-condition: The receive loan info is completed.
Scenario: Reads information from <Reservation>.

{U5.3} Check
delivery date

Actors: Attendant
Pre-condition: Is the Book reserved? is No.
Scenario: Reads information from <Loan>.

{U5.4} Loan
not renewed

Actors: Borrower, Attendant
Pre-condition: Is the Book reserved? is Yes OR Is delivery date
exceeded? is Yes.
Pos-condition: The event End process is created.
Scenario: Send message can´t renew Loan to <Borrower>.

{U5.5} Up-
date delivery
date

Actors: Borrower, Attendant
Pre-condition: Is the delivery date exceeded? is NO
Pos-condition: The event End process is created.
Scenario: Writes information on <Loan>.
Sends new delivery date to <Borrower>.

182

Figure A.1: A use case diagram of the Library Demonstration Case

183

	Página 1
	Página 2
	Página 3
	Página 4
	TeseCorrigida_21072016.pdf
	Introduction
	Research Motivation
	Research Questions
	Research Objectives
	Research Method
	Overview of the Document

	Notations and Languages for Modeling Information Systems
	Introduction
	Business Process Management
	Business Models
	Business Process Modeling
	Modeling Languages
	Final Remarks

	Deriving Models in Information Systems Development
	Introduction
	From Business Process Models to Software Models
	From Business Process Models to Data Models
	From Business Process Models to Use Case Models
	From Use Case Models to other Software Models
	Use Case Models Decomposition
	The 4SRS method
	Final Remarks

	Deriving a Data Model from Business Process Models
	Introduction
	Deriving a Data Model from one Business Process Model
	Demonstration Cases with one Business Process Model
	Deriving a Data Model from a Set of Interrelated Business Process Models
	Demonstration Case with a Set of Business Process Models
	Analyzing the Results
	Final Remarks

	Deriving a Data Model from a Logical Software Architecture
	Introduction
	From Business Process Models to a Use Case Model
	Getting Use Case Descriptions of the Nobel Prize Demonstration Case
	Adapting and Extending the 4SRS to Derive a Data Model
	Demonstration Case Aggregating a Set of Business Process Models
	Final Remarks

	Deriving a Logical Software Architecture from Business Process Models
	Introduction
	Extending the UML 2.5 Use Case Meta-model
	The Decomposition Triangle approach
	The 4SRS Method and the Decomposition Triangle
	Deriving a Use Case Model from a Set of Interrelated Business Process Models
	Demonstration Case Aggregating a Set of Business Process Models
	Final Remarks

	Conclusion and Future Work
	Overview of the Undertaken Work
	Results and Contributions to the State of the Art
	Future Work

	References
	Appendix
	Use Cases Model of the Library Demonstration Case

