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ABSTRACT  

Coffee has been one of the most popular beverages around the world since ancient times. It is 

made from a mixture of hot water and coffee powder being consumed for its refreshing and 

stimulating properties. However, along its production process many wastes are generated. Spent 

coffee ground is the major waste produced during the soluble coffee preparation. This residue is 

rich in polysaccharides and polyphenols, making its use interesting as raw material for the 

production of edible films and coatings for foods. Nowadays, food packaging industries explore 

edible coatings to replace the synthetic liners, in order to protect the environment and offer 

consumers a product of high quality, while reducing synthetic chemical preservatives. Therefore, 

this project aims at the extraction of polysaccharides and phenolic compounds from spent coffee 

grounds and their incorporation into edible films and coatings for further application on goldenberry 

fruit (Physalis peruviana) in order to increase its shelf-life.  

The thesis work is based on a sequence of tasks, starting by the characterization of two coffee 

residues (i.e. spent coffee grounds (SCG) and coffee silverskin (CS)) in order to have a detailed 

knowledge of their chemical composition and functional properties and then, choosing the residue 

with the highest polysaccharide content and antioxidant activity. After having selected SGC as the 

residue of interest, two different techniques were tested to extract polysaccharides from SCG, 

including an alkali pretreatment and autohydrolysis, being the later used to extract the phenolic 

compounds. The polysaccharides and phenolic compounds were characterized in terms of their 

physicochemical and functional properties, including antioxidant and antimicrobial activities. The 

extracted phenolic compounds were encapsulated in maltodextrin and gum arabic matrices using 

freeze-drying and spray-drying processes and then, the encapsulation efficiency was evaluated. On 

the other hand, different concentrations of the polysaccharides extracted were incorporated in 

carboxymethyl cellulose (CMC)-based films and their effect on the films properties were evaluated. 

Finally, the influence of three coatings on physicochemical and microbiological properties and gas 

exchange rate of goldenberry (Physalis peruviana) was determined at different temperatures and 

relative humidities (RH) of storage. The tested coatings were: coating A (CMC-based coating), 

coating B (CMC-based coating with a selected polysaccharide concentration in the previous step) 
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and coating C (CMC-based coating with the selected polysaccharide concentration and phenolic 

compounds encapsulated). 

Results showed that SCG residues are sugar-rich lignocellulosic materials, composed by high levels 

of insoluble and soluble dietary fibers with interesting functional properties. The methods and 

conditions used to extract polysaccharides and phenolic compounds from SCG showed to be 

efficient (39% and 29% (w/w) of recovered polysaccharides by alkali pretreatment and 

autohydrolysis, respectively, and 41.36 mg/g SCG of phenolic compounds). The most relevant 

sugar recovered from both methods was galactose, followed by arabinose, mannose and glucose, 

while chlorogenic acid and flavonoids content were among the recovered phenolic compounds with 

high antioxidant activity. The results also indicated that the extracted polysaccharides presented 

good thermal stability. Additionally, these polysaccharides showed high antioxidant activity and 

antimicrobial against P. violacea and C. cladosporioides, making them attractive bioactive 

compounds. Although freeze-drying and spray-drying showed to be appropriated techniques for 

encapsulation of phenolic compounds, in this case, the use of maltodextrin as wall material and 

freeze-drying as encapsulation method showed the best encapsulation efficiency. In general, the 

addition of polysaccharide from SCG in CMC-based films improved and/or maintained the 

physicochemical properties of the edible films when comparing with CMC-based films without 

polysaccharides from SCG, reducing the water solubility of the films and acting as a light barrier. 

The results showed lower gas transfer rates (O2, CO2 and ethylene) for the coated fruits in 

comparison with the uncoated fruits when using a storage temperature of 20 °C and a RH of 65%. 

Physicochemical properties of goldenberries with or without coatings present significant changes 

regarding weight loss and the microbiological contamination, being both reduced, in particular when 

the coating B was applied.  

In conclusion, polysaccharides and polyphenols extracted from SCG can be used as raw materials 

in the production of edible films/coatings for application on goldenberries turning these coatings 

into a promising way to replace synthetic packaging materials.  
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RESUMO 

Desde a antiguidade que o café tem sido uma das bebidas mais populares em todo o mundo. Esta 

bebida é obtida a partir da mistura de água quente com café em pó e é consumida essencialmente 

devido às suas propriedades estimulantes. Contudo, durante o processo de preparação do café 

solúvel são gerados resíduos (as borras de café) que possuem uma composição química rica em 

polissacarídeos e polifenois que podem ter potencial como matéria-prima na produção de filmes e 

revestimentos comestíveis. Este projeto teve como principal objetivo a extração de polissacarídeos 

e compostos fenólicos da borra de café e a sua posterior incorporação em filmes e revestimentos 

comestíveis para aplicação em fruta fisális (Physalis peruviana),. com o objectivo de aumentar o 

tempo de prateleira.  

O trabalho desenvolvido baseou-se numa série de tarefas que começaram com a caracterização 

de dois resíduos de café (borra (SCG) e película (CS)) nomeadamente a sua composição química 

e características funcionais. Estes resultados permitiram selecionar a borra de café como o resíduo 

com maior conteúdo de polissacarídeos e atividade antioxidante. A extração dos polissacarídeos 

presentes na borra foi realizada através de duas técnicas: tratamento alcalino e auto-hidrólise, 

sendo esta última também usada para extrair os compostos fenólicos. Ambos os compostos foram 

caracterizados em termos de propriedades físico-quimicas e funcionais, tais como a atividade 

antioxidante e antimicrobiana. Os compostos fenólicos extraídos da borra de café foram 

encapsulados em matrizes de maltodextrina e goma-arábica usando liofilização e secagem por 

pulverização, sendo posteriormente avaliada a eficiência de encapsulação. Por outro lado, foram 

usadas diferentes concentrações dos polissacarídeos extraidos na produção de filmes de 

carboximetilcelulose (CMC), e posteriormente avaliado o seu efeito nas propriedades dos filmes e 

revestimentos. Finalmente, foi estudado o impacto da aplicação de três revestimentos nas 

propriedades físico-químicas e microbiológicas da fruta fisális (Physalis peruviana), bem como o 

seu efeito na taxa de trocas gasosas da fruta quando armazenada a diferentes temperaturas e 

humidades relativas (RH). Os revestimentos estudados foram: revestimento A (revestimento de 

CMC), revestimento B (revestimento de CMC com a concentração de polissacarídeos selecionada 
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na etapa anterior) e revestimento C (revestimento de CMC contendo a concentração de 

polissacarídeos selecionada e os compostos fenólicos encapsulados). 

O trabalho desenvolvido mostrou que as borras de café são materiais lignocelulósicos ricos em 

açúcares e apresentam propriedades funcionais interessantes. As metodologias e condições 

experimentais usadas na extração dos polissacarídeos e compostos fenólicos a partir das borras 

de café revelaram-se eficazes (39% e 29%  de polissacáridos recuperados por pelo tratamento 

alcalino e auto-hidrólise, respectivamente, e 41,36 mg/g SCG de compostos fenólicos). O principal 

açúcar obtido pelos dois métodos foi galactose, seguido por arabinose, manose e glicose. Por outro 

lado, a elevada quantidade de compostos fenólicos obtidos mostrou ser constituída, em parte, por 

ácido clorogénico e flavonóides. Os resultados obtidos também demonstraram que os 

polissacarídeos extraídos apresentam boa estabilidade térmica. Para além disso, estes 

polissacarídeos possuem elevada atividade antioxidante e antimicrobiana contra P. violacea and C. 

cladosporioides, mostrando ser um composto bioactivo com elevado potencial. A liofilização e a 

secagem por pulverização mostraram ser técnicas adequadas à encapsulação de compostos 

fenólicos, no entanto a liofilização e o uso de maltodextrina como material encapsulante, revelaram 

a melhor eficiência de encapsulação. De um modo geral, a adição de polissacarídeos da borra de 

café a filmes de CMC melhorou e/ou manteve as propriedades físico-químicas destes filmes, 

quando comparados com o filme de CMC sem estes compostos, sendo a solubilidade em água, a 

cor e opacidade as propriedades onde mostraram mais influência. Os resultados mostraram 

também menores taxas de trocas gasosas (O2, CO2 e etileno) para  frutas revestidas em comparação 

com frutas não revestidas quando armazenadas a 20 ºC e 65% RH. As frutas revestidas mostram 

melhorias comparativamente com as não revestidas, apresentando alterações significativas sobre 

a perda de peso e a contaminação microbiológica, tendo sido ambas reduzidas com a aplicação 

do revestimento, em particular quando se utilizou o revestimento B. 

Em suma, os polissacarídeos e os polifenóis extraídos das borras de café podem ser usados como 

matéria-prima na produção de filmes/revestimentos comestíveis para aplicação em fruta fisális, 

podendo estes revestimentos ser apresentados como substitutos para materiais de embalagem 

sintéticos. 
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LIST OF GENERAL NOMENCLATURE 

 

ABBREVIATION  DESCRIPTION 

ABTS   2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt 

AOAC   Association of Official Analytical Chemists 

BHA   Tert-butyl-4-methoxyphenol 

BHT   2,6-Di-tert-butyl-4-methylphenol 

CFU   Colony forming unit 

CMC   Carboxymethyl cellulose 

COATING A  CMC-based edible coating 

COATING B  CMC-based edible coating with incorporation of PA (0.20 %, w/v) 

COATING C  (CMC-based coating containing PA and PE (PA 0.20% + PE 0.20%, w/v)). 

CS   Coffee silverskin 

DCPIP   2,6-dichlorophenolindophenol 

DNS   3,5-dinitrosalicylic acid 

DPPH   2,2-diphenyl-1-picrylhydrazyl 

DRBC   Dichloran Rose Bengal Chloramphenicol agar 

DSC   Differential scanning calorimetry  

EA   Emulsifying activity 

EB   Elongation at break 

ES   Emulsion stability 

Fe(II)   Ferrous equivalent 

FLA   Content of flavonoid  

FRAP   Ferric reducing antioxidant power 

FTIR   Fourier transform infrared spectroscopy  

GA   Gum arabic 

GAE   Gallic acid equivalents 
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GLU   Glucose equivalent 

HPLC   High performance liquid chromatography 

IC50   Inhibition concentration at 50% 

ICDD   International Centre for Diffraction Data 

ICP-AES   Inductively coupled plasma atomic emission spectrometry 

IDF   Insoluble dietary fiber 

LM   Lyophilized material 

M   Maltodextrin 

MIC   Minimal inhibitory concentration 

OHC   Oil holding capacity  

PA   Polysaccharides obtained by alkali pretreatment 

PB   Polysaccharides obtained by autohydrolysis 

PC   Phenolic compounds 

PCA    Plate Count Agar 

PDA   Potato dextrose agar 

PE Phenolic compounds encapsulated in maltodextrin by freeze-drying 

QE   Quercetin 

RH   Relative humidity 

RS   Reducing sugars 

SCG   Spent coffee grounds 

SDF   Soluble dietary fiber  

SEM   Scanning electron microscopy 

TAA   Total antioxidant activity  

TDF   Total dietary fiber 

TE   Trolox equivalents 

TGA   Thermogravimetric analyses 

TOC   α-tocopherol equivalent 

TS   Tensile strength 

WHC   Water holding capacity 
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WVP   Water vapor permeability 

WVTR   Water vapor transmission rate 

XRD   X-ray diffraction  

 

SYMBOL   DESCRIPTION 

Ac   Absorbance of the control  

As   Absorbance of the sample  

aw   Water activity 

𝐵   Content of soluble solids 

𝐶   Constant of Guggenheim  

𝜌𝐺𝐵   Density of goldenberry 

𝐺   Mean relative deviation modulus 

𝑘   Constant of correction 

L*, a*, b*   Color parameters 

𝑀   Equilibrium moisture content 

𝑀𝑎   Moisture content 

𝑀𝐷𝑃   Moisture of the sample after drying process 

𝑀𝑚    Monolayer moisture content 

𝑀𝑝   Predicted moisture content 

𝑛   Number of observations 

   Contact angle 

SBET   Specific surface area 

𝑅𝐶𝑂2
   CO2 production rate 

𝑅𝑒𝑡ℎ𝑦 
 

   Ethylene production rate 

𝑅𝑂2
   O2 consumption rate 

𝛾𝑐    Critical surface tension 

𝛾𝐿𝑉    Liquid-vapor interfacial tension 
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𝛾𝑆𝐿    Solid-liquid interfacial tension 

𝛾𝑆𝑉    Solid-vapor interfacial tension 

𝛾𝐿
𝑝   Polar component of the liquid 

𝛾𝐿
𝑑   Dispersive component of the liquid 

𝛾𝑆
𝑝   Polar component of the surface 

𝛾𝑆
𝑑   Dispersive component of the surface 

𝑉𝐶     Total volume of the container 

𝑉𝑓   Free volume of the container 

𝑊𝑎    Work of adhesion 

𝑊𝑐   Work of cohesion 

𝑤𝐺𝐵   Weight of the fruit 

𝑊𝑃    Mass of powder to hydrate 

𝑊𝑠   Spreading coefficient 

W1   Average weight of the sample 

W2    Average final weight of the sample 

W3      Protein weight 

W4     Ash weight  

W5    Blank weight 

Yb   Black standard 

Yw   White standard 

Y1   Total yield of the extraction process 

Y2  Yield in terms of quantity of sugars extracted during processing 

Y3 Yield in terms of quantity of sugars extracted with respect to total sugars 

existent in SCG 
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STRUCTURE OF THE THESIS 

 

This thesis is divided in six sections in order to provide a logical sequence of developed 

work including the characterization of coffee residues (spent coffee grounds and coffee silverskin), 

the extraction processes of polysaccharides and phenolic compounds, the evaluation of the 

chemical and functional properties of these compounds and the development of a system for their 

application in foods. Each section is subdivided in chapters, to a total of ten chapters. Seven of 

them (from Chapter 3 to Chapter 9) describe the experimental results completed during this study 

and their respective discussion. They given origin to papers published and submitted in peer-

reviewed international journals. In the beginning of each chapter, the reference to the correspondent 

paper is done.   

Section I is formed by Chapter 1 and Chapter 2. The first one corresponds to the motivation 

and the objectives of this thesis. Chapter 2 presents an overview on the coffee and coffee residues, 

mainly spent coffee grounds and coffee silverskin, their exploitation and possible uses. Moreover, 

it describes the polysaccharides and phenolic compounds present in coffee beans, the extraction 

and encapsulation processes, the relevance of edible coatings/films, their components and 

applications. 

Section II (Chapter 3) consists in the evaluation of the chemical composition, functional 

properties and structural characteristics of spent coffee grounds and coffee silverskin, in order to 

obtain more detailed information about these materials and identify potential industrial areas for 

their reutilization. After this characterization, spent coffee grounds was selected as the most suitable 

material for this study due to the high hemicellulose content and antioxidant activity. 

Section III (Chapter 4 and Chapter 5) is dedicated to the polysaccharides present in spent 

coffee grounds. Thus, Chapter 4 reports the extraction of polysaccharides from spent coffee 

grounds by using autohydrolysis technique. Assays were performed using different temperatures, 

liquid/solid ratios and extraction times and the effects of these operational variables on the 

extraction yield and antioxidant activity of the recovered polysaccharides were determined. The 
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polysaccharides obtained under the best autohydrolysis conditions were chemically and structurally 

characterized. Chapter 5 includes the extraction of polysaccharides from spent coffee grounds by 

using an alkali pretreatment, followed by the evaluation of their chemical and structural 

characteristics, as well as the determination of the antioxidant and antimicrobial properties of these 

polysaccharides. 

 

Section IV (Chapter 6 and Chapter 7) is designated for phenolic compounds. Chapter 6 

shows the optimization of process conditions to extract antioxidant phenolic compounds from spent 

coffee grounds by autohydrolysis. Extractions were performed using different temperatures, 

liquid/solid ratios and reaction times and the effects of these operational variables on the extraction 

results were evaluated. Finally, the conditions able to produce a phenolic rich extract with high 

antioxidant activity were selected. Chapter 7 analyzes freeze-drying and spray-drying as methods to 

encapsulate phenolic compounds extracted from spent coffee grounds and evaluates the use of 

maltodextrin and gum arabic as wall materials to encapsulate these bioactive compounds and 

maintain their antioxidant activity after encapsulation.  

 

Section V (Chapter 8 and Chapter 9) is related to the production of edible films/coatings 

for food applications. Chapter 8 reports the development of CMC-based films with incorporation of 

polysaccharide rich extracts obtained by two different methodologies (alkali pretreatment and 

autohydrolysis, Section III) and evaluates their effect on the physicochemical properties of the films 

when using different concentration of spent coffee grounds extracts. Chapter 9 evaluates the 

application of three different coatings (CMC-based coating, CMC-based coating with the selected 

polysaccharide extract, and CMC-based coating containing the selected polysaccharide extract and 

the phenolic compounds encapsulated in maltodextrin) on physicochemical and microbiological 

properties and the gas exchange rate of goldenberry ((Physalis peruviana) when subjected at 

different temperatures and relative humidities. 

 

Finally, Section VI (Chapter 10) presents the main conclusions of the thesis and the future 

perspectives of this work. 
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1. Motivation and objectives 

 

1.1. Motivation 

During the last years, the use of agro-industrial by-products has gained great interest in the 

food packaging industry and related areas due to their chemical and functional properties. In this 

context, this thesis proposes to add value to one of the most abundant residues of coffee industry 

such as the spent coffee grounds (SCG). This waste is obtained during the processing of coffee 

powder with hot water to prepare instant coffee. Currently, the market of this kind of coffee around 

the world is increasing, which in turn generates around 6,000,000 tons/year of SCG (Mussatto, 

Machado, Martins, & Teixeira, 2011; Tokimoto, Kawasaki, Nakamura, Akutagawa, & Tanada, 

2005). This residue has been used to produce fuel for industrial boilers due to its high calorific 

power of approx. 5000 kcal/kg (Silva, Nebra, Silva, & Sanchez, 1998), as substrate for cultivation 

of microorganisms (Machado, Rodriguez-Jasso, Teixeira, & Mussatto, 2012), and as raw material 

to produce fuel ethanol (Mussatto, Machado, Carneiro, & Teixeira, 2012) or a distilled beverage 

with aroma of coffee (Sampaio et al., 2013), among others. However, SCG is not fully used, making 

it a dominant source of pollution. A good alternative to utilize SCG might be recovering the 

polysaccharides and phenolic compounds present in its composition and use them as raw materials 

for production of edible films and coatings, which could be attractive for food industry, stimulating 

economy and competitive agro-industrial production. 

At this time, food packaging industry is looking for natural films and coatings which can 

replace synthetic packaging in order to protect the environment and offer to consumers high quality 

products, reducing synthetic chemical preservatives (Ghanbarzadeh, Almasi, & Entezami, 2010). 

These packages can be applied in a large number of foods, especially fruits, vegetables, meat, fish, 

seafood, cereals and nuts among others, which are exported to others countries, requiring a safe 

protection for an efficient distribution. 

Films and coatings are ideal as they can increase the shelf-life of food, reduce microbial 

contamination and maintain the organoleptic properties (aroma, flavor, color) for a longer time 
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(Cerqueira, Lima, Teixeira, Moreira, & Vicente, 2009; Durango Villadiego, Soares, & Andrade, 2009; 

Rojas-Graü, Tapia, & Martín-Belloso, 2008; Vásconez, Flores, Campos, Alvarado, & Gerschenson, 

2009). These coatings are good alternatives to preserve the properties of foods that are exported 

to different countries, as well as those that are consumed within the same country, reducing 

transport costs and increasing storage time. 

Therefore, this work tries to raise some of these possibilities through the extraction and 

characterization of polysaccharides and phenolic compounds from spent coffee grounds and their 

incorporation into carboxymethyl cellulose (CMC)-based films that besides improving physical 

properties of the films could create new functionalities, opening the possible application of this 

system in food industry. The possible application of the developed coatings in foods will be tested 

on goldenberries (Physalis peruviana). Goldenberry is a fruit that has a short shelf-life without calyx 

(protective cover enclosing each berry) and that for an optimum preservation requires a continuous 

cold chain (Puente et al., 2011).  

In conclusion, the work developed during this thesis could be of great scientific and 

technological interest and provide significant advances for the agro-industrial sector and food 

packaging industries, promoting the use of a biodegradable and/or edible packaging.  

 

1.2. Objectives  

The main objective of this thesis was to extract and characterize polysaccharides and 

phenolic compounds from spent coffee grounds and incorporate them into edible films or coatings 

for food applications. This incorporation allowed the production and characterization of edible 

coatings/films that were used to improve the shelf-life of goldenberry (Physalis peruviana). To 

achieve the main objective, this thesis was focused on: 

 

• Characterization of chemical, functional and structural properties of coffee residues, 

including spent coffee grounds and coffee silverskin. 
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• Extraction of polysaccharides from spent coffee grounds by using autohydrolysis 

technique and an alkali pretreatment. 

• Evaluation of the chemical, structural, antioxidant and antimicrobial properties of 

extracted polysaccharides. 

• Extraction of total phenolic compounds from spent coffee grounds by using autohydrolysis 

technique and determination of their antioxidant properties. 

• Evaluation of freeze-drying and spray-drying as methods to encapsulate the phenolic 

compounds extracted using different coating materials.  

• Incorporation of the extracted polysaccharides in bio-based edible films and evaluation 

of their physicochemical properties. 

• Study of the effect of different coatings on shelf-life parameters of goldenberry (Physalis 

peruviana) during storage. 

 

A schematic summary of the thesis is presented in Figure 1.1. 

. 
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Figure 1.1 Flow-chart of the schematic summary of the thesis 
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2. Literature review 

 

2.1. Coffee production 

Coffee is one of the most popular and appreciated beverages around the world, being 

consumed for its stimulating and refreshing properties, which are defined by the green beans 

composition and changes occurring during the roasting process (Esquivel & Jiménez, 2012;  

Mussatto, Machado, Martins, & Teixeira, 2011a).  

The coffee processing begins with the harvest of red coffee fruit, also known as cherry, 

produced by the plant of the botanical genus Coffea. The two species most commonly grown are 

Coffea arabica (Arabica) and Coffea canephora (Robusta). The first of them, is considered the variety 

with better sensory quality among all coffee plants and corresponds to approximately 75% of the 

worldwide coffee production (Mussatto & Teixeira, 2013). On the other hand, Robusta is a variety 

more acid, stronger and hardy, and represents the remaining 25%.  

Wet process or dry process are the implemented methods by the coffee industry for the 

treatment of coffee cherries in order to obtain a green coffee. Dry method is technologically simpler 

comparing with the wet method and usually is used for Robusta variety (Mussatto, Machado, et al., 

2011a). Wet method, generally used for Arabica coffee beans involves several stages including a 

microbial fermentation, which provides a better aroma quality (Gonzalez-Rios et al., 2007). In spite 

of the differences between the dry or wet method processing methods, both technologies generate 

by-products such as coffee pulp, hush, and parchment. Other important residues including coffee 

silverskin and spent coffee grounds are produce during coffee roasting step and soluble coffee 

preparation, respectively.   

Currently, 56 countries around the world are producers of coffee, and for some of them, 

coffee is the main agricultural export product. The 10 largest coffee producing countries and their 

respective production in the last five years (2010 - 2015) are shown in Table 2.1. These countries 

are responsible for nearly 90% of the total worldwide production. The first, second and third largest 

coffee producers are Brazil, Vietnam and Colombia, respectively, controlling almost 60% of all world 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 2 - LITERATURE REVIEW 

P a g e  | 14 Lina F. Ballesteros, 2016 

 

production (ICO, 2016). According to International Coffee Organization (ICO), the world production 

of coffee in 2015 increased 7% with respect to the production achieved in 2010 (Table 2.1). 

 

Table 2.1 Annual worldwide coffee production (2010 – 2015) 

Countries Production 

 2010  2011     2012    2013    2014   2015 

Brazil 48,095    43,484    50,826   49,152   45,639  43,235 

Vietnam 20,000    26,500    25,000   27,500   26,500  27,500 

Colombia   8,523      7,652      9,927   12,124   13,333  13,500 

Indonesia   9,129      7,288    13,048   11,449   10,365  11,000 

Ethiopia   7,500      6,798      6,233     6,527     6,625    6,400 

India   5,033      5,233      5,303     5,075     5,450    5,833 

Honduras   4,331      5,903      4,537     4,568     5,400    5,750 

Mexico   4,001      4,563      4,327     3,916     3,600    3,900 

Guatemala   3,950      3,840      3,743     3,159     3,288    3,400 

Peru   4,069      5,373      4,453     4,338     2,883    3,200 

Nicaragua   1,638      2,193      1,991     1,941     2,050    2,175 

Côte d´Ivoire      982      1,966      2,072     2,107     1,750    1,800 

Costa Rica   1,392      1,462      1,571     1,444     1,408    1,492 

Other countries 15,346    14,667    14,922   13,315   13,085  14,186 

Total  133,989  136,922  147,953 146,615 141,376 143,371 

Source: ICO (2016).  

Values in thousand 60 kg bags. 

 

As a consequence of this big coffee production worldwide, enormous quantities of residues 

are generated. More than 70% of coffee cherry beans turn into waste materials (Rodríguez & 

Zambrano, 2013). On the other hand, it is estimated that during the soluble coffee production, 1 

ton of green coffee generates approximately 650 Kg (dry matter) of spent coffee grounds (Mussatto, 

2015). 

 

2.2.  Coffee residues and their applications 

As a consequence of the big worldwide coffee production (Table 2.1), coffee industry is 

responsible to generate large quantities of by-products during the different stages to which coffee 

beans are subjected. Therefore, husks, pulp, parchment, silverskin and spent coffee grounds 
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residues appear along the processing of coffee cherry beans (by wet or dry process), their roasting 

and beverage preparation. 

Spent coffee grounds (SCG) and coffee silverskin (CS) are the residues generated in larger 

amounts. SCG is the residual material obtained during the treatment of coffee powder with hot 

water or steam for the instant coffee preparation. Almost 50% of the worldwide coffee production is 

processed for soluble coffee preparation, which generates around 6 million tons of SCG per year 

(Mussatto, Machado, et al., 2011a; Tokimoto, Kawasaki, Nakamura, Akutagawa, & Tanada, 2005). 

On the other hand, CS is a thin tegument of the outer layer of green coffee beans obtained as a by-

product of the roasting process (Mussatto, Machado, et al., 2011a) and represents about 4.2% 

(w/w) of fresh coffee beans (Rodríguez & Zambrano, 2013).  

 

 

 

Figure 2.1. Generation of spent coffee grounds and coffee silverskin during coffee cherry processing 
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SCG could be used, for example, to produce fuel for industrial boilers due to its high calorific 

power of approx. 5000 kcal/kg (Silva, Nebra, Silva, & Sanchez, 1998) and fuel ethanol (Mussatto, 

Machado, Carneiro, & Teixeira, 2012b) and to produce mannitol (Arya & Rao, 2007), which is a 

special chemical with a wide variety of uses in the food industry. It has been also used as substrate 

for cultivation of microorganisms (Machado, Rodriguez-Jasso, Teixeira, & Mussatto, 2012),  as 

support for anaerobic microorganisms in the treatment of wastewater (Hein & Gatzweiler, 2006) 

and as raw material to produce fuel ethanol  or a distilled beverage with aroma of coffee (Sampaio 

et al., 2013). CS could be used as substrate for cultivation of microorganisms in order to release 

phenolic compounds (Machado et al., 2012) or to produce enzymes (Mussatto et al., 2013) and 

fructooligosaccharides (Mussatto et al., 2013; Mussatto & Teixeira, 2010), or as raw material to 

produce fuel ethanol (Mussatto et al., 2012). Some researchers have explored the use of CS as 

functional ingredient due to its high content of soluble dietary fiber and marked antioxidant capacity 

(Borrelli, Esposito, Napolitano, Ritieni, & Fogliano, 2004). 

In spite of these possible applications, SCG and CS are still underutilized as valuable 

material for industrial processes. 

 

2.3. Chemical composition of coffee beans 

The main chemical constituents of coffee beans include polysaccharides (cellulose and 

hemicellulose), lignin, proteins and lipids, as well as phenolic compounds, minerals and caffeine 

among others. During coffee roasting processing several changes in the chemical composition of 

coffee beans occur (Table 2.2). Therefore, some of the compounds present in green coffee are 

transformed, or even destroyed, due to the high temperatures used in the coffee roasting step. 

Additionally, roasting processing promotes moisture loss and changes in the color, volume, mass, 

form, pH and density (Mussatto & Teixeira, 2013) and generates the presence of pigments, 

polyphenols, polypeptides and volatile compounds that significantly improve the organoleptic quality 

of the final product. 
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Table 2.2. Chemical composition of green and roasted coffee beans 

Chemical  

component 

      Green 

     coffee 

               Roasted 

    coffee 

   Arabica   Robusta     Arabica    Robusta 

Polysaccharides  34.0 – 44.0 48.0 – 55.0 31.0 – 33.0 37.0 

Sucrose    6.0  –  9.0   0.9  –  4.0   4.2   1.6 

Reducing sugars    0.1   0.4   0.3   0.3 

Lignin    3.0   3.0    3.0   3.0 

Protein  10.0 – 11.0 11.0 – 15.0    7.5 – 10.0   7.5 – 10.0 

Lipids  15.0 – 17.0   7.0 – 10.0    17.0 11.0 

Chlorogenic acid    4.1  –  7.9   6.1 – 11.3    1.9  –  2.5   3.3  –  3.8 

Caffeine    0.9  –  1.3   1.5  –  2.5    1.1  –  1.3   2.4  –  2.5 

Trigonelline    0.6  –  2.0   0.6  –  0.7    0.2  –  1.2   0.7  –  0.3 

Others compounds    7.7 – 26.3 21.5  27.5 – 33.8 30.5 – 33.2 

Source: Adapted from Farah, A. (2012). 

Values are expressed in percent dry weigh basis. 

   

 

The majority of coffee properties have been attributed to the presence of caffeine, i.e. its 

stimulating characteristic. However, some studies have revealed the great functional potential of 

other chemical compounds identified in the coffee brew such as polysaccharides (Gniechwitz, 

Reichardt, Blaut, Steinhart, & Bunzel, 2007; Simões et al., 2009) and phenolic compounds (Farah 

& Donangelo, 2006). These compounds result very attractive for chemical, pharmaceutical and 

food industries since they have multiple biological effects and are beneficial to human health.  

 

2.3.1.  Polysaccharides  

Coffee is considered an important source of polysaccharides, mainly galactomannans, 

arabinogalactans, and cellulose (Arya & Rao, 2007; Nunes, Domingues, & Coimbra, 2005). They 

comprise almost 50% of the dry weight of green coffee beans (Wolfrom & Patin, 1965; Farah, 2012). 

There is not a significant difference in the polysaccharide content from Arabica and Robusta beans. 

However, the postharvest processing used (wet or dry method) can affect the extractability of water-

soluble polysaccharides from both green coffee beans (Tarzia, Dos Santos Scholz & Oliveira 

Petkowicz, 2010). 
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Green coffee galactomannans (Figure 2.2) are mainly composed by a backbone of β-

(1→4)-linked mannose residues containing single galactose side groups with different degrees of 

branching (Moreira, Nunes, Domingues, & Coimbra, 2012; Nunes et al., 2005). They are high 

molecular weight polysaccharides and show low level of branching. Nonetheless, the roasting 

process influences on the depolymerization and debranching of galactomannans, increasing thus, 

their extraction and solubility in water (Simões, Maricato, Nunes, Domingues, & Coimbra, 2014). It 

is well known that the solubility of galactomannans rises when increasing the degree of galactose 

substitution (Oliveira Petkowicz, 2015).  

 

 

Figure 2.2. Illustration of main structural features of galactomannans isolated by hot water extraction 
of green coffee beans. Source: Moreira et al. (2012) 

 

On the other hand, green coffee type II arabinogalactans (Figure 2.3) are also high 

molecular weight polysaccharides, highly branched, mainly composed by a backbone of β-(1→3)-

linked galactose residues and side chains of galactose and arabinose residues (Moreira et al., 2012; 

Passos & Coimbra, 2013). Due to their structure, arabinogalactans are the coffee polysaccharides 

most exposed to degradation during the roasting and the arabinose side chains are the first to be 

hydrolyzed (Oosterveld, Harmsen, Voragen, & Schols, 2003). Moreover, type II arabinogalactans 

are usually linked to proteins (known as arabinogalactan-protein) (Oliveira Petkowicz, 2015). 
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Figure 2.3. Illustration of main structural features of arabinogalactans isolated by hot water extraction 
of green coffee beans. Source: Moreira et al. (2012) 

 

As already mentioned, during the roasting process, polysaccharides are degraded, 

releasing monosaccharides and oligosaccharides that may form precursors to flavor compounds. It 

has been estimated that 20–40% of the carbohydrates from coffee beans are converted into 

degradation products during roasting (Fischer, Reimann, Trovato, & Redgwell, 2001; Oosterveld et 

al., 2003). After arabinose degradation, galactose is the second most sensitive sugar, followed by 

mannose, which is the least sensitive (Oosterveld et al., 2003). Therefore, arabinogalactans are 

more susceptible to degradation than galactomannans, being degraded up to 60% and 36%, 

respectively, while cellulose is not degraded, even at longer roasting times (Redgwell, Trovato, Curti, 

& Fischer, 2002). Both, galactomannans and arabinogalactans strongly affect the quality and 

properties of the final beverage, being responsible for the retention of coffee volatile substances, 

stabilization of foam, binding of aroma, formation of sedimentation, and increased viscosity of the 

extract (Arya & Rao, 2007; Nunes et al., 2005). However, their majority (around 70% of total 
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polysaccharides from roasted coffee) (Arya & Rao, 2007) remains in the residue, called spent coffee 

ground, after soluble coffee preparation. 

Recently, some researchers have exposed the great potential of polysaccharides presented 

in coffee, showing that they can provide important functional properties. Some researchers have 

exposed the great functional potential of polysaccharides presented in coffee. Most of them are not 

degraded by human digestive enzymes, thus, they reach the colon and potentially serve as 

substrates for the colonic microbiota supporting the growth of bifidobacteria and other lactic acid 

bacteria that are considered beneficial for human health (Gniechwitz et al., 2007). Polysaccharides 

from coffee decrease the cholesterol levels in blood, controlling the blood glucose and insulin 

response, act against infectious and tumor diseases (Gniechwitz et al., 2007) and have an 

immunostimulatory capacity (Simões et al., 2009).  

Additionally, galactomannans from natural sources have been used as stabilizers and 

stiffeners of emulsions in different areas including food industry, due to their non-toxic nature 

(Cerqueira, Lima, Teixeira, Moreira, & Vicente, 2009) and arabinogalactans are also used in food 

due to their capacity to retain water and form low viscosity emulsions (Dexter & Assoc, 1998). 

 

2.3.2.  Phenolic compounds 

Phenolic compounds are secondary metabolites synthesized by different plants during their 

normal development or as a response to environmental stress conditions (Beckman, 2000). These 

compounds present important functional properties, being therefore, of great interest for chemical, 

pharmaceutical and food industries. In green coffee, phenolic compounds have been mainly 

identified as chlorogenic acid (Figure 2.4)  and related to substances including caffeoylquinic acid, 

dicaffeoylquinic acid, feruloylquinic acid, and p-coumaroylquinic acid, (Farah & Donangelo, 2006). 

Some flavonoids such as kaempferol, quercetin, catechin, epicatechin have been also identified 

(Mussatto, 2015). Phenolic compounds are partially transformed during the coffee roasting 

process. These compounds are thermally unstable (Beckman, 2000), and possess low 

bioavailability and stability after ingestion (Nallamuthu, Devi, & Khanum, 2015).  
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Figure 2.4. Chemical structure of Chlorogenic acid. Source: Mussatto (2015) 

 

Phenolic compounds from coffee have been of great interest due to their enormous benefits 

for human health. Previous researches have shown that their potential is related to their antioxidant 

activity (Cho et al., 2010; Mussatto, Ballesteros, Martins, & Teixeira, 2011c). This type of phenolic 

compounds protects against chronic-degenerative diseases such as cancer (Kasai, Fukada, 

Yamaizumi, Sugie, & Mori, 2000), cardiovascular diseases, neurodegenerative diseases and 

diabetes mellitus (Martins et al., 2011; Mussatto, 2015; Prasad et al., 2011). Nonetheless, their 

properties are not limited to the antioxidant activity. Phenolic compounds, particularly from 

chlorogenic acid, present anti-obese (Cho et al., 2010), anti-inflammatory and anti-microbial (Shin 

et al., 2015), anti-diabetic (Karthikesan, Pari, & Menon, 2010) and anti-cancerous properties (Kasai 

et al., 2000). 

Furthermore, phenolic compounds improve the organoleptic properties of vegetable origin 

food, and can also be used as raw material in the development of functional food or as natural 

preservatives against food degradation (Ballesteros, Teixeira, & Mussatto, 2014; Rodríguez-Meizoso 

et al., 2010). 

Nowadays, researchers have been focused on identifying natural sources to extract 

antioxidant compounds that can replace the synthetic antioxidants since it has been proved that 

they may cause health problems including enlarged liver and conversion of some ingested materials 

into carcinogenic and toxic substances (Mussatto, 2015), especially when these compounds are 

incorporated excessively in food. 
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2.4. Extraction methods 

Extraction is an important operation in chemical and food engineering, enabling the 

recovery of valuable soluble components from raw materials. Nowadays, the solid-liquid extraction 

methods have been widely used to obtain compounds of interest from natural sources. 

Lignocellulosic materials, for example, can be subjected to different fractionation steps in order to 

extract their main constituents in separated fractions including cellulose, hemicellulose and lignin 

or other secondary compounds such as phenolic compounds.  

During the solid-liquid extraction process, the phase liquid, being represented for an organic 

solvent dissolved in water or simply pure water, has three main objectives: i) isolating a component 

of interest; ii) removing potential interferents from a matrix; and iii) concentrating the component 

desired (Lebovka, Vorobiev, & Chemat, 2011). The process consists of mixing solid material with 

the solvent and then, the mixture is maintained at conditions needed to promote the transference 

of the solute from the solid to the solvent. The efficiency of the extraction process is affected by 

several factors such as the type of solvent and its concentration, the solvent/solid ratio, the number 

of extraction steps, pH, time of contact, temperature, and particle size of the solid matrix (Mussatto, 

Ballesteros, et al., 2011c), as well as the structure and polymerization degree of molecules and 

their interaction with proteins and other compounds generated during the extraction. 

Additional to the conditions used in the process, the technique employed plays an important 

role. Techniques such as solid-liquid extraction using organic solvents (Simões et al., 2009), 

ultrasound-assisted extraction (Yang, Jiang, Zhao, Shi, & Wang, 2008), microwave-assisted 

extraction (Guoxiang, Dai Jun, Shangwei, & Zaijun, 2009) and autohydrolysis (Rodríguez-Jasso, 

Mussatto, Pastrana, Aguilar, & Teixeira, 2013) have been applied in order to recover carbohydrates 

from natural sources. The extraction of polysaccharides from SCG has also been studied through 

different methods, mainly using chemicals as extraction agents. Sodium hydroxide (Simões et al., 

2009; Simões, Nunes, Maria do Rosário, & Coimbra, 2010) and potassium hydroxide (Fischer et 

al., 2001), for example, have been employed in alkali treatments, while sulfuric acid has been used 

to recover carbohydrates by dilute acid hydrolysis of SCG (Mussatto, Carneiro, Silva, Roberto, & 

Teixeira, 2011b). Some authors have also studied the extraction of hemicelluloses from SCG by 
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using microwave-assisted extraction, being considered a more ecofriendly technique to obtain these 

sugars (Passos & Coimbra, 2013). 

Phenolic compound are others compounds commonly extracted from natural sources. 

Techniques as such solid state fermentation (Machado et al., 2012), solid-liquid extraction using 

organic solvents (Ballesteros et al., 2014; Martins, Aguilar, Teixeira, & Mussatto, 2012), ultrasound-

assisted extraction (Carrera, Ruiz-Rodríguez, Palma, & Barroso, 2012), microwave-assisted 

extraction (Martins, Aguilar, Garza‐Rodriguez, Mussatto, & Teixeira, 2010) have been used to 

extract phenolic compounds from multiple natural sources. The extraction of these compounds 

from SCG has been also studied (Murthy & Naidu, 2012; Mussatto, Ballesteros, et al., 2011c; 

Panusa, Zuorro, Lavecchia, Marrosu, & Petrucci, 2013; Zuorro & Lavecchia, 2012). These findings 

showed the ability of a conventional solid-liquid extraction method to recover phenolic compounds 

from SCG using organic solvents such as ethanol (Panusa et al., 2013; Zuorro & Lavecchia, 2012), 

methanol (Mussatto, Ballesteros, et al., 2011c) and isopropanol (Murthy & Naidu, 2012). However, 

industry specialists are looking for improved techniques that require less solvents and energy 

consumption, and are more environmentally-friendly. 

The methods evaluated in this study to extract polysaccharides and phenolic compounds 

from SCG are briefly described below. 

. 

2.4.1. Alkali treatment  

Alkali treatment is a suitable method to isolate hemicellulose and lignin from natural 

sources (Gabrielii, Gatenholm, Glasser, Jain, & Kenne, 2000) as well as the saponification of uronic 

and acetic esters. Usually, the treatment is based on the use of aqueous solutions of calcium, 

lithium, barium potassium or sodium hydroxides that act as solvents. The chemicals more utilized 

in this type of extraction are potassium and sodium hydroxides since the obtained yields  are much 

higher (Lawther, Sun, & Banks, 1996). When the organic solvent is in contact with the solid matrix 

that contains the compound of interest the solid suffers swelling, causing an increase in the internal 

surface and a reduction of polymerization grade and crystallinity, as well as a separation between 

lignin and polysaccharides (Jackson, 1977). 
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The conditions used during the extraction process may be selective for the compound of 

interest. The alkali treatment to extract polysaccharides, for example, requires lower temperatures, 

which does not affect the cellulose and lignin, but causes the solubilization of acetylated 

hemicelluloses. On the contrary, when temperature is increased breakage of the ester bonds of the 

lignin and depolymerization of cellulose occurs.  

Although alkaline treatment of hemicelluloses requires lower temperature and pressure 

than acid treatments, this treatment causes environmental concerns, and the costly recovery of 

reagents could limit its practical potential. 

 

2.4.2. Autohydrolysis 

Autohydrolysis is an eco-friendly technology that does not require the use of chemical 

agents for reaction. This technique has been used to extract polysaccharides from different natural 

sources such as Eucalyptus globulus wood (Romaní, Garrote, López, & Parajó, 2011), Pinus 

pinaster wood and rice husks (Rivas, Conde, Moure, Domínguez, & Parajó, 2013), among others. 

During autohydrolysis, the mixture (solid matrix together pure water used as solvent) is subjected 

to a temperature between 160 – 240 ºC resulting in both depolymerization of hemicellulose and 

breakage of lignin‐carbohydrate bonds, leading to solubilization of hemicellulose‐derived 

saccharides and some lignin fragments of low molecular weight (Nabarlatz, Ebringerová, & 

Montané, 2007).  

Autohydrolysis is known as an autocatalytic hydrothermal processing. Thus, the process 

starts with hydronium ions from water auto-ionization, and its progress is favored by the in situ 

generation of a slightly acid media due to the partial release of organic acids produced from sugar‐

degradation products, phenolic acids from hemicellulose substituents and acetic acid from acetyl 

groups (Conde & Mussatto, 2015; Nabarlatz et al., 2007). Along autohydrolysis, water soluble 

extractives are removed from solid phase, being oligosaccharides, monosaccharides, and sugar 

degradation products (furfural and hydroxymethylfurfural), as well as cell wall linked phenolic 

compounds the main solubilized compounds (Felizón, Fernández-Bolaños, Heredia, & Guillén, 

2000; Garrote & Parajó, 2002). Additionally, the proteins and amino acids present in the solid 
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matrix together with the reducing sugars generated during reaction, cause the Maillard reaction 

(Benjakul, Lertittikul, & Bauer, 2005; Dendy & Crespo, 2004) promoting also the production of 

volatile compounds, phenolic compounds, pigments, and others compounds of low molecular 

weight in the extract. 

Autohydrolysis is considered an interesting extraction technique since offers several 

advantages such as elimination of corrosive problems in the equipment due to mild pH of reaction 

media, reduction of operational costs because no further neutralization is needed and mild 

operational conditions for selective degradation of the biomass (Carvalheiro, Esteves, Parajó, 

Pereira, & Gırio, 2004; Conde & Mussatto, 2015; Rodríguez-Jasso et al., 2013). 

 

2.5. Encapsulation of bioactive compounds 

Encapsulation is one of the most used techniques in the preservation and stability of 

different compounds. It is described as a process in which bioactive compounds are encapsulated 

in a biopolymer in order to protect them of external factors. Phenolic compounds, for example, are 

very vulnerable to oxidizing environment including the light, oxygen, moisture, among others, due 

to the existence of unsaturated bonds in the molecular structures. For preserving their properties, 

phenolic compounds could be encapsulated to enhance their storage stability, making them safer 

as food ingredients and providing benefits to the consumers. The encapsulation process apart from 

stabilizing these bioactive compounds in time or during processing, also helps masking unpleasant 

flavors in food provided by these functional compounds, including bitter taste and astringency of 

polyphenols (Fang & Bhandari, 2010). 

The encapsulated compound can be called active agent, core, fill, internal or payload 

phase. The biopolymer that encapsulates can be named coating, membrane, cover, carrier 

material, shell, or wall material, should be generally recognized as safe (GRAS) and must be able 

to form a barrier between the active agent and its surrounding to ensure the protection (Nedovic, 

Kalusevic, Manojlovic, Levic, & Bugarski, 2011). 
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Forms more commonly obtained during encapsulation process are shown in the Figure 

2.5. The first one is a mononuclear capsule, having a single core enveloped by a shell, while the 

second are aggregates, which have many cores embedded in a matrix (Schrooyen, van der Meer, 

& De Kruif, 2001). The specific shapes of different systems obtained are mainly influenced by the 

drying processing technologies and by the active agent and wall materials from which the capsules 

are made (Fang & Bhandari, 2010).  

 

 

Figure 2.5. Type of capsules obtained during encapsulation process 

 

Bioactive components includes a large number of compounds presenting differences in 

chemical structure, molecular weight, polarity, solubility, among others, which implies that different 

encapsulation approaches have to be applied in order to meet the specific physicochemical 

requirements (Augustin & Hemar, 2009; Kailasapathy, 2002; Ray, Raychaudhuri, & Chakraborty, 

2016). Additionally, it has been demonstrated the importance of properly selecting the carriers and 

encapsulation process to maximize the incorporation and retention of the functional compounds 

being encapsulated. Several researchers have studied the encapsulation of bioactive compounds 

such as essential oils (Barros-Fernandes, Borges, & Botrel, 2014), anthocyanins (Flores, Singh, 

Kerr, Pegg, & Kong, 2014; Khazaei, Jafari, Ghorbani, & Kakhki, 2014), propolis (Silva et al., 2013), 

cherry pomace phenolic extracts (Cilek, Luca, Hasirci, Sahin, & Sumnu, 2012), among others, 

demonstrating that the retention capacity is highly dependent on the type of phenolic compound 

encapsulated and the selection of the composition of the wall material. 
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2.5.1. Materials used for encapsulation 

A large variety of materials can be used for encapsulation in food applications, being 

polysaccharides such as maltodextrin, gum arabic, hydrophically modified starches and chitosan, 

as well as different mixtures between them, the most commonly used shell materials (Gouin, 2004; 

Nedovic et al., 2011; Ray et al., 2016). Additionally, lipids (mono and diglycerides) and proteins 

(casein, milk serum and gelatin) can also be used as wall materials (Nedovic et al., 2011). 

For selecting the encapsulation material, it is very important to take into account some 

criteria. Coatings must provide maximal protection of the active agent and maintain it active within 

the capsule structure along processing or storage. Besides, the wall material should not react with 

the core and must have good rheological characteristics at high concentration, presenting easy 

work ability during the encapsulation process (Nedovic et al., 2011). Supplementary to the 

mentioned criteria, the correct choice of the wall material plays a relevant role on the encapsulation 

efficiency and stability of the encapsulated compound.  

Maltodextrin, for example, is relatively low cost polysaccharide with neutral taste and aroma 

and an effective protection to flavors (Barros-Fernandes et al., 2014). This polysaccharide is 

obtained from starch hydrolysis, being highly water soluble and presenting low viscosity even when 

used at high concentrations (Ray et al., 2016). According to the hydrolysis degree, maltodextrin is 

classified by the dextrose equivalent value (DE), which is measured by the amount of reducing 

sugars present in a sugar product. DE can be between 3 and 20. The higher the DE value, the 

shorter the glucose chains, the higher the sweetness, the higher the solubility, and the lower heat 

resistance (Murugesan & Orsat, 2012; Saénz, Tapia, Chávez, & Robert, 2009).  

Maltodextrin has the ability to form a cover for the core, encapsulating aromas and flavors 

and reducing exposure to oxygen (Santiago-Adame et al., 2015). Additionally, it is the most used 

material in freeze-drying process for encapsulation stability. Maltodextrin is a powerful barrier 

against oxidation of core material and protective against undesired physical and chemical changes 

(Sanchez, Baeza, Galmarini, Zamora, & Chirife, 2013). Maltodextrin is also very utilized to 

encapsulate products through spray-drying, since it protect cores for long period of time and can 

release them under digestive conditions (Santiago-Adame et al., 2015).  
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The greatest limitation of maltodextrin as wall material is its low emulsifying capacity and 

marginal retention of volatile compounds.  

On the other hand, gum arabic also known as acacia gum is a natural polysaccharide 

obtained from the hardened sap of various acacia tree species. This complex heteropolysaccharide 

has a highly ramified structure, being the main chain formed by D-galactopyranose units (K. A. Silva, 

Coelho, Calado, & Rocha-Leão, 2013). Gum arabic has been widely used in food industry due to 

the nontoxic, odorless and tasteless nature, but sometimes it presents a pronounced effect on taste 

and flavor of foods. 

Gum arabic is the most widely used encapsulating material through spray-drying and freeze-

drying due to its good emulsifying and film-forming capacities, as well as its low viscosity in aqueous 

solution (Silva et al., 2013).  

 

2.5.2. Encapsulation techniques 

There are numerous chemical and physical methods to encapsulate bioactive compounds. 

The physical encapsulation techniques are often based on drying processes due to the liquid nature 

of the extracts that contain the bioactive compounds. Spray-drying, spray-bed-drying, fluid-bed 

coating, freeze-drying are included among these technologies, being freeze-drying and spray-drying 

the most common drying methods to produce encapsulated compounds for food applications. 

 

 Freeze-drying 

Freeze-drying, also known as lyophilization, is the most suitable drying process for 

dehydration of heat sensitive materials, since it conserves almost intact the initial functional 

properties of the compounds (Ceballos, Giraldo, & Orrego, 2012) and minimizes thermal 

degradation reactions. This technique is formed by different stages including freezing, sublimation, 

desorption and product storage, where the sublimation is the most important step. Freeze-drying 

has been used in the process encapsulation of polyphenols (Fang & Bhandari, 2010) and multiple 
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substances (Fang & Bhandari, 2010) since it preserves in the long term the biological activity, flavor 

and taste among others properties of the encapsulated compounds. 

Encapsulation by freeze-drying is achieved as the core materials homogenize in a matrix 

solution (Figure 2.6), usually resulting in uncertain forms (Fang & Bhandari, 2010). 

 

 

Figure 2.6. Capsules illustration produced by freeze-drying procedure 

 

The major drawbacks of freeze-drying process are the high energy input and long 

processing time (Ray et al., 2016). Since its utilization is costly, commercial application of freeze-

drying is restricted to very high value ingredients such as antioxidants (Augustin & Hemar, 2009).  

 

 Spray-drying 

Spray-drying is the oldest and the most widely used encapsulation technique in food 

industry thanks to its low-cost and flexibility (Fang & Bhandari, 2010). Some studies have 

highlighted the protection, stabilization, solubility and controlled release of the encapsulated 

bioactive compounds including phenolic compounds when using spray-drying (Fang & Bhandari, 

2010; Nedovic et al., 2011; Ray et al., 2016). This processing involves atomization of a liquid 

feedstock, being rapidly dehydrated when in contact with hot air, producing thus, a dry powder. The 

typical shape of spray-dried particles is spherical, with a mean size range of 10-100 µm (Figure 

2.7). The physicochemical properties of the final encapsulated product are mainly dependent of 
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feed rate, viscosity of the liquid, drying air inlet and outlet temperatures, the pressure and type of 

atomizer (Ramírez, Giraldo, & Orrego, 2015). For instance, when the inlet temperature is very low, 

it is more difficult to evaporate the water completely in a short time and the encapsulation yield 

could be compromised. On the contrary, if the temperature is very high, cracking of the 

microcapsules can occur. 

 

 

Figure 2.7. Capsules illustration produced by spray-drying procedure 

 

In comparison with others methods, spray-drying can achieve a high encapsulation 

efficiency. However, one drawback of this technology is the limited number of shell materials 

available to be treated with this type of drying, since the wall materials used must be soluble in 

water at an acceptable level (Fang & Bhandari, 2010). 

 

2.6. Coating and Films 

Bio-based films or coatings are promising systems to replace the synthetic materials used 

in the food packaging industry. Nowadays, the textile, pharmaceutical, cosmetic and food industries 

are looking for new materials from renewable resources that can replace the petroleum-based 

materials in order to reduce their environmental impact, promoting thus, a new generation of 

biodegradable packaging with similar properties than synthetics and low cost production 

(Ghanbarzadeh, Almasi, & Entezami, 2010).  
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Currently, coatings and films have been used to protect different foodstuffs and play an 

important role in the quality, safety, transportation, storage and display of a wide range of fresh and 

processed foods such as meats, nuts, snacks, candies, vegetables and different fruits, among 

others. Generally, film and coating systems (Figure 2.8) are designed to act as barrier in order to 

protect the food against physical and mechanical impacts, chemical reactions and microbiological 

contamination. Thus, films and coatings can provide a barrier against migration of moisture, oxygen, 

carbon dioxide and volatile compounds, which counteracts the loss weigh, delays the deterioration 

and prevents the loss of natural aroma of the products and the other components (Lin & Zhao, 

2007). They can be used as potential carriers of additives and bioactive compounds to maintain or 

even improve the nourishing and sensory features of foods (Cerqueira, Lima, Teixeira, Moreira, & 

Vicente, 2009; Lin & Zhao, 2007). Moreover, edible films and coatings provide a better visual 

aspect, improve the food quality and safety and simultaneously increasing their shelf-life (Pavlath & 

Orts, 2009; S Guilbert & N Gontard, 1995). 

 

 

Figure 2.8 Functional properties of edible coatings on fresh fruits 

 

2.6.1.   Components of Edible Films and Coatings 

Edible films and coatings are defined as continuous matrices that can be prepared from 

bio-polymers such as polysaccharides, proteins, lipids or waxes and other important components 

including surfactants and food-grade plasticizers. Additionally, films and coatings may be formed 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 2 - LITERATURE REVIEW 

P a g e  | 32 Lina F. Ballesteros, 2016 

 

by heterogeneous polymer materials, or by mixtures of polymer materials. Figure 2.9 shows the 

most common bio-polymer compounds used for preparation of edible films and coatings. 

 

 

Figure 2.9. Biopolymers used for preparation of films and coatings for food. MC (methyl cellulose), 
HPC (hydroxypropyl cellulose), CMC (carboxymethyl cellulose), HPMC (hydroxypropylmethyl cellulose) 

 

The origin of biodegradable compounds and their chemical structure, that can be modified 

depending on the techniques employed during the process extraction, play an important role on the 

production and features of films and coatings. Thus, the type of molecular linkage and shape, the 

molecular weight, and the degree of polymerization of the compounds can influence widely the 

physicochemical properties of the final matrix and affect the synergistic interactions among 
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materials (Martins et al., 2012; Mikkonen et al., 2007). Moreover, the physical and chemical 

characteristics of these biopolymers greatly influence the functionality of the produced films and 

coatings (Sothornvit & Krochta, 2001). 

Polysaccharides, proteins and lipids differ widely in their physical and chemical features, 

and therefore, the attributes that each component provides to overall film and coating properties 

are also different. Polysaccharides, for instance, are usually used to control oxygen and other gas 

transport, while proteins provide mechanical stability and fats reduce water transport (Lacroix, 

2009).  

The selection of coating and films materials is generally based on their water solubility, 

hydrophilic and hydrophobic nature, easy formation of coatings and films, and sensory properties  

(Lin & Zhao, 2007). Plasticizers are often added to film-forming solutions aiming to enhance the 

properties of the final film. These film additives are typically small molecules of low molecular weight 

and high boiling point, which are highly compatible with the polymers. Common food-grade 

plasticizers such as sorbitol, glycerol, mannitol, sucrose and polyethylene glycol, decrease 

brittleness and increase flexibility of the films and coatings, which are important attributes in 

packaging applications (Pavlath & Orts, 2009; S Guilbert & N Gontard, 1995). 

Presently, polysaccharide-based films have attracted great attention among researchers, 

not only due to their capacity to blend between them, but also with others compounds in order to 

improve their properties (Cerqueira et al., 2009; Cerqueira, Souza, Teixeira, & Vicente, 2012; 

Figueiró, Góes, Moreira, & Sombra, 2004; Su, Huang, Yuan, Wang, & Li, 2010). Carboxymethyl 

cellulose (CMC), which is one of the most important cellulose derivatives, contains a hydrophobic 

polysaccharide backbone and many hydrophilic carboxyl groups  (Su et al., 2010). It is usually used 

as thickener or viscosity modifier in different fields since is generally recognized as safe (GRAS) (Su 

et al., 2010) and approved for use in foods. CMC also presents excellent film-forming properties 

due to its biocompatibility with substances such as: water-soluble polysaccharides, proteins, 

surfactants and plasticizers (Nisperos-Carriedo, Baldwin, & Shaw, 1991). CMC-based coatings are 

generally odorless and tasteless, flexible, and are of moderate strength, transparent, resistant to oil 

and fats, water-soluble, moderate to moisture and oxygen transmission (Lin & Zhao, 2007). This 
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type of coating has been tested on fruits and vegetables including apples, peaches, lettuce and 

carrots among others, showing its capacity to retain the original flavor and crispness and reduce 

the  gas exchange rate (Lin & Zhao, 2007). 

Some studies have reported the incorporation of polysaccharides extracted from natural 

sources into edible films or coatings for food applications (Cerqueira et al., 2009; Cerqueira et al., 

2011; Ghanbarzadeh et al., 2010; Su et al., 2010; Tongdeesoontorn, Mauer, Wongruong, Sriburi, 

& Rachtanapun, 2011). In general, coatings based in polysaccharides are ideal to increase the shelf 

life of food, especially of vegetables, fruits, shellfish and meat products, avoiding the dehydration 

and reducing the oxidation and the microbial spoilage (Cerqueira et al., 2009; Dang, Singh, & 

Swinny, 2008). Edible films and coatings with incorporated polysaccharides present emulsifying 

and gelling agents, are colorless and have an oil free appearance (Cerqueira et al., 2009). They 

might also influence in the mechanical properties of packing and in the protective, nourishing and 

sensory features of food, while they are also environmental friendly and biodegradable (Souza et 

al., 2010). Other important characteristics that make the polysaccharides attractive for 

incorporation into edible films and coatings are their transport properties (permeability to CO2, O2 

and water vapor) and the reduction of materials weight loss (Dang et al., 2008). Furthermore, edible 

coatings may also act as vehicles for additives, antioxidants and antimicrobials agents, nutrients 

and flavors, improving food quality and increasing its functionality and safety (Cerqueira et al., 

2009). 

Thus, taking into account the great potential of the polysaccharides from spent coffee 

grounds, this research opens up the possibility of exploiting this material as a source of bioactive 

compounds by its incorporation into edible films and coatings while offering consumers a healthy 

food. 

 

2.7. Goldenberry  

A fruit in which these edible coatings and films could be tested is Physalis peruviana, also 

known as goldenberry or cape gooseberry in English speaking countries, and as uchuva in Colombia 

(Cedeño & Montenegro, 2004; Puente, Pinto-Muñoz, Castro, & Cortés, 2011). It belongs to the 
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family Solanaceae and genus Physalis being found more than 80 varieties in the world (Puente et 

al., 2011). Goldenberry is able to grow in a wide range of altitudes between 1,500 to 3,300 m 

above sea level and is native to warm temperate and subtropical regions. The fruit is a juicy orange 

berry similar in size, shape and structure to a small tomato, but it is completely enclosed in a large 

papery husk or calyx, that protects it along harvest and postharvest. Shelf-life of goldenberry with 

calyx is of 30 days, whereas without calyx is around 5 days (Puente et al., 2011). However, at 

temperature between 3 - 7 ºC goldenberry without calyx could have a shelf-life around 45 days, 

approximately (Castro & Blair, 2010).   

Currently, goldenberry is consumed fresh and is used as ornament in meals, salads, 

desserts and cakes (Cedeño & Montenegro, 2004; Puente et al., 2011), but it can also be 

transformed in jams, nuts, snacks and candies among others applications (Ramadan & Moersel, 

2009). Moreover, goldenberry can be used as preservative for jams and jellies due to its high 

pectinase content (Ramadan & Moersel, 2009). Physalis peruviana contains high amounts of 

vitamins A, B and C, polyunsaturated fatty acids and minerals as iron and phosphorus. Otherwise, 

many medicinal properties have been attributed to this fruit such as antispasmodic, antiseptic, 

diuretic, analgesic, and capacity of eliminating intestinal parasites. Moreover, it helps to fortify the 

optic nerves, purifies the blood, decreases albumin in kidneys and cleans the cataracts (Cedeño & 

Montenegro, 2004; Puente et al., 2011). 

Colombia is the largest producer of goldenberry, followed by South Africa. Colombia is also 

the largest exporter worldwide (Puente et al., 2011). Fresh fruit is exported in great quantities mainly 

to the United States and European Union, requiring the use of modern methods for conservation.  

Edible films and coatings could give added- value to this fruit since they are good alternatives to 

preserve the properties of the foods that are exported as well as those that are not, reducing 

transport costs and storage.  
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3. Introduction 

 

As a result of the big worldwide coffee production, coffee residues including spent coffee 

grounds (SCG) and coffee silverskin (CS) represent great pollution hazard if discharged into the 

environment. Nowadays, there is a great political and social pressure to reduce the pollution arising 

from industrial activities. For that reason, it is necessary to focus on the exploitation of SCG and 

CS, and their profitable utilization, adding value to these unused materials and decreasing their 

impact to the environment. Despite that some characteristics of SCG and CS have been recently 

reported in the literature, to the best of our knowledge, there is not any study that shows a complete 

characterization of both materials. Such information is of great importance to identify the possible 

areas for application of these residues. In this sense, the purpose of the present chapter consisted 

in evaluating the chemical composition, functional properties, and structural characteristics of SCG 

and CS, in order to obtain more detailed information about these materials and identify potential 

industrial areas for their reutilization. 

 

3.1. Materials and Methods 

 

3.1.1. Raw materials and chemicals 

Spent coffee grounds (SCG) and coffee silverskin (CS), which are derived from mixtures of 

Arabica and Robusta coffee varieties, were provided by NovaDelta Comércio e Indústria de Cafés, 

S.A. (Campo Maior, Portugal). As soon as obtained, the materials were dried in an oven at 60 ºC 

until constant weight (6.8% (w/w) moisture). Moisture content in the samples was measured in a 

moisture analyzer model MAC 50/1/NH (Radwag, Poland). After dried, CS was milled in a Taurus 

mill. Then, both SCG and CS samples were sieved through a 500 µm mesh screen (obtaining 

particles ≤ 500 µm) and stored at room temperature for further analyses. All the chemicals used 

were analytical grade, purchased from Sigma–Aldrich (Sternheim, Germany), Panreac Química 

(Barcelona, Spain) or Fisher Scientific (Leicestershire, UK).  Enzymes were obtained from Sigma-
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Aldrich (St. Louis, MO, USA) and ultrapure water from a Milli-Q System (Millipore Inc., USA) was 

used.  

 

3.1.2. Chemical composition determination 

 Cellulose, Hemicellulose and Lignin  

Previous cellulose, hemicellulose and lignin determination, the extractives from SCG and 

CS were removed in a Soxhlet extraction system (Tecator, HT2, Netherlands) using ultrapure water 

and absolute ethanol as solvents in two sequential stages (Sluiter et al., 2008). The extractive free 

SCG and CS samples were dried at 60 °C to constant weight to be stored. To determine the 

cellulose, hemicellulose and lignin (ash-free) contents, the raw material was submitted to a two-

steps sequential acid hydrolysis (Sluiter et al., 2010). Sugars in the resulting solution were 

determined by high performance liquid chromatography (Mussatto et al. 2011b) and were used to 

calculate the cellulose (as glucose) and hemicellulose (as arabinose, mannose, galactose and 

xylose) contents (Mussatto and Roberto 2006). The lignin (ash-free) content was also calculated as 

described by Mussatto and Roberto (2006).  

 

 Ashes, Minerals, Fat and Protein  

Ashes were determined by incinerating the samples at 550 ºC for 4 h (Horwitz and Latimer 

Jr, 2005). The mineral content in ashes was determined by inductively coupled plasma atomic 

emission spectrometry (ICP-AES), as described by Meneses et al. (2013). Fat content was 

determined using petroleum ether as solvent in a Soxhlet extraction system (Tecator, HT2, 

Netherlands) during 1 h, according to the official AOAC method nº 920.39 (Horwitz and Latimer Jr, 

2005). Nitrogen was determined by combustion using a Thermo Scientific Flash 2000 Elemental 

Analyzer, and the protein content was estimated by using the N2 × 6.25 conversion factor.  
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 Total, insoluble and soluble dietary fibers  

The total dietary fiber (TDF) was estimated by enzymatic gravimetric method according to 

the official AOAC standard procedure nº 985.29 (Horwitz and Latimer Jr, 2005) with some 

modifications. Briefly, 1 g fat free sample was mixed with 50 ml of phosphate buffer (0.08 M, pH 

6) in a flask. Then, 0.1 ml α-amylase (Sigma A-3306) was added to the mixture and the flask was 

covered and left during 15 min in a boiling water bath with discontinuous agitation. The flask was 

then cooled to room temperature and the pH of the medium was adjusted to 7.5 by adding a 0.275 

N NaOH solution. Later, 0.1 ml protease solution (Sigma P-3910, 50 mg in 1 ml phosphate buffer) 

was added to the sample, which was covered and heated in a water bath at 60 ºC during 30 min 

with continuous agitation. After that, the sample was left at room temperature and the pH was 

adjusted to 4 by adding a 0.325 M HCl solution. Additionally, 0.3 ml amyloglucosidase (Sigma A-

9913) was mixed with the sample and placed in the water bath at the same conditions used for the 

protease. After this process, 280 ml of 95% (v/v) ethanol preheated at 60 ºC were added to the 

sample and left at room temperature for 1 h. The sample was filtered through filter paper and 

washed three times with 20 ml of ethanol at 78% (v/v), twice with 10 ml of ethanol at 95% (v/v), 

and once with 10 ml of acetone. Finally, the filter paper containing the solid residues was dried 

overnight at 105 ºC, and the final weight of the sample was registered. This methodology was 

carried out at least twice being one sample used to determine the protein content, while the other 

sample was employed to estimate the ashes content. Distilled water was used as blank to exclude 

any contribution from reagents to measurements. The TDF percentage was calculated by using the 

Eq 3.1, where W1 is the average weight of the sample (mg) taken, W2 is the average final weight of 

the sample, W3   and W4  are the protein and ash weights (mg) respectively; and W5  is the blank 

weight. 

 

Eq 3.1                      TDF (%) = (W2 – W3 – W4 – W5) * 100/ W1     

  

 

Insoluble (IDF) and soluble dietary fibers (SDF) were determined using the same 

methodology applied for TDF determination, but without adding alcohol in the precipitation stage. 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 3 - CHEMICAL, FUNCTIONAL AND STRUCTURAL PROPERTIES OF COFFEE RESIDUES 

P a g e  | 52 Lina F. Ballesteros, 2016 

 

The IDF percentage was calculated by Eq 3.1, and the SDF percentage was obtained by the 

difference between TDF and IDF values. 

 

3.1.3. Functional Properties 

 Water holding capacity and Oil holding capacity  

Water holding capacity (WHC) and  oil holding capacity (OHC) were determined by mixing 

1 g of sample with 10 ml of distilled water or corn oil (Fula, Sovena Portugal; density = 0.92 g/ml). 

The mixtures were vortexed for 1 min, centrifuged at 2330 g for 30 min, and the volume of 

supernatant was determined. WHC was expressed as gram of water held per gram of sample, while 

OHC was expressed as gram of oil held per gram of sample (Chau et al., 1997).   

 

 Emulsifying activity and Emulsion stability   

Emulsifying activity (EA) and emulsion stability (ES) were determined according to Chau et 

al. (1997) with some modifications.  Firstly, 2 g of sample were mixed with 100 ml of distilled water 

and homogenized at 6000 rpm for 2 min using an IKA T-25D Ultra-turrax homogenizer. Afterwards, 

100 ml of corn oil were added to the sample and the mixture was homogenized for 1 min. The 

emulsions were centrifuged (1200 g, 5 min) and the emulsion volume was determined. EA (in 

percentage) was calculated by the ratio between the volumes of emulsified layer and total volume 

used. To determine ES, the prepared emulsions were heated at 80 ºC for 30 min, cooled to room 

temperature and centrifuged (1200 g, 5 min). ES (in percentage) was calculated by the ratio 

between the volumes of remaining emulsified layer and original emulsion volume. 

 

 Antioxidant potential 

To determine the antioxidant potential, extracts were prepared by mixing 1 g of SCG or CS 

with 40 ml of methanol at 60% (v/v). The mixtures were heated during 90 min in a water-bath at 

60-65 ºC under magnetic stirring. After this time, the extracts were separated by centrifugation 

(2500 g, 20 min), filtered through 0.22 m filters, and quantified for calculations. The antioxidant 
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activity of the extracts was determined by two methods: the free radical scavenging activity (DPPH) 

assay and the ferric reducing antioxidant power (FRAP) as described below. 

 

3.1.3.3.1. Free radical scavenging activity  

Free Radical Scavenging Activity (DPPH) assay was determined according to method 

described by Hidalgo et al. (2010) with some modifications. For the reactions, 10 µl of each duly 

diluted extract was added to 290 µl of DPPH solution (6  10-5 M in methanol and diluted to an 

absorbance of 0.700 at 517 nm) in a 96-well microplate. The resulting solutions were vortexed and 

allowed to stand for 30 min in darkness at room temperature. Then the absorbance was measured 

at 517 nm in a spectrophotometric microplate reader (Sunrise Tecan, Grödig, Austria) using 

methanol as blank. The control solution consisted in using methanol instead of the sample. The 

radical scavenging activity was calculated by using the Eq 3.2, where Ac and As are the absorbance 

of the control solution and the absorbance of the sample solution, respectively. The DPPH values 

of the each sample were expressed as micromoles of trolox equivalents (TE) per dry weight material 

(µmol TE/g dry material). 

 

Eq 3.2                    % inhibition of DPPH = (1- As/ Ac)*100 

  

3.1.3.3.2. Ferric reducing antioxidant power  

The antioxidant activity by the ferric reducing antioxidant power (FRAP) assay was 

determined according to the method described by Benzie and Strain (1996) with some 

modifications. A 10 µl aliquot of the filtered and duly diluted extract was mixed with 290 µl of FRAP 

reagent in a 96-well microplate, and incubated at 37 ºC for 15 min. After that, the absorbance was 

determined at 593 nm using distilled water as blank. FRAP reagent was freshly prepared by mixing 

a 10 mM 2,4,6-tris (1-pyridyl)-5-triazine (TPTZ) solution in 40 mM HCl with a 20 mM FeCl3 solution 

and 0.3 M acetate buffer (pH 3.6) in a proportion 1:1:10 (v/v/v). A calibration curve was 

constructed using an aqueous solution of ferrous sulfate (FeSO4.7H2O at 200, 400, 600, 800 and 

1000 µM). The FRAP values were expressed as millimoles of ferrous equivalent per dry weight 

material (mmol Fe(II)/g dry material). 
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3.1.4. Structural Characterization 

 Morphology and Porosity 

Images of the SCG and CS particles were obtained by scanning electron microscopy (SEM) 

using an Ultra-high resolution Field Emission Gun Scanning Electron Microscope, Nova 200 Nano 

SEM, FEI Company. Previous to the analyses, the samples were covered with a very thin film (35 

nm) of Au-Pd (80-20 weight %). The images were obtained by applying an acceleration voltage of 

10kV, at 200- and 2,000-fold magnifications.  

The surface area and porosity of the particles were determined by N2 adsorption/ 

desorption isotherms at -196.15 ºC using a Quantachrome Instruments Nova 4200e analyzer, as 

described by Mussatto et al. (2010). The specific surface area (SBET) was determined by the BET 

method (Brunauer et al., 1938). Total volume of pores was calculated from the N2 adsorption 

isotherm at a relative pressure of 0.99. The BJH method (Barrett et al., 1951) was used to evaluate 

the pore sizes distribution, the mesopore volume, and the specific surface area from 

adsorption/desorption isotherms. 

 

 Thermal behavior 

Differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA) were 

performed in equipment Shimadzu DSC-50 and Shimadzu TGA-50 (Shimadzu Corporation, Kyoto, 

Japan), respectively. For the analyses, approx. 10 mg of the sample were placed in an aluminum 

pan (Al crimp Pan C.201-52943) using an empty pan as reference. The measurements were carried 

out between 25 and 600 °C with a linear increase of 10 °C per min, under nitrogen atmosphere. 

TASYS software (Shimadzu Corporation, Kyoto, Japan) and TA Universal Analysis software (TA 

instruments, universal analysis 2000, USA) were used for data analysis. Enthalpy was calculated 

using the area of the peaks between the onset and the end set temperatures.  
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 Chemical bonding of constituents 

The chemical groups and bonding arrangement of constituents present in SCG and CS 

structures were determined by Fourier transform infrared spectroscopy (FTIR) using a Jasco infrared 

spectrometer (FT/IR-4100) equipped with a diamond-composite attenuated total reflectance (ATR) 

cell. The measurements were recorded with a wavenumber range from 4000 to 600 cm-1 at a 

resolution of 8 cm-1 and 16 scans per sample.   

 

  Crystallinity 

Crystalline phases of SGC and CS samples were evaluated by X-ray diffraction (XRD) using 

a D8 Discover diffractometer (Bruker, corporation) with Cu tube (λ=1.5406 Å). The radiation was 

generated at 25 mA and 35 kV. The scattering angle of 2θ from 10o to 100o was measured at the 

step size of 0.04o and 1 s exposure at each step. To analyze and compare the peak positions, a 

cellulose spectrum from the International Centre for Diffraction Data database (ICDD card no. 00-

003-0226) was used.  

 

3.2. Results and Discussion 

 

3.2.1. Chemical composition  

 Cellulose, Hemicellulose and Lignin  

Polysaccharides are the most abundant components in SCG and CS. In both residues, 

sugars were polymerized into cellulose and hemicellulose structures, which when summed 

correspond to 51.50% and 40.45% (w/w) of their composition on a dry weight basis (Table 3.1). 

Cellulose (as glucose) was more abundant in CS, while hemicellulose was more abundant in SCG. 

The hemicellulose sugars and their composition significantly differ from one residue to another. 

Mannose was the main sugar in SCG hemicellulose. On the other hand, xylose that was the main 

sugar in CS hemicellulose was not present in the SCG composition. In terms of sugars composition, 

SCG was composed of 37.03% mannose, 31.90% galactose, 24.08% glucose, and 6.99% arabinose; 

while CS contained 58.76% glucose, 18.81% xylose, 9.29% galactose, 8.75% arabinose and 4.37% 
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mannose. These values are comparable to other reported in the literature for SCG and CS (Mussatto 

et al., 2011a; 2011b); some differences could be attributed to the extraction process and variety of 

coffee beans used. Taking into account that arabinogalactans, galactomannans and cellulose are 

the most abundant polysaccharides in coffee (Arya and Rao, 2007), it was expected to find at least 

glucose, galactose, mannose and arabinose sugars in SCG and CS composition. 

Lignin was also a fraction present in significant amount in both SCG (23.90% w/w) and CS 

(28.58% w/w) (Table 3.1). The lignin content in these coffee residues was higher than the values 

reported for other lignocellulosic materials such as brewer’s spent grains (19.40% w/w) (Meneses 

et al., 2013), sugarcane bagasse (18.93% w/w) (Mesa et al., 2011), rice straw (17.20% w/w) 

(Roberto et al., 2003) and barley straw (15.50% w/w) (Sun et al., 2002). Lignin is a macromolecule 

composed by a great variety of functional groups including phenolic hydroxyl, aliphatic hydroxyl, 

methoxyl, carbonyl, and sulfonates and its structure and composition vary from one raw material 

to another (Stewart, 2008). Chlorogenic, caffeic, and coumaric acids are the most relevant lignin 

components in coffee and such compounds play an important role in health due to their antioxidant 

properties (Maydata, 2002). 

 

 Ashes, Minerals, Fat and Protein  

CS presented higher level of ashes (5.36% w/w) than SCG (1.30% w/w) (Table 3.1). A 

variety of mineral elements including potassium, calcium, magnesium, sulfur, phosphorus, iron, 

manganese, boron, copper, and others were present in the composition of their ashes (Table 3.2). 

Potassium was the most abundant mineral element in both, SCG and CS; followed by magnesium 

and phosphorus in SCG and by calcium and magnesium in CS. The most important minerals 

present in SCG and SC are considered micronutrients essential for the human health. They regulate 

multiple metabolic and physiological functions of the human body including hormonal and 

enzymatic activities, electrolyte balance, and normal growth (Kuan et al., 2011). These minerals 

also support vital processes such as respiration, digestion and circulation. Thus, the micronutrients 

found in SCG and CS could be used for the production of nutrient added foods.   
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Low fat content was present in both residues (2.29% and 3.78% w/w, for SCG and CS 

respectively). Otherwise, protein was present in more significant amount in these materials (Table 

3.1). The protein content in CS (18.69% w/w) was similar to the value reported by Borrelli et al. 

(2004) for this same material (18.6% w/w); while the protein content in SCG (17.44% w/w) was a 

little higher than the value reported by Mussatto et al. (2011b) and by Ravindranath et al. (1972) 

for this coffee residue (about 14% w/w). These differences can also be due to the conditions used 

for the instant coffee preparation and the variety of coffee beans used. Both SCG and CS residues 

are rich in polysaccharides, lignin, proteins and minerals, showing their high biotechnological value 

to be used, for instance, as substrates or solid supports in fermentative processes for the extraction 

and production of compounds with important applications in the food and pharmaceutical industries 

(Mussatto et al., 2011a). 

 

Table 3.1 Chemical composition of spent coffee grounds and coffee silverskin 

Chemical components Composition (g/100 g dry material) 

Spent coffee grounds Coffee silverskin 

Cellulose (Glucose) 12.40 ± 0.79 23.77 ± 0.09 

Hemicellulose 39.10 ± 1.94 16.68 ± 1.30 

Arabinose   3.60 ± 0.52   3.54 ± 0.29 

Mannose 19.07 ± 0.85   1.77 ± 0.06 

Galactose 16.43 ± 1.66   3.76 ± 1.27 

Xylose                 nd   7.61 ± 0.02 

Lignin 23.90 ± 1.70 28.58 ± 0.46 

Insoluble 17.59 ± 1.56 20.97 ± 0.43 

Soluble   6.31 ± 0.37   7.61 ± 0.16 

Fat   2.29 ± 0.30   3.78 ± 0.40 

Ashes   1.30 ± 0.10   5.36 ± 0.20 

Protein 17.44 ± 0.10 18.69 ± 0.10 

Nitrogen   2.79 ± 0.10   2.99 ± 0.10 

Carbon/nitrogen (C/N ratio) 16.91 ± 0.10 14.41 ± 0.10 

Total dietary fiber 60.46 ± 2.19 54.11 ± 0.10 

Insoluble 50.78 ± 1.58 45.98 ± 0.18 

Soluble   9.68 ± 2.70   8.16 ± 0.90 

Results are expressed as mean ± standard deviation; n=3. nd: not detected. 
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Table 3.2  Mineral composition of spent coffee grounds and coffee silverskin  

 

Mineral element Composition (mg/kg dry material) 

Spent coffee grounds Coffee silverskin 

Potassium   11700 ± 0.01    21100 ± 0.00 

Calcium   1200 ± 0.00    9400 ± 0.01 

Magnesium  1900 ± 0.00    3100 ± 0.00 

Sulfur  1600 ± 0.00    2800 ± 0.00 

Phosphorus  1800 ± 0.00    1200 ± 0.00 

Iron 52.00 ± 0.50 843.30 ± 7.90 

Aluminum 22.30 ± 3.50 470.60 ± 13.9 

Strontium   5.90 ± 0.00   71.72 ± 0.30 

Barium   3.46 ± 0.05   66.26 ± 0.26 

Copper 18.66 ± 0.94   63.30 ± 1.00 

Sodium 33.70 ± 8.75   57.30 ± 1.10 

Manganese 28.80 ± 0.70   50.00 ± 0.60 

Boron   8.40 ± 1.10   31.90 ± 1.40 

Zinc   8.40 ± 0.20   22.30 ± 0.10 

Cobalt 15.18 ± 0.05   21.39 ± 1.04 

Iodine  < 0.10   18.30 ± 1.64 

Nickel   1.23 ± 0.59     1.64 ± 0.34 

Chromium < 0.54     1.59 ± 0.00 

Molybdenum < 0.08     0.24 ± 0.29 

Vanadium < 0.29     1.01 ± 0.05 

Lead < 1.60  < 1.60 

Selenium < 1.60  < 1.60 

Gallium < 1.47  < 1.47 

Tin < 1.30  < 1.30 

Cadmium < 0.15  < 0.15 

Results are expressed as mean ± standard deviation; n=3. 
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 Total, soluble and insoluble dietary fibers 

Dietary fiber including cellulose, hemicellulose, lignin, pectic substances, gums and 

mucilages, is known as the edible part of plants that is resistant to digestion and absorption in the 

human small intestine, with complete or partial fermentation in the large intestine (Betancur-Ancona 

et al., 2004). The content of total dietary fiber (TDF) in SCG (60.46% w/w) was higher than in CS 

(54.11% w/w). Additionally, insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) were also 

present in higher amounts in SCG than in CS (Table 3.1). 

However, both residues showed similar proportion of IDF and SDF with respect to the total 

fiber composition, being IDF correspondent to 84% and 85% of the TDF in SCG and CS, respectively; 

and SDF correspondent to 16% and 15% of the TDF in SCG and CS, respectively. The IDF and SDF 

contents in CS were similar to the values reported by Borrelli et al. (2004), and by Pourfarzad et al. 

(2013), who found 86% IDF and 14% SDF in the total dietary fiber (62.2% w/w) present in CS. The 

higher content of IDF than SDF in the samples is justifiable since cellulose, hemicellulose and lignin 

are part of the insoluble fibers and significant amounts of these fractions are present in the 

composition of SCG and CS.  

The SDF values in SCG and CS revealed larger soluble fiber potential of these coffee 

residues when compared to other materials such as Jack bean (Carnavalia ensiformis) (6.04%), 

lima bean (Phaseolus lunatus) (2.61%) (Betancur-Ancona et al., 2004), rice husk (2.23%), wheat 

straw (6.48%) and okara (10.17%) (Kuan and Liong, 2008). It is important emphasizing that each 

type of fiber (insoluble and soluble) has specific properties. For instance, SDF possess large water 

retention, promotes the creation of bacterial flora and decreases the absorption of fat and sugars. 

On the other hand, IDF has low water retention, accelerates the movement of food through the 

digestive system and promotes stool regularity. SCG and CS are materials with high levels of SDF 

and IDF, and therefore, they have great potential to be used as raw material in the development of 

functional foods. In this sense, a previous study demonstrated that CS supports the growth of 

bifidobacteria in vitro, suggesting the possibility of producing prebiotic foods from CS (Borelli et al., 

2004). 
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3.2.2. Functional properties 

 Water holding capacity and Oil holding capacity  

Water holding capacity (WHC) and oil holding capacity (OHC) are important properties to 

be considered in food processing. These properties can be defined as the capacity that a material 

has to retain water or oil after application of external centrifugal gravity force or compression. SCG 

showed higher WHC and OHC than CS (Table 3.3). According to some authors, WHC and OHC can 

be related with the particle size of the material; the holding capacities being increased when smaller 

particle sizes are used, as a consequence of the highest packing density of smaller particles (Murthy 

and Naidu., 2012). In the present study, particle sizes with diameter ≤ 500 µm were used because 

this size is considered ideal to evaluate these functional properties (Betancur-Ancona et al., 2004; 

Raghavendra et al., 2004) as the contact between the particle surface area and the liquid is 

enhanced. However, particle structure and its composition can also contribute to the overall 

distribution of water or oil (Robertson et al., 2000).    

 

Table 3.3 Functional and physiological properties of spent coffee grounds (SCG) and coffee silverskin 
(CS) 

 

Functional and physiological properties   SCG   CS 

WHC (g water/ g dry sample)   5.73 ± 0.10   5.11 ± 0.20 

OHC  (g oil/ g dry sample)   5.20 ± 0.30   4.72 ± 0.10 

Emulsifying activity (%) 54.72 ± 0.90 57.50 ± 0.90 

Emulsion stability (%) 92.38 ± 0.90 88.18 ± 1.20 

Antioxidant potential   

DPPH (µmol TE/g dry material) 20.04 ± 0.05 21.35 ± 0.39 

FRAP (mmol Fe(II)/g dry material) 0.102 ± 0.01 0.045 ± 0.01 

Results are expressed as mean ± standard deviation; n=3. WHC: water holding capacity; OHC: oil 

holding capacity; DPPH: antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl assay; FRAP: 

antioxidant activity by the ferric reducing antioxidant power assay. 
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WHC has also been reported to be higher in materials containing more elevated amounts 

of total dietary fiber (Raghavendra et al., 2004). This is in agreement with the results obtained in 

the present study, which revealed that SCG presents higher TDF (Table 3.1) and WHC (Table 3.3) 

than CS. In addition, SCG and CS showed higher WHC than other materials such as rice husk, 

wheat straw and okara (Kuan and Liong, 2008), which could also be related to the presence of 

more fibers in SCG and CS than in these materials. The OHC has also been reported to be 

dependent of some properties of the material sample, including surface properties, thickness, 

overall charge density and hydrophobic nature (Kuan and Liong, 2008). According to some authors, 

lignin-richer samples present higher OHC values (Femenia et al., 1997).  

The WHC and OHC results obtained for SCG and CS allow concluding that these coffee 

residues are materials with great swelling capacity, which is one of the most desirable parameters 

for the functionality of dietary fibers. WHC, for instance, has been considered an important 

parameter to measure the capacity can have the fibers incorporated in the diet to modify stool 

weight (Cummings et al., 1978). On the other hand, OHC is fundamental for stabilization of high-

fat products and emulsions (Tiwari and Cummins, 2011). Both, WHC and OHC play an important 

role during preparation, processing and storage of foods.  Moreover, they can influence in the 

nutritional and sensory characteristics of food and its physical behavior (Tiwari and Cummins, 

2011). 

 

 Emulsifying activity and Emulsion stability  

Emulsifying activity (EA) is the capacity that a compound has to form a homogenous 

dispersion of two immiscible liquids or emulsions, while emulsifying stability (ES) is the effectiveness 

of a molecule to maintain a thermodynamically stable emulsion (Sa ́nchez-Zapata et al., 2009). SCG 

and CS showed similar values of EA (54.72% and 57.50%, respectively), while ES was slightly higher 

in SCG than in CS (92.38% and 88.18%, respectively) (Table 3.3). Both coffee residues presented 

higher ES values than other materials such as lima bean (28.25%) (Betancur-Ancona et al., 2004), 

papaya kernel flour (58%), corncobs (80%) and wheat straw (86.94%) (Kuan et al., 2011). This 

behavior is directly related to the type of fiber and the percentage of soluble and insoluble fiber in 
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the material composition. Moreover, the protein fraction present in the residues plays also an 

important role in anchoring the moiety of fiber to the oil or water interface (Kuan and Liong, 2008). 

SCG and CS are then materials with excellent emulsifying activity and emulsion stability, 

and present therefore great potential to be used as emulsifiers in different food products including 

beverages, dairy, baking, confectioneries or in products for animal nutrition, which require long 

emulsion stability. 

 

 Antioxidant potential 

In order to evaluate the antioxidant activity of SCG and CS, extracts were produced by solid-

liquid extraction using methanol, which has been considered one of the best solvents to extract 

antioxidant compounds from natural sources duo its polarity, viscosity and ability to promote high 

extraction yields (Mussatto et al., 2011c). According to the results, SCG and CS showed similar 

antioxidant potential (20.04 and 21.35 µmol TE/g dry material, respectively) when analyzed by the 

DDPH assay. However, the FRAP assay revealed a 2.3-fold higher antioxidant potential for SCG 

when compared to CS (Table 3.3). According to the current literature, different methods can be 

used to evaluate the antioxidant activity in food and biological systems. However, as each method 

is based on a different reaction, it is strongly advisable determining the antioxidant potential of a 

sample by different methods in order to better interpret the results. Such a fact was demonstrated 

in the present study since the DPPH assay was not able to detect significant differences in the 

antioxidant potential of the samples, while the FRAP assay was. 

Antioxidant compounds have numerous applications in food, cosmetic and pharmaceutical 

areas, because they can protect against chronic and degenerative diseases such as cancer and 

diabetes mellitus, and decrease the risk factors of cardiovascular diseases, among others (Ao et 

al., 2011). These results suggest the possibility of reusing both coffee residues (mainly SCG) to 

obtain such compounds.  
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3.2.3. Structural characterization 

 Morphology and Porosity  

Images obtained by scanning electron microscopy revealed significant morphological 

differences between SCG and CS. CS particles (Figure 3.1 c and d) presented a denser morphology 

than SCG particles (Figure 3.1 a and b), and were composed of thin sheets of material that 

resembles sawdust. In terms of porosity, the N2 adsorption/desorption isotherms revealed that SCG 

has higher porosity than CS (Figure 3.2). However, the amount of N2 adsorbed by both the samples 

was very low, suggesting that they have poorly developed mesoporosity. It was also verified the 

absence of micropores in the samples since microporous materials present N2 

adsorption/desorption isotherms with tendency to form a plateau at low relative pressures 

(Mussatto et al., 2010), which was not verified in the present study for any of the cases. Similar 

conclusions were obtained by the BET surface area (SBET) results, which revealed that SCG has 

higher SBET (4.3 m2/g) than CS (2.1 m2/g), but the SBET was very low for both the samples, and 

micropores were not detected in any of them. The total volume of pores was also very close for 

both residues (0.004 and 0.003 cm3/g for SCG and CS, respectively).  

 

 

Figure 3.1 Micrographs by scanning electron microscopy (SEM) of spent coffee grounds and coffee 
silverskin particles. Magnification: 200X (a, c) and 2000X (b, d) 
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Figure 3.2 N2 adsorption/desorption isotherms at -196.15 ºC. Volume adsorbed of N2 as a function of 
the relative pressure for SCG and CS 

 

Analyses of the mesopore size distribution by the BJH method (Figure 3.3) showed a well-

defined profile for both samples with most of the mesopores at around 3 and 12 nm (r = 10 and 

60 Ǻ, respectively), and a non-significant amount of mesopores larger than 18 nm. These analyses 

confirm that SCG and CS are materials with very low porosity, containing mesopores with less than 

12 nm, specific surface areas between 2 and 5 m2/g, and specific pore volumes between 0.003 

and 0.004 cm3/g. The low porosity of these materials can be advantageous depending on the final 

application. On the other hand, when materials with higher porosity are desired, an alternative to 

improve the porosity of SCG and CS would be submitting these materials to any treatment in order 

to promote a total or partial degradation of the cellulose-lignin matrix, which would decrease their 

crystallinity increasing the porosity as a consequence. 
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Figure 3.3 Pores size distribution by the BJH method - the derivative of the desorbed volume as a 
function of the pore radius, which represents the change of volume desorbed by SCG and CS in a pore 
size range. Standard deviation values were less than 2.5% in all cases 

 

 Thermal behavior  

The DSC thermogram (Figure 3.4) shows the thermal transitions of the samples between 

25 and 600 °C obtained at a heating rate of 10 ºC per min under a constant nitrogen atmosphere. 

The thermograms obtained for SCG and CS exhibited two events: an initial endothermic phase 

followed by an exothermic phase. For both, SCG and CS, an early endothermic event was observed 

with a peak at 76.89 and 74.60 °C, respectively, and an associated enthalpy change of 192.80 

J/g and 102.80 J/g. This event was related to the melting transition that occurs over a range of 

temperature due to the presence of impurities in the samples, the vaporization of water (indicating 

the presence of hydrophilic groups) and the crystalline nature of the materials. This first event allows 

concluding that SCG and CS have similar melting point at 76.89 and 74.60 °C, respectively. The 

second event corresponded to an exothermic transition and was observed at 303.00 and 317.70 

ºC for SCG and CS, respectively, with an associated enthalpy change of 68.38 J/g  and 7.75 J/g. 
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This transition was related to the thermal depolymerisation and branching of the samples, occurring 

at temperature ranges varying between 220 and 310 °C (Sperling, 2006). 

 

Figure 3.4 DSC curves obtained for spent coffee grounds (SCG) and coffee silverskin (CS) 

 

The TGA curves (Figure 3.5) show the weight losses of the samples when exposed to 

heating until 600 °C. SCG and CS present similar TGA curves with three defined mass loss stages. 

The first one started at approx. 60.60 ºC and 61.58 ºC and corresponded to soft weight losses of 

about 7.77% and 6.80% for SCG and CS respectively, as a result of the water evaporation 

(dehydratation of the sample). The greatest transformation and mass loss occurred during the 

second stage, at approx. 300 ºC. At this stage, the depolymerization and decomposition of 

polysaccharides and some oils present in the sample occur, providing weight losses of 43.50% and 

48.01% for SCG and CS, respectively. Finally, the third and last thermal stage related to the 

decomposition of the samples started at 499.29 ºC for SCG and at 457.24 ºC for CS and results 

in weight losses of 33.08% and 34.17%, respectively.  
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Figure 3.5 TGA curves obtained for spent coffee grounds (SCG) and coffee silverskin (CS) 

 

 Chemical groups and bonding arrangement of constituents 

FTIR analyses (Figure 3.6) revealed that SCG and CS have absorption bands typical of 

lignocellulosic materials, although the magnitude of these bands differs to each residue. The broad 

peak between 3600 and 3200 cm-1 was related to the hydroxyl group of O–H stretching vibration. 

The region between 3000-2800 cm-1, with two sharp bands at 2923 and 2852 cm-1, was attributed 

to C-H stretching vibration. These bands have been previously reported in spectra of roasted Arabica 

and Robusta coffee samples (Kemsley et al., 1995), and roasted coffee husks (Reis et al., 2013). 

Moreover, studies of FTIR analysis from caffeinated beverages such as tea, coffee and soft drinks 

have reported peaks at this same region (2882 and 2829 cm -1), which were related to the 

asymmetric stretching of C-H bonds of methyl (-CH3) group in the caffeine molecule and can be 

successfully used to develop predictive models for quantitative analysis of caffeine (Paradkar and 

Irudayaraj, 2002). The band between 1700 and 1600 cm-1 was highly associated with chlorogenic 

acids and caffeine (Ribeiro et al., 2010). Then, the peak at 1654 cm -1 can be attributed to the 
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absorption of these compounds, being the peak more intense when their concentration in the 

sample increases. The broad band between 1135 and 952 cm−1 resulted from the stretching 

vibration of C–O in C–O–H bonds such as glycosidic bonds, and are related to galactomannans 

polysaccharide’ sugars (Figueiró et al., 2004).  

 

 

Figure 3.6 FTIR spectra obtained for spent coffee grounds (SCG) and coffee silverskin (CS) 

 

 Crystallinity 

In order to evaluate and compare the crystallinity of the coffee residues, a cellulose 

spectrum taken from the International Centre for Diffraction Data (ICDD) database was used as 

reference. As can be seen in Figure 3.7, SCG and CS presented similar XRD spectra, which, when 

compared to the cellulose spectrum used as reference, indicate the existence of crystalline regions 

in the structure of both coffee residues. The cellulose molecule is known to have crystalline and 

amorphous regions. Crystalline regions are mostly responsible by a high tensile strength and 

represent cellulose less accessible to chemical attacks due to hydrogen strong interactions between 
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the microfibers (Ragauskas and Huang, 2013). In contrast, hemicellulose and other constituents of 

SCG and CS exhibit an amorphous structure more easily degradable and susceptible to chemical 

attacks.  

 

Figure 3.7 XRD diffractograms obtained for spent coffee grounds (SCG) and coffee silverskin (CS). 
Cellulose peak positions indicated as reference in the XRD diffractograms were obtained from the 
International Centre for Diffraction Data (ICDD) database (ICDD card no. 00-003-0226) 

 

Although CS showed higher cellulose content than SCG (Table 3.1), the XRD spectra reveal 

that SCG is more crystalline than CS, suggesting important differences in the cellulosic structure of 

both materials. According to some authors, the thermal treatment by which the coffee beans are 

subjected could be responsible for at least a part of the crystallinity observed in SCG structure since 

this process promotes the elimination of some water molecules incorporated into the crystal 

fraction, transforming some α-polymorph to β-crystal phase structures (Rivera et al., 2011). 
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3.3. Conclusions 

 

This study allows concluding that SCG and CS are sugar-rich lignocellulosic materials 

composed also by high levels of insoluble, soluble and total dietary fibers. Both residues have 

interesting functional properties including water holding capacity, oil holding capacity, emulsion 

activity and stability, and antioxidant potential, which open up possibilities for their reutilization in 

different biotechnological process. They could be used, for example, as preservatives in food 

formulations, as natural antioxidant sources for application in food and pharmaceutical products, 

or as raw material to obtain new functional ingredients for food industry. SCG and CS are also 

thermostable in a large range of temperature, being therefore suitable for application in the 

manufacture of biomaterials and encapsulation products for several industrial purposes. In brief, 

the present study allows concluding that SCG and CS have characteristics that make possible their 

reutilization in different industrial fields. Despite some efforts have recently been done in order to 

find possible alternatives to reuse these residues, the implementation of industrial processes using 

SCG or CS as raw material is still a challenge to be surpassed. This study gives support to direct 

further research and developments in this area. 
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CHAPTER 4 

EXTRACTION OF POLYSACCHARIDES BY AUTOHYDROLYSIS OF SPENT 

COFFEE GROUNDS AND THE EVALUATION OF THEIR ANTIOXIDANT 

PROPERTIES 

 

 

 

 

 

 

 

 

 

The following chapter is partially based on the results published in: Lina F. Ballesteros, José A. 

Teixeira & Solange I. Mussatto. Extraction of galactomannans and arabinogalactans by 

autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity (Accepted with 

revisions in Carbohydrate Polymers) 
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4. Introduction 

 

Autohydrolysis is an eco-friendly technology that does not require the use of chemical 

agents for reaction. This technique has been used to extract polysaccharides from natural sources 

including Eucalyptus globulus wood (Romaní, Garrote, López, & Parajó, 2011), Pinus pinaster wood 

and rice husks (Rivas, Conde, Moure, Domínguez, & Parajó, 2013), among others. During 

autohydrolysis, a slightly acid media is obtained due to the partial release of acetyl groups from the 

material structure, providing a selective depolymerization of the hemicellulose (Nabarlatz, 

Ebringerová, & Montané, 2007). Autohydrolysis of lignocellulosic materials is a complex process 

since many factors such as the liquid/solid ratio, temperature, particle size of the solid matrix, the 

extraction time, as well as the structure and polymerization degree of molecules and their 

interaction with proteins, minerals and phenolic compounds can influence in the reaction efficiency.    

Taking these facts into account, the purpose of the present chapter was to evaluate the 

extraction of polysaccharides from SCG by using the environmentally friendly technique of 

autohydrolysis. Experimental assays were performed using different temperatures (160 to 200 °C), 

liquid/solid ratios (5 to 15 ml water/g SCG) and extraction times (10 to 50 min) in order to stablish 

the conditions that maximize the extraction of polysaccharides with high antioxidant activity. Thus, 

the effects of these operational variables on the extraction yield and antioxidant activity of the 

recovered polysaccharides were verified. The polysaccharides obtained under the best 

autohydrolysis conditions were chemically and structurally characterized.  

 

4.1. Materials and methods 

 

4.1.1. Raw material and chemicals 

Spent coffee grounds (SCG) were provided by the Portuguese coffee industry NovaDelta-

Comércio e Indústria de Cafés S.A. (Campo Maior, Portugal) and treated as in Section II - Chapter 

3. All the chemicals used were analytical grade, purchased from Panreac Química (Barcelona, 
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Spain), Fisher Scientific (Leicestershire, UK) and Sigma–Aldrich (Chemie GmbH, Steinheim, 

Germany). Ultrapure water from a Milli-Q System (Millipore Inc., USA) was used. 

 

4.1.2. Autohydrolysis   

Autohydrolysis assays were performed under different conditions of temperature (160 to 

200 °C), liquid/solid ratio (5 to 15 ml water/g SCG) and extraction time (10 to 50 min), which 

were combined according to a 23 central composite design. For the reactions, ultrapure water and 

the SCG were poured into 160 - ml cylindrical stainless steel reactors (Parr Instruments Company, 

Illinois, USA), which were duly closed and placed vertically into an oil-bath with open heating 

circulator and temperature control (Julabo, Labortechnik GmbH, Seelbach, Germany). The samples 

were left in the bath, previously heated until desired temperature, during the time required for each 

reaction. Then, the reactors were removed from the oil-batch and immediately cooled down in an 

ice-bath for 10 min to stop the reaction. The total content of each reactor was centrifuged (2500 g, 

20 min) being the supernatant separated and treated to recover the polysaccharides present. 

 

4.1.3. Polysaccharides recovery  

In order to recover the polysaccharides present in the liquid fractions obtained after 

autohydrolysis of SCG, 30 ml of supernatant were mixed with absolute ethanol in a 1:3 (v/v) ratio 

and the mixture was left over night at 4 °C. The precipitated polysaccharides were recovered by 

centrifugation (2500 g, 20 min), hydrated with 30 ml distilled water and maintained in a shaker 

during 3 h, at 200 rpm and room temperature. Subsequently, the mixture was again centrifuged 

and the supernatant was frozen and freeze-dried. Freeze-dried powder was stored at room 

temperature and protected from light and humidity until further use. The total yield of the extraction 

process was expressed as milligrams of lyophilized material per gram of SCG (mg LM/g SCG).  
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4.1.4. Analytical methodology 

For evaluating the properties of the polysaccharides recovered from SCG, ultrapure water 

and the lyophilized material were mixed to obtain 1.5 mg/ml. The samples were vortexed for 1 min, 

filtered through 0.22 µm filters and then stored for analyses. 

 

  Total sugars 

The content of total sugars was determined by the anthrone-sulfuric acid assay. Briefly, a 

50 µl aliquot of the sample (LM at 1.5 mg/ml) was mixed with 150 µl of anthrone reagent in a 96-

well microplate. Then, the reaction mixture was placed at 4 °C for 10 min and was subsequently 

incubated at 100 °C during 20 min. After heating, the samples were allowed to cool down at room 

temperature for 20 min. The absorbance was determined in a spectrophotometer microplate reader 

(Sunrise Tecan, Grödig, Austria) set at 620 nm and using distilled water as blank. The anthrone 

reagent was prepared immediately prior to analysis by dissolving 0.1 g of anthrone in 100 ml of 

concentrated sulfuric acid (98%), protected from light and used within 12 h. A calibration curve was 

performed using a standard glucose solution (10, 60, 120, 200, 250, 300, 400 and 600 µg/ml). 

The content of total sugars was expressed as grams glucose equivalent per 100 grams of lyophilized 

material (g GLU/100 g LM). 

 

  Phenolic compounds 

The content of phenolic compounds (PC) was determined by using the Folin-Ciocalteu 

reagent according to the colorimetric described by Singleton and Rossi (1965), adapted to a 96-

well microplate. For the reactions, 5 µl of each filtered and duly diluted extract were mixed with 60 

µl of sodium carbonate solution at 7.5% (w/v) and 15 µl of Folin–Ciocalteu reagent. Subsequently, 

200 µl of distilled water were added and the solutions were mixed. Thereafter, the samples were 

heated at 60 ºC for 5 min and were allowed to cool at room temperature. The absorbance was then 

measured by means of a spectrophotometric microplate reader (Sunrise Tecan, Grödig, Austria) set 

at 700 nm. A calibration curve was made from gallic acid standard solutions (200, 400, 600, 800, 

1000, 2000, 3000 mg/L) and the blank was prepared with distilled water. The total content of 
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phenolic compounds was expressed as milligrams of gallic acid equivalent per gram of lyophilized 

material (mg GAE/g LM).  

 

  Reducing sugars 

The content of reducing sugars (RS) was estimated by the colorimetric method of DNS (3,5-

dinitrosalicylic acid) adapted to a 96-well microplate (Gonçalves, Rodriguez-Jasso, Gomes, Teixeira, 

& Belo, 2010). Briefly, 25 μl of the sample (LM at 1.5 mg/ml) were mixed with 25 µl of DNS 

reagent and incubated at 100 °C for 10 min. Thereafter, 250 μl of distilled water were added to 

each well and the microplate was placed on an ice-bath to stop the reaction. The absorbance was 

determined in a spectrophotometer microplate reader (Sunrise Tecan, Grödig, Austria) set at 540 

nm, using distilled water as blank. DNS reagent was freshly prepared by dissolving 2.5 g of 3,5-

dinitrosalicylic acid in 25 ml of distilled water preheated at 80 °C. The solution was cooled at room 

temperature, and after, 50 ml of a 2 N sodium hydroxide solution and 75 g of potassium sodium 

tartrate were added being the final volume completed to 250 ml with distilled water. A standard 

calibration curve was prepared using glucose solution (0.2, 0.4, 0.6, 0.8, 1.0. 1.2, 1.4, 1.6, and 

1.8 mg/ml). The content of RS was expressed as milligrams glucose equivalent per gram of 

lyophilized material (mg GLU/g LM). 

  

  Antioxidant activity  

4.1.4.4.1. Total antioxidant activity  

The total antioxidant activity (TAA) was estimated as described by Prieto and Aguilar (1999) 

with some modifications. Briefly, 200 µl of sample was added to a glass tube containing 2 ml of 

reagent solution (0.6 M sulfuric acid, 28 mM sodium phosphate and 4 mM ammonium molybdate). 

The tubes were covered and maintained during 90 min in a water-bath at 95 ºC and then, placed 

to cool at room temperature. The absorbance was measured at 695 nm using a spectrophotometer 

V-560 (Jasco, Japan) against a blank of distilled water. A calibration curve was prepared with a 

standard solution of α-tocopherol (25, 75, 125, 250, 375 e 500 µg/ml). TAA values were expressed 

as milligrams of α-tocopherol equivalent per gram of lyophilized material (mg α-TOC/g LM). 
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4.1.4.4.2. Ferric reducing antioxidant power  

The antioxidant activity by the ferric reducing antioxidant power (FRAP) assay was 

determined according to the methodology described in Section II - Chapter 3. The FRAP values were 

expressed as millimoles of ferrous equivalent per gram of lyophilized material (mmol Fe(II)/g LM). 

 

4.1.4.4.3. Free radical scavenging activity  

The DPPH radical scavenging activity was determined using the method described by 

Fukumoto & Mazza (2000) and Silva et al. (2004) in combination and with some modifications. For 

each sample, a dilution series (four different concentrations) were prepared. The reaction was 

carried out in a 96-well microplate containing 25 µl of sample and 200 µl of 150 µM DPPH solution 

(2,2-diphenyl-1-picrylhydrazyl dissolved in 80% methanol to an absorbance value of 0.700 at 515 

nm). The produced solutions were vortexed and allowed to stand for 1 h in the dark at room 

temperature. Then the absorbance was measured at 515 nm in a spectrophotometric microplate 

reader (Sunrise Tecan, Grödig, Austria) using methanol as blank. The control solution consisted in 

using methanol instead of the sample. The radical scavenging activity was calculated by using the 

Eq 3.2. A calibration curve was prepared with a standard solution of trolox diluted in methanol (40, 

80, 100, 300, 400 and 600 µM). DDPH percent inhibition data were plotted as a function of 

antioxidant concentration to obtain DPPH inhibition concentration at 50% (IC50). The IC50 values were 

expressed as micromoles of Trolox equivalent per gram of lyophilized material (µmol TE/g LM). 

 

4.1.4.4.4. Radical cation decolorization 

The radical cation decolorization (ABTS) assay of polysaccharides extracted from SCG was 

determined as described by Re et al. (1999) and Ozgen, Reese, Tulio, Scheerens, & Miller (2006) 

with some modifications. Each sample was diluted to four different concentrations such that the 

percent inhibition was between 20-80%. Assays were conducted by combining 130 µl of sample 

with 3 ml of ABTS radical cation solution. The resulting solutions were maintained during 30 min 

in darkness at room temperature, and the absorbance was then measured at 734 nm using a 

spectrophotometer V-560 (Jasco, Japan) being distilled water used as control solution instead of 
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the sample. ABTS radical cation was prepared by mixing 7 mM 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) dissolved in water with a 2.45 mM 

potassium persulfate solution This mixture was vortexed for 2 min, set in ultrasonic bath during 20 

min and then, left in the dark at 4 ºC between 12-16 h for achieving a stable oxidative state. After 

this time, ABTS radical cation solution was diluted in a 20 mM acetate buffer (pH 4.5) solution to 

an absorbance of 0.70 ± 0.01 at 734 nm. A calibration curve was constructed using a standard 

solution of Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) diluted in ethanol (50, 

100, 200, 250, 300, 400 and 500 µM). The percent inhibition of ABTS radical cation was calculated 

using the same equation employed in the DPPH radical scavenging. The IC50 values were expressed 

as micromoles of Trolox equivalent per gram of lyophilized material (µmol TE/g LM). 

 

4.1.5. Experimental design and data analysis 

The influence of the independent variables, temperature (X1, °C), liquid/solid ratio (X2, 

ml/g) and extraction time (X3, min), on the extraction of polysaccharides by autohydrolysis of SCG 

was evaluated through a 23 central composite design. The real and coded values of the variables 

are shown in Table 4.1. Statistical significance of the variables was determined at 5% probability 

level (p < 0.05). The data obtained from the design were fitted to second order polynomial 

equations, and the models were simplified by elimination of statistically insignificant terms. 

Statistical significance of the regression coefficients was determined by Student’s t -test, and the 

proportion of variance explained by the models were given by the multiple coefficient of 

determination, R2. Statistical analysis of the data and the determination of the conditions able to 

maximize the extraction of polysaccharides with high antioxidant activity were performed using the 

software Design expert (version 8.0). 

 

4.1.6. Polysaccharide characterization 

  Sugars composition  

Polysaccharides recovered from SCG were submitted to a dilute acid hydrolysis with sulfuric 

acid (120 mg H2SO4/g LM). The mixture was vortexed and sterilized at 120 °C for 20 min. Then, 
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sugar concentrations was made by high performance liquid chromatography (HPLC) using an 

equipment LC-10 A (Jasco, Japan) with a Meta Carb 87P column at 80 °C, ultrapure water 

previously boiled and degassed in a ultrasonic bath as mobile phase, and a refractive index (RI) 

detector. The flow rate and the injection volume were adjusted to 0.4 ml/min and 20 µl, 

respectively. Glucose, arabinose, galactose and mannose were identified and quantified from 

standard curves made with known concentrations of each compound and expressed as % mol. The 

response of the RI detector was recorded and integrated using the Star Chromatography 

Workstation software (Varian). 

 

  Structural characterization 

Crystalline phases of SCG polysaccharides were evaluated by X-ray diffraction (XRD) as 

described in Section II - Chapter 3. The chemical groups and bonding arrangement of constituents 

present in the polysaccharides were determined by Fourier transform infrared spectroscopy (FTIR) 

using a Perkin- Elmer 16 PC spectrometer (Boston, USA) equipped with a diamond-composite 

attenuated total reflectance (ATR) cell. The measurements were recorded with a wavenumber range 

from 4000 to 400 cm-1 and 16 scans per sample.   

Differential scanning calorimetry (DSC) was performed in equipment DSC 200 F3 Maia 

(Netzsch, Germany) and thermogravimetric analyses (TGA) were carried out in equipment SDT 

2960 simultaneous DSC-TGA (TA instruments, USA). For the analyses, approx. 5 mg of the sample 

were placed in an aluminum pan. The measurements were carried out between 25 and 600 °C 

with a linear increase of 10 °C per min. TA Universal Analysis software (TA instruments, universal 

analysis 2000, USA) was used for data analysis. Enthalpy was calculated using the area of the 

peaks between the onset and the end set temperatures. 
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4.2. Results and discussion 

 

4.2.1. Extraction results  

Autohydrolysis technique has been widely used for the extraction of polysaccharides, 

especially hemicelluloses from natural sources. Although this technique causes a selective 

depolymerization of hemicellulose chains for oligosaccharides and monosaccharides sugars, other 

components such as PC (derived from lignin) may also appear in the reaction medium (Clark & 

Mackie, 1984). Therefore, the present study evaluated the effect of different process variables 

including temperature, liquid/solid ratio and extraction time on the recovery of polysaccharides 

from SCG in order to select the conditions that maximize the polysaccharides extraction with high 

antioxidant powder. The content of PC in the recovered lyophilized material was also quantified. 

Table 4.1 shows the experimental conditions used in each assay and the respective results 

of total sugars, PC, RS, FRAP, DPPH, ABTS, TAA and total yield of the extraction process. As it can 

be seen, polysaccharides were extracted from SCG in all the studied conditions; however the 

extraction yield greatly varied according to the conditions used. In terms of composition, the highest 

amount of total sugars in the LM corresponded to 34.92% (w/w) and was achieved when using a 

liquid/solid ratio of 15 ml/g SCG during 30 min at 180 °C (assay 14); while the lowest amount of 

total sugars (15.16% (w/w)) was obtained when using 10 ml/g SCG, at 160 °C and 30 min (assay 

9). In general, the results were increased when the values of the variables were raised, but this 

behavior was observed until a certain limit only. When the temperature was increased to 200 °C, 

for example, the amount of total sugars was lower than when intermediate conditions were applied. 

This could be related to the fact that when the highest temperature was used, a stronger hydrolysis 

of polysaccharides and subsequent degradation of these components might have occurred. 



 

 

Table 4.1 Experimental conditions and results obtained during the extraction of polysaccharides by autohydrolysis of spent coffee grounds (SCG). Assays 
according to a 23 central composite design 

Aa 

 
Process variables b 

(real and (coded) 
values) 

  Responses c 

X1 X2 X3 Total sugars PC RS FRAP DPPH ABTS       TAA Yield 

1  160  (-1) 5   (-1) 10   (-1) 25.30 ± 6.28  239.38 ± 2.50 88.45 ± 4.10 0.70 ± 0.02 468.07 ± 26.07 532.86 ± 15.26 268.28 ± 3.31 11.81 

2 200 (+1) 5   (-1) 10    (1)  21.79 ± 5.43  214.14 ± 12.08 70.40 ± 4.93 0.61 ± 0.03 501.82 ± 21.37 454.60 ± 7.15 218.21 ± 14.04 20.87 

3  160  (-1) 5   (-1) 50 (+1)  21.42 ± 0.80  202.00 ± 3.01 59.90 ± 4.84 0.56 ± 0.03 434.26 ± 6.67 429.23 ± 7.41 187.49 ± 12.78 25.79 

4  200 (+1) 5   (-1) 50 (+1)  23.04 ± 1.83  103.54 ± 3.51 20.09 ± 0.81 0.26 ± 0.02 207.35 ± 0.95 202.00 ± 2.39 108.64 ± 4.01 19.32 

5  160  (-1) 15 (+1) 10   (-1)  28.56 ± 3.38  234.14 ± 5.30 93.93 ± 4.44 0.68 ± 0.05 515.95 ± 7.00 600.24 ± 12.20 228.46 ± 5.03 35.87 

6  200 (+1) 15 (+1) 10   (-1)  25.10 ± 3.45  195.14 ± 12.98 63.26 ± 2.71 0.51 ± 0.02 420.39 ± 7.27 427.74 ± 4.42 185.29 ± 5.92 42.61 

7  160  (-1) 15 (+1) 50 (+1)  31.19 ± 5.56  232.95 ± 11.01 76.80 ± 3.62 0.69 ± 0.03 573.93 ± 29.96 529.47 ± 18.05 254.44 ± 3.25 45.15 

8  200 (+1) 15 (+1) 50 (+1)  24.60 ± 6.37   82.33 ± 1.63 12.96 ± 0.92 0.20 ± 0.01 155.59 ± 0.58 144.60 ± 0.68 131.52 ± 2.66 32.62 

9  160  (-1) 10   (0) 30   (0)  15.16 ± 0.92 239.14 ± 6.07 78.77 ± 2.90 0.61 ± 0.04 504.45 ± 3.25 431.29 ± 0.55 255.38 ± 4.06 35.24 

10 200 (+1) 10   (0) 30   (0)  20.70 ± 3.25 132.95 ± 3.25 24.37 ± 2.71 0.30 ± 0.03 208.83 ± 0.50  186.97 ± 0.85 132.25 ± 4.34 80.69 

11  180   (0) 10   (0) 10   (-1)  17.73 ± 2.32 254.00 ± 1.86 90.39 ± 1.76 0.65 ± 0.03 596.76 ± 3.24  470.78 ± 8.96 282.67 ± 0.38 31.03 

12  180   (0) 10   (0) 50 (+1)  26.77 ± 2.34 156.52 ± 8.57 35.25 ± 3.07 0.43 ± 0.01 344.23 ± 0.05 261.84 ± 2.56 180.53 ± 2.44 82.95 

13  180   (0) 5    (-1) 30   (0)  30.32 ± 1.08 169.94 ± 6.12 41.16 ± 2.25 0.47 ± 0.03 349.95 ± 1.66 286.77± 13.18 192.80 ± 4.51 38.96 

14 180   (0) 15 (+1) 30   (0)  34.92 ± 3.62 185.81 ± 11.02 51.20 ± 1.39 0.52 ± 0.02 378.84 ± 25.08 317.88 ± 8.93 204.14 ± 3.14 89.50 

15  180   (0) 10   (0) 30   (0)  28.47 ± 6.27 175.71 ± 5.29 46.28 ± 1.97 0.45 ± 0.02 374.65 ± 5.64 322.60 ± 3.81 183.49 ± 5.88 56.79 

16 180   (0) 10   (0) 30   (0)  31.73 ± 3.93 176.05 ± 2.50 45.78 ± 3.48 0.46 ± 0.01 412.11 ± 9.32 310.85 ± 0.53 197.49 ± 2.03 57.65 

17 180   (0) 10   (0) 30   (0)  29.45 ± 3.60 177.48 ± 4.29 45.62 ± 1.14 0.42 ± 0.01 360.95 ± 2.30 347.41 ± 1.63 193.29 ± 4.14 55.71 

18  180   (0) 10   (0) 30   (0)  31.29 ± 6.23 179.14 ± 5.71   44.63 ± 2.27 0.50 ± 0.01 429.35 ± 16.59 316.22 ± 18.63 203.01 ± 1.37 57.08 

19 180   (0) 10   (0) 30  (0)  28.51 ± 3.36 171.29 ± 1.63 43.81 ± 0.70 0.46 ± 0.02 347.70 ± 1.86 274.72 ± 7.47 183.70 ± 3.29 60.27 

20 180   (0) 10   (0) 30  (0)  27.84 ± 5.37 173.75 ± 2.40 43.08 ± 3.54 0.47 ± 0.02 386.55 ± 4.40 386.75 ± 1.53 200.92 ± 1.44 62.79 
a  A: Assay extractions.  

b X1: temperature (ºC); X2: liquid/solid ratio (ml/g); X3: extraction time (min). 
c Total sugars (g GLU/ 100 g LM); PC: phenolic compounds (mg GAE/g LM); RS: reducing sugars (mg GLU/g LM); FRAP: ferric reducing antioxidant power assay  

(mmol Fe(II)/g LM); DPPH: antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl assay (µmol TE/g LM); ABTS: antioxidant activity by the 2,2'-azino-bis-3-

ethylbenzothiazoline-6-sulphonic acid assay (µmol TE/g LM); TAA: total antioxidant activity (mg α-TOC/g LM); Yield of extraction process (mg LM/g SCG).  

LM: lyophilized material. 

LM: ly 
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The content of PC in the lyophilized material varied between 82.33 ± 1.63 (assay 8) and 

254.00 ± 1.86 mg GAE/g LM (assay 11). It is worth highlighting that the highest amount of PC 

recovered by autohydrolysis of SCG and subsequent precipitation with ethanol was very 

representative when compared with other methods, indicating autohydrolysis as an efficient 

technique to extract also PC from SCG. 

The content of RS in the lyophilized material was also dependent on the conditions used 

for autohydrolysis, being observed values in the range between 12.96 ± 0.92 (assay 8) and 93.93 

± 4.44 mg GLU/g LM (assay 5) (Table 4.1). Such results reveal that in some cases a significant 

part of the recovered polysaccharides were in the form of monosaccharides, as for example in the 

assays 9 (52%) and 11 (51%). It is important to mention that, previous the precipitation stage, the 

largest amount of RS had been found in the extract obtained during autohydrolysis at 200 °C, 15 

ml/g SCG, 50 min (not presented data). Nonetheless, after precipitation, the greatest amount of 

RS was recovered in the LM obtained when the lowest conditions of temperature and extraction 

time where used for autohydrolysis (160 °C, 10 min and 15 ml/g SCG – assay 5). These results 

suggest that the RS extracted under these conditions had a higher molecular weight, achieving thus, 

the precipitation with ethanol.   

The antioxidant activity of the recovered polysaccharides was also strongly affected by the 

conditions used for autohydrolysis (Table 4.1). By varying the extraction conditions, the TAA and 

FRAP results were increased in the order of 2.5-fold and 3.5-fold, respectively. More significant 

variations were observed for the DPPH and ABTS results, which increased in almost 4-fold. 

Differences between the results of antioxidant assays could be explained by the fact that the 

methods differ from each other in terms of reaction mechanisms, oxidant and target/probe species, 

and reaction conditions (Conde & Mussatto, 2016). Therefore it is of great importance to assess 

the antioxidant potential by using different methodologies.  

All antioxidant activity methods (FRAP, DPPH, ABTS and TAA) showed a highly significant 

linear correlation to PC and RS (coefficients R2 ≥ 0.82), being found the highest correlations to 

DPPH data correlated with PC (R2 = 0.93) and ABTS data correlated with RS (R2 = 0.92). These 
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results suggest that the PC and RS present in the lyophilized material contributed significantly to 

the antioxidant activity of the polysaccharides extracted from SCG. However, the autohydrolysis 

conditions that extracted the largest amount of polysaccharides from SCG were not the same that 

generated polysaccharides with the highest antioxidant activity (Table 4.1). For this reason, an 

optimization of the process conditions is necessary in order to obtain maximum yield of 

polysaccharides with high antioxidant potential. 

 

4.2.2. Optimization of the autohydrolysis conditions 

The Pareto charts in Figure 4.1 show the effect of each operational variable on the different 

responses. Temperature (X1) was the most significant variable, followed by the extraction time (X3) 

on PC and RS (Figure 4.1a and b), as well as on all the antioxidant activity responses (Figure 4.2a, 

b, c, d). Both, temperature and extraction time exerted a significant (p < 0.05) and negative linear 

(L) effect on the responses, which means that the extraction of polysaccharides with high antioxidant 

activity increased when the temperature and reaction time were reduced. However, not only the 

linear terms, but also the quadratic terms (Q) and interactions between the variables had statistical 

significance (p < 0.05), suggesting that the values of the responses were not always linearly raised 

when the value of the operational variables was decreased.  

 

 

Figure 4.1 Pareto chart for the effects of temperature (X1), liquid/solid ratio (X2), extraction time (X3), 
and their interactions on the total content of phenolic compounds (PC) (a) and reducing sugars (RS) 
(b) of the autohydrolysis process for polysaccharides recovery from spent coffee grounds 
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Figure 4.2 Pareto chart for the effects of temperature (X1), liquid/solid ratio (X2), extraction time (X3), 
and their interactions on the total content of antioxidant activity (FRAP (a), DPPH (b), ABTS (c) and TAA 
(d) assays) of the autohydrolysis process for polysaccharides recovery from spent coffee grounds 

 

The individual effect of the liquid/solid ratio (X2) was not significant for any of the responses, 

but the interaction of this variable with the temperature was significant for the antioxidant activity 

results. The operational variables did not present significant effects at 95% confidence level for the 

extraction yield response (Figure 4.3a). However, a mathematical model describing the variations 

of this response as a function of the process variables could be well-fitted to a second-order 

polynomial equation (Table 4.2). Second-order mathematical models were also fitted for all the 

other responses. When possible, the models were simplified by elimination of terms not statistically 

significant (p > 0.05). In other cases, the non-significant variables were kept in the models to 

minimize the error determination. All the models were established with high coefficient of 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 4 - EXTRACTION OF POLYSACCHARIDES BY AUTOHYDROLYSIS OF SPENT COFFEE GROUNDS AND THE EVALUATION 

OF THEIR ANTIOXIDANT ACTIVITY 

Lina F. Ballesteros, 2016 P a g e  | 91 

 

determinations R2, ranging from 0.87 to 0.97, which means a close agreement between the 

experimental results and those predicted by the equations.  

 

Figure 4.3 Pareto chart for the effects of temperature (X1), liquid/solid ratio (X2), extraction time (X3), 
and their interactions on the total extraction yield of the autohydrolysis process for polysaccharides 
recovery from spent coffee grounds 

 

Table 4.2 Quadratic models describing the responses variation as function of the process variables 
(temperature, liquid/solid ratio and extraction time) and their correspondent R2 coefficients 

Response a Model equation * R2 

PC  

RS  

Yield  

PC = 178.13 – 41.95X1 – 35.95X3 – 23.11X1X3 + 13.29X3
2 

RS = 46.47 – 20.68X1 + 1.82X2 – 20.14X3 – 4.58X1X2  – 6.87 X1 X3 + 14.67X3
2 

Yield = 56.04 + 0.55X1 + 10.62X2 + 2.41X3 – 4.35X1X3  – 12.70X1
2 – 15.04X3

2 

0.94 

0.96 

0.93 

Antioxidant  activity  

   FRAP  

   DPPH  

   ABTS  

   TAA  

 

FRAP = 0.46 – 0.14X1 + 0.0008X2 – 0.10X3 – 0.03X1X2 – 0.07X1X3 + 0.02 X2 X3 + 0.07X3
2  

DPPH = 375.34 – 100.27X1 + 8.32X2 – 78.76X3 – 40.09X1 X2 – 72.93X1 X3 + 46.50X3
2 

ABTS = 319.09 – 110.72X1 + 11.45X2 – 91.91X3 – 31.49X1 X2 – 45.17X2 X3 + 86.25X3
2  

TAA = 199.60 – 41.81X1 + 2.84X2 – 32.03X3 – 4.65X1X2 – 13.57X1X3 + 20.32X2X3 

 

0.97 

0.90 

0.95 

0.87 

* X1: temperature; X2: liquid/solid ratio; X3: extraction time. Coded values. 
a PC: phenolic compounds (mg GAE/g LM); RS: reducing sugars (mg GLU/g LM); Yield: yield of extraction 

process (mg LM/g SCG); FRAP: antioxidant activity by the ferric reducing antioxidant power assay (mmol 

Fe(II)/g LM); DPPH: antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl assay (µmol TE/g LM); ABTS: 

antioxidant activity by the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid assay (µmol TE/g LM); TAA: 

total antioxidant activity. (mg α-TOC/g LM). 

LM: lyophilized material. 
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Contour lines graphs were plotted for all the responses according to the model equations 

established (Table 4.2). The plots of PC (Figure 4.4a), RS (Figure 4.4b) and antioxidant activities 

(Figure 4.5a, b, c, d) show a region where the responses can be maximized, which occurs using 

the lowest the temperature and extraction time and 15 ml/g SCG of liquid/solid ratio. In contrast, 

the extraction yield of the process (Figure 4.5e) is maximized when using intermediate values of 

temperature and extraction time in combination with the highest liquid/solid ratio (15 ml/g SCG).  

Taking these results into account, a graphical optimization was performed by overlaying the 

curves of the models and the following criteria were adopted in order to find an extraction condition 

that simultaneously maximize the contents of PC and RS, as well as the antioxidant activity of the 

recovered polysaccharides: PC ≥ 220 mg GAE/g LM, RS ≥ 87 mg GLU/g LM, FRAP ≥ 0.65 mmol 

Fe(II)/g LM, DPPH ≥ 510 µmol TE/g LM, ABTS ≥ 550 µmol TE/g LM, and TAA ≥ 225 mg α-TOC/g 

LM.  

 

 

Figure 4.4 Contour line plots representing the total content of phenolic compounds (PC) (a) and 
reducing sugars (RS) (b) of polysaccharides extracted by autohydrolysis of spent coffee grounds under 
different conditions of time and temperature 
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Figure 4.5 Contour line plots representing the total content of antioxidant activity (FRAP (a), DPPH (b), 
ABTS (c) and TAA (d) assays) and total yield (e) of polysaccharides extracted by autohydrolysis of SCG 
under different conditions of time and temperature. 
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The overlaying plot attained (Figure 4.6) shows an area where all the criteria are satisfied 

(shadow area). A point within this area was assigned as optimum point, which corresponded to the 

use of 160 °C, 15 ml/g SCG and 10 min. Under these conditions, the model predicts PC and RS 

results of 246.21 mg GAE/g LM and 101 mg GLU/g LM, as well as antioxidant activity values for 

FRAP, DPPH, ABTS and TAA of 0.71 mmol Fe(II)/g LM, 576.35 µmol TE/g LM, 605.73 µmol TE/g 

LM and 247.04 mg α-TOC/g LM, respectively. These values corresponded to one of the conditions 

previously evaluated experimentally (Table 4.1, conditions -1, +1, -1), being the responses within 

5% of relative standard deviation (Figure 4.6 inset). The polysaccharide obtained in this condition 

as well as the polysaccharide obtained under the condition that gave the best extraction yield (Table 

4.1, assay 14) were further evaluated in order to determine their composition and structural and 

thermal characteristics. 

 

Figure 4.6 Optimum region plot obtained by overlaying the curves of the responses phenolic compounds 
(PC), reducing sugars (RS) and antioxidant activity by FRAP, DPPH, ABTS and TAA assays as a function 
of the extraction time and temperature used during the autohydrolysis process, and comparison 
between the predicted and experimental results (inset figure) 
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4.2.3. Optimum point characterization 

  Yield of extraction and sugars composition 

The sugars content in the polysaccharides extracted under the conditions of the optimum 

point and best yield, as well as the yields obtained for each one of these processes are shown in 

Table 4.3. In this table, Y1 corresponds to the total yield of extraction (g LM per 100 g SCG); Y2 

refers to the quantity of sugars present in LM per 100 g SCG; while Y3 represents the yield of sugars 

extracted with respect to total sugars existent in SCG (g total sugars in LM/100 g of sugars from 

SCG). 

 

Table 4.3 Sugars composition and extraction yield of the polysaccharides obtained by autohydrolysis 
of spent coffee grounds (SCG) 

 

The content of total sugars recovered was 29.29% and 33.25% (w/w) for the optimum point 

and best yield samples, respectively. Although the quantity of sugars in both samples was similar, 

Y1, Y2 and Y3 were 2-fold higher for the best yield sample, achieving 8.95, 2.97 and 5.72% (w/w). 

Analysis of the monosaccharide composition (Table 4.3) revealed a structural difference between 

the polysaccharides samples. However, galactose was the main monosaccharide and arabinose 

the less representative sugar for both, optimum point and best yield samples. The high content of 

galactose in both samples (47% mol) allows concluding that polysaccharides recovered under the 

Sample Yield* 
 Monosaccharide composition  

(% mol) 
Total 

Sugars (%) 

 Y1 Y2 Y3  Arabinose Mannose Galactose Glucose  

Optimum 
point 

3.59 1.07 2.06 

 

10.02 ± 1.18 31.88 ± 2.08 47.74 ± 0.13 10.35 ± 0.76 29.29 ± 3.47 

Best yield 8.95 2.97 5.72 
 

8.05 ± 1.55 16.93 ± 1.47 47.32 ± 1.18 27.68 ± 1.71 33.25 ± 0.34 

Results of monosaccharide composition are expressed as mean ± standard deviation; n=3.  

* Y1: total yield of the extraction process using autohydrolysis technique, expressed as g of lyophilized material (LM) 

per 100 g SCG; Y2: yield in terms of quantity of sugars extracted during autohydrolysis, expressed as g of total sugars 

present in LM per 100 g SCG; Y3: yield in terms of quantity of sugars extracted with respect to total sugars existent 

in SCG, expressed as g of total sugars in LM per 100 g of sugars from SCG. 
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optimum point and the best yield conditions include arabinogalactans and galactomannans. The 

quantity of mannose in the optimum point sample (31.88% mol) was more representative than in 

the best yield sample, suggesting the presence of higher amount of galactomannans in the optimum 

point sample. Another structural difference between these two polysaccharides is the percentage 

of reducing sugars with respect to the percentage of total sugars, being 33% (w/w) and 15% (w/w) 

for optimum point and the best yield samples, respectively. Thus, the sugars obtained under the 

best yield conditions are mainly polysaccharides of long chains, while the sugars recovered under 

optimum point conditions are made, in a great part by oligosaccharides and/or short chain 

polysaccharides. Taking into account the composition of sugars in SGC described in other studies 

(Mussatto, Carneiro, et al., 2011; Passos & Coimbra, 2013), it was expected to find mannose, 

galactose, arabinose and glucose sugars in the lyophilized material. Nevertheless, the efficiency of 

the extraction depends of different factors including the variety of the coffee beans and their degree 

of roasting, solid/liquid ratio, solvent, temperature and extraction time, among others. The 

percentage of total polysaccharides extracted from SCG by using the autohydrolysis technique was 

slightly lower when compared to the percentage of total sugars extracted from SCG using alkali 

treatment (Section III – Chapter 5). However, the quantity of mannose extracted (31.88% mol) when 

using the optimum point conditions was higher than the amount obtained using an alkaline 

treatment, which shows autohydrolysis as an efficient technique to extract mannose from SCG.  

 

  Structural characterization 

Crystallinity of the extracted polysaccharides was evaluated through X-ray diffraction. Figure 

4.7a shows the XRD patterns for the optimum point and best yield samples, which were compared 

with a XRD spectrum of original SCG sample, i.e., not pretreated (Section II - Chapter 3). In general, 

the optimum point and the best yield polysaccharides samples showed an amorphous behavior, 

which was expected since the autohydrolysis conditions used are more suitable to extract 

hemicelluloses. However, the best yield sample presented a broad band, revealing the existence of 

small crystalline region in its structure, which can be easily observed when comparing to the 

cellulose region in the SCG spectrum. Cellulose presents both amorphous and crystalline structures 
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(Park, Baker, Himmel, Parilla, & Johnson, 2010). Thus, the glucose (cellulose) contents shown in 

Table 4.3 refer to the amorphous structure of cellulose, which, together with hemicellulose 

(mannose, galactose and arabinose) were more easily susceptible to hydrolysis due to the nature 

of their structure. Although crystalline cellulose hydrolysis requires the use of stronger temperatures 

and extraction times, the slight crystallinity observed in Figure 4.7a for the best extraction yield 

sample suggests that a small part of crystalline cellulose was extracted during the autohydrolysis 

process when the temperature and extraction time were increased. 

 

 

Figure 4.7 XRD diffractograms (a) obtained for spent coffee grounds (SCG) and for the polysaccharides 
extracted by autohydrolysis of SCG using the optimum point and best yield conditions. FTIR spectra (b) 
obtained for the polysaccharides extracted using the optimum point and best yield conditions 

 

   The polysaccharides samples were also analyzed by FTIR in order to determine the 

specific absorption bands present in each lyophilized material. When compared to other IR spectra 

of polysaccharides reported in the literature, the FTIR spectra obtained for both samples (Figure 

4.7b) showed a typical carbohydrate pattern behavior (Cerqueira et al., 2011; Ren et al., 2014). 
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Nevertheless, the magnitude of absorption intensities differed to each sample. The peaks at 778 

and 884 cm−1 were related with the presence of α- glycosidic and β-glycosidic linkages, attributed 

to α-ᴅ-galactopyranose and β-ᴅ-mannopyranose units, respectively (Cerqueira et al., 2011; 

Figueiró, Góes, Moreira, & Sombra, 2004). The broad band between 1191 and 920 cm−1 was 

related to ring vibrations overlapped with stretching vibrations of (C-OH) side groups and the (C-O-

C) glycosidic band vibrations, being specific for polysaccharides. This band showed lower peak 

intensity for the optimum point when compared to the best yield sample, which was associated to 

more hydrolyzed sugars (Synytsya & Novak, 2014), confirming shorter polysaccharides chains for 

the optimum point sample, as previously mentioned. Additionally, the peak belonging to this band 

located at 1039 cm−1 results from C–O stretching (Ren et al., 2014), and the other peak placed at 

1140 cm−1 were related to bending vibrational modes of C–O existing in the pyranose form (Figueiró 

et al., 2004). The peak at 1374 cm−1 corresponded to C–H in plane bending vibration and 

deformation in cellulose and hemicellulose (Pandey & Theagarajan, 1997). When the samples show 

a low crystallinity, there is a decrease or disappearing of some bands in the region of 900 – 1500 

cm-1 (Synytsya & Novak, 2014). This was evidenced to the optimum point sample, which presents 

a more amorphous structure when compared to the best yield sample. The region from 1500 to 

1700 cm-1 was related with carbonyl groups (C=O) asymmetrical and symmetric stretching 

vibrations (Ren et al., 2014) and to deformation in lignin (Pandey & Theagarajan, 1997). This band 

was also highly associated with chlorogenic acids and caffeine (Ribeiro, Salva, & Ferreira, 2010). 

Therefore, the peak at 1600 cm-1 could be attributed to a small absorption of these compounds, 

remaining from the SCG. The region between 2800 and 3000 cm−1 was related to C–H stretching 

vibration and the broad peak between 3200 and 3600 cm−1 was attributed to the hydroxyl group of 

O–H stretching vibration. The significant lowering of the bands in this area indicates the presence 

of amorphous cellulose (Synytsya & Novak, 2014), being in agreement with the XRD patterns, which 

revealed that the optimum point sample is less crystalline than the best yield sample (Figure 4.7a). 
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  Thermal properties 

DSC and TGA analyses (Figure 4.8) were carried out in order to evaluate the thermal 

behavior, chemical changes and weight loss of the polysaccharides extracted from SCG under the 

optimum point and the best yield autohydrolysis conditions. The DSC curves obtained for both 

samples exhibited two events. The first event, resulting in an endothermic peak and revealed at 

100.90 °C and 99.41 °C for the optimum point and the best yield samples, respectively, was 

associated to enthalpy changes of 381.32 and 396.40 J/g. This event is related to the presence of 

impurities in the samples and the vaporization of water (indicating the presence of hydrophilic 

groups), which occurs over a range of temperature.  

 

Figure 4.8 TGA and DSC curves showing the thermal behavior, chemical changes and weight loss of 
the polysaccharides extracted from spent coffee grounds under the optimum point and the best yield 
autohydrolysis conditions 

 

A second event, corresponding to an exothermic transition was observed at 297.73 °C and 

302.60 ºC for the optimum point and the best yield samples respectively, was associated to 

enthalpy changes of 73.06 and 146.5 J/g. This event is related to the thermal decomposition of 
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the samples, varying at temperature ranges between 220 and 310 °C. During this event, some 

differences were observed between the samples with respect to enthalpy change, being the value 

two-fold higher to the best extraction yield condition. This could be correlated to the structure of the 

polysaccharides, as well as to the molecular weight, degree of polymerization and branching of the 

samples (Cerqueira et al., 2011).  

The TGA curves (Figure 4.8) show the weight losses of the polysaccharides when submitted 

to severe heating conditions (25 - 600 °C). Both samples showed similar curves, revealing two 

weight loss stages. The first one, occurring between 80 and 100 ºC, resulted from the water 

evaporation (dehydratation of the sample) and corresponded to weight losses of about 8.74% and 

6.24% for the optimum point and the best yield samples, respectively. The greatest transformation 

and weight losses occurred during the second stage, at approx. 300 ºC. At this stage, weight losses 

of 42.37% and 57.89% were observed for the optimum point and best yield samples, respectively, 

as a consequence of the depolymerization and decomposition of the samples.  

 

4.3. Conclusions 

 

Autohydrolysis was demonstrated to be an efficient technique to recover polysaccharides 

with high antioxidant activity from SCG, particularly when applied at 160 °C during 10 min, and 

using a liquid/solid ratio of 15 ml water/g SCG. Under these conditions, it was possible to obtain 

a lyophilized material containing 29.29% (w/w) of polysaccharides, from which galactose was the 

most representative sugar, followed by mannose, glucose and arabinose. Additionally, the 

lyophilized material contained high content of phenolic compounds (234.14 mg GAE/g LM) and 

reducing sugars (93.93 mg GLU/g LM), and presented high antioxidant activity, which as confirmed 

by four different methods. Furthermore, the polysaccharides presented thermostability in a large 

range of temperature, being therefore of great interest for industrial applications, mainly in the food 

industry, for encapsulation of additives or as prebiotics, for example, due to their high antioxidant 

potential and other functional properties.   
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5. Introduction 

 

Arabinogalactan, galactomannan and cellulose are the dominant polysaccharides in coffee 

beans (Arya & Rao, 2007; Fischer, Reimann, Trovato, & Redgwell, 2001). Arabinogalactans is the 

most significant group of polysaccharides extracted with hot water from green coffee (Arya & Rao, 

2007; Nunes et al., 2005). Nevertheless, after roasting process, galactomannans become the most 

relevant polysaccharides in roasted coffee infusions. Thus, galactomannans and arabinogalactans 

are the most important coffee constituents after hot water extraction.  

Recently, some researchers have exposed the great potential of polysaccharides presented 

in coffee, showing that they can provide enormous functional properties (Gniechwitz, Reichardt, 

Blaut, Steinhart, & Bunzel, 2007; Simões et al., 2009). These properties could be found in the 

spent coffee ground (SCG), which retains about 70 % of total polysaccharides present in roasted 

coffee (Arya & Rao, 2007). 

The purpose of this Chapter was performed the extraction of polysaccharides from SCG by 

using an alkali pretreatment with sodium hydroxide at 25 ºC, and evaluate the chemical and 

structural characterization, as well as the antioxidant and antimicrobial properties of the extracted 

polysaccharides. 

 

5.1. Materials and methods 

 

5.1.1. Raw material  

SCG was provided by the Portuguese coffee industry Nova Delta-Comércio e Indústria de 

Cafés S.A. (Campo Maior, Portugal) and preserved as described in Section II - Chapter 3. 

 

5.1.2. Alkali pretreatment 

Polysaccharides extraction from SCG was carried out according to the method described 

by Simões et al. (Simões, Nunes, Domingues, & Coimbra, 2010) with some modifications. Briefly, 
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previous to the extraction, the SCG (605 g) were defatted in a Soxhlet extraction system (Tecator, 

HT2, Netherlands) during 4 h using petroleum ether as solvent (1:5 (w/v)). The fat free SCG were 

dried at 60 °C until constant weight and stored for the further stages. The alkali pretreatment was 

then performed for polysaccharides extraction by using 4 M sodium hydroxide (4 L) at 25 ºC 

overnight (0.02 M sodium borohydride was also added to prevent peeling reactions and alkaline 

oxidation of the polysaccharides). After this time, the produced alkali extract was centrifuged at 

9700 g  for 15 min at 4 °C, filtered through Whatman filter paper and acidified to pH 5.0 with 

glacial acetic acid. Next, the filtrate was dialyzed at 4 °C with a 8000 Da membrane for 12 days, 

with several distillated water changes. After dialysis, the retentate into the membrane was 

centrifuged at the same conditions above mentioned and the supernatant was frozen and freeze-

dried. Freeze-dried powder were stored at room temperature and protected from the light and 

humidity until further use. 

 

5.1.3. Polysaccharide yield 

Three different extraction yields of polysaccharides were determined (Y1, Y2, and Y3), 

which can represent important economic parameters of the process. Y1 represents the total yield 

of the extraction, expressed as g of lyophilized material (LM) per 100 g SCG; Y2 refers to the quantity 

of sugars extracted and was expressed as g of total sugars present in LM per 100 g SCG; finally, 

Y3 represents the yield of the quantity of sugar extracted with respect to total sugars existent in the 

SCG, which is defined as g of total sugars in LM per 100 of sugars from SCG. 

 

5.1.4. Analytical methodology 

 Chemical characterization  

The extracted polysaccharides were submitted to a dilute acid hydrolysis with sulfuric acid 

(120 mg H2SO4/g LM) at 120 °C for 20 min. The resulting solution was analyzed by high 

performance liquid chromatography (HPLC) as defined in Section III - Chapter 4. Glucose, 

arabinose, galactose and mannose were identified and quantified from standard curves made with 

known concentrations of each compound and expressed as % mol.  
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 Structural characterization 

Crystalline phases and the chemical groups and bonding arrangement of constituents 

present in the polysaccharides were evaluated by X-ray diffraction (XRD) and Fourier transform 

infrared spectroscopy (FTIR), respectively, as described in Section II - Chapter 3 and Section III - 

Chapter 4. Differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA) were 

carried out as previously described in Section II - Chapter 3. 

 

 Antioxidant phenolic compounds characterization 

For the analysis of total phenolic compounds and antioxidant activity of the polysaccharides 

extracted from SCG by alkali pretreatment, LM was mixed with ultrapure water in a ratio of 1 mg/ml, 

vortexed for 1 min and then filtered through 0.22 µm filters. Additionally, two commercial 

antioxidant phenolic compounds (2,6-di-tert-butyl-4-methylphenol and tert-butyl-4-methoxyphenol, 

known as BHT and BHA, respectively) were used as standards to evaluate the antioxidant capacity 

of polysaccharides and Tukey’s range test was considered to evaluate significant differences (p < 

0.05) among samples. 

 

5.1.4.3.1. Phenolic compounds 

The content of phenolic compounds was determined by using the Folin-Ciocalteu reagent 

method adapted to a 96-well microplate, described in Section III - Chapter 4. The total content of 

phenolic compounds was expressed as milligram of gallic acid equivalent per gram of lyophilized 

material (mg GAE/g LM).  

 

5.1.4.3.2. Antioxidant activity  

The antioxidant activity of the polysaccharides was estimated by four different methods: 

total antioxidant activity (TAA), DPPH radical scavenging activity assay and the radical cation 

decolorization (ABTS) assay, described in Section III – Chapter 4, as well as the ferric reducing 

antioxidant power (FRAP) assay, described in Section II – Chapter 3. TAA values were expressed as 

milligrams of α-tocopherol equivalent per milliliter of extract (mg TOC/ml). DPPH and ABTS data 
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were plotted as a function of antioxidant concentration to obtain DPPH and ABTS inhibition 

concentration at 50% (IC50). The IC50 values were expressed as milligrams of trolox equivalent (TE) 

per milliliter of extract (mg TE/ml).The FRAP values were expressed as milligrams of ferrous 

equivalent per milliliter of extract (mg Fe(II)/ml). 

 

  Antimicrobial activity assays 

5.1.4.4.1. Microbial strains 

Antimicrobial evaluation was performed against five food pathogenic fungi that drastically 

influence the quality and safety of postharvest fruits (Jasso de Rodríguez et al., 2011): Alternaria 

sp. MUM 02.42, Cladosporium cladosporioides MUM 97.06, Phoma violacea MUM 97.08, 

Penicillium italicum MUM 02.25 and Penicillium expansum MUM 02.14, being obtained from the 

collection of the Mycology Laboratory (MUM) of the University of Minho, Portugal. All the strains 

were cultured into potato dextrose agar (PDA) and incubated at 25 ± 2 ºC during 15 days before 

antimicrobial test. 

 

5.1.4.4.2. Minimal inhibitory concentration  

The determination of minimal inhibitory concentration (MIC) of polysaccharides extracted 

from SCG was performed using the micro-dilution methodology for filamentous fungi described by 

the Clinical and Laboratory Standards Institute (CLSI, 2002). Briefly, 20 mg of polysaccharides were 

dissolved in 1 ml of sterile ultrapure water and filtered through a 0.22 µm cellulose membrane. 

The resulting mixture was serially two-fold diluted in synthetic culture medium RPMI 1640 with 

glutamine and without sodium bicarbonate buffered with bicarbonate 3-(N-morpholino) 

propanesulfonic acid (MOPS) to pH 7.0, to obtain samples with the following final concentration 

after adding the inoculum: 1000, 500, 250, 125, 62.5, 31.3, 15.6, 7.8, 3.9 and 1.95 µg/ml. The 

cell suspension of each fungus tested was also adjusted to achieve a final concentration between 

0.4x104   and 5x104  CFU (colony forming unit)/ml when mixed with the sample concentrations.  

Experiments were carried out in a sterile 96-well microplate, in which 100 µl of inoculum 

suspension were added to 100 µl sample. The microplate was incubated at 25 ± 2 ºC for 96 h and 
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the absorbance was measured at 530 nm using a spectrophotometric microplate reader (Sunrise 

Tecan, Grödig, Austria) at 0, 12, 24, 48, 72 and 96 h to evaluate the behavior of the samples 

against growth and sterility controls, which consisted in using 100 µl of medium RPMI 1640 plus 

100 µl of inoculum suspension as microbial growth control and 200 µl of medium RPMI 1640 as 

sterility control. Moreover, fluconazole solutions (at concentrations 0.19, 0.39, 0.8, 1.6, 3.1, 46.2, 

12.5, 25 50 and 100 µg/ml) were used as standard control. All the assays were performed seven 

times for each sample against all fungal strains. MIC values were determined as being the lowest 

sample concentration that prevents visible fungal growth. 

 

5.2. Results and discussion  

 

5.2.1. Yield of extraction and chemical characterization of polysaccharides 

Table 5.1 shows the monosaccharide composition and extraction yield of the recovered 

polysaccharides. SCG is a residue rich in sugars polymerized into cellulose and hemicellulose, 

which correspond to 51.50% (w/w) of its composition on a dry weight basis as reported in Section 

II – Chapter 3. In the present chapter, the total sugar content extracted from SCG (lyophilized 

material) was 39%, while Y1, Y2 and Y3 were 6.05, 2.38 and 4.57% (w/w), respectively. Y1 is in 

agreement to the values obtained by Simões et al. (2009) when used 4 M NaOH to extract 

polysaccharides from SGC, in contrast toY2, which was almost 2-fold higher. Y3 was lower taking 

into account the high amount of polysaccharides present in the SCG. 

The chromatogram profile shown in Figure 5.1a revealed glucose, galactose, arabinose and 

mannose as the only sugars present in SCG polysaccharide. The monosaccharide composition 

showed galactose (60.27% mol) as the dominant sugar, followed by arabinose (19.93% mol), 

glucose (15.37% mol) and mannose (4.43% mol). These results are in agreement with others 

studies which reported that polysaccharides in coffee wall are constituted by galactose, arabinose, 

mannose and glucose, forming mainly galactomannan, arabinogalactan and cellulose structures 

(Arya & Rao, 2007; Mussatto, Carneiro, et al., 2011; Simões et al., 2009). However, the obtained 

sugar percentages revealed differences when compared with those works, but concurred with the 
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results reported by Simões et al. (2009), who evaluated 4 M NaOH to extract polysaccharides from 

SGC. As a result, galactose and arabinose were the most representative sugars found in the 

supernatant, which is in agreement with the presented results. The quantity of mannose extracted 

in both cases was lower when compared with other methods used to extract polysaccharides from 

SCG (Mussatto, Carneiro, et al., 2011), which indicates that a large proportion of mannose remains 

in SCG, suggesting that stronger conditions should be used for their extraction. For instance, 

mannose from SCG could be subjected to a chemical acetylation process (Simões et al., 2009; 

Simões et al., 2010) increasing thus the solubility of this sugar in water and other organic solvents, 

since the solvent plays an important role in the extraction process and should be chosen with 

respect to the organic compound of interest. 

Additionally, the efficiency of the extraction depends of many factors such as solid/liquid 

ratio, solvent, temperature, extraction time, variety of the beans used and their degree of roasting, 

among others; parameters that could be optimized but were not the objective of the present study. 

 

Table 5.1 Monosaccharide composition and extraction yield of the polysaccharides from spent coffee 
grounds 

 

 

 

Yield*  Monosaccharide composition  
(% mol) 

 Total sugars 
(%) 

Y1 Y2 Y3  Arabinose Mannose Galactose Glucose   

6.05 2.38 4.57  19.93 ± 1.74  4.43 ± 0.16 60.27 ± 0.51 15.37 ± 0.93  39.00 ± 0.19 

Results of monosaccharide composition are expressed as mean ± standard deviation; n=3.  

* Y1: total yield of the extraction process with 4 M NaOH, expressed as g of lyophilized material per 100 g SCG; 

Y2: yield of the quantity of sugars extracted with 4 M NaOH, expressed as g of total sugars present in the lyophilized 

material per 100 g SCG; Y3: yield of the quantity of sugar extracted with respect to total sugars existent in the SCG, 

expressed as g of total sugars in the lyophilized material per 100 g of sugars from SCG. 
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Figure 5.1 Chromatogram profile of sugars solubilized (glucose, galactose, arabinose and mannose) 
from spent coffee grounds by alkali pretreatment and further acid hydrolysis (a). XRD diffractograms 
(b) obtained for spent coffee grounds and polysaccharides extracted from this residue.  FTIR spectra 
(c) obtained for the polysaccharides extracted from spent coffee grounds using an alkali pretreatment 

 

5.2.2. Structural characteristics 

 Crystallinity  

 

Figure 5.1b displays the XRD patterns for SCG and the polysaccharide extracted from SCG. 

In order to evaluate the crystallinity of polysaccharides after alkali pretreatment, the XRD spectrum 

was compared with a XRD spectrum of SCG, obtained in Section II – Chapter 3, in which the SCG 

did not suffer any chemical pretreatment before the analysis. As it can be seen, the unique 

crystalline peak in SCG corresponds to the cellulose, while the polysaccharides extracted from SCG 
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did not present any crystalline region. Although the chemical composition (Table 5.1) revealed 

glucose (cellulose) into the sugars present in the lyophilized material, the XRD spectra of 

polysaccharides suggests a glucose with amorphous structure, since it is known to have crystalline 

and amorphous regions, in contrast with hemicellulose that present an amorphous structure 

(Ragauskas & Huang, 2013). This result could be related to the fact that alkali pretreatment is more 

suitable to extract the hemicellulose structure, being more easily degradable and susceptible to 

chemical attacks than cellulose (Ragauskas & Huang, 2013). 

 

  Chemical bonding of constituents 

 

Figure 5.1c shows the FTIR analysis performed to polysaccharides extracted from SGC. 

The obtained spectrum corresponds to a typical carbohydrate pattern when compared with others 

IR spectra of polysaccharides reported in the literature (Cerqueira et al., 2011; Ren et al., 2014; 

Zeng, Zhang, Gao, Jia, & Chen, 2012). The broad peak between 3600 and 3200 cm -1 was related 

to the hydroxyl group of O–H stretching vibration and the weak band between 3000 and 2800 cm-

1 was attributed to C-H stretching vibration. The region between 1700 and 1500 cm-1 was related 

with carbonyl groups (C=O) asymmetrical and symmetric stretching vibrations (Ren et al., 2014). 

This band was also highly associated with chlorogenic acids and caffeine (Ribeiro, Salva, & Ferreira, 

2010). Therefore, the peak at 1650 cm-1 could be attributed to a small absorption of these 

compounds, remaining from the SCG. The peak at 1374 cm−1 corresponds to C–H in plane bending 

vibration (Ren et al., 2014). The sharp band between 1194 and 925 cm-1 corresponds to stretching 

vibration of C–O in C–O–H bonds such as glycosidic bonds, and was related to polysaccharide 

sugars (Figueiró, Góes, Moreira, & Sombra, 2004). The peaks at 1155 and 1080 cm−1 resulted 

from the bending vibrational modes of C–O existing in the pyranose form (Figueiró et al., 2004), 

while the shoulder at 1024 cm−1 was indicated as C–O stretching (Ren et al., 2014). The peaks at 

885 and 790 cm−1 were related to the presence of β-linked D-mannopyranose units and α-linked D-

galactopyranose units, respectively. These glycosidic configurations were reported in most seed 

galactomannans (Cerqueira et al., 2011; Figueiró et al., 2004).  
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  Thermal properties 

DSC and TGA curves (Figure 5.2) were performed in order to understand the thermal 

behavior and chemical changes of the polysaccharides extracted from SCG. DSC thermogram 

exhibited two events: an initial endothermic phase followed by an exothermic phase. Thus, an early 

endothermic event was detected with a peak at 80.43 °C with an associated enthalpy change of 

167.30 J/g. This event was related to the presence of impurities in the sample and the vaporization 

of water (indicating the presence of hydrophilic groups), which occurs over a range of temperature. 

Enthalpy change in the first thermal transition was inferior when compared to those obtained for 

others polysaccharides (Cerqueira et al., 2011), associated to the low content of mannose:galactose 

ratio (Cerqueira et al., 2011; Chaires-Martínez, Salazar-Montoya, & Ramos-Ramírez, 2008), as 

reported in Table 5.1. The second event corresponds to an exothermic transition and was observed 

at 303.60 ºC, accompanied with an enthalpy change of 39.96 J/g. This transition was related to 

the thermal depolymerisation and branching of the polysaccharides, occurring at temperature 

ranges varying between 220 and 310 °C (Sperling, 2006). 

 

 

 

Figure 5.2 TGA and DSC curves showing the thermal behavior, chemical changes and weight loss of 
the polysaccharides extracted from spent coffee grounds by alkali pretreatment. 
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The TGA curve (Figure 5.2) shows the weight losses of the polysaccharides when exposed 

to heating until 580 °C, with four defined mass loss stages. The first one started at approx. 80 ºC 

and corresponded to weight losses of about 12.91%, resulting from the adsorbed and structural 

water evaporation (dehydration of the sample). The greatest transformation and mass losses 

occurred during the second stage, at approx. 300 ºC. At this stage, the depolymerization and 

decomposition of polysaccharides occurred, providing weight losses of 37.61%, in agreement with 

the DSC thermogram. Finally, the third and fourth thermal stages started at approx. 400 ºC and 

520 ºC, respectively, being related with the decomposition of the material and resulting in weight 

losses of 13.95% and 9.73%. 

 

5.2.3. Antioxidant phenolic compounds  

In order to evaluate the phenolic compounds and the antioxidant activity of the 

polysaccharides extracted from SCG, aqueous extracts were obtained by mixing the lyophilized 

material with ultrapure water in a relation of 1 mg/ml. The values obtained for the total phenolic 

compounds and the antioxidant activity determined by different methods are presented in Table 

5.2. The content of phenolic compounds (230 mg GAE/g LM) was very closely to the values 

reported in Section III – Chapter 4 when using the optimum process conditions for extracting 

polysaccharides by autohydrolysis of SCG, leading to the presence of phenolic compounds in the 

lyophilized material and achieving values of 234 mg GAE/g LM. 

 According to the current literature, different methods can be used to evaluate the 

antioxidant activity in food and biological systems. However, as each method is based on a different 

reaction, it is strongly advisable determining the antioxidant potential of a sample by different 

methods in order to better interpret the results. Figure 5.3 shows the antioxidant properties of 

polysaccharides extracted from SCG, using three different methods. 
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Table 5.2 Total phenolic compounds and antioxidant capacity of the polysaccharides extracted from 
spent coffee grounds by alkali pretreatment 

 

Assay method  Response 

Total phenolic compounds (mg GAE/g LM) 230.14 ± 1.43 

Total antioxidant activity (mg TOC/ml) 0.19 ± 0.01 

FRAP (mg Fe(II)/ml) 0.20 ± 0.11 

DPPH IC50 (mg TE/ml) 0.11 ± 0.00 

ABTS IC50 (mg TE/ml) 0.08 ± 0.00 

Results are expressed as mean ± standard deviation; n=3. FRAP: antioxidant activity by 

the ferric reducing antioxidant power assay; DPPH: antioxidant activity by the 2,2-

diphenyl-1-picrylhydrazyl assay; ABTS: antioxidant activity by 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) diammonium salt. 

 

The obtained values were compared with standard antioxidant compounds such as BHT 

and BHA, which were analyzed under the same procedure and concentration than the extracted 

polysaccharides. Significant differences (p < 0.05) were obtained when comparing the values of 

extracted polysaccharides and the standards. When analyzed by FRAP assay the values of BHT 

were 3.5-fold higher than the values obtained for extracted polysaccharides. BHA was 15-fold higher 

in both FRAP and TAA assays, but the polysaccharides showed a similarly antioxidant potential for 

TAA when compared with BHT, which was 1.2-fold higher. On the other hand, the percent inhibition 

for all samples (at concentration of 1 mg/ml) when analyzed by DPPH and ABTS methods was 

much closer to the standards, clearly seen in Figure 5.3. However, it is known that the scavenging 

activity of compounds is directly related with the concentration, and hence for the polysaccharide 

concentration showing the IC50 (at concentrations of 0.7 and 0.9 mg/ml, for DPPH and ABTS, 

respectively), BHA and BHT exhibited higher than 50% of inhibition, revealing the stronger antioxidant 

capabilities of the standards. Although in almost all antioxidant assays the standards showed to 

have higher values than polysaccharides extracted form SCG, the antioxidant activity obtained by 

DPPH assay revealed higher free radical scavenging activity compared with other works; e.g. 

polysaccharides extracted from edible mushrooms species, such as Pleurotus australis, Ileodictyon 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 5 - CHARACTERIZATION OF POLYSACCHARIDES EXTRACTED FROM SPENT COFFEE GROUNDS BY ALKALI 

PRETREATMENT 

P a g e  | 116 Lina F. Ballesteros, 2016 

 

cibarium, Hericium erinaceum and Hericium coralloides need higher concentration of 

polysaccharide extract to achieve inhibitions at 50%, being 4.03, 5.78, 5.82 and 7.19 mg/ml, 

respectively (Ren et al., 2014).  

There are several factors that can influence the antioxidant activity of the extracts. For 

instance, defatting process, which is normally used to remove fatty compounds in coffee before 

polysaccharides extraction ( Bravo, Monente, Juániz, De Peña, & Cid, 2013; Nunes et al., 2005), 

may influence the antioxidant capacity of the samples since antioxidant compounds could be also 

removed (Bravo et al., 2013). 

 

 

Figure 5.3 Antioxidant activity of the aqueous extracts from SCG polysaccharide and two commercial 
antioxidant (BHT and BHA) evaluated by different methods including FRAP, TAA, DPPH and ABTS 
assays. Different letters within each method mean values statistically different at 95% confidence level 

 

5.2.4. Antimicrobial activity  

Polysaccharides extracted from SCG were screened for antimicrobial activity against five 

fungi using the micro-dilution methodology. All strains were evaluated as a function of the incubation 

time, assessing the growth rate after 24, 48, 72 and 96 h of incubation at 25 ± 2 ºC. Figure 5.4 
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shows the absorbance values at 530 nm obtained for P. violacea as an example of the absorbance 

values at 530 nm for different polysaccharide concentrations.  

 

 

Figure 5.4 Absorbance values at 530 nm for the different polysaccharide concentrations after 24, 48, 
72 and 96 h of fungal inoculation with P. violacea (a) as an example of the all fungi behavior  

 

The graph clearly depicts a normal development of P. violacea growth control (CC), while 

clear alterations to the fungi growth are noticed when different concentrations of the 

polysaccharides are tested. These changes were observed in all fungi tested and were discussed in 

more detail using the percentage of growth, plotted in Figure 5.5a and Figure 5.5b. The evolution 

of all microbial strains growth on two different concentrations, 1000 µg/ml (maxima condition) and 

1.95µg/ml (minimal condition) are displayed in Figure 5.5a and Figure 5.5b, respectively. Both 

polysaccharide concentrations properly represented two distinctive behaviors for low and high 

concentrations against all fungi. Thus, when the polysaccharide concentration was lower than 31.3 

µg/ml, the trends of fungi growth with respect to time was similar and was presented in Figure 

5.5a, while for higher concentration the growth tendencies were presented in Figure 5.5b.   
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Figure 5.5  Evolution of all microbial strains on two different polysaccharide concentrations, 1000 
µg/ml (a) and 1.95 µg/ml (b), being the highest and lowest used concentrations, respectively 

 

Alternaria sp. exhibited very low inhibition growth for all the tested concentrations, reaching 

values no larger than 20% of inhibition. On the other hand, P. italicum, showed a particular behavior 

when compared to the growth of the control (CC), where higher polysaccharide concentrations 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 5 - CHARACTERIZATION OF POLYSACCHARIDES EXTRACTED FROM SPENT COFFEE GROUNDS BY ALKALI 

PRETREATMENT 

Lina F. Ballesteros, 2016 P a g e  | 119 

 

promoted the fungal growth instead of inhibiting, attaining a growth almost 4-fold higher after 96 h 

of incubation. This behavior suggests that higher polysaccharide concentrations may act as a 

carbon source, stimulating the P. italicum growth in greater proportions than the culture media. On 

the contrary, for lower concentrations, the fungus growth was slightly inhibited up to value no greater 

than 25%. P. expansum exhibited higher growth rates for the first 24 h compared to the growth 

control. However, a monotonic reduction of fungus growth was observed when the experiment time 

increased for all the concentrations, achieving higher inhibition values for lower polysaccharide 

concentrations. The extracted polysaccharide presented the higher inhibition efficacy for P. violacea 

and C. cladosporioides among all the strains tested. At higher polysaccharides doses, the P. 

violacea showed a constant inhibition, reducing to 0 % of inhibition after 96 h of incubation, 

indicating a short-term inhibition that may be due to the consumption of the inhibitory components 

present in the extracted polysaccharide. Nonetheless, for lower doses, an increase of the growth 

inhibition was observed. This behavior was also observed for C. cladosporioides at some 

concentrations, but with less defined tendencies in this particular strain. The differences between 

the high and low polysaccharide concentrations suggest a competition between the antimicrobial 

components in the extracts and the increased carbon source that the polysaccharide may offer to 

the microorganism, limiting the extracts function as an antimicrobial agent to low polysaccharide 

concentrations. 

The previous behavior could be more clearly observed in Figure 5.6, where the growth 

percentage for all the strains at 96 h is plotted as a function of the polysaccharide concentration. 

This figure evidences that the increment of the polysaccharide doses reduced the inhibition of 

growth for the five different fungi strains. As previously mentioned, Alternaria sp. did not show 

significant changes among the concentrations studied, indicating the lack of interaction between 

the extract and the strain. C. cladosporioides exhibited the highest inhibition at 31.3 µg/ml 

(54.60%), as shown in Table 5.3. Concentrations of 3.9 µg/ml showed high percent of inhibition, 

being the concentration in which the five strains revealed higher antimicrobial activity.  
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Figure 5.6 Fungal growth as a result of the effect of polysaccharide extracts at different concentrations 
on P. italicum, C. cladosporioides, Alternaria sp., P. expansum and P. violacea  after 96 h of inoculation 
and incubation at 25 ± 2 ºC, expressing the minimal inhibitory concentration (MIC) of polysaccharides 
extracts when compared with a growth control 

 

Table 5.3 Optimal conditions and percent inhibition of the polysaccharide extracts on growth of 
different microbial strains 

Microbial strains Optimal conditions* 

       (µg/ml) 
Percent inhibition 

(%) 

Penicillium italicum 1.95 22.04 ± 4.98 

3.9 17.03 ± 4.89 

Cladosporium cladosporioides 31.3 54.60 ± 7.06 

3.9 48.63 ± 9.84 

Alternaria sp. 3.9   6.62 ± 0.73 

7.8   2.78 ± 0.18 

Penicillium expansum 3.9 36.08 ± 5.60 

7.8 30.48 ± 5.75 

Phoma violacea 3.9 41.27 ± 6.95 

7.8 38.89 ± 4.49 

* Results of the two better concentrations for each fungus. Percent inhibition was 

expressed as mean ± standard deviation; n=6. 

 

The evolution of the growth inhibition as a function of time, is exposed in the Figure 5.7, 

confirming the facts previously described. Whereas the optimal conditions and percent inhibition of 
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the polysaccharide extracts after 96 h of incubation are shown in the Table 5.3 for the different 

microbial strains. 

 

 

Figure 5.7 Growth inhibition percentage of the polysaccharide concentration at 3.9 µg/ml, as a 
function of time, revealing higher antimicrobial activity against the five tested stains (Alternaria sp., P. 
italicum, P. expansum, Phoma violacea and Cladosporium cladosporioides) 

 

Additionally, tests with a known antimicrobial agent (fluconazole) revealed antimicrobial 

behavior (50% of growth inhibition or more) for concentrations larger than 50 µg/ml for Alternaria 

sp and C. cladosporioides, and 100 µg/ml for P. italicum and P. violacea, without evidence of the 

antimicrobial effect on the P. expansusm, where the growth inhibition was no higher than 30%.  

Although the antimicrobial effect of extract rich in polysaccharides is not well understood, 

some authors have proposed that the polysaccharide may act as an external barrier, blocking the 

essential nutrients, impeding the microbial growth (Ren et al., 2014). Nevertheless, this barrier 

behavior should be increased as the polysaccharide concentration is increased, contradicting the 

results found in this report, where for higher concentration the antimicrobial effect is not evidenced. 

As a result, probably the antimicrobial effect of the extract may be due to residual components such 

as phenolic compounds (Jasso de Rodríguez et al., 2011) that are retained in the extract during the 

process, which compete between the polysaccharide as a carbon source for high concentrations.  
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5.3. Conclusions 

 

The alkali pretreatment using 4 M NaOH as solvent showed to be a good option for an 

efficient extraction of polysaccharides from SGC. The most relevant sugars in SCG polysaccharides 

were galactose, followed by arabinose, glucose and mannose. Polysaccharides were thermostable 

in a large range of temperature, being therefore suitable for application in the manufacture of 

biomaterials and encapsulation products for several industrial purposes. Additionally, they revealed 

good antioxidant activity through different methods and presented high antimicrobial percent 

inhibition against P. violacea and C. cladosporioides. These findings open up possibilities to evaluate 

SGC polysaccharides as bioactive compounds in different food and pharmaceutical applications.  
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EXTRACTION OF ANTIOXIDANT PHENOLIC COMPOUNDS BY 

AUTOHYDROLYSIS OF SPENT COFFEE GROUNDS  

 

 

 

 

 

 

 

 

 

 

The following chapter is partially based on the results published in: Lina F. Ballesteros, Mónica J. 

Ramirez, Carlos E. Orrego, José A. Teixeira & Solange I. Mussatto. Optimization of autohydrolysis 

conditions to extract antioxidant phenolic compounds from spent coffee grounds (Submitted in 

Journal of Food Engineering). 
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6. Introduction 

 

In a previous study, autohydrolysis under mild reaction conditions was demonstrated to be 

a technology with great potential to recover phenolic compounds from spent coffee grounds (SCG) 

(Conde & Mussatto, 2016). However, the conditions that maximize the extraction of these 

compounds from SCG were not established yet, and it is well-know that the efficiency of this 

extraction process is affected by the variables used for reaction, such as the solvent/solid ratio, 

time of contact, temperature, particle size of the solid matrix, among others. Thus, it is very 

important to optimize the extraction conditions in order to maximize the extraction efficiency. 

Optimizing the process conditions is also important because it allows a more suitable and complete 

exploitation of the feedstock, saving time, manpower, and making the process less expensive, 

reliable, cleaner and attractive to be implemented at industrial scale. Taking these facts into 

account, the aim of the present chapter was to optimize the process conditions to extract antioxidant 

phenolic compounds from SCG by using the eco-friendly technique of autohydrolysis. Extractions 

were performed using different temperatures (160 to 200 °C), liquid/solid ratios (5 to 15 ml/g 

SCG) and extraction times (10 to 50 min) in order to determine the conditions that maximize the 

extraction results. The effects of these operational variables on the extraction results were also 

verified. Finally, the conditions able to produce a phenolic rich extract with high antioxidant activity 

were determined. Apart from being a green technology, autohydrolysis under optimized conditions, 

it was demonstrated to be an efficient method to extract antioxidant phenolic compounds from SCG. 

 

6.1. Materials and methods 

 

6.1.1. Raw material and chemicals 

Spent coffee grounds (SCG) were supplied by the Portuguese coffee industry NovaDelta-

Comércio e Indústria de Cafés S.A. (Campo Maior, Portugal) and treated as in Section II – Chapter 

3. All the chemicals used were analytical grade, purchased from Sigma–Aldrich (Chemie GmbH, 
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Steinheim, Germany), Panreac Química (Barcelona, Spain) and Fisher Scientific (Leicestershire, 

UK). Ultrapure water from a Milli-Q System (Millipore Inc., USA) was used. 

 

6.1.2. Autohydrolysis process 

Autohydrolysis assays were performed under different conditions of temperature (160 to 

200 °C), liquid/solid ratio (5 to 15 ml water/g SCG) and extraction time (10 to 50 min), which 

were combined according to a 23 central composite design. The reactions was carried out as 

described in Section III – Chapter 4. The total content of each reactor was centrifuged (2500 g, 20 

min) and the supernatant  (SCG extract) was filtered through 0.22 m filters and stored at -20 ºC 

until further analyses. The volume of extract recovered after each extraction was quantified and 

used for calculating the extraction yield, being expressed as g recovered extract per 100 g SCG.  

 

6.1.3. Analytical methodology 

 Phenolic compounds 

The total content of phenolic compounds (PC) in SCG extracts was measured by using the 

Folin-Ciocalteu reagent method adapted to a 96-well microplate, as previously described in Section 

III – Chapter 4. The total content of PC was expressed as milligram of gallic acid equivalent per 

gram of dry weight material (mg GAE/g SCG).  

 

  Ferric reducing antioxidant power assay 

The antioxidant activity of SCG extracts according to the ferric reducing antioxidant power 

(FRAP) assay was determined as described in Section II - Chapter 3. FRAP values were expressed 

as milligrams of ferrous equivalent per gram of dry weight material (mg Fe (II)/g SCG). 

 

  Free radical scavenging activity 

The DPPH radical scavenging activity of SCG extracts was determined as indicated in 

Section III - Chapter 4. The IC50 values were expressed as milligrams of trolox equivalent (TE) per 

gram of dry weight material (mg TE/g SCG). 

 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 6 - EXTRACTION OF ANTIOXIDANT PHENOLIC COMPOUNDS BY AUTOHYDROLYSIS OF SPENT COFFEE GROUNDS 

Lina F. Ballesteros, 2016 P a g e  | 131 

 

  Radical cation decolorization assay 

The ABTS radical cation decolorization assay was performed as described in Section III - 

Chapter 4. The IC50 values were expressed as milligrams of trolox equivalent (TE) per gram of dry 

weight material (mg TE/g SCG). 

 

  Total antioxidant activity  

The total antioxidant activity (TAA) of SCG extracts was estimated as described in Section 

III - Chapter 4. TAA was expressed as milligrams of α-tocopherol equivalent per gram of dry weight 

material (mg TOC/g SCG). 

 

 Flavonoids  

The total content of flavonoids in SCG extracts was estimated by colorimetric assay as 

previously described by Ballesteros et al. (2014). Briefly, a volume of 30 μl of the filtered and duly 

diluted extract was sequentially added to 90 μl methanol, 6 μl aluminum chloride at 10% (w/v), 6 

μl potassium acetate (1 mol/L), and 170 μl distilled water, in a 96-well microplate. The mixtures 

were maintained during 30 min in the dark at room temperature, and the absorbance was then 

measured at 415 nm against a blank of distilled water using a spectrophotometric microplate reader 

(Sunrise Tecan, Grödig, Austria). A calibration curve was prepared with a standard solution of 

quercetin (25, 50, 100, 150, 200 mg/L). The results was expressed as milligram quercetin 

equivalent per dry weight material (mg QE/g SCG).  

 

 Determination of other compounds in SCG extracts 

Chlorogenic acid, furfural and hydroxymethylfurfural were analyzed by high performance 

liquid chromatography (HPLC) on an equipment LC-10 A (Jasco, Japan) using a UV detector at 276 

nm and a Nucleosil 120-5 C18 5 µm (4.6 mm × 250 mm) column at room temperature. A mixture 

of acetonitrile and water (ratio 1/8) with 10 g/L of glacial acetic acid and with the final pH adjusted 

to 2.5 with phosphoric acid was used as mobile phase at a flow rate of 0.9 ml/min. The solvent 

mixture was degassed in an ultrasonic bath before to be used as mobile phase. The concentration 

of these components was determined from standard curves made with known concentrations of 
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each compound. The response of the UV detector was recorded and integrated using the D-7000 

HPLC System Manager software (Hitachi). 

 

6.1.4. Statistical analysis 

The influence of the variables temperature, liquid/solid ratio and extraction time on the 

recovery of antioxidant PC by autohydrolysis of SCG was investigated through a 23 central composite 

design. The real and coded values of the variables used in the experimental design are given in 

Table 6.1. Statistical significance of the variables was determined at 5% probability level (p < 0.05). 

The data obtained from the design were fitted to second order polynomial equations, and the models 

were simplified by elimination of statistically insignificant terms. Statistical significance of the 

regression coefficients was determined by Student’s t -test, and the proportion of variance explained 

by the models were given by the multiple coefficient of determination, R2. Statistical analysis of the 

data as well as the determination of the conditions able to maximize the extraction results were 

performed using the software Statistica (version 8.0), and Design expert (version 8.0). 

 

6.2. Results and discussion 

 

The variables used for extraction, such as the reaction time, temperature and liquid/solid 

ratio, usually have great influence both in the kinetics of PC release from the solid matrix as well as 

in the antioxidant activity of the produced extracts. Therefore, this study evaluated the effect of these 

three variables on the recovery of PC with high antioxidant activity by autohydrolysis of SCG with 

the objective of selecting the conditions that maximize the extraction results. The experimental 

conditions used in each assay and the respective results of PC, FRAP, DPPH, ABTS and TAA are 

presented in Table 6.1. In the range of values studied in this work, the operational variables exerted 

great influence on the evaluated responses. The content of PC in the extracts, for example, varied 

between 6.09 ± 0.07 (assay 1) and 39.29 ± 0.83 mg GAE/g SCG (assay 8) according to the 

conditions employed for autohydrolysis. The antioxidant activity values increased from 0.03 ± 0.001 

(assay 1) to 0.25 ± 0.008 mmol Fe(II)/g SCG (assay 8) by the FRAP assay, from 18.28 ± 0.09 
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(assay 1) to 119.01 ± 1.60 µmol TE/g SCG (assay 14) by the DPPH assay; from 21.53 ± 1.83 

(assay 1) to 124.39 ± 3.21 µmol TE/g SCG (assay 8) by the ABTS assay and from 8.14 ± 0.23 

(assay 1) to 64.79 ± 0.98 mg α-TOC/g SCG (assay 8) by the TAA assay. The differences between 

the results of antioxidant activity for the different assays can be explained by the fact that the 

methods differ from each other in terms of reaction mechanisms, oxidant and target/probe species, 

and reaction conditions (Conde & Mussatto, 2016; Karadag, Ozcelik, & Saner, 2009). 

The worst values for all the responses were achieved when using the lowest limit to each 

variable (Table 6.1), while the best results were obtained when using the highest limit (except for 

DPPH assay). Similarly, the best yield of extraction (26.06 % (w/w)) was achieved with the highest 

conditions of extraction time, temperature and liquid/solid ratio were used (assay 8, Table 6.1).   

The greatest content of PC (39.29 ± 0.83 mg GAE/g SCG) obtained in present study by 

autohydrolysis of SCG, was significantly higher than those reported in the literature for the recovery 

of PC from SCG by using organic solvents including isopropanol, ethanol and methanol (Murthy & 

Naidu, 2012; Mussatto, Ballesteros, et al., 2011; Panusa et al., 2013; Zuorro & Lavecchia, 2012), 

or by using autohydrolysis under mild process conditions (Conde & Mussatto, 2016). This value 

was also higher when compared to those reported for autohydrolysis of other natural sources such 

as corncobs (23.9 mg GAE/g dry matter), eucalypt wood (19.2 mg GAE/g dry matter), almond 

shells (36.2 mg GAE/g dry matter) and grape pomace (21.6 mg GAE/g dry matter) (Conde, Moure, 

Domínguez, & Parajó, 2011). The antioxidant activity of SCG extracts was also higher than the 

values reported to other antioxidant sources including medicinal plants like Sophora japonica, 

Terminalia chebula, Prunella vulgaris and Scutellaria barbata when aqueous extracts were 

evaluated by ABTS assay (Cai, Luo, Sun, & Corke, 2004), and fruits and grains such as black 

chokeberry, peach, apricot, hulled buckwheat, oat flakes when assessed by DPPH and FRAP 

methods (Stratil, Klejdus, & Kubáň, 2007). These results confirm that SCG is a phenolic rich agro-

industrial waste with important antioxidant potential, and autohydrolysis is an efficient technique to 

extract such compounds from SCG.  



 

 

Table 6.1 Experimental conditions and results obtained during the extraction of antioxidant phenolic compounds by autohydrolysis of spent coffee grounds 
(SCG). Assays according to a 23 central composite design 

Assay Process variables (real 

and (coded) values)a 

 Responses b 

X1 X2 X3     PC    FRAP   DPPH    ABTS         TAA Yield 

1 160  (-1) 5    (-1) 10     (-1)    6.09 ± 0.07 0.03 ± 0.001  18.28 ± 0.09   21.53 ± 1.83   8.14 ± 0.23   3.00 
2 200 (+1) 5    (-1) 10     (-1)    8.59 ± 0.09 0.05 ± 0.002  33.06 ± 0.06   32.08 ± 0.01 12.61 ± 0.27   6.15 
3 160  (-1) 5    (-1) 50 (+1)    8.59 ± 0.14 0.06 ± 0.004  35.33 ± 0.73   34.83 ± 0.15 14.15 ± 0.23   7.09 
4 200 (+1) 5    (-1) 50 (+1)  10.95 ± 0.24 0.08 ± 0.006  40.01 ± 0.19   41.39 ± 0.65 20.94 ± 0.08 10.91 
5 160  (-1) 15 (+1) 10     (-1)  12.63 ± 0.27 0.10 ± 0.004  55.74 ± 0.50   51.94 ± 0.61 26.06 ± 0.26   8.22 
6 200 (+1) 15 (+1) 10     (-1)  19.55 ± 0.77 0.15 ± 0.006  78.42 ± 0.04   85.75 ± 0.28 37.38 ± 1.38 11.98 
7 160  (-1) 15 (+1) 50 (+1)  17.39 ± 0.30 0.16 ± 0.009  96.16 ± 6.94   88.59 ± 0.47 39.30 ± 1.38 14.66 
8 200 (+1) 15 (+1) 50 (+1)  39.29 ± 0.83 0.25 ± 0.008 118.15 ± 0.27 124.39 ± 3.21 64.79 ± 0.98 26.06 
9 160  (-1) 10   (0) 30   (0)  23.57 ± 0.47 0.13 ± 0.005  63.73 ± 0.45   61.50 ± 0.78 25.63 ± 0.42 10.51 

10 200 (+1) 10   (0) 30   (0)  28.26 ± 0.23 0.19 ± 0.014  84.22 ± 0.37   57.01 ± 0.20 40.29 ± 0.55 21.31 
11 180   (0) 10   (0) 10    (-1)  21.42 ± 0.47 0.12 ± 0.007  60.70 ± 0.37   70.34 ± 0.58 22.95 ± 0.18   8.32 
12 180   (0) 10   (0) 50 (+1)  27.57 ± 0.32 0.18 ± 0.006  93.97 ± 0.88   92.89 ± 0.05 37.58 ± 1.85 20.16 
13 180   (0) 5    (-1) 30   (0)  10.62 ± 0.07 0.07 ± 0.002  40.94 ± 0.19   34.61 ± 0.34 17.08 ± 0.04   8.82 
14 180   (0) 15 (+1) 30   (0)  36.88 ± 0.51 0.20 ± 0.002 119.01 ± 1.60 107.98 ± 0.43 45.48 ± 0.36 19.45 
15 180   (0) 10   (0) 30   (0)  21.52 ± 0.50 0.14 ± 0.003    80.10 ± 6.65   70.34 ± 0.58 29.80 ± 0.20 11.90 
16 180   (0) 10   (0) 30   (0)  21.40 ± 0.52 0.13 ± 0.005    78.31 ± 0.31   69.80 ± 0.17 28.72 ± 0.96 13.03 
17 180   (0) 10   (0) 30   (0)  23.21 ± 0.29 0.14 ± 0.003    79.05 ± 1.14   73.45 ± 1.09 31.33 ± 0.88 14.11 
18 180   (0) 10   (0) 30  (0)  25.10 ± 0.65 0.14 ± 0.006    79.76 ± 0.38   72.88 ± 0.98 29.12 ± 0.48 14.47 

19 
20 

180   (0) 
180  (0) 

10   (0) 
10   (0) 

   30  (0) 
   30  (0) 

  23.77 ± 0.13 
 25.95 ± 0.18 

0.13 ± 0.001 
0.14 ± 0.003 

  81.64 ± 1.35 
  79.05 ± 0.85 

   84.65 ± 0.87 
   85.94 ± 0.68 

 33.99 ± 1.14 
 32.46 ± 0.84 

13.78 
14.26 

a X1: temperature (ºC); X2: liquid/solid ratio (ml/g); X3: extraction time (min). 
b PC: phenolic compounds (mg GAE/g SCG); FRAP: antioxidant activity by the ferric reducing antioxidant power assay (mmol Fe(II)/g SCG); DPPH: 
antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl assay (µmol TE/g SCG); ABTS: antioxidant activity by the 2,2'-azino-bis-3-ethylbenzothiazoline-6-
sulphonic acid assay (µmol TE/g SCG); TAA: Total antioxidant activity (mg α-TOC/g SCG); Yield: (% (w/w)). 
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Some researchers have related the potential of PC with their antioxidant activity (Alothman, 

Bhat, & Karim, 2009; Ballesteros et al., 2014; Cai et al., 2004, Mussatto, 2015). However, usually 

the correlation cannot be evidenced for all the antioxidant activity assays due to the fact that each 

method has different reaction mechanisms, as previously explained. In the present study, the 

relationship among total PC extracted by autohydrolysis of SCG and the results of antioxidant activity 

obtained by the different methods (which were based on different reaction mechanisms) was 

verified.  A correlation analysis chart was plotted and revealed that the antioxidant activity by FRAP 

and ABTS assays was directly proportional to the content of PC present in the SCG extracts, the 

data being correlated with coefficients R2= 0.9396 for FRAP assay and R2= 0.9459 ABTS assay 

(Figure 6.1).  These results suggest that the PC present in the SCG extracts contributed significantly 

to the antioxidant activity of the extracts when evaluated by both FRAP and ABTS assays. 

 

 

Figure 6.1 Correlation analysis chart for the responses total phenolic compounds (PC) and antioxidant 
activity (FRAP and ABTS assays) of extracts obtained by autohydrolysis of spent coffee grounds 

 

In order to corroborate the estimated effect of each operational variable used for the 

autohydrolysis of SCG on the efficiency of the responses, Pareto charts were plotted (Figure 6.2). 

In this figure, bars extending beyond the vertical line corresponded to the effects statistically 

significant at 95% confidence level. The length of each bar was proportional to the standardized 
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effect. The statistical analysis revealed a significant effect (p < 0.05) of the three variables on the 

total PC extraction from SCG through autohydrolysis technique, being the liquid/solid ratio (X2) the 

most significant variable, as shown in Figure 6.2a. As a result, similar trends on the antioxidant 

activity responses including FRAP, DPPH, ABTS and TAA (Figure 6.2b, c, d, e) and the extraction 

yield (Figure 6.2f) were expected. Although temperature (X1) was significant on antioxidant activity 

and yield responses, it had more influence on PC extraction, being the second most important 

variable, after de liquid/solid ratio, for this response (Figure 6.2a). On the other hand, the reaction 

time (X3) affected more significantly the antioxidant activity and yield responses when compared to 

temperature (Figure 6.2b, c, d, e, f). Similar to the present study, the solvent/solid ratio and 

temperature have been reported to be the most significant variables during the extraction of 

antioxidant PC from SCG when using a conventional solid-liquid extraction and ethanol as solvent 

(Zuorro & Lavecchia, 2012).  

Not only the linear terms (L) of the variables, but also the quadratic terms (Q) and 

interactions had statistical significance on the PC and antioxidant activity responses (p < 0.05), as 

shown in Figure 6.2. These results reveal that the value of the responses was not linearly raised by 

increasing the value of the operational variables, but there was a maximum point after which the 

values of the responses decreased. Therefore, all the responses were fitted to second-order 

polynomial equations, in order to describe the responses variations as a function of the variables in 

the range of values studied. The non-significant terms at p < 0.05 were disregarded in order to 

improve the fitting and prediction of the model. The equation for each response as a function of the 

variables (temperature, X1; liquid/solid ratio, X2; time, X3; – coded values) is shown in Table 6.2. None 

of these models presented lack-of-fit and revealed high coefficient of determination R2, ranging from 

0.84 to 0.98, which means a close agreement between the experimental results and those 

predicted by the equations. These models could be efficiently employed for a rapid prediction of the 

extraction results to be achieved when using temperatures, liquid/solid ratios and extraction times 

in the range of values evaluated in this study.  

 

 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 6 - EXTRACTION OF ANTIOXIDANT PHENOLIC COMPOUNDS BY AUTOHYDROLYSIS OF SPENT COFFEE GROUNDS 

Lina F. Ballesteros, 2016 P a g e  | 137 

 

 

 

Figure 6.2 Pareto chart for the effects of temperature (X1), liquid/solid ratio (X2), extraction time (X3), 
and their interactions (X1.X2, X1.X3, X2.X3) during the autohydrolysis of spent coffee grounds, on the total 
content of phenolic compounds (PC) (a), antioxidant activity (FRAP (b), DPPH (c), ABTS (d) and TAA (e) 
assays) and yield extraction (f) of the produced extracts. L and Q correspond to the effects at linear 
and quadratic levels, respectively 
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Table 6.2 Quadratic models describing the responses variation (total phenolic compounds (PC), 
antioxidant activity by the FRAP, DPPH, ABTS and TAA methods and extraction yield) as function of the 
process variables (temperature, liquid/solid ratio and extraction time) and their correspondent R2 
coefficients 

Response a Model equation *    R2 

PC  PC = 24.18 + 3.84X1 + 6.61X2 + 3.56X3 + 3.00X1X2 + 2.46X2X3 – 8.59X2
2 0.93 

FRAP  

DPPH  

ABTS  

TAA  

Yield  

FRAP = 0.14 + 0.026X1 + 0.056X2 + 0.029X3 + 0.012X1X2 + 0.013X2X3 – 0.03X2
2  

DPPH = 77.20 + 8.46X1  + 30.21X2 + 13.75X3 + 7.02X2 X3 – 14.89X1
2 

ABTS = 76.19 + 11.81X1 + 29.37X2 + 13.43X3 + 6.50X1 X2  + 6.65X2 X3 – 13.93X2
2  

TAA = 31.39 + 6.27X1 + 14.02X2 + 6.96X3 + 3.19X1X2 + 2.06X1X3 + 3.29X2X3 – 3.00X3
2 

Yield = – 14.78 + 3.33X1 + 4.40X2 + 4.08X3 – 3.11X2
2 

0.96 

0.94 

0.95 

0.98 

0.84 

* X1: temperature; X2: liquid/solid ratio; X3: extraction time. Coded values. 
a PC: phenolic compounds (mg GAE/g SCG); FRAP: antioxidant activity by the ferric reducing antioxidant power 
assay (mmol Fe(II)/g SCG); DPPH: antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl assay (µmol TE/g 
SCG); ABTS: antioxidant activity by the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid assay (µmol TE/g 
SCG); TAA: total antioxidant activity. (mg α-TOC/g SCG); Yield (% (w/w)). 
 

Based on the previously established model equations, contour lines graphs for PC, 

antioxidant activity responses and extraction yield were plotted (Figure 6.3). The graphs are 

presented at constant temperature (200 °C) since it revealed the highest values for all responses 

studied, and less significant effect in the majority of them when compared to the extraction time 

and liquid/solvent ratio. This is in agreement with the findings reported by Dorta, Lobo, & Gonzalez 

(2012), who observed an enhanced diffusion rate and solubility of the compounds in the solvent 

when the temperature was incremented, improving the extraction process. Figure 6.3 shows the 

existence of a single region where all the responses are maximized. Additionally, it can be seen in 

Figure 6.3a that the content of PC increased when the liquid/solid ratio was higher than 10 ml/g, 

probably, due to the fact that more water could react with the SCG particles while more PC could 

permeate to the water (Prasad, Yang, Yi, Zhao, & Jiang, 2009). However, the time played a 

significant role in the PC extraction, since the recovery was maximized between 45-50 min of 

extraction time.  
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Figure 6.3 Contour line plots representing the total content of phenolic compounds (PC) (a), the 
antioxidant activity (FRAP (b), DPPH (c), ABTS (d) and TAA (e) assays) and the extraction yield (f) of 
extracts obtained by autohydrolysis of spent coffee grounds under different conditions of extraction 
time and liquid/solid ratio 
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The results of FRAP, DPPH, ABST and TAA assays plotted in Figure 6.3b, c, d, e, 

respectively, had a similar behavior when compared to the results of PC presented in Figure 6.3a. 

All the responses were maximized when the liquid/solid ratio was higher than 12.5 g/ml and the 

extraction time was superior than 40 min. The extraction yield (Figure 6.3f) presented an almost 

linear behavior to the extraction time, revealing that for a constant temperature and liquid/solid 

ratio the yield always increases when the time rises. Nonetheless, the liquid/solid ratio was the 

most significant variable for this response. The quantity of PC and antioxidant activity were 

maximized when the extraction yield was also increased.  

Considering these results, a graphical optimization was carried out in order to determine 

the extraction conditions able to simultaneously produce an extract with high content of total PC 

and high antioxidant activity. The optimization process was conducted by overlapping the curves 

obtained in the models to each response. To determine the optimal extraction conditions, the 

following criteria was adopted: PC ≥ 35 mg GAE/g SCG, FRAP ≥ 0.23 mmol Fe(II)/g SCG, DPPH ≥ 

100 µmol TE/g SCG, ABTS ≥ 110 µmol  TE/g SCG, and TAA ≥ 60 mg α-TOC/g SCG. The overlaying 

plot attained (Figure 6.4) revealed an area in which all these criteria are satisfied (shadow area) 

and the optimum point (within this area) where the results of the responses were maximized, was 

then chosen, which corresponded to the use of 200 °C, 15 ml/g SCG and 50 min. Under these 

conditions, the model predicts a PC extraction of 35.07 mg GAE/g SCG; and antioxidant activity 

values for FRAP, DPPH, ABTS and TAA of 0.25 mmol Fe(II)/g SCG, 121.75 µmol TE/g SCG, 130.01 

µmol  TE/g SCG and 64.17 mg α-TOC/g SCG, respectively.  

The optimal point was later reproduced to validate the results, obtaining values within 5 % 

of relative standard deviation (Table 6.3), which demonstrates a good degree of prediction.  
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Figure 6.4 Optimum region overlaying the curves of the responses phenolic compounds (PC) and 
antioxidant activity by FRAP, DPPH, ABTS and TAA assays as a function of the extraction time and 
liquid/solid ratio used during the extraction process (g). The variables are presented in their original 
levels 

 

The results of PC obtained in the present study under the optimized autohydrolysis 

conditions (40.36 mg GAE/g SCG) were significantly higher than the values reported in other studies 

using conventional solid-liquid extraction to recover PC from SCG. The values were 4-fold higher 

when compared to those achieved by Murthy & Naidu (2012) using isopropanol 60% as extraction 

solvent (10.20 mg GAE/g SCG), 2-fold higher when compared to the results reported by Mussatto, 

Ballesteros, et al. (2011) and Zuorro & Lavecchia (2012) using methanol (18.00 mg GAE/g SCG) 

and ethanol (19.98 mg GAE/g SCG), respectively, and 1.4-fold higher than those reported by 

Panusa et al. (2013) also using ethanol as solvent (28.26 mg GAE/g SCG). 
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Table 6.3 Results obtained in the assays for validation of the conditions optimized for extraction of 
antioxidant phenolic compounds by autohydrolysis of spent coffee grounds  

Optimum 
point values 

Responses a 

       PC   FRAP    DPPH    ABTS TAA 

200 °C,  

15 ml/g SCG 

50 min 

   40.43 ± 1.00 0.25 ± 0.01  112.11 ± 1.01 125.28 ± 0.02 66.95 ± 0.35 

   41.23 ± 0.79 0.24 ± 0.01  111.03 ± 0.15 126.96 ± 0.07 63.40 ± 0.38 

3 39.36 ± 2.13 0.25 ± 0.01  114.25 ± 0.32 125.80 ± 0.57 68.27 ± 0.38 

Experimental 
average 

40.36 ± 0.90 0.25 ± 0.01 112.47 ± 1.64 125.68 ± 1.13 66.21 ± 2.51 

Criteria          ≥ 35.00         ≥ 0.23           ≥ 100.00         ≥ 110.00         ≥ 60.00 

Predicted 
results 

           35.07           0.25           121.75            130.01         64.17 

a PC: phenolic compounds (mg GAE/g SCG); FRAP: antioxidant activity by the ferric reducing antioxidant 
power assay (mmol Fe(II)/g SCG); DPPH: antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl assay (µmol 
TE/g SCG); ABTS: antioxidant activity by the 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid assay 
(µmol TE/g SCG); TAA: Total antioxidant activity (mg α-TOC/g SCG). 

 

Although organic solvents have been widely used to recover compounds from different 

natural sources, their toxic nature, mainly for isopropanol and methanol, can cause serious issues 

for food and pharmaceutical applications. On the contrary, pure water, as used in the present study 

for autohydrolysis, is more suitable to extract compounds used in these type of applications, besides 

being able to extract a higher amount of antioxidant PC.  

Finally, the extract produced under the optimized process conditions was submitted to 

HPLC and colorimetric analyses in order to characterize the PC present. As a result, flavonoids and 

chlorogenic acid were found in the extract in concentrations of 1.87 ± 0.11 (mg QE/g SCG) and 

2.25 ± 0.02 (mg/g SCG), respectively. Such compounds have been previously described to have 

antioxidant capacity and numerous bio-functionalities (Middleton, Kandaswami, & Theoharides, 

2000; Shan et al., 2009). Sugar derived compounds including furfural and hydroxymethylfurfural 

were also identified in the extract in concentrations of 1.40 ± 0.02 and 2.09 ± 0.04 (mg/g SCG), 

respectively.   
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6.3. Conclusions 

 

Autohydrolysis, which is an eco-friendly method that employs only water as extraction 

solvent, was an efficient technology to extract antioxidant phenolic compounds from spent coffee 

grounds. The total content of phenolic compounds and the antioxidant activity of the produced 

extract were affected by the variables used in the process, the liquid/solid ratio being the process 

variable with the highest influence on all the responses. The optimal extraction condition, achieved 

when using a temperature of 200 °C, liquid/solid ratio of 15 ml/g and extraction time of 50 min, 

was able to produce an extract containing high content of phenolic compounds (40.36 mg GAE/g 

SCG), including flavonoids and chlorogenic acid, and high antioxidant activity (FRAP = 0.25 mmol 

Fe(II)/g SCG, DPPH = 112.47 µmol TE/g SCG, ABTS = 125.68 µmol TE/g SCG and TAA= 66.21 

mg α-TOC/g SCG). Such results highlight the great potential of spent coffee grounds for use as raw 

material on biotechnological processes due to their low cost and availability, and mainly due to their 

antioxidant capacity and presence of phenolic compounds, which have an outstanding role in health 

area, and wide applications in food and pharmaceutical products. 
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CHAPTER 7 

ENCAPSULATION OF ANTIOXIDANT PHENOLIC COMPOUNDS 

EXTRACTED FROM SPENT COFFEE GROUNDS BY FREEZE-DRYING AND 

SPRAY-DRYING USING DIFFERENT COATING MATERIALS 

 

 

 

 

 

 

 

 

 

 

 

 

The following chapter is partially based on the results published in: Lina F. Ballesteros, Mónica J. 

Ramirez, Carlos E. Orrego, José A. Teixeira & Solange I. Mussatto. Encapsulation of antioxidant 

phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using 

different coating materials (Submitted in Journal of Functional Foods). 
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7. Introduction 

 

Spent coffee grounds (SCG), the main residue of coffee industry obtained from soluble 

coffee preparation, has been gaining an increasing interest in the scientific community due to their 

high content of phenolic compounds (Murthy & Naidu, 2012; Mussatto, Ballesteros, Martins, & 

Teixeira, 2011; Panusa, Zuorro, Lavecchia, Marrosu, & Petrucci, 2013; Zuorro & Lavecchia, 2012). 

Generally, this type of compounds is known for presenting enormous benefits for the human health. 

Nevertheless, the phenolic compounds are very vulnerable to oxidizing environment, for example, 

to the light, oxygen, moisture, among others, due to the existence of unsaturated bonds in the 

molecular structures. For trying to conserve their properties, the encapsulation process have been 

considered as a good alternative, being  so far proved in the conservation of different bioactive 

compounds including essential oils (Fernandes, Borges, & Botrel, 2014), anthocyanins (Flores, 

Singh, Kerr, Pegg, & Kong, 2014) propolis (Silva et al., 2013) among others, but it has never been 

applied on phenolic compounds extracted from SCG. 

In this chapter, the encapsulation of antioxidant phenolic compounds extracted from SCG 

was studied, focused on comparing two encapsulation processes and evaluating two raw materials 

as vehicles of the compounds present in the extract. Spray-drying and freeze-drying technologies 

were utilized to encapsulate the antioxidant phenolic compounds of SCG, extracted by 

autohydrolysis using the optimum conditions reported in Section IV - Chapter 6, while maltodextrin, 

gum arabic and a mixture of these wall materials were assessed to retain the bioactive compounds 

and their antioxidant activity. Scanning electronic microscopy (SEM), Fourier-transform infrared 

spectroscopy (FTIR), X-ray diffraction (XRD), dynamic scanning calorimetry (DSC) and 

thermogravimetric analysis (TGA) were performed, together with determinations of phenolic 

compounds (PC), flavonoids (FLA) and antioxidant activity evaluated by Ferric reducing antioxidant 

power (FRAP) and total antioxidant activity (TAA) assays in order to corroborate the encapsulation 

of compounds and evaluate its efficiency.  
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7.1. Materials and methods 

 

7.1.1. Raw material and chemicals 

Spent coffee grounds (SCG) were provided by the Portuguese coffee industry Nova Delta-

Comércio e Indústria de Cafés S.A. (Campo Maior, Portugal) and treated as in Section II - Chapter 

3. All the chemicals used were analytical grade and maltodextrin (dextrose equivalent 20 (DE20)) 

and gum arabic were purchased from Sigma–Aldrich (Chemie GmbH, Steinheim, Germany). 

Ultrapure water from a Milli-Q System (Millipore Inc., USA) was used. 

 

7.1.2. Extraction procedure  

The extraction of antioxidant phenolic compounds from SCG was performed by 

autohydrolysis using the process conditions optimized in Section IV - Chapter 6 (200 °C, 15 ml 

water/g SCG and 50 min). The total content of the reactor was centrifuged (2500 g, 20 min) and 

the supernatant (SCG extract) was filtered through 0.22 m filters and then encapsulated. The 

volume of extract recovered after centrifugation was quantified and used for data treatment.  

In order to evaluate the structural properties of the extracted phenolic compounds, SCG 

extract was submitted to a reaction for the phenolic compounds precipitation. In brief, the extract 

was mixed with ethyl acetate (1:3 v/v) and the mixture was kept at room temperature during 24 h, 

being then centrifuged (2500 g, 20 min) and the precipitated dried at 100 °C.   

 

7.1.3. Encapsulation process  

Encapsulation of the SCG extract was carried out using maltodextrin and gum arabic as 

coating materials. For the assays, 100 ml of extract were mixed with 20 g of coating material and 

the mixture was homogenized at 6000 rpm in an IKA T-25D Ultra-turrax homogenizer until obtaining 

a good dispersion. Three matrices were evaluated: i) 100% maltodextrin; ii) 100% gum arabic; and 

iii) a mixture of maltodextrin and gum arabic at ratio 1:1. A blank consisting of distilled water instead 

of SCG extract was also prepared for each matrix. All the samples were prepared in triplicate and 
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the total soluble solids (°Brix) were measured using a digital refractometer. Afterward, the samples 

were subjected to freeze-drying and spray-drying processes. For freeze-drying, the samples were 

previously frozen and then put into a chamber at -60 °C under pressure of 0.05 bar, being 

maintained under these conditions during 48 h. A Christ alpha 1-4 LD equipment (SciQuip, UK) 

was used. Spray-draying was carried out in an equipment mini Buchi model 191 (Büchi 

Laboratoriums Technik, Switzerland) using a liquid feed volumetric flow rate of 108 ml/h, drying 

air inlet temperature of 100 °C, nozzle air flowrate, 600 NL (litters at normal conditions)/h and 

aspiration 75% (28 m3/h).  

The moisture content of the dry powders was determined in a moisture analyser model 

MAC 50/1/NH (Radwag, Poland) and they were stored at room temperature and protected of the 

light until further analyses. 

 

7.1.4. Analytical methodology 

 Chemical characterization of SCG extract 

High performance liquid chromatography (HPLC) was used to analyze again the 

compounds present in the SCG extract as previously defined in Section IV - Chapter 6. Chlorogenic 

acid, furfural and hydroxymethylfurfural were identified and quantified in this extract and the 

concentration of these components was determined from standard curves made with known 

concentrations of each compound. The response of the UV detector was recorded and integrated 

using the D-7000 HPLC System Manager software (Hitachi). 

 

 Structural characterization 

Morphology and crystalline phases of SCG extract and phenolic compounds encapsulated 

were evaluated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively, as 

described in Section II - Chapter 3. The chemical groups and bonding arrangement of constituents 

present in the samples were determined by Fourier transform infrared spectroscopy (FTIR) as 
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defined in Section III - Chapter 4. Differential scanning calorimetry (DSC) and thermogravimetric 

analyses (TGA) were carried out as previously described in Section II - Chapter 3. 

 

 Antioxidant phenolic compounds characterization 

In order to evaluate the contents of total phenolic compounds and flavonoids, as well as 

the antioxidant activity of the samples after encapsulation process, the powders obtained by freeze-

drying and spray-drying were rehydrated until achieving the same content of soluble solids 

measured before drying. The rehydration was calculated by using the Eq 7.1, where 𝑊𝑃, is the 

mass of powder to hydrate; 𝑀𝐷𝑃, is the moisture of the sample after drying process; and 𝐵, 

represents the content of total soluble solids (°Brix) that had the sample before drying.  

 

Eq 7.1         𝑯𝟐𝑶𝒓𝒆𝒉𝒚𝒅𝒓𝒂𝒕𝒊𝒐𝒏=  
𝑾𝑷(𝟏−

𝑴𝑫𝑷
𝟏𝟎𝟎

 )

𝑩
∗ 𝟏𝟎𝟎 − (

𝑾𝑷∗ 𝑴𝑫𝑷

𝟏𝟎𝟎
)                                              

 

7.1.4.3.1.  Phenolic compounds 

The total content of phenolic compounds (PC) of encapsulated samples was determined 

by using the Folin-Ciocalteu reagent according to the colorimetric method described in Section III - 

Chapter 4. The blank corresponding to each encapsulated was used for correcting the final content 

of phenolic compounds in the samples. The total content of phenolic compounds was expressed 

as milligram gallic acid equivalent per 100 milliliters of encapsulated sample (mg GAE/100 ml).  

 

7.1.4.3.2. Flavonoids 

The total content of flavonoids (FLA) was estimated by a colorimetric assay as defined in 

Section IV - Chapter 6. The blank corresponding to each encapsulated was used for correcting the 

final content of flavonoids in the samples. The content of total flavonoids was expressed as milligram 

quercetin equivalent per 100 milliliters of encapsulated sample (mg QE/100 ml).  
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7.1.4.3.3. Ferric reducing antioxidant power assay  

The antioxidant activity of encapsulated compounds by the ferric reducing antioxidant 

power (FRAP) assay was determined as in Section II - Chapter 3. The blanks of the encapsulates 

were used for correcting the final antioxidant activity of the samples. The FRAP values were 

expressed as millimoles of ferrous equivalent per 100 milliliters of encapsulated sample (mmol 

Fe(II)/100 ml). 

 

7.1.4.3.4. Total antioxidant activity  

The total antioxidant activity (TAA) of encapsulated compounds was estimated as in Section 

III - Chapter 4. The blanks of the encapsulates were used for correcting the final TAA in the samples. 

TAA was expressed as milligrams of α-tocopherol equivalent per 100 milliliters of encapsulated 

sample (mg TOC/100 ml). 

 

7.1.5. Statistical analysis 

Statistical analyses were carried out using GraphPad Prism (version 6.1). One-way analysis 

of variance (ANOVA) and Tukey’s multiple comparisons test were performed to determine the 

significant differences (p < 0.05) between the encapsulated samples. 

 

7.2. Results and discussion 

 

7.2.1. Extract characterization 

  Chemical composition and antioxidant activity 

The contents of phenolic compounds and flavonoids, as well as the antioxidant activity 

values of the SCG extract before and after encapsulation are shown in Table 7.1. HPLC analyses 

(Figure 7.1a) revealed also the presence of chlorogenic acid (19.99 ± 3.56 mg/100 ml) and sugar 

derived compounds, namely hydroxymethylfurfural (18.57 ± 3.32 mg/100 ml extract) and furfural 

(12.44 ± 2.29 mg/100 ml extract), in SCG extract. Chlorogenic acid, considered the most important 

phenolic compound in coffee, is known to have antioxidant capacity and numerous biofunctionalities 
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(Mussatto, 2015; Farah & Donangelo, 2006).. The high content of phenolic compounds (with 

presence of flavonoids and chlorogenic acid) and the antioxidant activity of SCG extract confirm the 

great potential of SCG as a natural source of antioxidant phenolic compounds. 

 

Table 7.1 Contents of phenolic compounds, flavonoids and antioxidant activity of the extract produced 
from spent coffee grounds (SCG) before and after encapsulation into different coating materials by 
freeze-drying or spray-drying 

Drying  

process 

 Sample PC FLA FRAP TAA 

SCG Extract     350.28 ± 11.71   16.51 ± 1.03 2.15 ± 0.03   591.37 ± 12.41 

Freeze-drying 

      M 216.37 ± 10.32 12.14 ± 0.34 1.56 ± 0.09 506.30 ± 14.72 

      M + GA 173.57 ± 3.40 11.36 ± 0.93 1.58 ± 0.03 128.90 ± 13.82 

 
GA 145.32 ± 12.08   5.38 ± 0.33 1.21 ± 0.07 257.84 ± 17.78 

Spray-drying 

M 174.07 ± 7.27   7.88 ± 0.16 1.67 ± 0.02 380.25 ± 15.49 

 M + GA 204.86 ± 13.00   3.60 ± 0.23 1.58 ± 0.05 144.73 ± 17.79 

 GA 117.67 ± 12.58   6.72 ± 0.87 1.59 ± 0.03 194.13 ± 11.41 

Results are expressed as mean ± standard deviation; n=6.  

M: maltodextrin; GA: gum arabic; PC: total phenolic compounds (mg GAE/100 ml); FLA: flavonoids (mg 

QE/100 ml); FRAP: antioxidant activity by the ferric reducing antioxidant power assay (mmol Fe(II)/100 ml); 

TAA: antioxidant activity by the total antioxidant activity assay (mg α-TOC/100 ml). 

 

  Structural characterization 

The crystallinity and chemical groups and bonding arrangement of constituents present in 

the SCG extract after precipitation with ethyl acetate were evaluated through X-ray diffraction (XRD) 

and Fourier transform infrared spectroscopy (FTIR). The XRD pattern (Figure 7.1b) revealed a 

mostly amorphous structure. However, around 2 = 20° a broad band was diffracted, revealing 

the existence of small crystalline regions in the SCG extract structure. This peak is related with the 

crystalline cellulose present in SCG when it has not been subjected to any treatment (Section II -

Chapter 3). Although the autohydrolysis process is more suitable to extract antioxidant phenolic 

compounds and hemicelluloses from lignocellulosic materials, the high temperature and extraction 

time (200 °C, 50 min) used during the process allowed extracting the small part of crystalline 

cellulose as evidenced in Figure 7.1b. 
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FTIR spectrum (Figure 7.1c) showed the typical band from 1500 to 1700 cm-1 ((C=O) 

asymmetrical and symmetric stretching vibrations) highly associated with chlorogenic acid and 

caffeine (Ribeiro, Salva, & Ferreira, 2010) and deformation in lignin (Pandey & Theagarajan, 1997). 

Thus, the peak at 1654 cm-1 can be attributed to the absorption of these compounds, being the 

peak more intense when their concentration in the sample increases. The peak at 2930 cm−1 was 

assigned to the C-H2, nC-H3 stretch, being closely related to aromatic compounds with phenyl bonds 

similar to those in polyphenolic compounds, such as flavonoids (Mehanna et al., 2014; Santiago-

Adame et al., 2015). Supplementary bands were found in the SCG extract, being in agreement with 

the findings reported in Section II - Chapter 3. 

 

 

Figure 7.1 Chromatogram profile of the extract obtained by autohydrolysis of spent coffee grounds 
(SCG) (a). X-ray diffractogram (XRD) (b) and Fourier transform infrared spectra (FTIR) (c) of the extract 
obtained by autohydrolysis of SCG and then precipitated with ethyl acetate 
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  Thermal behavior  

DSC and TGA curves of extract obtained by autohydrolysis of SCG and subsequently 

precipited with ethyl acetate are shown in Figure 7.2. When the SCG extract was exposed to 600 

°C three events were identified. The first one revealed an endothermic peak at 93.91 °C, being 

related to the presence of impurities in the sample and the vaporization of water (indicating the 

presence of hydrophilic groups), which occurs over this range of temperature. The second event 

corresponded to a broad exothermic transition starting approximately at 180 °C and finishing at 

320 °C. In the initial phase (180 – 256 °C) this event was related to the degradation of antioxidant 

phenolic compounds (Reda, 2011) and in the last phase (256 – 320 °C) it was associated to the 

depolymerisation and branching of carbohydrates present in the SCG extract (Section II - Chapter 

3). Finally, the third stage started over 400 ºC and was related to the decomposition of the material.  

 

Figure 7.2 Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of the 
extract obtained by autohydrolysis of SCG and then precipitated with ethyl acetate 
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7.2.2. Extract encapsulation 

  Morphology 

Images obtained by scanning electron microscopy (SEM) for the  pure coating materials, 

as well as for the samples encapsulated by freeze-drying and spray-drying and techniques are 

shown in Figure 7.3. Both coatings, maltodextrin and gum arabic possess similar morphologies. 

Nevertheless, maltodextrin revealed spheres of around 30 µm of diameter or smaller, while gum 

arabic showed more irregular particle sizes.  

 

 

Figure 7.3 Scanning electron micrographs (SEM) micrographs for pure maltodextrin and gum arabic 
as well as for the phenolic compounds encapsulated and drying by spray-drying and freeze-drying. 
Magnification, 2500X. 
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These spherical capsules are used to absorb the extract and, after the drying process, they 

allow the components to remain in the coating materials. The morphology, shape and size of the 

capsules were expected to change after the freeze-drying and spray-drying processes, due to the 

conditions used in each process. For spray-drying, for instance, which utilized a temperature of 100 

°C, the maltodextrin and gum arabic maintained the spherical form with very similar sizes (less 

than 30 µm), but in most of the cases a dehydrated aspect was shown. This morphology has been 

previously reported for spray-drying process (Santiago-Adame et al., 2015).  

The freeze-drying, on the other hand, clearly modified the original morphology of the coating 

materials, leaving a more sawdust-like morphology, both in maltodextrin and the gum arabic, typical 

of lyophilization process in these matrices (Mahdavee Khazaei et al., 2014). Such morphological 

changes are expected to alter the power of encapsulation, due to the variation in the surface area 

of the coatings that allow more or less degradation of the encapsulated compounds.  

 

  Structural characteristics 

7.2.2.2.1. Crystallinity and chemical bonding of constituents 

Figure 7.4 displays the X-ray diffraction (XRD) patterns for maltodextrin and gum arabic, as 

well as the spectra for the SCG extract encapsulated into these matrices dried by freeze-drying and 

spray-drying. The XRD of the samples revealed a very low degree of crystallinity, evidencing a very 

broad peak around 2 = 18° and an amorphous background from the beginning of the spectra to 

2 = 55°. Quantifying the degree of crystallinity of a compound is difficult since very small 

crystalline regions give broad peaks, and larger crystalline regions translate in better defined peaks; 

however the amount of such regions cannot be directly quantified. As a result, only a tendency 

regarding the sizes of the crystalline regions can be given. For that purpose, the peaks were fitted 

using a Voight function and the full width at half maximum (FWHM) was reported in the spectra in 

order to analyze possible differences between the samples. For larger FWHM, smaller ordered 

regions were expected and vice versa. Maltodextrin, for instance, showed larger FHWM compared 

to gum arabic, suggesting a less ordered structure. The same behavior was maintained in the 
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samples after encapsulating the phenolic compounds regardless of the type of drying, but when a 

combination of both matrices, maltodextrin and gum arabic (ratio 1:1) was used, intermediate 

crystalline sizes were observed. This clearly evidences that the used coatings are the main 

responsible for the final structure of the encapsulated products. 

 

 

Figure 7.4 X-ray diffractogram (XRD) obtained for pure maltodextrin and gum arabic as well as for the 
phenolic compounds encapsulated and drying by spray-drying and freeze-drying. FWHM: full width at 
half maximum 

 

Fourier transform infrared spectroscopy (FTIR) results (Figure 7.5) show the predominant 

effect of both matrices, maltodextrin and gum arabic in the final sample, since the coating material 

structures were not affected by the addition of SCG extract. A summary of the absorption bands 

characteristic for maltodextrin (Castro-Cabado, Casado, & San Román, 2016; Santiago-Adame et 

al., 2015) and gum arabic (Leonor et al., 2013; Paulino, Guilherme, Mattoso, & Tambourgi, 2010) 

are shown in Table 7.2. It must be also stressed that the conditions used for the different drying 
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processes did not alter the structure of the matrices, since independently of the process, no 

significant changes are observed.  

 

 

Figure 7.5 Fourier transform infrared spectra (FTIR) obtained for pure maltodextrin and gum arabic as 
well as for the phenolic compounds encapsulated and drying by spray-drying and freeze-drying 

 

7.2.2.2.2. Thermal stability 

DSC and TGA analyses for pure maltodextrin and gum arabic and the samples of SCG 

extract encapsulated using these coating materials were carried out in order to evaluate the thermal 

stability of the samples (Figure 7.6). As it can be seen, the structural features exposed in the thermal 

characterization were largely dependent of the coatings, evidencing thus, that the changes suffered 

in the samples are directly related with the transition temperatures of the maltodextrin and gum 

arabic. The first event occurring between 30 – 160 °C revealed an endothermic peak at 80 °C, 

which was associated to water evaporation and chemisorbed water through hydrogen bonds. This 

event was observed for all the samples by both, DSC and TGA analyses. 
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Table 7.2 Infrared (IR) assignments of the main vibrations in the FTIR spectra from maltodextrin and 
gum arabic 

IR region 

(cm-1) 

 Vibrations 

(cm-1) 

 Assignments 

 Maltodextrin Gum arabic 

3600 - 3000 3300 
O–H stretching broad band 

(hydroxyl group) 

O–H stretching broad band 

(hydroxyl group) 

3000 - 2800 2908 
C–H2 asymmetric stretching 

band 

C–H2 symmetric stretching 

band 

1700 - 1500 

1641 
C=O stretching band  

(free carboxyl groups) 
 

 
1603 

 

 
C=O stretching band 

(carboxylic acid group) 

1500 - 1200 1418  C–H bending bands  

1200 - 650 

 

1150 
C–O stretching bands  

(ether group)  

C–O stretching bands  

(ether group)  

 1084 C–O stretching bands   

 1015   
C–O stretching bands  

(pyranose form) 

 1005  
C–O and ring stretching 

modes 
 

 928  
C–O stretching bands 

(ring and skeletal modes) 
 

 842  
C–O–C stretching of glycosidic 

bonds 
 

 768  
CH2 out-of-plane bending 

 

CH2 out-of-plane bending 

(twisting) 

 

On the other hand, maltodextrin and the samples encapsulated with this carbohydrate 

presented a double peak between 190 – 350 °C, generating a total weight loss of about 64%. This 

double transition is in agreement with the results reported by Paini et al. (2015) and Saavedra-

Leos, Leyva-Porras, Araujo-Díaz, Toxqui-Terán, and Borrás-Enríquez (2015). However, it has also 

been shown that the onset of this peak (~ 190 °C) can vary slightly depending on the dextrose 

equivalent amount that the maltodextrin possesses and the water activity which the coating and the 

encapsulated samples were stored (Paini et al., 2015; Saavedra-Leos et al., 2015). The second 

part of the maltodextrin transition coincided with the transition observed for gum arabic and the 
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samples coated with this wall material revealing an exothermic peak for all the samples at about 

300 °C. This transition located between 190 and 370 °C was attributed to the depolymerisation of 

the materials. Additionally, the samples containing gum arabic, presented a weight loss 

approximately 55% in this transition.  

 

 

Figure 7.6 Thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC) curves for 
pure maltodextrin and gum arabic, and for the samples of spent coffee grounds extract encapsulated 
into these coating materials, dried by freeze-drying and spray-drying 

 

Although the thermal transition indicating the decay of the samples was very close between 

all of them, a slight increase in the temperature was observed for the samples after encapsulation, 

when compared to the SCG extract without encapsulating (Figure 7.2), revealing thus more 

thermally stable samples, mainly those encapsulated with gum arabic. This effect was more marked 

from the onset temperature in which the thermal degradation of the SCG extract started at lower 

temperatures ( 190 °C) than those reported for the encapsulated samples with gum arabic (> 
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225 °C) and maltodextrin (> 190 °C), confirming again that the thermal stability achieved by the 

encapsulated samples is provided by the material used as coating. 

 

  Encapsulation efficiency 

In this step, the efficiency of the different drying processes (freeze-drying and spray-drying) 

and coatings to encapsulate the antioxidant phenolic compounds extracted from SCG was evaluated 

and compared. Figure 7.7 shows the percentage of phenolic compounds and flavonoids retained 

in the matrix, and the antioxidant activity of the samples after encapsulation, when compared to 

the initial values present in SCG extract (Table 7.1). The results revealed that the coating used for 

encapsulation had an important role on the retention of antioxidant phenolic compounds in the 

matrix. The best results were achieved when using 100% maltodextrin as wall material and freeze-

drying as encapsulation technique. Under these conditions, the amount of phenolic compounds 

and flavonoids retained in the encapsulated sample corresponded to 62% and 73%, respectively. 

These results are in agreement with those reported by Ramírez, Giraldo, and Orrego (2015), where 

the highest content of phenolic compounds was attained when the compounds where subjected  to 

freeze-drying and 100% maltodextrin was used as coating material. Gum arabic retained the lowest 

amount of phenolic compounds independently of the drying process employed. This behavior may 

be explained by the fact that the encapsulation efficiency is highly dependent on the encapsulated 

compounds and the coating material used (Rosa et al., 2014). The antioxidant activity was expected 

to be reduced when compared to the initial antioxidant capacity of the SCG extract, due to the lower 

amount of phenolic compounds and flavonoids present in the encapsulated sample. Additionally, 

the reduction percentage of TAA values obtained for the matrices containing 100% maltodextrin and 

100% gum arabic, presented a direct correlation with the proportion of phenolic compounds 

retained, independently of the drying process (linear correlation, R2 = 0.99). However, the lowest 

TAA values were observed when maltodextrin and gum arabic were mixed, demonstrating a 

detrimental effect by combining both matrices with respect to antioxidant activity.    

 

. 
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Figure 7.7 Percentage of encapsulated compounds taking into account their initial amount present in 
SCG extract and their final amount retained in the coating materials, dried by freeze-drying and spray-
drying. Different letters within each method (PC: phenolic compounds; FLA: flavonoid content; FRAP: 
antioxidant activity by the ferric reducing antioxidant power assay; TAA: antioxidant activity by the total 
antioxidant activity assay) mean values statistically different at 95% confidence level 

 

The drying process demonstrated to be fundamental in the efficacy of encapsulation, being 

freeze-drying a more effective technique for simultaneous encapsulation of phenolic compounds 

and flavonoids. This behavior may be partially attributed to the changes in morphology caused by 

the drying process. For the lyophilization process, the sawdust-like shape creates a lower surface 

area/volume ratio compared to the microspheres of the spray-drying process, which due to the 

smaller sizes of the spheres possess larger surface area for the same amount of material, leading 

to the deterioration of phenolic compounds and flavonoids from the surface to be easily deteriorate 
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7.3. Conclusions 

 

The technique (freeze-drying and spray-drying) and the coating material (maltodextrin, gum 

arabic, or a mixture of these components) are factors of great influence on the encapsulation of 

antioxidant phenolic compounds extracted from spent coffee grounds. Although gum arabic was 

more thermally stable when compared to maltodextrin, the encapsulation with gum arabic showed 

a detrimental effect on the retention of phenolic compounds and flavonoids, as well as on the 

antioxidant activity of the encapsulated sample. The use of maltodextrin as coating material was 

more appropriate for preserving these components providing the highest retention percentages of 

phenolic compounds and flavonoids in the matrix and also the best functional properties for the 

encapsulated samples, especially when freeze-drying was performed. Finally, freeze-drying using 

maltodextrin as coating material can be considered a good option for encapsulation of antioxidant 

phenolic compounds extracted from spent coffee grounds since is able to retain 62% and 73% of 

phenolic compounds and flavonoids, respectively, preserving 73-86% of the antioxidant activity 

existent in the original extract.   
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CHAPTER 8 

USE OF POLYSACCHARIDE RICH EXTRACTS OBTAINED FROM SPENT 

COFFEE GROUNDS AS CONSTITUENTS OF CARBOXYMETHYL 
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The following chapter is partially based on the results published in: Lina F. Ballesteros, Miguel A. 

Cerqueira, José A. Teixeira & Solange I. Mussatto. Use of polysaccharide rich extracts obtained 

from spent coffee grounds as constituents of carboxymethyl cellulose-based films (Submitted in 

Food Hydrocolloids). 
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8. Introduction 

 

Bio-based films or coatings are promising systems to replace the synthetic materials used 

in the food packaging industry. Nowadays, food industry are looking for new materials from 

renewable resources that can replace the petroleum-based materials in order to reduce their 

environmental impact, promoting thus, a new generation of biodegradable packaging with similar 

properties than synthetics and low cost production (Ghanbarzadeh, Almasi, & Entezami, 2010). 

The use of natural polymers such as polysaccharides, proteins and lipids into edible 

coatings and films have been studied as a possible alternative for food preservation. Likewise, the 

use of agricultural-residues for the extraction of new functional materials has been extensively 

studied in last years (Aguedo, Fougnies, Dermience, & Richel, 2014; Costa et al., 2015; Ruiz et al., 

2013). As a result, the polysaccharide rich extracts obtained from spent coffee grounds (SCG), by 

using an alkali pretreatment (PA) and autohydrolysis (PB) reported in previous chapters, were 

incorporated into carboxymethyl cellulose (CMC)-based films aiming at the development of bio-

based films with new functionalities. Different concentrations of PA and PB extracts (0.00, 0.05, 

0.10 and 0.20%, w/v) were used and their effect on physicochemical properties of CMC-based films 

were evaluated. Scanning electronic microscopy (SEM), Fourier-transform infrared spectroscopy 

(FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were performed, together with 

determinations of optical and mechanical properties, moisture content, solubility, water vapor 

permeability (WVP), contact angle and sorption isotherms in order to highlight the interactions 

between the SCG extracts and film matrix.  

 

8.1. Materials and methods 

 

8.1.1. Materials for films production 

Extracts from SCG were obtained using two different extraction methods: an alkali 

pretreatment (Section III - Chapter 5) and ii) autohydrolysis (Section III - Chapter 4), and named as 
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PA and PB extracts, respectively. Carboxymethylcellulose-CMC (Blanose, 7M65) was obtained from 

Ashland Inc (Düsseldorf, Germany), analytical reagent grade glycerol 99.5% was purchased from 

Himedia (Mumbai, India) and ultrapure water from a Milli-Q System (Millipore Inc., USA) was used. 

 

8.1.2. Films production  

CMC solutions was prepared by dissolving CMC in ultrapure water at 70 °C, during 4 h at 

constant agitation (300 rpm) using a magnetic stirrer. Subsequently, glycerol was added and left 

under agitation one more hour. On the other hand, different concentrations (0.00%, 0.050%, 0.10% 

and 0.20%, w/v) of extracts obtained by alkali pretreatment (PA) and autohydrolysis (PB) were 

dissolved in ultrapure water and placed at 20 °C during 3 h with magnetic agitation. Each one of 

the PA and PB solutions was slowly added to CMC-glycerol solution and maintained for 30 min at 

70 °C. The components of films were prepared and mixed taking into account the desired 

concentrations in the end, which was 1.50% of CMC and 0.50% of glycerol with increasing 

concentrations of SCG extracts (0.00%, 0.050%, 0.10% and 0.20%, w/v). The concentrations of PA 

and PB were chosen based on preliminary experiments (data not shown) where six different 

concentrations were evaluated. Films were produced by casting a constant amount (27 ml) of film-

forming solution into a 90 mm diameter Petri dishes, dried at 33 °C for 48 h. Films were stored at 

20 °C and 53% RH (desiccator containing a saturated salt solution of Mg(NO3)2 until further analysis. 

 

8.1.3.  Characterization of the films properties  

  Film thickness  

The films thickness was measured using a digital micrometer (No. 293–561, Mitutoyo, 

Japan). For each sample, ten measurements were made in different points through the film. The 

values of thickness were used to calculate water vapor permeabilities and mechanical properties. 

 

  Morphology 

Images of PA and PB as well as those of the produced films were analyzed as described in 

Section II - Chapter 3. The films were examined on the surface and transversely. For the cross-
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section analyses, they were fractured using liquid nitrogen and after that, all the samples were 

covered with a very thin film (10 nm) of Au-Pd (80-20 weight %). The images were obtained by 

applying an acceleration voltage of 10kV, at 5,000-fold magnifications. 

 

  Crystallinity and chemical bonding of constituents 

Crystalline phases of the produced films were evaluated by X-ray diffraction (XRD) using a 

as described in Section II - Chapter 3. Chemical groups and bonding arrangement of constituents 

present in the films were determined by Fourier transform infrared spectroscopy (FTIR) as described 

in Section III - Chapter 4. 

 

  Thermal behavior 

Thermogravimetric analyses (TGA) were conducted using an equipment TGA Q500 (TA 

instruments, USA). Approx. 2 mg of the film sample were placed in an aluminum pan. The 

measurements were carried out between 25 and 480 °C with an increasing rate of 10 °C per min 

under nitrogen atmosphere. TA Universal Analysis software (TA instruments, universal analysis 

2000, USA) were used for data analysis.  

 

  Mechanical properties 

The mechanical properties including tensile strength (TS) and elongation at break (EB) of 

the films were determined using an Instron Universal Testing Machine (model 4500, Instron 

Corporation, Canton, USA), according to the ASTM D882-10 Standard test method for tensile 

properties of thin plastic sheeting as described by Cerqueira, Souza, Teixeira, and Vicente (2012b). 

Each sample was properly cut and set to an initial grip separation at 100 mm, and a force and 

deformation speed of 50 mm per min. TS was calculated by dividing maximum load (N) by cross-

sectional area of the film (m2) and expressed in mega Pascal (MPa). EB was calculated as the ratio 

of the final length at the point of sample rupture to the initial length of the sample and expressed 

in percentage (%). For each film at least six replicates were performed. 
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  Moisture content and water solubility 

The moisture content of the films were determined by gravimetric analysis, placing approx. 

30 mg of each sample at 105 °C during 24 h (until constant weight). The weight loss of the samples 

was determined, and then, the moisture content was calculated and expressed as percentage of 

moisture (%).  

For the determination of water solubility, films free of moisture with 2 cm diameter were 

weighed and subsequently immersed in 50 ml of distilled water and then, placed in a shaker at 

120 rpm at room temperature during 24 h. The samples were taken out and dried at 105 °C (until 

constant weight). Solubility was determined by the weight difference between the dry matter that 

was not solubilized in water and the initial weight before immersion. Three replicates were obtained 

for each film and the solubility results were expressed as a percentage (%). 

 

  Water vapor permeability 

Water vapor permeability (WVP) was performed gravimetrically according to ASTM E96-95 

Standard test (Cerqueira et al., 2012b). Briefly, the films were sealed on the top of permeation cells 

containing 60 ml of distilled water (100% RH and 2,337 Pa vapor pressure at 20 °C) and then, 

placed into a desiccator with silica gel (0% RH and 0 Pa water vapor pressure at 20 °C). The cells 

were weighted at 2 h intervals for monitoring the weight loss during 10 h. Steady-state and uniform 

water pressure conditions were assumed by keeping the air circulation constant outside the test 

cell by using a miniature fan inside the desiccator. Water vapor transmission rate (WVTR) was 

determined by dividing the slope of the linear regression of weight loss versus time by the film area 

(expressed as g/s m2); afterwards WVTR was multiplied by the film thickness and divided by the 

vapor partial pressure difference to obtain WVP (expressed as g/m s Pa). Three replicates were 

made for each film. 

 

  Water sorption isotherms 

Water adsorption/desorption isotherms of the films was determined at 25 ºC using an 

AquaLab moisture 4TE analyzer (Decagon Devices, Inc., USA). Previous to analysis, the films were 
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placed into a desiccator with silica gel (0% RH at 25 °C) for at least 5 days, and then weighted. 

Water activity (aw) was varied from 0.11 to 0.97 using different saturated salt solutions such as 

lithium chloride (LiCl), magnesium chloride (MgCl2), magnesium nitrate (Mg(NO3)2), sodium chloride 

(NaCl), and potassium sulfate (K2SO4), with aw of 0.11, 0.33, 0.53, 0.75 and 0.97, respectively. For 

the measurements, the film sample was left on the top of an especial cup containing 5 ml of each 

saturated salt solution and placed into the moisture analyzer chamber. When the atmosphere within 

the chamber reached the equilibrium, the film was quickly removed and weighed again. Adsorption 

isotherms were obtained by starting the measurements from low aw to high aw values, on the inverse 

way for desorption isotherms. Moisture content was determined at the equilibrium as the difference 

between the weight before and after the samples were in the presence of the saturated salt 

solutions. Results were expressed as grams of water per 100 grams of dry film at each aw (g 

H2O/100 g dry film). Guggenheim, Anderson and De Boer (GAB) model was used for fitting the 

experimentally obtained data (Bizot, 1984) through Eq 8.1, where 𝑀 is the equilibrium moisture 

content at a specific aw (g H2O/100 g dry film), 𝑀𝑚 represents the monolayer moisture content (g 

H2O/100 g dry film), 𝐶 is the Guggenheim constant related to thermal effect and 𝑘 the corrective 

constant related to the properties of multilayer water molecules with respect to bulk liquid,  

 

Eq 8.1     𝑴 =  
𝑴𝒎𝑪𝒌𝒂𝒘

[(𝟏−𝒌𝒂𝒘)(𝟏−𝒌𝒂𝒘+𝑪𝒌𝒂𝒘)]
  

 

The parameters of the model were estimated with the nonlinear regression procedure. The 

fit accuracy was evaluated by the mean of the relative percent difference between the experimental 

and predicted values of moisture content, being defined as the mean relative deviation modulus 

(𝐺) (Gencturk, Bakshi, Hong, & Labuza, 1986), and determined using Eq 8.2, where 𝑛 is number 

of observations, 𝑀𝑎  is experimentally determined moisture content (g H2O/100 g dry film) and 𝑀𝑝 

is predicted moisture content (g H2O/100 g dry film). 

 

Eq 8.2      𝑮 =
𝟏𝟎𝟎

𝒏
 ∑ (

|𝑴𝒂𝒊−𝑴𝒑𝒊|

𝑴𝒂𝒊
)𝒏

𝒊=𝟏  
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𝐺 values lower than 5 correspond to extremely good fit, 𝐺 values between 5 and 10 show 

a reasonably good fit and 𝐺 values greater than 10 are considered a poor fit (Gencturk et al., 1986). 

 

  Surface hydrophobicity 

Surface hydrophobicity of the films was evaluated by measuring the contact angle of a water 

droplet () upon the film surface through an optical contact angle meter (OCA 20, Dataphysics, 

Germany). The measurements were made according to sessile drop method (Kwok & Neumann, 

1999) using a 500 μL syringe (Hamilton, Switzerland) with needle of 0.75 mm diameter containing 

ultrapure water. The samples were put on a glass and then 2 μL of ultrapure water was placed on 

the film surface. Measurements were made from 0 to 12 min and the contact angle was determined 

by using the measuring system OCA 15 Plus and C20 software with CCD video camera (resolution 

of 752 × 582 pixel) at 24.7 °C. Ten replicates were obtained for each film. 

 

  Optical properties - color and opacity 

The color parameters and the opacity of the films were determined with a Minolta 

colorimeter (CR 400, Minolta, Japan). Briefly, a white standard color plate (Y = 93.9, x = 0.3158, 

y = 0.3321) was used for the equipment calibration and as background for the color measurements, 

being the L*, a*, b* values determined by reflectance. In the color system L* represents the luminosity 

(ranging from black to white), thus, low L* values correspond to dark, while high L* values belong to 

light. On the other hand, a* and b* are the chromatic coordinates, where +a* and –a* are in the red 

and green directions, respectively, while, +b* is in the yellow direction, and –b* is in the blue 

direction. The a* and b* values approach zero for neutral colors and increase when the color 

becomes more chromatic and more saturated (Ke, Changde, Wande, & Xiaoping, 2004).  

The opacity of the samples was determined according to the Hunter lab method, as the 

relationship between the opacity of each sample on a black standard (Yb) and the opacity of each 

sample on a white standard (Yw) (Casariego et al., 2009). For both, color and opacity analyses, ten 

measurements were made for each film. The solubility was expressed in percentage (%).The color 

and opacity of the films was simulated using an image software (Photoshop CS6). 
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8.1.4. Statistical analysis 

Statistical analyses were carried out using GraphPad Prism (version 6.1). One-way analysis 

of variance (ANOVA) and Tukey’s multiple comparisons test were performed to determine the 

significant differences (p < 0.05) between film samples. 

 

8.2. Results and discussion  

 

8.2.1. Characterization of the polysaccharides present in SCG residues 

In the Section III - Chapters 4 and 5, the lyophilized materials obtained from SCG through 

autohydrolysis  and an alkaline pretreatment were characterized in terms of percentage of total 

carbohydrates and content of total phenolic compounds. Table 8.1 shows again the values obtained 

in those chapters. It can be seen that the total content of polysaccharides was higher for PA (39%, 

w/w) than PB (29%, w/w). Additionally, the monosaccharide composition found in both extracts 

included galactose, arabinose, mannose and glucose, but % mol of these sugars in PA and PB 

extracts was different. The content of total phenolic compounds and moisture were slightly higher 

for PB extract (Table 8.1).  

 

Table 8.1 Chemical sugar composition of extracts obtained from SCG by an alkaline pretreatment (PA) 
and autohydrolysis process (PB) 

Components Extract * 

  PA  PB 

Total polysaccharides content  (g/100 g lyophilized)   39.00 ± 0.19   29.29 ± 3.47 

Arabinose (% mol)   19.93 ± 1.74   10.02 ± 1.18 
Mannose (% mol)     4.43 ± 0.16   31.88 ± 2.08 
Galactose (% mol) 
Glucose (% mol) 

  60.27 ± 0.51 
  15.37 ± 0.93 

  47.74 ± 0.13 
  10.35 ± 0.76 

Phenolic compounds (mg GAE/g lyophilized) 230.14 ± 1.43 234.14 ± 5.30     

Moisture   15.50 ± 1.50   17.50 ± 2.10 
Results are expressed as mean ± standard deviation; n=3. 
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8.2.2. Morphology 

Images obtained by scanning electron microcopy (SEM) for PA and PB extracts as well as 

surface and cross sectional images of the produced films are shown in Figure 8.1 and Figure 8.2, 

respectively. Both, PA and PB revealed significant morphological differences. PA presents a denser 

morphology, composed of thin sheets that resembles to sawdust, while PB consists of microscopic 

small grains and resulted in a more porous material (Figure 8.1). 

  

 

 

 

 

 

 

Figure 8.1 SEM micrographs for SCG extracts obtained by an alkali pretreatment (PA) and 
autohydrolysis process (PB) Magnification, 5000X 

 

On the other hand, when analyzing the CMC-based films without and with incorporation of 

PA and PB extracts at different concentrations (Figure 8.2), the images showed different 

characteristics for films with extracts for surface and cross-section images. For films with the 

incorporation of PA extract there are no evidence of pores or surface features being independent of 

the concentration of PA extract used (i.e. similar imagens for all concentrations used). Thus, CMC-

based films without extract together all PA films exhibited a uniform and compact structure, 

suggesting a good incorporation of PA into the matrix film. On the contrary, when PB was added 

into the CMC-based films, a clear increase of the surface defects were observed as the 

concentration was raised. This behavior was corroborated during the film-forming process, being 

PB extracts more difficult to dissolve in water than PA extracts. This fact may be related to the 

PA PB 
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molecular weight and possible structural differences between both extracts (Izydorczyk & Dexter, 

2008). Additionally, the morphological differences on the surface of the films containing PA and PB 

may be due to the processes used to obtain the SCG extracts and the different stages employed in 

each method, since PA was dialyzed though a membrane of 8000 Da, while PB was not summited 

to this stage, which could have extended its polymerization degree (Aguedo et al., 2014). 

 

 

Figure 8.2 SEM micrographs for surface and cross-sectional images of CMC-based films without and 
with the PA and PB extracts at different concentrations. Magnification, 5000X 

 

8.2.3. Crystallinity and chemical bonding of constituents 

Figure 8.3 and Figure 8.4 show the X-ray diffraction (XRD) and Fourier transform infrared 

spectroscopy (FTIR) spectra of the samples, respectively. Results show that the incorporation of low 

concentrations of SCG extracts (0.05 - 0.20 %, w/v) can lead to slight changes in the structural 

characteristics of the films. 
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Figure 8.3 XRD diffractograms obtained for the CMC-based films without and with PA and PB extracts 
at different concentrations 

 

The XRD patterns of the films are shown in Figure 8.3, as well as those for PA, PB and 

CMC powders for comparison. As can be seen, after the film formation, the CMC suffers a structural 

change, evidenced in the disappearance of a very weak broad peak located around 2 = 36°, which 

distinguishes the pure CMC structure as reported (Chai & Isa, 2013; El Sayed, El-Gamal, Morsi, & 

Mohammed, 2015). The acquired structure was maintained even when PA and PB extracts were 

added to CMC-based film. All the films revealed a semi-crystalline diffraction peak around 2 = 

20.6° (Figure 8.3), which is a characteristic of cellulose. The full width at half maximum (FWHM) 

of this peak was calculated in order to analyze possible differences between the samples. The 

results shown that the crystallinity of pure CMC decreased when CMC was used to film-forming (i.e. 

higher values of FWHM), since polysaccharides naturally interact with water generating structural 

transitions (amorphous or crystalline), which plays an important role on the mobility of the 

molecules and thus on the functional properties of the films (Yakimets et al., 2007). Although the 

differences among the films with respect to FWHM were very small, it can be seen that the 

incorporation of PA or PB into CMC-based film raised the crystallinity of the film being influenced 
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by the increase of extracts concentrations. Hence, higher concentrations of extract increased the 

crystallinity of the films, suggesting an influence of PA or PB in film matrix.  

FTIR spectra (Figure 8.4) evidenced the same structure and chemical bonds for the CMC-

based films without and with incorporation of PA and PB extracts. Moreover the same transmission 

bands of pure CMC were observed in all the films, increasing the intensity of the peaks after 

formation of the film, that is explained by the physical blends and chemical interactions of the final 

film matrix with the other compounds (Cerqueira et al., 2012a; Xu, Kim, Hanna, & Nag, 2005). The 

transmission band between 3000 and 3600 cm−1 was assigned to the hydrogen bonding OH 

stretching vibration, being a characteristic of moist materials which was intensified by the presence 

of glycerol in films (Cerqueira et al., 2012a). The peak at 2920 cm−1 was assigned to the C-H stretch 

and the band at 1590 cm−1 confirmed the presence of COO− being assigned to stretching of the 

carboxyl group (Chai & Isa, 2013). 

 

 

Figure 8.4 FTIR spectra obtained for the CMC-based films without and with PA and PB extracts at 
different concentrations 
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The bands at 1410 cm−1 and 1320 cm−1 were attributed to OH stretching in-plane and C-H 

stretching in symmetric of CMC (Su et al., 2010). The peaks depicted at 1110 cm−1 and 1040 cm−1 

were characteristic of the C-O stretching on polysaccharide skeleton.  

Additionally, CMC-based films containing or not PA and PB extracts showed soft bands at 

948 cm−1 and 884 cm−1 which did not appear in pure CMC and that are justified by the presence of 

glycerol (Nanda, Yuan, Qin, Poirier, & Chunbao, 2014). These peaks were also reported by 

(Cerqueira et al., 2012a) to films where glycerol was used as plasticizer corresponding to 

asymmetric and symmetric stretching vibrations of the alcoxyl group (C-O-C). From FTIR analysis is 

clear that the incorporation of PA and PB extracts do not change the chemical structure (detectable 

from CMC) of the CMC-based film.  

 

8.2.4. Thermal behavior 

Thermogravimetric analyses (TGA) (Figure 8.5) was carried out in order to evaluate the 

stability of CMC-based films containing or not PA and PB extracts. When the films were exposed to 

heating until 480 ºC, three weigh loss stages were identified. The first stage (60 – 130 ºC) was 

associated to water evaporation and chemisorbed water through hydrogen bonds. It can be seen 

that the CMC-based films with 0.10% and 0.20% (w/v) of PA extract were stable up to about 95 ºC, 

while all the others showed stability up 45 – 60 ºC, suggesting that the water loss occurs slower to 

the films containing PA at 0.10% and 0.20% (w/v). This behavior was maintained until start the 

second stage, where was recognized to maximum rate of mass loss (40-45%) for the all films, took 

place around 270 ºC (maximum peak in the DTG curve) and was related to the presence of glycerol 

(Cerqueira et al., 2012a). The last stage, around 300 – 350 ºC was attributed to degradation of the 

polysaccharides.  
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Figure 8.5 TGA curves for the studied CMC-based films  

 

8.2.5. Mechanical properties 

Table 8.2 shows the elongation at break (EB) and tensile strength (TS) values obtained for 

the films. CMC-based film without extracts presented similar EB values to those reported by 

(Ebrahimzadeh, Ghanbarzadeh, & Hamishehkar, 2016) when used CMC at 1.50% (w/v) (same 

concentration used in this study). The addition of PA and PB extracts lead to a decrease of the EB 

values when they are compared with CMC-based films without extracts, showing significant 

differences (p < 0.05) for films with a high concentration of PA extract and for the films with the 

lowest concentrations of PB. As can be seen, the behavior of the films containing PA and PB extracts 

was completely opposite with relation to the concentration added. This fact suggests that the 

interaction between film matrix with PB leads films stiffer and more compact when using the lowest 

concentration, becoming more extensible as the concentration increased. In contrast, the presence 

of PA extracts in the film matrix increases the chains mobility and flexibility at lower concentrations, 

and its stiffness when the PA extracts are used at higher concentrations. These results are directly 

related with the water solubility data, where the same behavior was observed. 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 8 - USE OF POLYSACCHARIDE RICH EXTRACTS OBTAINED FROM SPENT COFFEE GROUNDS AS CONSTITUENTS OF 

CARBOXYMETHYL CELLULOSE-BASED FILMS 

P a g e  | 186 Lina F. Ballesteros, 2016 

 

Table 8.2 Elongation at break (EB) and tensile strength (TS) values of the CMC-based films without and 
with different PA and PB concentrations 

Extract 
(%, w/v) 

       EB 
       (%) 

       TS 
    (MPa) 

0.00 (CMC) 10.54 ± 0.17a 14.18 ± 3.71a 
PA 0.05   8.95 ± 0.65ab 22.86 ± 2.24bc 
PA 0.10   7.96 ± 1.38ab 19.59 ± 4.17abd 
PA 0.20   6.56 ± 0.86bc 22.33 ± 2.35bc 
PB 0.05   4.50 ± 1.99c 16.43 ± 0.14ab 
PB 0.10   6.84 ± 0.43bc 26.04 ± 1.29c 
PB 0.20   8.22 ± 1.02ab 23.35 ± 0.89cd 

Different letters in the same column correspond to statistically 
different samples for a 95% confidence level. 
PA: extracts containing polysaccharides obtained by an alkali 
pretreatment of SCG; PB extracts containing polysaccharides 
obtained by autohydrolysis of SCG. 

 

On the other hand, the obtained TS values indicated significant changes (p < 0.05) when 

PA and PB extracts were added to the films, exception made to films with 0.05% (w/v) of PB and 

0.10% (w/v) of PA extracts. TS values of CMC-based films containing PA extracts did not suffer 

significant (p > 0.05) modifications when the concentration of PA was changed (TS values were 

equal when increased PA concentrations). For films with the PB extracts the TS values was raised 

when the extract concentration increased, obtained thus, TS values higher when using 0.10% and 

0.20% (w/v) on contrary to 0.05% (w/v). The obtained results are in agreement with other studies 

(films with phenolic compounds, gelatin or proteins) (Hoque, Benjakul, & Prodpran, 2011; Mu, Guo, 

Li, Lin, & Li, 2012), where was demonstrated that the interactions between the matrix components 

are determined by the chain length of the materials added.  

 

8.2.6. Moisture content  

Moisture content of the films provides information about the water affinity of the films and 

gives indication on how PA and PB could influence their properties. Table 8.3 presents the values 

of moisture content of the films and shows that the all the films presented very close values between 

them. Nevertheless, films with PB at 0.20% (w/v) showed a lower moisture content (p < 0.05) 

compared to CMC-based films without the incorporation of the extracts, while for all other films no 
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differences were observed (p > 0.05). For films with PA extracts a difference was noticed when 

using 0.10% and 0.20% (w/v), presenting the former a high moisture content, while for PB only the 

higher concentration showed significant difference among PB group. Results show that the 

incorporation of the extracts can influence the moisture content of the films, but only using the PB 

extract at higher concentration a significant difference can be observed. Some authors reported that 

the addition of galactomannans into the film matrix could increase the water-binding capacity, but 

also a decrease when an high amount of galactomannan is added (Arda, Kara, & Pekcan, 2009; 

Martins et al., 2012), which is in agreement with the results presented in this study. Finally, no 

significant differences were found between the two SCG extracts when the lowest and highest 

concentrations of PA and PB were evaluated; only for concentration of PB 0.10% was observed a 

small decrease in the moisture content when compared with PA 0.10%. 

 

Table 8.3 Thickness, moisture content, water solubility, water vapor permeability (WVP) and contact 
angle values of the CMC-based films without and with different PA and PB concentrations 

Extract 
(%, w/v) 

Thickness 
(mm) 

Moisture 
(%) 

Solubility 
(%) 

WVP × 10-10 
(g/ m s Pa) 

Contact angle* 
        () 

0.00 (CMC) 0.070 ± 0.006a 22.71 ± 0.87ab 75.08 ± 3.37a 3.36 ± 0.19a   54.80 ± 6.29a 
PA 0.05 0.068 ± 0.005a 23.36 ± 1.36ab 59.47 ± 0.90b 3.56 ± 0.65a 104.96 ± 2.05b 
PA 0.10 0.078 ± 0.004b 25.45 ± 1.97a 54.72 ± 1.17bc 3.66 ± 0.33a 108.54 ± 2.18bc 
PA 0.20 0.075 ± 0.006bc 20.97 ± 0.82bc 53.10 ± 0.18cd 3.64 ± 0.10a 111.48 ± 3.38c 
PB 0.05 0.068 ± 0.004a 23.55 ± 0.67ab 49.94 ± 1.34c 2.99 ± 0.32a 103.30 ± 4.86b 
PB 0.10 0.070 ± 0.006a 21.63 ± 0.32bc 50.52 ± 1.53c 3.23 ± 0.45a 107.34 ± 4.12bc 
PB 0.20 0.071 ± 0.008ac 19.05 ± 0.14c 58.59 ± 3.51bd 3.46 ± 0.46a 107.40 ± 3.21bc 

Different letters in the same column correspond to statistically different samples for a 95% confidence level. 
*Measurement at 0 min. 
PA: extracts containing polysaccharides obtained by an alkali pretreatment of SCG; PB extracts containing 
polysaccharides obtained by autohydrolysis of SCG. 

 

8.2.7. Water solubility 

Table 8.3 shows the water solubility values obtained for all the films. Results demonstrated 

that the films with the addition of extracts present lower (p < 0.05) solubility values than the CMC-

based films without any extract incorporation, showing that the incorporation of the SCG extracts 

decrease the solubility of CMC-based films, independently of the concentration or the type of extract 

(PA or PB) used. Such behavior was visually corroborated after the test, since the films with the 
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incorporation of PA and PB preserved the integrity, while the films without extract only presented 

some fragments in the water. On the other hand, the films with the incorporation of extracts had 

an opposite behavior, revealing a significant reduction of the solubility values with the increase of 

PA concentrations, whereas a significant increase was observed for higher concentrations of PB. 

These differences can be explained by the fact that PA showed to be better incorporated into the 

film matrix than PB, as demonstrated by SEM images (Figure 8.2).  

When comparing the water solubility between the films containing PA and PB extracts at 

the same concentration, only a significant difference (p < 0.05) were observed for the lowest 

concentration (0.05%, w/v), being obtained a lower value for the films with PB extracts. Results 

suggest that the differences between the molecular structure of the matrix, including the presence 

semi-crystalline fraction (changes shown in XRD section) could determine the solubility of the edible 

films in water. 

 

8.2.8. Water vapor permeability 

Water vapor permeability (WVP) being the most widely property studied of the films, allows 

to understand the influence of the components present in the final matrix on features such as 

solubility, sorption and diffusion of water molecules (Cerqueira, Costa, Fuciños, Pastrana, & Vicente, 

2014). Results revealed similar values for all studied films (p > 0.05), showing that in the range of 

concentrations used for PA and PB extracts, the transport properties of CMC-based films are not 

changed (Table 8.3). The value obtained for CMC-based film (3.36 × 10-10 g/ m s Pa) was higher 

than the values found by Bifani et al. (2007), who reported 7.14 × 10-11 g/ m s Pa when using CMC 

at 2.00% (w/v) and glycerol and sunflower oil as plasticizers (0.50% and 0.40%, v/w, respectively). 

However, it was lower than the VWP value (1.62 × 10 -8 g/ m s Pa) achieved using CMC at 1.50% 

(w/v) and glycerol 0.90% (w/v) (Ebrahimzadeh et al., 2016). The difference may be due to the type 

and amount of plasticizer used, the presence of sunflower oil, the CMC concentration and the 

process for the film production. 
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8.2.9. Water sorption isotherms 

Water sorption is closely related to the matrix microstructure of films and will depends of 

the environmental relative humidity. Figure 8.6 shows the adsorption isotherm profile of the studied 

films, presenting the variation of the moisture content with respect to the water activity (aw). Some 

authors have mentioned that the moisture sorption isotherms represent the combined hygroscopic 

properties of the individual components in the films (Kim & Ustunol, 2001). All studied films 

presented similar behavior when exposed to different relative humidity, with exception of CMC-

based film with addition of PA at 0.10% (w/v), which showed a rise over the others, suggesting that 

it is the most hygroscopic film. This greater water association was confirmed by the C value 

obtained, higher for these films. As can be seen, the equilibrium moisture content (g H2O/100 g 

dry film) increased almost linearly until an aw range of 0.70 – 0.80, and after, it increased 

exponentially. This type of nonlinear sorption profile is typical of hydrophilic films and has been 

reported to others CMC-based films (Kibar & Us, 2013). The general curve experimentally obtained 

for the all films was fitted to the GAB moisture sorption model, which evaluates aw ranges between 

0.1 and 0.9 being widely used in food. The parameters were determined (Figure 8.6) and showed 

𝐺 values lower than 5 for PA extracts at 0.20%, and 0.10% (w/v), indicating an extremely good fit. 

The films containing 0.05% (w/v) of PA and PB corresponded to a reasonably good fit 

(𝐺 between 5-10), while CMC-base film control, and the films with 0.10% and 0.20% (w/v) of PB 

showed values greater than 10, being considered a poor fit. On the other hand, 𝑀𝑚 values were 

reported between 6.79 and 8.40 (g H2O/100 g dry film), indicating the number active sites available 

to the water adsorption (Inchuen, Narkrugsa, & Pornchaloempong, 2009), which is strongly related 

to the presence of glycerol. The lower 𝑀𝑚 value was obtained for CMC-films with 0.2% of PB 

extracts that is in agreement with the moisture content results where this film was also the one with 

a lower moisture content. 

The desorption isotherms showed a similar to the adsorption indicating absence of 

hysteresis (results not shown). 
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Figure 8.6 Water adsorption isotherms of the CMC-based films without and with the PA and PB extracts 
at different concentrations (measurements were performed at 25 °C). Mm  represents the monolayer 
moisture content (g H2O/100 g dry film), C is the Guggenheim constant related to thermal effect and k 
the constant related to the properties of multilayer water molecules with respect to bulk liquid, G is the 
mean relative deviation modulus and R2  the coefficient of regression 

 

8.2.10. Surface hydrophobicity 

Surface hydrophobicity was evaluated by measuring the water contact angle on the surface 

of the films. Instantaneous contact angle measurements (0 s) revealed an increase on the 

hydrophobic behavior of the film surface after the incorporation of the SCG extracts (Table 8.3). 

CMC-based films (0.00%, w/v) showed a  = 54.80º while, both PA and PB modified this value, 

reaching to values ranged between 103º and 111º.  values of films containing PA and PB were 

not statistically different (p > 0.05) with exception to films with PA extracts where the contact angle 

values increased from 104.96º to 111.48 when the concentration was raised from 0.05% to 0.20%. 

The behavior of the water drop on the upper surface of the films was also evaluated as a function 

of time (Figure 8.7). The results revealed that the contact angle decreased  through time for all the 

films, but the statistic difference (p < 0.05) between the CMC-based film and those elaborated with 

PA and PB was maintained, confirming the initial hydrophobic behavior of the films with SCG 

extracts approximately during the firsts 5 min. However, at 12 min the film with the highest contact 
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angle (19º) was PA when using an extract concentration of 0.20% (w/v), being statistically different 

of the others films, except to PA 0.05% (w/v) (data not shown), which is in agreement with the 

values reported for the film solubility. The reduction of contact angle is supported by the fact that 

the water was spread out through the film surface or adsorbed (Phan, Debeaufort, Luu, & Voilley, 

2005).  

 

Figure 8.7 Changes of contact angle measurement for CMC-based films without and with the 
incorporation of PA and PB extracts at different concentrations as a function of time after the drop 
deposition 

  

8.2.11. Optical properties - color and opacity 

The results for color and opacity measurements are presented in Table 8.24. As can be 

seen, when the extracts from SCG were incorporated into the films an evident change in color was 

noticed. Thus, the color of films was changed from a very light transparent material (CMC film) to 

a brownish color, characteristic of the SCG extracts, which results of the Maillard reaction that occur 

during coffee roasting process (Mastrocola, Munari, Cioroi, & Lerici, 2000). Moreover, films color 

is highly dependent of the amount of extract added to matrix, being observed a darker brown color 

when the concentration was increased. In general, the a* values of the films containing PA and PB 
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suggested a trend to reddish, while b* values indicated a yellower appearance. L* values decreased 

when the SGC extract concentrations was higher, while the opacity increased (Figure 8.8a), being 

the highest value obtained for films with 0.20% (w/v) of PB.  

 

Table 8.4 Color parameters and opacity values of the CMC-based films without and with different PA 
and PB concentrations 

Extract 
(%, w/v) 

L* a* b* 
Opacity 

(%) 

0.00 (CMC) 96.63 ± 0.44a   0.14 ± 0.05a   2.74 ± 0.42a   9.39 ± 0.76a 

PA 0.05 81.01 ± 1.17b   4.74 ± 0.30b 27.08 ± 0.81b 12.38 ± 1.40ad 

PA 0.10 63.52 ± 0.84c 13.95 ± 0.39c 41.30 ± 0.39c 17.99 ± 0.74be 

PA 0.20 51.27 ± 1.96d 20.10 ± 0.93d 39.19 ± 0.75d 26.66 ± 3.82c 

PB 0.05 71.91 ± 0.70e   8.38 ± 0.27e 31.69 ± 0.60e 15.47 ± 1.48bd 
PB 0.10 55.01 ± 2.21f 15.81 ± 0.77f 36.08 ± 0.80f 21.17 ± 2.22e 
PB 0.20 33.86 ± 2.55g 17.92 ± 1.69g 20.54 ± 2.69g 53.00 ± 8.78f 

Different letters in the same column correspond to statistically different samples for a 95% 
confidence level. 
PA: extracts containing polysaccharides obtained by an alkali pretreatment of SCG; PB extracts 
containing polysaccharides obtained by autohydrolysis of SCG. 

 

Although transparency is an appreciated feature in films since often it influences in the 

consumer choice, opacity is also an important attribute once films with this characteristic can be 

used to protect the food, acting as a barrier to light. The color and opacity simulation of the films is 

shown in Figure 8.8b. In order to distinguish the film color, the opacity parameter was kept constant 

(100%) in the left column of the graph considering only the L*, a* and b* parameters, while the 

measured opacity was used in the right column to simulate the real color of the film. PA when used 

at different concentrations provides a film with a less opaque color compared to PB. This is probably 

related with the amount of phenolic compounds and the interactions between they and 

polysaccharides present in the materials used in the production of the films (Gómez-Estaca, 

Giménez, Montero, & Gómez-Guillén, 2009). Both, PA and PB extracts possess a high quantity of 

phenolic compounds (Section III - Chapter 5 and 4, respectively), however, the PB extract was 

subjected to an extra Maillard reaction during autohydrolysis process, where can be generated 

additional pigments that greatly influence in the opacity of the films. 
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Figure 8.8 Opacity values of films with increasing extract concentrations (a), evaluation of the film 
color when the opacity parameter is kept constant at 100% (left column) and when the real opacity is 
used to simulate the real color of the film (right column) (b) 

 

8.3. Conclusions 

 

In general, the addition polysaccharides rich extracts obtained from SCG by alkali 

pretreatment (PA) and autohydrolysis (PB) improved or preserved the physicochemical properties 

of the edible films with respect to the control film. SEM images, TGA and XRD patterns showed 

changes on the films containing PA and PB at different concentrations, being confirmed by the 

results obtained from tensile strength, contact angle, water solubility, color and opacity, showing 

important changes when comparing to the control film (CMC-based film). Results suggest that the 

addition of SCG extracts affect the films matrix and change its properties. Color and opacity, for 

example, were the most affected properties when PA and PB were incorporated, significantly 

improving the light barrier of the films. Besides the improvement of the physicochemical properties, 

the incorporation of PA and PB into CMC-based films, can give important functional properties to 

the films, such as antioxidant and antimicrobial activities (corroborated in Section III - Chapter 4 

and 5), increasing the possibilities of applications of these bio-based films on foods.  
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9. Introduction 

 

The consumption of fresh fruits has been always related to multiple health benefits. 

However, after harvesting the quality of fruits can be affected since they can present a short shelf-

life becoming an obstacle for the commercialization of some fruits. On the other hand, customers 

are looking for foods with high quality and as far as possible, products free of synthetic preservatives 

and chemical additives. Packaging plays an important role in the food preservation and is very 

important if the commercialization of the food requires high storage periods. Edible coatings 

obtained from natural sources have showed to be a good alternative to protect and increase the 

shelf-life of foods, especially fruits (Dotto, Vieira, & Pinto, 2015; Li et al., 2009; Souza et al., 2015), 

avoiding dehydration, reducing microbial contamination and maintaining the organoleptic and 

nutritional properties safe for a longer time. Additionally, edible coatings can be used as vehicles 

for bioactive compounds. 

Physalis peruviana, also known as goldenberry, is a fruit with high amount of vitamins A, B 

and C, polyunsaturated fatty acids and minerals as iron and phosphorus. It is a juicy orange berry 

similar in size, shape and structure to a small tomato, but that is completely enclosed in a large 

papery husk or calyx. Although the calix protects the goldenberry along harvest and postharvest, it 

becomes a disadvantage when the fruit is storage due to the high volume that occupies. Shelf-life 

of goldenberry with calyx is of 30 days, whereas without calyx is around 5 days at room temperature 

(Puente, Pinto-Muñoz, Castro, & Cortés, 2011). However, at temperature between 3 - 7 ºC 

goldenberry without calyx could have a shelf-life of approximately 45 days (Castro & Blair, 2010).  

This chapter evaluated the possibility of using functional polysaccharides and phenolic 

compounds encapsulated, extracted from spent coffee grounds, into carboxymethyl cellulose 

(CMC)-based coatings in order to increase the shelf-life of goldenberries. The coatings tested on the 

fruit were chosen by evaluating different film forming solutions containing polysaccharide rich 

extracts (solutions produced in Section V - Chapter 8) and phenolic compounds encapsulated 

(obtained from the Section IV - Chapter 7 when using maltodextrin and freeze-drying). Thus, 

wettability and antimicrobial tests were carried out to select the two best film forming solutions with 
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respect to these characteristics (one of them containing polysaccharides and the other with phenolic 

compounds encapsulated). The selected coatings were applied on goldenberries and the 

physicochemical and microbiological properties as well as the gas exchange rate of the fruits when 

subjected at different temperatures and relative humidities were evaluated. 

 

9.1. Materials and methods 

 

9.1.1. Raw material and chemicals 

Polysaccharide rich extracts from SCG were obtained using the extraction methods 

previously described in Section III - Chapter 5 (alkali pretreatment) and Chapter 4 (autohydrolysis 

treatment) and named as PA and PB extracts, respectively. Phenolic compound extract was 

obtained by autohydrolysis of SCG using the optimum process conditions reported in Section IV - 

Chapter 6 and subsequently encapsulated in maltodextrin and dried by freeze-drying (as defined in 

Chapter 7) and named as PE extract. Carboxymethylcellulose-CMC (Blanose, 7M65) was obtained 

from Ashland Inc. (Düsseldorf, Germany), analytical reagent grade glycerol 99.5% was purchased 

from Himedia (Mumbai, India) and ultrapure water from a Milli-Q System (Millipore Inc., USA) was 

used. Goldenberries (Physalis peruviana), being produced in Colombia, were purchased from a 

Portuguese company Nativa, sabores de outro mundo, having the same date of packaging.  

All the chemicals used were analytical grade, purchased from Sigma–Aldrich (Chemie 

GmbH, Steinheim, Germany), Panreac Química (Barcelona, Spain), Merck (Darmstadt, Germany) 

and Fisher Scientific (Leicestershire, UK). 

 

9.1.2. Coating production 

CMC film forming solutions were prepared using the metodology proposed in Section V - 

Chapter 8. Briedly, CMC was dissolved in ultrapure water at 70 °C during 4 h at constant agitation 

(300 rpm) using a magnetic stirrer. Subsequently, glycerol was added and left under agitation one 
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more hour. On the other hand, different concentrations of PA, PB  and PE extracts (0.00%, 0.050%, 

0.10% and 0.20%, w/v) were dissolved in ultrapure water and placed at 20 °C during 3 h with 

magnetic agitation. Each one of the solutions was slowly added to CMC-glycerol solution and 

maintained for 30 min at 70 °C. The components of coatings were prepared and mixed taking into 

account the desired concentrations in each final solution. Thus, the film forming solutions with the 

polysaccharide rich extracts were composed by 1.50% of CMC and 0.50% of glycerol with increasing 

concentrations of PA/PB extracts (0.00%, 0.050%, 0.10% and 0.20%, w/v), while the film forming 

solutions containing phenolic compounds encapsulated were composed by 1.50% of CMC and 

0.50% of glycerol with increasing concentrations of PE extract (0.00%, 0.050%, 0.10% and 0.20%, 

w/v). Additional film forming solutions were carried out being composed for 1.50% of CMC, 0.50% 

of glycerol and 0.20% of PA with increasing concentrations of PE extract (0.050%, 0.10% and 0.20%, 

w/v). After production, all solutions were stored at 4 °C until further use. 

 

9.1.3. Selection of coating solutions 

Surface tension, wettability and antimicrobial tests were carried out to select a CMC-based 

coating solutions, one containing polysaccharide rich extract and other with encapsulated phenolic 

compounds. The selected coatings were applied on goldenberry fruit and their effect on shelf-life 

parameters of the fruit evaluated. 

 

 Goldenberry surface and Wettability 

9.1.3.1.1. Surface tension of goldenberry 

The Surface tension of goldenberry skin were determined using the Young-Dupré equation 

(Eq 9.1) according to (Van Oss, Chaudhury, & Good, 1988). For a pure liquid, if polar (𝛾𝐿
𝑝) and 

dispersive (𝛾𝐿
𝑑) interactions are known, and if θ is the contact angle between that liquid and a 

solid, the interaction can be described in terms of the reversible work of adhesion (𝑊𝑎 ), as showed 

in Eq 9.1, where 𝛾𝑆
𝑝 and 𝛾𝑆

𝑑 represent the polar and dispersive contributions of the surface of the 

solid studied. 
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Eq 9.1       𝑾𝒂 =  𝑾𝒂
𝒅 +  𝑾𝒂

𝒑
⇔  𝑾𝒂  = 𝟐 (√𝜸𝒔

𝒅. 𝜸𝑳
𝒅 +  √𝜸𝒔

𝒑
. 𝜸𝑳

𝒑
) =  𝜸𝑳(𝟏 + 𝐜𝐨𝐬 𝜽) 

 

Rearranging Eq 9.1, results the Eq 9.2: 

 

Eq 9.2                                           
𝟏+𝐜𝐨𝐬 𝜽

𝟐
.

𝜸𝑳

√𝜸𝑳
𝒅

 =  √𝜸𝒔
𝒑

. √
𝜸𝑳

𝒑

𝜸𝑳
𝒅 + √𝜸𝒔

𝒅 

 

The contact angle (θ) formed on the surface of the fruit (goldenberry skin) was evaluated 

using three pure liquid compounds, including bromonaphthalene, formamide and ultrapure water. 

All measurement were performed at 20.5 ± 0.5 °C with 10 replicates for each pure liquid used. 

The obtained contact angles combined with the values of each dispersive and polar component 

values of the pure liquids were used to calculate the variables of the Eq 9.2. 

 

9.1.3.1.2. Critical surface tension 

Critical surface tension (𝛾𝑐 ) was also estimated according to Cerqueira et al. (2009) using 

the Zisman plot extrapolation (Zisman, 1964), which is used to characterize the wettability of low-

energy surfaces. In systems where the surface tension is lower than 100 mN/m (low-energy 

surfaces), the contact angle formed by a drop of liquid on a solid surface is considered as a linear 

function of the surface tension of the liquid, (𝛾𝐿𝑉 ), where phase V  is air saturated with the vapor 

of liquid, L.  

Zisman plot was obtained by plotting the cosine of the contact angle of the pure liquid 

compounds evaluated on the surface of the fruit (goldenberry skin) against the surface tension of 

each compound. The intercept of this curve with cos θ = 1 is known as the critical surface 

tension (𝛾𝑐 ). The critical surface tension (𝛾𝑐 ) is defined in Eq 9.3. 

 

Eq 9.3                                                𝜸𝒄 = 𝐥𝐢𝐦 𝜸𝑳𝑽  𝒂𝒔 𝜽 ⇁ 𝟎 
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9.1.3.1.3. Wettability surface tension of the coating solutions 

The wettability of the film forming solutions on goldenberry skin was studied by determining 

the values of spreading coefficient (𝑊𝑠), and work of adhesion (𝑊𝑎) and cohesion (𝑊𝑐), according 

to Cerqueira et al. (2009). The adhesive forces promote the liquid spreading in a solid surface and 

the cohesive forces promote their contraction. The wetting behavior of the solutions mainly depend 

on the balance between these forces. 

The contact angle (θ) of a liquid drop on a solid surface is defined by the mechanical 

equilibrium of the drop under the action of three interfacial tensions: solid-vapor (𝛾𝑆𝑉 ), solid-liquid 

(𝛾𝑆𝐿 ), and liquid-vapor (𝛾𝐿𝑉 ). The spreading coefficient (𝑊𝑠) is defined by Eq 9.4 (Rulon & 

Robert, 1993) and can only be negative or zero.  

 

Eq 9.4                                     𝑾𝒔  =  𝑾𝒂  − 𝑾𝒄  =  𝜸𝑺𝑽 −  𝜸𝑳𝑽 −  𝜸𝑺𝑳    

 

Where 𝑊𝑎 and 𝑊𝑐 are defined by Eq 9.5 and Eq 9.6, respectively.  

 

Eq 9.5                                                    𝑾𝒂  =  𝜸𝑳𝑽 + 𝜸𝑺𝑽 − 𝜸𝑺𝑳  

 

Eq 9.6                                                              𝑾𝑪  = 𝟐𝜸𝑳𝑽  

 

The surface tension of the coating solutions (𝛾𝐿𝑉 ) was measured using a tensiometer 

(Force tensiometer – K20, krüss, Switzerland) at 20.5 ± 0.5 °C. Five replicates were made for each 

coating solution. On the other hand, the contact angle of the coating solutions on the goldenberry 

surface was carried out according to sessile drop method (Kwok & Neumann, 1999) as previously 

described in Section V - Chapter 8. Measurements were made in less than 5 s at 20.5 ± 0.5 °C 

and ten replicates were obtained for each coating solution. 
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  Antimicrobial activity assays  

Antimicrobial evaluation was performed against six food pathogenic such as: Alternaria sp. 

MUM 02.42, Cladosporium cladosporioides MUM 97.06, Phoma violacea MUM 97.08, Botrytis 

cinerea MUM 97.08, Fusarium culmorum MUM 97.01 and Penicillium expansum MUM 02.14 were 

obtained from the collection of the Mycology Laboratory (MUM) of the University of Minho, Portugal 

and cultured as described in Section III - Chapter 5.  

Antimicrobial test was carried out by using the agar diffusion method as reported by Hili, 

Evans, and Veness (1997) and Scorzoni et al. (2007) in combination with some modifications. 

Briefly, 100 µl of inoculum suspension (1x106  - 5x106 CFU/ml) were spread with sterile swabs on 

Petri dishes (90 mm) containing approx. 25 ml of potato dextrose agar (PDA), and then, a 25 µl 

drop of the coating solution was placed on contaminated agar and incubated at 25 °C for 48 h. 

After this time, the growth inhibition was evaluated by the naked eye. Natamycin and Fluconazol 

were used as positive controls and distilled water as negative control. For each microbial strain and 

each coating solution, a minimum of six replicates was made. 

 

9.1.4. Goldenberry coating 

Firstly, the papery husk or calyx that covered the goldenberries was removed. The fruits 

were duly selected, being discarded those that presented injuries or ripeness very different when 

assessed by the naked eye. Once selected, goldenberries were not subjected to any proceeding 

before the application of the coating. 4 different treatments were performed and named as: 

uncoated (fruit without coating), coating A (CMC-based edible coating), coating B and coating C, 

which represent the film forming solutions that after testing on goldenberries were selected and  

will be described in the results and discussion section. 

The coating application was performed by spray. Briefly, the fruits were placed on a plastic 

mesh, duly separated. The film forming solution was applied on the goldenberries using a spray 

equipped with compressed air and later, the fruits were dried at 33 °C for 2 min in a drying 
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chamber. After that, goldenberries were again sprayed, repeating the spraying process two more 

times for the coated fruits.  

For physicochemical and microbiological analysis, each treatment was subdivided in 

aluminum containers (about 40 g per container) which were placed inside a plastic container. The 

plastic containers were closed and stored in chambers at two controlled conditions. Temperature 

and relative humidity (RH) at 4 °C and 95% as well as at 20 °C and 65%, respectively, were used 

in order to evaluate the influence of these variables on coated and uncoated goldenberries. 

 

9.1.5. Evaluation of Goldenberry 

  O2, CO2 and Ethylene exchange rates 

Measurements of O2, CO2 and ethylene exchange rates of goldenberries (coated and 

uncoated) were carried out using the closed system method with air as initial atmosphere according 

to Cerqueira et al. (2009) with some modifications. Briefly, saturated salt solutions including sodium 

nitrite (RH = 65% at 20 °C) or potassium sulfate (RH = 95% at 4 °C) were put in the bottom of a 

glass container of 2 L in order to achieve the desired RH. Later, 136 g of fruit were placed inside 

the container, being separated of the saturated salt solution by a mesh. The system was closed and 

storage at 4 °C and 95% RH as well as at 20 °C and 65% RH. The concentrations of O2, CO2 and 

ethylene inside the container were measured by drawing gas samples with a 500 µl syringe, suitable 

for gas chromatography (Hamilton, Switzerland) through a silicone septum fitted in the container 

lid.  

The ethylene content in the glass containers was determined using a gas chromatograph 

(Varian Star 3400 CX, USA) equipped with a flame ionization detector (FID) at 280 °C, a non-polar 

column Varian and Helium (1 ml/min) as carrier gas. A standard ethylene sample (500 ppm) was 

used for calibration. On the other hand, O2 and CO2 contents in the glass containers was performed 

employing a gas chromatograph (Bruker Scion 456, Canada), equipped with a thermal conductivity 

detector (TCD) at 130 °C and two channels to separate O2 and CO2. Thus, Molsieve column and 

Argon (30 ml/min) as carrier gas were used to separated O2, while CO2 was separate through a 
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Poraplot column and Helium (15 ml/min) as carrier gas. A mixture containing 10% CO2, 20% O2, 

and 70% N2 was used as standard sample for calibration.  

Two containers were performed for each fruit treatment and three injection samples were 

taken from each container. The content of gases (ethylene, O2 and CO2) in the containers were 

measured daily until it was kept constant.   

The O2 consumption rate was calculated through Eq 9.7, while CO2 and ethylene production 

rates were determined applying Eq 9.8 and Eq 9.9, respectively (Salvador, Jaime, & Oria, 2002). 

These models were developed for a closed system impermeable to gases, where 𝑅𝑂2
,  𝑅𝐶𝑂2

and 

𝑅𝑒𝑡ℎ𝑦 
 

represent the O2 consumption rate and CO2 and ethylene production rates (cm3/Kg h), 

respectively, 𝑤𝐺𝐵 is the weight of the fruit (Kg), and 𝑉𝑓 represents the free volume of the container 

(ml).  

 

Eq 9.7                                                    𝒅𝒚𝑶𝟐
= − 𝑹𝑶𝟐

𝒘𝑮𝑩

𝑽𝒇
𝒅𝒕 

 

Eq 9.8                                                    𝒅𝒚𝑪𝑶𝟐
= 𝑹𝑪𝑶𝟐

𝒘𝑮𝑩

𝑽𝒇
𝒅𝒕 

 

Eq 9.9                                                  𝒅𝒚𝒆𝒕𝒉𝒚 = 𝑹𝒆𝒕𝒉𝒚
𝒘𝑮𝑩

𝑽𝒇
𝒅𝒕 

 

The free volume was calculated by the Eq 9.10, where 𝑉𝑃  is the total volume of the 

container (ml), 𝑤𝐺𝐵 is the weigh of the fruit (kg) and 𝜌𝐺𝐵 , is the density of goldenberry. 

Eq 9.10                                                            𝑽𝒇  =  𝑽𝑷  −
𝒘

𝝆𝑮𝑩
 

 

The graphs of O2 consumed and CO2 and ethylene produced against time were used to 

calculate the slopes, which correspond to the derivatives, 𝑑𝑦/𝑑𝑡 of each gas. 
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  Physicochemical analysis 

Physicochemical analysis such as weight loss, pH, acidity, total soluble solids, browning, 

ascorbic acid, total phenolic, flavonoid content were determined along of the storage time. Coated 

and uncoated goldenberries stored at 20 °C and 65% RH were evaluated at 0, 2, 4, 6, 9, 12 days 

of storage, while the coated and uncoated fruits stored at 4 °C and 95% RH were analyzed at 0, 3, 

7, 11, 15, 22, 28 days of storage. Two homogenates were prepared from each treatment in each 

time of analyses. For obtaining the homogenates, 40 g of goldenberries, from each aluminum 

container, were put into a plastic bag and then crushed using a rolling pin. Later the homogenates 

were reserved in a falcon tubes until further analyses. 

 

9.1.5.2.1. Weight loss 

Weight loss was determined using an analytical balance (Kern ABS-N/ABJ-NM, Germany). 

Goldenberries (coated and uncoated) were weighted at the beginning of the experiment and during 

the days that fruits were evaluated. Weight loss was expressed in percentage (%). 

 

9.1.5.2.2. pH 

The determination of pH of goldenberries (coated and uncoated) was carried out using a 

pH-meter (Hanna Instruments HI 2221 digital, Hungary), where 15 - 20 g of fruit homogenate were 

placed into a beaker and pH was directly measured. Two replicates were performed for each 

homogenate.  

9.1.5.2.3. Acidity 

For titratable acidity measurement of goldenberries (coated and uncoated), 5 g of fruit 

homogenate were dilute in 50 ml of distilled water. The mixture was vortexed and then centrifuged 

at 4000 rpm during 15 min. The supernatant volume recovered was measured and used for 

titration. Afterwards, the sample (containing 3 drops of phenolphthalein) was titrated with 0.1 N 

NaOH solution until change of color was observed (faint pink) and pH value achieved 8.2. A standard 

sample of citric acid (2 mg of citric acid per ml distilled water) was freshly prepared each day in 
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which the titratable acidity was evaluated in order to determine of citric acid factor. The results were 

expressed as milligrams of citric acid per 100 grams of fruit (mg citric acid/100 fruit). Two 

replicates were obtained for each homogenate. 

9.1.5.2.4. Total soluble solids 

Total soluble solids of goldenberries (coated and uncoated) were determined using a digital 

refractometer (Hanna Instruments HI 96801, Hungary). In brief, 2 g of fruit homogenate were 

centrifuged during 5 min at 4000 rpm and then, 200 µl of supernatant were collected and 

measured in the refractometer. Total soluble solids were expressed as °Brix (g fructose/100 g fruit 

juice). Three replicates were obtained for each homogenate. 

9.1.5.2.5. Browning  

The browning of goldenberries (coated and uncoated) was measured using a colorimetric 

method  according to Li et al. (2009). Briefly, 2 g of fruit homogenate were mixed with 5 ml of 

ethanol at 95%, homogenized. The mixture was vortexed and then, centrifuged during 20 min at 

4000 rpm and room temperature. The supernatant was collected, filtrated through 0.22 m filters 

and the absorbance was measured at 420 nm using a spectrophotometer V-560 (Jasco, Japan) 

against a blank of distilled water to assess browning rate The browning values were expressed as 

the absorbance at 420 nm. Two replicates were obtained for each homogenate. 

9.1.5.2.6. Vitamin C 

The ascorbic acid present in goldenberries (coated and uncoated) was measured by 2,6-

dichlorophenolindophenol (DCPIP) titration. Briefly, 5 ml of oxalic acid at 4% (w/v) were mixed with 

2 ml of fruit juice (previously centrifuged) and 2 ml of distilled water. The mixture was vortexed and 

then titrated to a permanent pink color by using a DCPIP solution (0.24 mg DCPIP per ml of distilled 

water). A standard sample of ascorbic acid (0.2 mg of ascorbic acid per ml of distilled water) was 

freshly prepared each day in which vitamin C was evaluated in order to determine of ascorbic acid 

factor. The results were expressed as milligrams of ascorbic acid per 100 milliliters of fruit juice 

(mg ascorbic acid/100 ml fruit juice). Two replicates were obtained from each homogenate. 
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9.1.5.2.7. Phenolic compounds and Flavonoids  

To determine the total phenolic compounds (PC) and content of flavonoids (FLA), was 

carried out a sequential methanolic extraction according to Giovanelli, Limbo, and Buratti (2014). 

In brief, 5 g of fruit homogenate were put into a centrifuge tube and mixed with 15 ml of acidic 

methanol (methanol:HCl, 99:1, v/v). The mixture was stirred for 1 h in the dark and centrifuged at 

9500 rpm during 10 min at 10 °C. The supernatant was stored and the solid part was mixed two 

more times with 15 and 10 ml of the organic solvent for 15 min with shaking in the dark, and then 

centrifuged using the same conditions above mentioned. Finally, the extracts were made up to 50 

ml with acidic methanol and filtered through Whatman filter paper. 

PC was determined as described in Section III - Chapter 4 and expressed as milligrams of 

gallic acid equivalent per grams of fruit (mg GAE/g fruit). Ten replicates were obtained from each 

homogenate. On the other hand, FLA was performed as defined in Section IV - Chapter 6 and 

expressed as milligram quercetin equivalent per grams of fruit (mg QE/g fruit). Eight replicates were 

obtained for each homogenate. 

 

  Microbiological analysis 

Microbiological analysis were performed by the determination of the total mesophilic count 

and total mould and yeast growth (FDA, 1998). Goldenberries samples (about 8 g) were transferred 

for a sterile plastic bag where they were crushed using a rolling pin and after vigorously stirred. 

Subsequently, 1 ml of sample was mixed with 9 ml of peptone water (0.1%, w/v) and then vortexed. 

Appropriate dilutions of the samples were prepared in duplicate (10-1, 10-2, 10-3 and 10-4). Later, 1 m 

of each dilution was transferred to a Petri dish and the selective media (between 45 and 50 °C) 

were added to the dish. Thus, Plate Count Agar (PCA) was added for evaluating the total mesophilic 

count and Dichloran Rose Bengal Chloramphenicol agar (DRBC) for determining the total mould 

and yeast growth from coated and uncoated goldenberries. The samples were mixed immediately 

after pouring by rotating the Petri dish sufficiently to obtain evenly dispersed colonies after 

incubation. After complete solidification, the plates were closed with parafilm, inverted and 
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incubated. PCA plates were incubated at 35 °C for 2 days and DRBC plates were incubated at 25 

°C between 5-7 days.  

Two homogenates were prepared for each treatment. The results were expressed in Log 

colony forming units per milliliters of fruit juice (Log CFU/ml fruit juice).  

 

 Sensorial  analysis 

The sensorial analysis was carried out using a Triangle sensory test, which is a 

discriminative method very used in food industry to determine if there is a sensory difference 

between two products. In brief, three goldenberries sets (Set1, Set 2 and Set 3) were presented to 

the panelist group conforming by 25 people. Each set was composed for three goldenberries, with 

one goldenberry exposed to a different treatment (coating A, coating B or coating C), while the other 

two samples of each set were uncoated goldenberries. The panelists, based on appearance, aroma, 

taste and texture of the samples, selected one goldenberry from each set as the sample with 

different treatment. Results were analyzed with a significance level of 95%, using the appropriate 

interpretation table for Triangle sensory test (for 25 panelist, the number of correct answers to 

establish a significant difference should be ≥13). For the analysis, the fresh goldenberries (uncoated 

or coated) were previously stored at 4 °C and 95% RH during 15 days. 

 Statistical analysis 

Statistical analyses were carried out using GraphPad Prism (version 6.1). One-way analysis 

of variance (ANOVA) and Tukey’s multiple comparisons test were performed to determine the 

significant differences (p < 0.05) between the treatments evaluated in the same storage day. 
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9.2. Results and discussion 

 

9.2.1. Selection of the coatings  

 Surface and critical surface tension 

The surface tension and critical surface tension were determined in order to characterize 

the goldenberry skin surface. Goldenberries presented a surface tension of 30.78 ± 2.81 mN/m, 

while for critical surface tension the value was 24.95 ± 1.37 mN/m. The fruit surface, being a low-

energy surface (<100 mN/m), presented a high dispersive component (29.26 ± 1.39 mN/m), 

which indicates the ability of the surface to participate in non-polar interactions; while presents a 

very low polar component (1.52 ± 0.4 mN/m). A surface with these characteristics interacts with 

liquid mostly by dispersion forces, influencing the effective spreading of the film forming solution 

on the goldenberry skin. 

 Wettability and antimicrobial activity 

Wettability and antimicrobial tests were carried out to evaluate different CMC-based coating 

solutions containing PA, PB and PE in order to select the edible coatings that were tested on fresh 

goldenberries. 

Wettability is one of the most important properties when evaluating the capacity of a solution 

to coat a designed surface. In practical terms, the closer the 𝑊𝑠 values are to zero, the better a 

surface will be coated. Table 9.1 presents the 𝑊𝑠 values obtained for each coating solution tested 

on goldenberries. The bets 𝑊𝑠 values for the CMC-based coating solutions with PA or PB extracts 

were obtained when PA and PB were used at 0.20% and at 0.10% (w/v), respectively, being  

statistically different from the other samples (p < 0.05) with polysaccharide extract. CMC-based 

coating solutions containing PE extracts showed the bets 𝑊𝑠 values when using PE at 0.10% (w/v) 

and also when PE and PA were mixed in the same ratio (PA 0.20% + PE 0.20%, w/v), showing 

significant changes (p < 0.05) when compared with the others solutions produced with phenolic 

encapsulated extracts (Table 9.1). Thus, two coatings solutions from each group evaluated 

(solutions with polysaccharide extracts and solutions with phenolic encapsulated extracts) showed 
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be equally good in terms of wettability (data at bold), being the most suitable for using on 

goldenberries. 

 

Table 9.1 Spreading coefficient (Ws) obtained for the tested solutions on fresh goldenberry surface 

Film forming solutions with polysaccharide 
extracts 

 Film forming solutions with  phenolic 
encapsulated extracts 

Concentration  
(%, w/v) 

 Spreading coefficient (𝑊𝑠) Concentration  
(%, w/v) 

Spreading coefficient  
(𝑊𝑠) 

0.00 (CMC)  -81.69 ± 3.36a  0.00 (CMC)  -81.69 ± 3.36d 
PA 0.05  -44.96 ± 4.21b  CMC + PE 0.05 -58.22 ± 3.70a 
PA 0.10  -59.81 ± 5.84c  CMC + PE 0.10 -48.05 ± 3.82bc 

PA 0.20  -35.72 ± 3.82d  CMC + PE 0.20 -50.13 ± 6.62b 
PB 0.05  -43.87 ± 4.63b  PA 0.20 + PE 0.05 -58.02 ± 2.30a 
PB 0.10  -39.95 ± 4.75bd  PA 0.20 + PE 0.10 -51.76 ± 4.87b 
PB 0.20  -55.99 ± 5.72c  PA 0.20 + PE 0.20 -44.13 ± 3.94c 

All coatings solutions are produced from 1.50% (w/v) CMC and 0.50% (w/v) glycerol with different 

concentrations (0.00%, 0.05%, 0.10% and 0.20%, w/v) of PA, PB and PE. Results are expressed as mean ± 

standard deviation; n=10. Different letters in the same column indicate a statistically significant difference 

(Tukey test p < 0.05). The data at bold represent the best obtained values for each group of solutions. 

 

On the other hand, Table 9.2 shows the obtained results for the antimicrobial tests when 

CMC film forming solutions containing PA, PB and PE were evaluated against six food pathogenic 

fungi that drastically influence the quality and safety of postharvest fruits (Jasso de Rodríguez et al., 

2011). The results were based on a qualitative test (naked eye) and the X represents the film 

forming solution that had an antimicrobial effect to a specific microbial strain, delaying thus, the 

microbial contamination.  

All coating solutions with polysaccharide extract presented antimicrobial effect against at 

least one strain. However, the CMC-based coating solutions containing PA or PB extract at a 

concentration of 0.20% (w/v) showed antimicrobial effect on all fungi (Table 9.2). Although CMC-

based coating solution with 0.10% (w/v) of PB presented the best 𝑊𝑠 value for the group of 

polysaccharides together with CMC-based coating solution containing 0.20% (w/v) of PA (Table 
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9.1), the antimicrobial effect of 0.10% (w/v) of PB was lower (against two strains) than 0.20% PA 

(Table 9.2). 

 

Table 9.2 Antimicrobial test of the CMC-based coating solutions containing PA, PB and PE on growth 
of different microbial strains 

Film forming Solutions 
(% (w/v)) 

Alternaria 
sp 

Phoma 
violacea 

Penicillium 
expansum 

Cladosporium 
cladosporioide

s 

Fusarium 
culmorum 

Botrytis 
cinerea 

CMC  X     
PA 0.05  X   X X 
PA 0.10   X    
PA 0.20 X X X X X X 
PB 0.05 X X   X  
PB 0.10 X X     
PB 0.20 X X X X X X 

CMC + PE 0.05    X   

CMC + PE 0.10  X     

CMC + PE 0.20  X   X  

PA 0.20 + PE 0.05  X   X  

PA 0.20 + PE 0.10  X X    

PA 0.20 + PE 0.20  X   X  

X: Represents the coating solution that had an antimicrobial effect to a specific microbial strain. All coatings 

solutions are produced from 1.50% (w/v) CMC and 0.50% (w/v) glycerol with different concentrations 

(0.00%, 0.05%, 0.10% and 0.20%, w/v) of PA, PB and PE. Results are expressed as mean ± standard 

deviation; n=8.  

 

The antimicrobial effect of the solutions with phenolic encapsulated extract showed a minor 

effect against the fungi tested being the CMC-based coating solution with a mixture of PA and PE 

at ratios of  2:1 (PA 0.20% + PE 0.10%, w/v)  and 2:2 (PA 0.20% + PE 0.20%, w/v) the only coatings 

solutions with antimicrobial effect against two strains (Table 9.2). 

Taking into account the obtained results in Section V – Chapter 8 for the films produced 

with PA and PB extract, as well as the obtained results for wettability and antimicrobial activity of 

all evaluated solutions, coating B and coating C were selected to be tested on fresh goldenberries. 

Therefore, the 4 treatments evaluated were: uncoated (fruit without coating), coating A (CMC-based 
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edible coating), coating B (CMC-based edible coating with incorporation of PA (0.20 %, w/v)); and 

coating C (CMC-based coating containing PA and PE (PA 0.20% + PE 0.20%, w/v)). 

 

9.2.2. Evaluation of coatings on goldenberry  

 O2, CO2 and ethylene exchange rates 

In order to understand how the selected coatings (coating A, coating B and coating C) can 

influence in the gases exchange, the concentration of O2, CO2 and ethylene gases was measured 

until it was kept constant into the system and then, the transfer rate of each gas was calculated. 

The obtained results for O2 consumption (𝑅𝑂2
) and CO2 (𝑅𝐶𝑂2

) and ethylene 

(𝑅𝑒𝑡ℎ𝑦) production are showed in the Figure 9.1a, Figure 9.1b and Figure 9.2, respectively. It can 

be seen that 𝑅𝑂2,
 𝑅𝐶𝑂2

 and 𝑅𝐸𝑡ℎ𝑦 
 

values increased considerably when the goldenberries 

(uncoated and coated) were stored at 20 °C and 65% RH in comparison to the values obtained for 

goldenberries stored at 4 °C and 95% RH, indicating that the storage conditions clearly affect the 

respiration rate.  

Figure 9.1a shows that at 20 °C and 65% RH, 𝑅𝑂2
 of goldenberries without coating was 

significantly higher (p < 0.05) than the values obtained for coated goldenberries with coatings A, B 

and C, while the all coated goldenberries (regardless of treatment used) did not present significant 

differences in terms of  𝑅𝑂2
 between them. As can be also seen in Figure 9.1a, 𝑅𝑂2

 at 4 °C and 

95% RH was much low for all treatments, nonetheless, when the coating A and B were used, 

the 𝑅𝑂2
was significantly lower (p < 0.05) when compared with uncoated and coated with coating 

C goldeberries.  

Although CO2 production was higher than O2 consumption for all treatments, the lowest 

𝑅𝐶𝑂2
 at 4 °C and 95% RH (4.18 ± 0.32 cm3/Kg h) was achieved when the coating B was used, 

being statistically different to the other treatments (Figure 9.1b). A similar behavior was observed 

at 20 °C and 65% where 𝑅𝐶𝑂2
 of goldenberries with coating B was significantly lower (p < 0.05) 

than the reported values for 𝑅𝐶𝑂2
 of goldenberries treated with coating A or without coating. 
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However, the coated fruits with coating B did not showed statistical differences in term of 𝑅𝐶𝑂2
 

when compared to the coated goldenberries with coating C stored at 20 °C (Figure 9.1b). 

 

 

Figure 9.1 O2 (a) and CO2 (b) transfer rates (RO2 and RCO2) in fresh goldenberries at 20 °C and 65% RH 
as well as at 4 °C and 95% RH.. Results are expressed as mean ± standard deviation (n=6). Different 
letters within each temperature and RH group mean values statistically different at 95% confidence 
level 

 

Ethylene production at 20 °C and 65% RH was significant lower (p < 0.05) for the all coated 

goldenberries, especially for those fruits coated with the coating B and C, when compared with the 

goldenberry without coating. However, at 4 °C any significant difference was noted between the 

uncoated and coated goldenberries (Figure 9.2). 

Goldenberry can be classified as a fruit highly climacteric due to after physiological maturity 

presents an increased respiratory rate (Gutierrez et al.2008). The obtained values for the ethylene 

production and respiration rate of goldenberry are in agreement to the reported by Carvalho, Villaño, 

Moreno, Serrano, and Valero (2015) when the fruits were stored at 20 °C.  
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Figure 9.2 Ethylene transfer rate (REthy) in fresh goldenberries at 20 °C and 65% RH as well as at 4 °C 
and 95% RH. Results are expressed as mean ± standard deviation (n=6). Different letters within each 
temperature and RH group mean values statistically different at 95% confidence level 

 

Overall, results showed that the application of the developed coatings can reduce the gas 

exchange (O2, CO2 and ethylene) of goldenberries at different storage conditions, being more 

effective at a higher temperature and a lower RH. This can be explained by the fact that CMC-based 

coatings containing PA/PE increase the skin resistance to gas diffusion by blocking the pores on 

the fruit surface, resulting in a modified internal atmosphere of relatively high CO2 and low O2. 

 

 Weight loss 

Weight loss in the fruits is mainly related with the decrease of their water content during 

the post-harvest storage, leading to changes in texture, flavor and appearance (Lin & Zhao, 2007). 

Figure 9.3a displays the weight loss for coated and uncoated goldenberries when stored during 12 

days at 20 °C and 65% RH, while Figure 9.3b shows the obtained results for goldenberries placed 

at 4 °C and 95% RH during 28 days of storage. For both storage periods, all coated and uncoated 

fruits showed weight losses during storage, which increased along storage time, being the higher 

weigh losses obtained for the uncoated goldenberries (p < 0.05), independently of temperature and 

relative humidity used. Although the uncoated goldenberries were the most affected by weight loss, 
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all treatments (uncoated, coating A, coating B and coating C) suffered a weight loss higher when 

stored at 20 °C and 65% RH, as expected, since the fruit quality is greatly affected when the storage 

temperature is increased. 

 

 

Figure 9.3 Weight loss of uncoated and coated fresh goldenberries as a function of storage time when 
using 20 °C and 65% RH (a) as well as 4 °C and 95% RH (b). Results are expressed as mean ± standard 
deviation (n=3). Different letters in the same day (column) indicate values statistically different at 95% 
confidence level 

 

At the end of the 12th day of storage (Figure 9.3a), the weight loss for uncoated fruits was 

26.48%, while for coated goldenberries with the different treatments (coating A, coating B and 

coating C) were 17.88%, 15.31% and 15.73%, respectively. The fruits stored at 4 °C during 28 day 

of storage (Figure 9.3b) presented the same behavior, but the weight loss was much lower, with 

values of 1.77% for uncoated goldenberries and 1.32%, 1.54% and 1.37% for goldenberries using 

the coating A, coating B and coating C, respectively. These differences can be explained by the 

water vapor barrier provided by the coatings used on goldenberries, which decrease water loss 

during storage and, thus, a lower weight loss. 
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 pH and acidity 

The pH values for uncoated and coated goldenberries stored at 20 °C and 65% HR, as well 

as at 4 °C and 95% HR are shown in Figure 9.4a and Figure 9.4b, respectively. Some variations 

can be observed with respect to the obtained initial values in each treatment (3.50 – 3.77), 

indicating differences (p < 0.05) in the degree of maturity of the fruits. The pH values of 

goldenberries (coated and uncoated) placed at 20 °C and 65% RH did not showed significant 

changes (p > 0.05) regardless of treatment from 4th day of storage, however, the pH values of all 

samples were increased during the storage time. The pH raise is explained by the fruit ripening and 

decomposition process caused by hydrolysis, oxidation or fermentation that modifies the 

concentration of hydrogen ions (Souza et al., 2015).  

 

 

Figure 9.4 pH of uncoated and coated fresh goldenberries as a function of storage time when using 20 
°C and 65% RH (a) as well as 4 °C and 95% RH (b). Results are expressed as mean ± standard deviation 
(n=4). Different letters in the same day (column) indicate values statistically different at 95% 
confidence level 

 

On the other hand, the fruits stored at 4 °C and 95% RH maintained the pH values constant 

along storage days, except the uncoated goldenberries, in which the pH values increased. Results 

suggest that the coatings help to maintain the initial pH values when the fruits were left at 4 °C and 
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95% RH, during 28 days of storage, delaying the fruit ripening and ensuring a controlled microbial 

growth. This behavior is explained by the fact that the coated fruits maintained a more acidic pH, 

which is favorable to inhibit bacterial growth (Tovar, Garcı ́a, & Mata, 2001).  

The raise of pH values is directly related to the decrease of acidity occurring in the fruits 

(Mgaya‐Kilima, Remberg, Chove, & Wicklund, 2014). Goldenberry is rich in organic acids, mainly 

citric acid. During maturity phase this organic acid is usually degraded or consumed, since it is 

considered a respiratory substrate (Souza et al., 2015) affecting thus, the shelf-life of goldenberry. 

Figure 9.5a and Figure 9.5b show that the four treatments evaluated (uncoated, coating A, coating 

B and coating C) presented the same behavior when subjected to different temperatures (20 and 

4 °C), relative humidities (65 and 95%) and storage times (12 and 28 days).  

 

 

Figure 9.5 Acidity of uncoated and coated fresh goldenberries as a function of storage time when using 
20 °C and 65% RH (a) as well as 4 °C and 95% RH (b). Results are expressed as mean ± standard 
deviation (n=4). Different letters in the same day (column) indicate values statistically different at 95% 
confidence level 

 

At the beginning of the analyses, the acidity values of all treatment were between 1200–

1400 mg acid citric per 100 g fruit and decreased along of the storage time for all the treatments. 

However, it can be noted that from 15th day of storage at 4 °C and 95% RH (Figure 9.5b) the acidity 

values were more stable for coated goldenberries than for uncoated goldenberries. Similar results 
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were reported for goldenberries coated with a alginate-based coating at 2 °C during 21 days of 

storage (Carvalho et al., 2015). 

 

 Total soluble solids and browning 

In the fruits, the total soluble solids represent water-soluble substances such as sugars, 

acids, and vitamin C, among others. However, this parameter is currently used as an indicator of 

total sugar content since 90% of the soluble solids present in the fruits correspond to the sugars 

(Souza et al., 2010). The initial values of total soluble solids for uncoated and coated goldenberries 

ranged between 14 –15 °Brix. During storage at 20 °C and 65% RH the total soluble solids 

increased for all treatments (Figure 9.6a) achieving at the end of 12th day of storage a value of 

appox. 18.5 °Brix without significant differences between the samples (p > 0.05). 

 

 

Figure 9.6 Total soluble solids of uncoated and coated fresh goldenberries as a function of storage 
time when using 20 °C and 65% RH (a) as well as 4 °C and 95% RH (b). Results are expressed as mean 
± standard deviation (n=6). Different letters in the same day (column) indicate values statistically 
different at 95% confidence level  

 

Usually, total soluble solids rise during fruit ripening due to the gradual degradation of 

starch and cell wall materials (Souza et al., 2015), resulting in an increase of sugar content. On the 
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contrary, the total soluble solid values of the uncoated and coated goldenberries were maintained 

constant along 28 days when stored at 4 °C and 95% RH. (Figure 9.6b). Although the coated and 

uncoated goldenberries presented the same behavior without statistical significant changes when 

stored at the different values of temperatures and relative humidities, it can be noted that fruits 

placed at 4 °C and 95% RH had a reduction of the metabolic activity, which is in agreement with 

the results obtained for gases transfer rate. 

The browning rate was other important parameter to evaluate goldenberries quality during 

storage. The obtained results showed that the browning rate of the treatments subjected at different 

temperatures and relative humidities had the same behavior previously reported for the total soluble 

solids. As a result, the browning rate of the uncoated and coated fruits stored at 20 °C and 65% 

RH  increased with time (Figure 9.7a), but without significant differences between the samples (p > 

0.05).  

 

 

Figure 9.7 Browning rate of uncoated and coated fresh goldenberries as a function of storage time 
when using 20 °C and 65% RH (a) as well as 4 °C and 95% RH (b). Results are expressed as mean ± 
standard deviation (n=4). Different letters in the same day (column) indicate values statistically 
different at 95% confidence level 
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The browning rate of the samples (uncoated and coated) placed at 4 °C and 95% RH  

remained constant during all storage time (Figure 9.7b) and neither presented significant statistical 

differences (p > 0.05) between goldenberries with and without coatings. However, the results 

showed that at 4 °C and 95% RH the browning rate can be prevented, which is possibly related 

with a lower O2 transfer rate, preventing thus the browning caused by oxidative or enzymatic 

processes. (Souza et al., 2015).  

 

 Vitamin C 

Vitamin C, also known as ascorbic acid is an important constituent of the fresh fruits and 

vegetables. It is classified as a hydro-soluble vitamin, being abundant in fruits where the content 

water exceeds 50% (Gutiérrez et al., 2007). It would explain the high level of ascorbic acid in 

goldenberry when compared with other fruits since 79% of its composition is water (Repo de 

Carrasco & Encina Zelada, 2008). The obtained values at 0 days of storage for coated and uncoated 

goldenberries ranged around 21-23 mg/100 ml of fruit juice, which is in agreement with those 

values reported by Gutierrez et al. (2008).  

 

 

Figure 9.8 Vitamin C content of uncoated and coated fresh goldenberries as a function of storage time 
when using 20 °C and 65% RH (a) as well as 4 °C and 95% RH (b). Results are expressed as mean ± 
standard deviation (n=4). Different letters in the same day (column) indicate values statistically 
different at 95% confidence level 
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For the goldenberries (uncoated and coated) stored at 20 °C and 65% RH the content of 

vitamin C increased along time (Figure 9.8a), except for fruits without coating that after 4 days of 

storage showed a significant reduction in the ascorbic acid content (p < 0.05) with respect to the 

coated fruits. For goldenberries (uncoated and coated) stored at 4 °C and 95% RH the content of 

ascorbic acid increased for all treatments during storage time (Figure 9.8b). At the end of the 

storage significant changes (p < 0.05) were observed between all coated fruits and those without 

coatings (day 12) when stored at 20 °C and 65% RH and between the uncoated fruits and those 

protected with coating A and coated C (day 28) when subjected at 4 °C and 95% RH.  

Some studies have reported the decrease of ascorbic acid content in fresh cut mangoes 

(Souza et al., 2015) and Chinese jujube (Li et al., 2009) during storage time. However, the obtained 

results in this chapter are in agreement with those reported by Gutierrez et al. (2008) who evaluate 

the ascorbic acid content in the goldenberry during four different stages of maturity and proved that 

ascorbic acid raises when the golbenberry becomes more mature. After achieving a total maturity, 

it is expected that starts vitamin C loss. Therefore, the results suggest that coating A, B and C 

protect the vitamin C content and delay its loss in goldenberries when stored at 20 °C and 65% 

RH. 

 

 Phenolic compounds and flavonoids content 

Figure 9.9 presents the content of phenolic compounds of goldenberries (uncoated and 

coated) when stored at 20 °C and 65% RH (Figure 9.9a) as well as at 4 °C and 95% RH (Figure 

9.9b). As can be seen, at 0 days of storage the goldenberries with the coating C showed higher 

phenolic compounds values (p < 0.05) than the other samples. It can be explained by the fact that 

coating C has an extra content of phenolic compounds, which were incorporated during production 

of film forming solution (0.20%, v/w of PE added coating C). During storage, uncoated and coated 

goldenberries stored at 20 °C and 65% RH, presented the phenolic compounds values constant 

(Figure 9.9a). However, the samples covered with the coating C showed higher values, being 

significantly difference (p < 0.05) than the uncoated goldenberries and those coated with the coating 



EXTRACTION AND CHARACTERIZATION OF POLYSACCHARIDES AND PHENOLIC COMPOUNDS FROM SPENT 

COFFEE GROUNDS AND THEIR INCORPORATION INTO EDIBLE FILMS/COATINGS FOR FOOD APPLICATIONS 

CHAPTER 9 - EFFECT OF CARBOXYMETHYL CELLULOSE-BASED COATINGS ON THE SHELF-LIFE PARAMETERS OF FRESH 

GOLDENBERRIES 

P a g e  | 224 Lina F. Ballesteros, 2016 

 

A. At the end of storage time the goldenberries with coating B and C did not present significant 

differences between them (p > 0.05) regarding the phenolic compounds.  

 

 

Figure 9.9 Total phenolic compounds (a, b) and flavonoids content (c, d) of uncoated and coated fresh 
goldenberries as a function of storage time when using 20 °C and 65% RH  as well as 4 °C and 95% 
RH. Results are expressed as mean ± standard deviation (n=10). Different letters in the same day 
(column) indicate values statistically different at 95% confidence level 

 

When the goldenberries were stored at 4 °C and 95% RH an decrease with respect to the 

initial content of phenolic compounds was observed for all samples. Some authors have observed 

this reduction in goldenberries being related to the cold storage (Carvalho et al., 2015; Valdenegro, 
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Fuentes, Herrera, & Moya-León, 2012). During storage at 4 °C and 95% RH , the content of phenolic 

compounds in uncoated and coated goldenberries increased until 15th day of storage and after it 

was maintained constant. Nevertheless, significant differences (p < 0.05) between goldenberries 

coated with coating C and those uncoated or coated with coating A were observed during all storage. 

The results are in agreement with the other studies reporting that the content of phenolic 

compounds in the fruits increase during ripening (Amira et al., 2012; Valdenegro, Fuentes, Herrera, 

& Moya-León, 2012).  

The content of phenolic compounds obtained for uncoated goldenberries was higher than 

the values reported by Carvalho et al. (2015). It can be due to the extraction conditions used in this 

work (sequential extraction process, solvent, temperature, liquid/solid ratio, and extraction time) 

and also to the storage temperature to which the fruit was subjected.   

Figure 9.9c and Figure 9.9d show the content of flavonoids of uncoated and coated 

goldenberries. Results showed that flavonoids was increasing in all to the samples placed at 20 °C 

and 65% RH, while it decreased for the uncoated and coated goldenberries stored at 4 °C and 95% 

RH. Although all the fruits presented the same behavior when subjected to the different conditions, 

significant changes (p < 0.05) were observed among goldenberries with coating C and the studied 

others samples, especially at day 0 and in the final days of storage at each condition, being the 

content of flavonoids higher to coating C. 

 

 Microbiological analysis   

Figure 9.10a shows the evolution of mesophilic bacteria and yeast and molds in 

goldenberries fruits (uncoated and coated) during the storage at different temperature and RH 

conditions. Figure 9.10a shows that the goldenberries coated with coating B presented the lowest 

values for Log (CFU/ml fruit juice) of mesophilic bacteria, being statistically different (p < 0.05) 

than uncoated fruits after 2 day of storage at 20 °C and 65% RH. Additionally, the goldenberries 

with coating A and C, placed at the same conditions, showed significant changes (p < 0.05) when 

compared to the uncoated goldenberries, mainly after 9 day of storage. Although at 4 °C and 95% 
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RH, goldenberries coated with coating B also presented lower values of mesophilic bacteria counts 

(Figure 9.10b), the values were not statistically different (p > 0.05) compared to the others 

treatments. 

  

 

Figure 9.10 Evolution of mesophilic bacteria (a,b) and yeasts and molds (c,d) in uncoated and coated 
fresh goldenberries during storage time when using 20 °C and 65% RH as well as 4 °C and 95% RH. 
Results are expressed as mean ± standard deviation (n=4 by each dilution 10 -1, 10-2 , 10-3  and 10-4). 
Different letters in the same day (column) indicate values statistically different at 95% confidence level 

 

In the same way, the lower values of yeasts and molds counts at 20 °C and 65% RH were 

achieved for goldenberries coated with coating B, being significantly different than the other 
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treatments only at the end of storage (day 12) (Figure 9.10c). However, at 4°C and 95% RH the 

fruits coated with coating B presented statistically different values (p < 0.05) when compared to the 

uncoated goldenberries and those coated with coating A and C (from 7th to 22th day of storage)  

(Figure 9.10d). 

The results suggest that coating B presents antibacterial effects observed when used at 20 

°C and 65% RH and antifungal effects when used on goldenberries at 4 °C and 95% RH, which is 

in agreement with the antimicrobial tests previously carried out in order to select the coating 

solutions. 

 

 Sensorial analysis 

Sensorial analysis was carried out in order to determine if the coatings A, B or C had any 

negative influence on the sensorial properties on fresh goldenberries.  

 

 
 

 Figure 9.11 Sensory analysis results through triangle test (for 25 panelist, the number of correct 
answers to establish a significant difference should be ≥13) 
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Figure 9.11 shows the results obtained during the triangle test performed to 25 panelists, 

who based on appearance, aroma, taste and texture of three samples (two uncoated goldenberries 

and one with coating A, B or C), selected the goldenberry that considered with a different treatment. 

As can be seen, 15, 9 and 10 people made the right choice for coating A, B and C, respectively, 

indicating that coating B and C did not present significant differences (p > 0.05) on the sensorial 

properties when compared with uncoated goldenberries after 15 days of storage at 4 °C and 95% 

RH. 

 

9.3. Conclusions 

 

Shelf-life parameters of fresh goldenberries were improved when the fruits were coated with 

coating B and coating C. Additionally, the temperature and relative humidity used during storage 

also showed influence on the shelf-life parameters of the fruits. Lower gas transfer rates (O2, CO2 

and ethylene) were obtained for fruits coated with coatings B and C in comparison with the uncoated 

goldenberries when stored at 20 °C and 65% RH. Coating B was better to control the weight loss 

of goldenberries as well as to delay the microbial growth, while coating C gave an extra content of 

phenolic compounds to goldenberries. Additionally, the use of coating B and C did not have a 

negative effect on sensorial properties of goldenberries. These findings show that CMC-based 

coatings are a good alternative for postharvest handling of fresh goldenberries, maintaining their 

quality and increasing the storage time. 
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10. General conclusions and future perspectives 

 

10.1. Conclusions 

 
The main objective of this thesis was to extract and characterize polysaccharides and phenolic 

compounds from spent coffee grounds (SCG) and incorporate them into edible films or coatings for 

food applications. To cover successfully the thesis aims, several strategies were proposed. Firstly, two 

coffee residues were characterized in order to choose the one presenting higher carbohydrate content 

and antioxidant activity. Secondly, the extraction and characterization of polysaccharides and phenolic 

compounds were performed. Thirdly, phenolic compounds were encapsulated in order to preserve 

their functional properties. Later, the polysaccharides extracted were incorporated in edible coatings 

and their influence in the films’ properties was evaluated. Finally, the developed edible films/coatings 

containing polysaccharides and phenolic compounds encapsulated were applied on goldenberry fruits 

and their effect on shelf-life parameters studied. Therefore, the main contribution of this thesis may be 

summarized as follows: 

 Demonstration of spent coffee grounds (SCG) and coffee silverskin (CS) residues as materials with 

very interesting properties for application in food industry; in this particular case, SCG was selected 

as the more suitable material to develop this work due to their high hemicellulose content and 

antioxidant activity when compared to CS. 

 
 Autohydrolysis and alkali pretreatment demonstrated to be efficient techniques to recover 

polysaccharides with high antioxidant activity from SCG, being possible to obtain a lyophilized 

material containing 29.29% and 39.00% (w/w) of polysaccharides, respectively. Galactose was the 

most representative sugar obtained through both methodologies, but mannose, arabinose and 

glucose were also recovery.  Additionally, the lyophilized materials showed a high antioxidant 

activity, which was confirmed by four different methods, as well as a high antimicrobial activity 

against P. violacea and C. cladosporioides. 
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 Autohydrolysis showed to be an efficient technology to extract antioxidant phenolic compounds 

from SCG. It was possible to obtain an extract with high content of phenolic compounds (40.36 

mg GAE/g SCG), including flavonoids and chlorogenic acid with high antioxidant activity. 

 
 The technique (freeze-drying and spray-drying) and the coating material (maltodextrin, gum arabic, 

or a mixture of these components) were factors of great influence on the encapsulation of 

antioxidant phenolic compounds extracted from SCG. 

 
 Freeze-drying using maltodextrin as wall material can be considered a good option for 

encapsulation of antioxidant phenolic compounds extracted from SCG since it is able to retain 62% 

and 73% of phenolic compounds and flavonoids, respectively, preserving 73-86% of the antioxidant 

activity existent in the original extract. 

 
 In general, the addition of different concentrations of polysaccharide rich extracts obtained from 

SCG by using an alkali pretreatment and autohydrolysis improved or preserved the 

physicochemical properties of the edible films with respect to the control film. 

 
 Water solubility, color and opacity, for example, were the most affected properties when 

polysaccharide rich extracts were incorporated, significantly improving the solubility and light 

barrier of the films.  

 
 Besides the improvement of the physicochemical properties, the incorporation of polysaccharides 

rich extracts into CMC-based films, can give important functional properties to the films, such as 

antioxidant and antimicrobial activities (previously corroborated in Section III - Chapters 4 and 5) 

increasing the advantages of using these bio-based films on foods. 

 
 The results showed lower gas transfer rates (O2, CO2 and ethylene) for the coated fruits in 

comparison with the uncoated fruit when using a storage temperature of 20 °C and 65 RH. Overall, 

the physicochemical properties did not present significant changes between the goldenberries with 

or without coating. However, the loss weight and the microbiological contamination were reduced 

when the coating containing the polysaccharide rich extract was used. 
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 In general, results showed the great potential of SCG to be used as raw material on biotechnological 

processes due to their low cost and availability. Due to their high content of polysaccharides and 

phenolic compounds presenting antioxidant and antimicrobial activities, it is expected a wide 

number of applications in food and pharmaceutical area. 

10.2. Guidelines for future work 

 

Despite the main objectives have been achieved, there are some work that could be done in 

the future to understand better the properties of polysaccharides and phenolic compounds as well as 

their effect  in the films and/or coatings properties. Based on this some recommendations and 

guidelines for future work are give: 

 

 Although the alkali treatment and autohydrolysis demonstrated to be efficient methods to recovery 

polysaccharides and phenolic compounds from SCG, others technologies used to extract these 

type of compounds could be evaluated including microwave-assisted extraction and ultrasound-

assisted extraction among others. 

 
 Using methodologies for the characterization of the polysaccharides extracted; e.g. intrinsic 

viscosity, methylation and GC/MS analyses in order to know their molecular weight and structure, 

backbone and how they are branched. 

 
 Consider the possibility of using methods such as injection molding, films blowing or extrusion, 

which are currently utilized to produce synthetic packaging, in the production of edible films 

evaluated in this work. 

 
 Applying the selected coating containing the polysaccharide rich extract in a packing house facility, 

in order to understand the effect of this coating on goldenberry fruit storage on an industrial 

environment.  
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