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Abstract 16 

The effect of time on the mechanical properties of wood is of interest for structural engineers, wood 17 

technologists and conservators; for the old timber structure assessment, for the potential reuse of 18 

salvaged timbers and poles and for the conservation of wooden artefacts as well. The topic was 19 

investigated since the 50’s, but the results reported in literature are not always concordant. This is 20 

a consequence of the fact that this kind of research works are quite difficult, as a consequence of 21 

the material characteristics itself: mechanical properties variability, low availability of material, 22 

uncertainty about the “history” of the tested material, unknown original mechanical properties. 23 

Another source of uncertainty between the research works is a consequence of the different 24 

research approaches: some have investigated only the effect of the time passing (therefore, 25 

aging), others consider the aging effect together with other effects, like the state of conservation 26 
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and the duration of load. The main interest of the researchers was in the bending properties 27 

variation, while for other mechanical properties less information is available. In this paper, the 28 

results of several research works are presented and analysed regarding the differences in the 29 

mechanical properties for elements with different age levels. Moreover, recommendations for 30 

future research are included attending to the conclusions drawn from the analysed literature. 31 

Keywords: old timber; old wood; aging effect; salvaged timber. 32 

1. Introduction 33 

A very common question on wood is if its mechanical properties are affected by time. This question 34 

is of interest for both timber structures conservation and assessment, as well as in wooden artefact 35 

conservation field. Many factors affect the structural health of timber and the mechanical properties 36 

of wood, as instance: the presence and extension of biological attacks (insects degradation or 37 

decay), the material quality, the history and duration of load acting on the structure (is it the original 38 

one or has it changed during time?). However the problem must be distinguished: mechanical 39 

properties of wood affected by decay decrease strongly, but decay is a consequence of the state of 40 

conservation, not a consequence of the wood age itself. Similarly, the effect of the load history is 41 

related to the age of wood, but it is not a consequence of the wood’s age [1]. The first systematic 42 

research works on aged wood mechanical properties were carried out in Japan during the 50’s [2–43 

9]. The aim of these works was to investigate only the effect of time passing on the mechanical 44 

properties of wood. 45 

Later, many research works were published also in Europe, especially in Germany [10–15]. Since 46 

the 90’s large testing campaigns were carried out, mainly in the United States of America, although 47 

with slightly different aims: not only the effect of the aging was investigated [16], but also the effect 48 

of the load history on the timber mechanical properties [17] and the potential reuse of reclaimed 49 

timber [18–23] or poles [24,25] were studied.  50 

In recent years, Japanese researchers demonstrated an increased interest in this field [26–36]. 51 

Nevertheless, the published results raise several questions because testing aged wood or timber is 52 

influenced by different factors, such as: 53 
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1. initial properties (past) of the tested material are unknown, so it is difficult to compare them to 54 

the actual properties (present). 55 

2. the inherent natural wood variability may cover the influence of aging and preclude any definitive 56 

conclusions. For instance, for small and clear specimens of the same species, bending strength 57 

(MOR) and bending stiffness (MOE) can vary in the range of approximately 7-20% [37]. 58 

3. it is difficult to test large quantities of old material, as it is not easily available, especially 59 

structural timber. 60 

4. no single standardized procedure has been adopted for testing, so it may be difficult to find basis 61 

of comparison between different works. 62 

5. aging has a different effect on different species. For example, when testing small and clear 63 

specimens of keyaki (Zelkova serrata, Makino) and hinoky (Chamaecyparis obtusa, Siebold & 64 

Zucc), Kohara [8] obtained a MOE reduction of about 30% for the first species, and a MOE 65 

increase for the second species during the first 300 years. 66 

6. if the tested materials were exposed to particular environmental conditions allowing decay, their 67 

mechanical properties can affected even at an early stage [38]. However, early stage decay can 68 

only be detected at microscopy level. 69 

7. for structural timber damage resulting from the mounting/dismantling operations may affect the 70 

original mechanical properties of timber [18,20,22,29,31,39]. 71 

8. the effect of the load history (duration of load) is well known for structural timber that remain in 72 

service for long periods of time [40–42]. This effect must be taken into account when testing 73 

material that has been in service, but it is erroneous to consider it as an aging effect [1]. 74 

Another important aspect concerning old timber structures is the possibility to assess the residual 75 

mechanical properties of timber by means of visual inspection and non-destructive/semi-76 

destructive techniques. For example, the work of Sandoz and Vanackere [43] considers the use of 77 

non-destructive measurements of moisture content and density in order to estimate the residual 78 

strength of wood poles, whereas in Ross and Pellerin [44] a review is provided for non-destructive 79 

assessment methods for testing wood members in structures, and in Baraneedaran et al. [45] a 80 

review of methods including drilling, sounding, modal testing and stress wave propagation 81 
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technique are discussed for the assessment of in-service timber poles. More recent works have 82 

provided guidelines and general information on both the prediction of the mechanical properties of 83 

wood by use of semi-destructive methods [46] and also about the in situ assessment of historic 84 

timber structures [47]. The application of these methods to in situ assessment and some of its 85 

limitations are further discussed in [48] and in [49]. Globally it is accepted that the results obtained 86 

through these methods have large variability, therefore they must be combined together as to 87 

decrease its subjectivity for both an initial survey, as well as in more detailed surveys [50]. 88 

Moreover, the combination of methods should consider the mechanical property that is being 89 

assessed, as well as the size scale of the analysis [51]. Nevertheless, it is common to use non-90 

destructive methods to assess the residual cross-section and also durability related issues (e.g. 91 

level of biological attack) [52,53], therefore its present conditions, rather than to assess the effect 92 

of the aging phenomena which must also consider the wood structure and its chemistry [54]. 93 

The goal of this paper is to discuss the relevant primary research literature, and summarize the 94 

current understanding of the problem, as well as to provide recommendations for future research 95 

on this topic. Literature investigating the mechanical properties affected by aging effects is 96 

summarized in Table 1.  97 

It can be perceived that different researchers understand the effect of aging in very different 98 

perspective by simply reading the titles of the referenced works. The terms old wood/old timber, 99 

historical timber, aging of wood, effect of time, are used in research works carried out with the 100 

same aim: to compare the mechanical properties of wood of different ages. However, there are 101 

differences between these concepts that should be considered. What can be considered as old 102 

wood (or old timbers)? When a timber element should be considered historical or remain simply 103 

old?. Some have investigated the aging phenomena, including the effect of the load history and in-104 

service condition on the mechanical properties of timber [36,55,56]; while others have investigated 105 

aging of wood, considering only the effect of the “age” on the mechanical properties of wood 106 

[1,30,57]. In literature two main approaches were found: i) consideration of small clear specimens, 107 

and ii) consideration of structural size elements with intended use of reutilization. The research 108 

works using small and clear specimens were carried out aiming at the analysis of the aging effect 109 
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on the wood mechanical properties for different grain directions. The advantages using such 110 

specimens are related to their lower variability and wider availability comparing to larger size 111 

elements including natural defects. Moreover, small test samples allow for easier, cheaper and 112 

more standardized test setups. Anyway, when small specimens are extracted from timber 113 

elements that had been in service, the duration of load effect must be taken into account, as well 114 

as the position of the specimens inside the original element. 115 

On the other hand, research works were carried out on structural size elements in order to 116 

investigate the perspective to reuse them (for instance for salvaged poles or timbers), including not 117 

only the analysis of the mechanical properties, but also aiming at the development of applicable 118 

visual strength grading rules. In this case, the mechanical properties of the element are not only 119 

affected by the natural aging phenomena, , but also by other factors like the duration of load 120 

(DOL), the state of conservation and the presence of damages. 121 

 122 

2. Mechanical properties variation 123 

2.1 Bending stiffness (MOE) 124 

A large number of authors agree on the fact that the MOE remains unchanged, or that it is not 125 

significantly affected, over time. In the analysed literature, 20 research works reported that MOE 126 

increased or remained unchanged over time, while only 5 reported a MOE decrease. The average 127 

MOE variation between old and new wood/timber is summarized in Fig. 1. 128 

The highest MOE increase, of about 11% and 27%, is reported in [27] where the authors compared 129 

new and 270/290 years old small specimen of akamatsu (Pinus densiflora, Siebold & Zucc). 130 

Contrary results are reported in [4] where Kohara reported a MOE decrease of about 25% for 131 

keyaki. Later, Kohara [8] found that the MOE increased during the first 300 years testing hinoki 132 

small specimens. 133 

The highest MOE decrease was found in [58] where Cai et al. compared the edgewise and flatwise 134 

bending MOE of 9 old Loblolly pine (Pinus taeda L.) joists 90 years old, to new timber of southern 135 

pine. The new and old joists were tested in similar conditions of density and moisture content (MC). 136 
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The old joists’ MOE was of approximately 15 and 42% lower for the flatwise and edgewise MOE, 137 

respectively. 138 

Smith [23] tested 200 structural joists and small specimens (species not identified) from 40 to 160 139 

years old, for the calculation of bending MOE and MOR. A comparison between old wood and new 140 

wood was made to infer about the mechanical properties variation. In that work, new wood was 141 

selected on the basis of similarity to the density range of the salvaged timber, without considering 142 

the species itself, so it is not possible to prove that the salvaged timber and new timber were from 143 

the same species (nor that the salvaged species were the same species or not). Moreover, the 144 

density of the new timber was between 433 and 490 kg/m3 while the salvaged joist density varied 145 

in the range of 400-750 kg/m3. Additionally, the MOE was calculated incrementing the load from 146 

1000 to 10000 N (1000 N for each increment), waiting 30 seconds from one step to the following. 147 

The final load-displacement graph used for the MOE calculation is biased from the viscoelastic 148 

deformation of wood under load, and the MOE is not calculated on the base of a pure elastic 149 

deformation. 150 

It is interesting to note that, among the carried out research works on old structural timber, no one 151 

recorded a higher MOE compared to new timber, confirming the in-service influence on the 152 

mechanical properties. 153 

MOE decrease was also observed by several authors testing small and clear specimens: -15% 154 

[27]; -25% [4]; -12% [25]. 155 

 156 

2.2 Bending strength (MOR) 157 

Larger part of literature reported no MOR decrease. The other ones reported a MOR decrease 158 

between 7 to 60% (Fig. 2). A clear trend cannot be found for small specimens nor for structural 159 

timber. 160 

Chini et al. [21] tested 32 structural members of southern pine with around 85 years in 3 point 161 

bending tests. The timber elements were obtained from different buildings. The average allowable 162 

MOR for salvaged timber was around 15% higher than new wood, showing a very high variability in 163 

function of the timber construction origin (from 67-117% of the new timber MOR). For this 164 
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research, the great difference in density, between old timber and new timber (new wood density 165 

was more than 50% lower), does not allow to make any consistent conclusion about the results. 166 

Similarly Falk et al [19] tested 100 old joists with 90 years (53 were of Douglas-fir and 25 of Hem-167 

fir) for the MOE and MOR calculation. The elements have been dismantled from military buildings. 168 

The calculated data were compared to the characteristics value for the in-grade study, assigned to 169 

the tested material according to the applied grading rule. According to that comparison, the authors 170 

concluded that strength parameters were lower than expected. 171 

Falk [18] performed bending tests in 90 timber beams with 55 years old, where 30 of them 172 

presented heart checks and 60 did not. It was found that the bending strength of checked beams 173 

was 15% lower than the beams without checks.  174 

Nakajima [31] tested 633 lumbers salvaged from two different deconstructed buildings. All the 175 

lumbers were visually graded and the bending strength calculated in 4 point bending tests. The 176 

mechanical properties were compared to the ones reported for new solid timber by Japanese 177 

grading rules resulting in a 13% lower bending strength for salvaged timber. Moreover, a relation 178 

between lower bending strength and nail holes was found. 179 

Rammer [20] tested 69 Douglas fir lumbers salvaged from a dismantled military building. 40 pieces 180 

were tested in 5 point bending test as to calculate the shear strength, whereas 29 pieces were 181 

tested in four point bending tests as to calculate the bending strength. The research was carried 182 

out to investigate the effect of split and checks on both the shear and bending strength. The author 183 

observed that the bending strength decreased significantly. and that shear strength was negatively 184 

affected by the presence of split and checks. 185 

In the case of Schultz et al [59], no difference was found for MOR between new and 300 years old 186 

Norway spruce (Picea abies, Karst.) structural timber. Whereas, Hirashima et al [27] observed a 187 

MOR increase for 270 and 290 years old akamatsu specimens (17 and 42%, respectively), when 188 

testing small size specimens. 189 

Crews and Mackenzie [22] investigated the possibilities to reuse salvaged timber testing 90 190 

specimens extracted from structural timber considering the extraction of specimens from different 191 

cross section locations (from the compressed face, from the tensioned face and from the lateral 192 
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faces). The timber elements came from different structures that had been subjected to different 193 

load levels. The specimens were graded and tested in bending with results evidencing a lower 194 

MOR (35-50%) compared to new timber, also attending to different load magnitudes. Similarly, 195 

Smith [23] reported that MOR decreased about 20% as a consequence of the load history effect for 196 

both structural timber and small specimens. 197 

Except for [20,22,31], that reported only MOR reduction but no MOE reduction, in the other cases 198 

MOE and MOR evidenced the same behaviour: i) no variation was found in [1,17,24,26,27,36,60]; 199 

ii) minor variation was found in [30,34]; iii) decrease for both MOR and MOE was found in 200 

[4,27,55]. Since the MOE and MOR are related, this seems to suggest that the differences 201 

between old and new wood are much more related to the original quality of the tested material, 202 

rather than to the effect of aging itself. The research works in which MOR reduction is observed 203 

and MOE remains unchanged [20,31] were carried out on structural timber, confirming that load 204 

history has a more significant influence on MOR rather than on MOE. 205 

  206 

2.3 Compressive strength 207 

Kohara [4] reported a compressive strength reduction of about 15% testing small and clear 208 

specimens. Also, Yorur et al. [56] reported a compressive strength reduction up to 27%, testing 209 

small specimens of Pinus sylvestris, L., but in this case the results are compromised by different 210 

densities ranges between the old and new wood specimens (new wood was 18% denser). 211 

The comparison between new and old wood is quite difficult because compressive strength is 212 

largely affected by density. The already mentioned work by Kohara [4] reports a compressive 213 

strength reduction, obtained comparing new and aged specimens with a different mean density of 214 

about 12% on the new wood side, probably explaining a large part of the reported strength 215 

difference. 216 

The other analyzed researches reported no compressive strength variation [12–15,36],a slight 217 

increase [11,55,61] or a significant compressive strength increase [62,63]. 218 

On the structural size, Falk [18] selected around 60 timber columns, with and without checks, and 219 

tested them in compression. On that study, all columns were found to have higher strength than 220 
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expected by the specific grading rule [64]. A schematic representation of the compressive strength 221 

variation is showed in Fig. 3. 222 

 223 

 224 

 225 

2.4 Tensile strength 226 

Since the tensile strength of wood in longitudinal direction is very high compared to the other 227 

directions, only occasionally it is a limiting design factor, and thus few research works were made 228 

regarding the age effect on this property. Only Attar-Hassan [55] reports a clear tensile strength 229 

reduction of about 29%, observed while testing small clear specimens. However, other works 230 

present significant different outcomes on their results. In [11] a lower tensile strength, comparing 231 

old wood to new wood, was reported for Norway spruce with density up to 520 kg/m3, whereas 232 

higher tensile strength for density above 520 kg/m3 was found. Hirashima [57] did not found a clear 233 

relation between age and tensile strength on akamatsu specimens, as no variation was found for 234 

115 years old specimens comparing to new wood, while 29% reduction for 270 years old 235 

specimens and 18% reduction for 290 years old specimens was found.  236 

The low number of research works and the discordant results do not allow to draw a clear 237 

conclusion about the aging phenomena effect on tensile strength. 238 

 239 

2.5 Tensile and compressive MOE 240 

Ooka et al [36] tested small specimens of keyaki, hinoki and akamatsu in compression 241 

perpendicular to the grain, aiming at calculating the MOE. The specimens were taken from timber 242 

members rescued from Japanese traditional buildings, with 90 to 365 years old. In this case, the 243 

calculated MOE was found to be similar to the one of new wood. 244 

Froidevaux et al [65] tested 200-500 years old Norway spruce small and clear radial specimens in 245 

tensile test, in order to verify the elastic, creep, relaxation and rupture behaviour under controlled 246 

temperature and relative humidity. Authors reported that it was not possible to observe a clear 247 

aging effect. Moreover, a significant higher MOE was obtained for the specimens from wood 248 
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coming from a parquet floor, compared to wood coming from structural timber, suggesting a 249 

combined effect of age, load history and defect presence also on tensile properties. 250 

 251 

 252 

 253 

2.6 Shear strength 254 

Also in the case of shear strength the results are not concordant between different researches. In 255 

[12,28] no shear strength variation was reported comparing new and old specimens of respectively 256 

120 and 270 years, while Attar-Hassan [55] reported a shear strength increase of about 17%. Only 257 

Chini et al [21] and Kohara [4] agreed, reporting a shear strength reduction of about 25%. 258 

However, the causes of this reduction were attributed to more reasons rather than solely to aging. 259 

As instance, the first author obtained its results by testing 32 small specimens extracted from 4 260 

different old beams, ascribing the reduction in shear strength, mainly, to the presence of bolt and 261 

nails hole. 262 

Rammer [20] records that shear strength is negatively affected by the presence of split and checks 263 

on salvaged Douglas fir lumbers. 264 

 265 

2.7 Impact bending strength 266 

Impact bending strength calculated on small specimens is affected by density and MC, but the 267 

effect of the testing methods is much more important than the mentioned factors [66]. Although it is 268 

quite difficult to compare the different research works, due to the different materials and 269 

methodologies (meaning different MC, density and test methods), the analyzed literature 270 

evidences that impact bending strength is largely affected by aging, as only Krànitz [1] reported no 271 

significant variation for aged specimens impact bending strength. All the other authors reported a 272 

significant reduction [4,50,57] with values up to 70% [9] obtained while testing small and clear 273 

specimens of hinoki and keyaki aged up to 1300 and 650 years respectively. Also, Kollmann and 274 

Schmidt [10] observed an impact bending strength reduction when testing small specimens of pitch 275 

pine, extracted from 30 years old damaged wooden pillars.  276 
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 277 

3. Salvaged timber 278 

A significant number of the research works investigated the performance of salvaged materials 279 

comparing their properties to new timber, testing structural members. In this case the effect of age 280 

is not always an important parameter as mentioned by [29,31,68] when testing material up to 20 281 

years old. 282 

In the work of [69], the main goal was to assess the potential reuse of rescued timber or poles, 283 

according to their positive environmental effect and economical, direct and indirect, benefits. In this 284 

case the mechanical properties variation is influenced by different factors, such as the duration of 285 

load, aging, in-service conditions and the state of conservation. All the researchers tested the 286 

bending mechanical properties of the rescued materials founding that the bending strength 287 

decreases. This is probably a consequence of the DOL effect, and of the damages due to 288 

mounting and dismantling operations. Only Cai et al [58] observed a MOE reduction testing 289 

salvaged joists, the other researchers found no MOE variation. 290 

Anyway, the research works outlined that many of the dismantled timber members can be reused, 291 

according to the residual mechanical properties and effective cross-section. 292 

 293 

4. Strength reduction causes 294 

Kohara and Okamoto [9] speculated that the mechanical properties variation of wood due to aging, 295 

is a consequence of the change in the microstructure of wood. They reported a decrease in the 296 

amount of “cellulosic materials”, attributing the enhanced stiffness of aged wood to the cellulose 297 

crystallinity, observing an increment in the crystallinity for the first 100 years, followed by a 298 

progressive decrease. 299 

This hypothesis was not confirmed by other studies, as instance Noguchi et al [35] reported that 300 

the Kohara’s hypothesis does not sufficiently explain the aging process, because the viscoelastic 301 

properties of amorphous matrix substances in the wood cell wall also play an important role on 302 

variation of the mechanical properties. Additionally, other authors report no significant variation in 303 

crystallinity between aged and new wood of hinoki [70] or for other wood species [28,32,71]. 304 
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Krànitz [1], analysing the relevant literature, reports that many authors confirm the general increase 305 

of cellulose crystallinity over the long term. 306 

The other principal source of strength reduction is related to the load history effect and confirmed 307 

by the studies carried out on structural material [17,40,42]. 308 

5. Testing recommendations 309 

The various ways in which the tests were carried out, and the lack of information about the 310 

specimens, makes it difficult to compare the results of different research works. Therefore, it will be 311 

useful, for further works, to follow a common approach that may be based on the following 312 

recommendations: 313 

a. The tested species should be reported as well as the dimensions of the specimens. The 314 

size of the specimens affects the prediction of the mechanical properties and should, 315 

therefore, be considered in the grading protocol [72]. 316 

b. Since different research works use the term “old” in different way, also the age of the 317 

material used for testing should be reported. 318 

c. Origin of the elements should be reported with respect to the provenience of the wood and 319 

the location of the structure where they were used. 320 

d. When new and old wood is compared, they should be as similar as possible for basic 321 

characteristics, like density, moisture content and overall quality; otherwise it could be 322 

difficult to ascribe any difference, in the mechanical properties, to other factors. 323 

e. For small specimens it is useful to know from which kind of material they were extracted 324 

from, and its location on the original element, to take into account the potential DOL effect.  325 

f. Since early stage decay has a significant effect on some mechanical properties, it should 326 

be assessed carefully. 327 

g. For long-term experimental campaigns, a sample of elements should be used for 328 

determination of a reference property using non-destructive testing (e.g. determination of 329 

bending MOE in elastic field) as to allow for a basis of comparison and correlation between 330 

tests made at different ages. 331 
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h. Methods of survey may limit the quality of the assessment of the mechanical properties, 332 

therefore the same procedure and methods must be considered to assess old and new 333 

wood, as to obtain a reliable basis for comparison.  334 

i. A combination of different measuring methods is recommendable in order to decrease the 335 

variability of the analysis. 336 

6. Conclusions 337 

Many research works investigated the mechanical properties variation of wood over time, on 338 

different scales (small specimens and structural timber), and the possibilities to reuse salvaged 339 

timber. The results are not always in agreement, as a consequence of the complexity to compare 340 

the mechanical properties of old and new wood/timber due to the high variability on the mechanical 341 

properties, the uncertainty about the original mechanical properties of old wood and timber, and 342 

the effect of different factors, like the duration of load and the state of conservation. Additionally, in 343 

many cases, the lack of information and the use of non-standardized tests makes it difficult to 344 

make solid comparisons. 345 

The mechanical properties in bending were largely investigated and the majority of research works 346 

agreed on the fact that the bending strength and bending stiffness remain unchanged over the 347 

time, or decrease in a not significant way. Highest bending MOE and MOR reductions are reported 348 

for structural timber, which is affected by the in-service condition, such as duration of load, state of 349 

conservation and dismantling damages, that are not a direct consequence of aging. 350 

Besides bending MOE and MOR, only a reduced number of research works investigated other 351 

mechanical properties variation, so it is not possible to draw definite conclusions. The compressive 352 

strength seems to remain unchanged, although the published results are, sometimes, influenced 353 

by an important density difference between the compared new and old specimens. Few 354 

researchers investigated the tensile strength obtaining completely different results. Nevertheless, 355 

tensile and compressive MOE seem to remain unchanged over time. Also for shear strength it was 356 

not possible to reach a definite conclusion due to the limited number of research works. The 357 

published research works seem to agree on the fact that the impact bending strength is largely 358 

affected by aging.  359 
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The effect of time on the mechanical properties of salvaged timber and poles is quite complex, 360 

because the mechanical properties of timber that remained in service for many years, are a 361 

consequence of several interacting factors, namely the state of conservation, the load history, the 362 

original quality of the material and the damages occurred during the service life or the 363 

mounting/dismantling operations. However, this material can still be reused in structures, according 364 

to the residual mechanical properties and effective cross-section. 365 

 366 

 367 

References 368 

[1] K. Kranitz, Effect of natural aging on wood. Doctoral thesys, University of West Hungary, 369 
2014. 370 

[2] J. Kohara, Studies on the durability of wood I, mechanical properties of old timbers, , vol. 2, 371 
1, Bull. Kyoto Prefect. Univ. 2 (1952) 116–131. 372 

[3] J. Kohara, Studies on the permanence of wood V, shrinkage and swelling of old timbers 373 
about 300-1300 years ago (in Japanese), Bull. Kyoto Prefect. Univ. 5 (1953) 81–88. 374 

[4] J. Kohara, Studies on the durability of wood III: mechanical properties of old timbers, Sci. 375 
Reports Saikyo Univ. 4 (1953) 98–109. 376 

[5] J. Kohara, Studies on the permanence of wood VI, the changes of mechanical properties of 377 
old timbers (in Japanese), Bull. Kyoto Prefect. Univ. 6 (1954) 164–174. 378 

[6] J. Kohara, Studies on the permanence of wood VII, the influence of age on the components 379 
of wood (Chamaecyparis obtusa Endlicher) (in Japanese), Bull. Kyoto Prefect. Univ. 6 380 
(1954). 381 

[7] J. Kohara, Studies on the permanence of wood XV, the influence of age on the components 382 
of wood (Zelkowa serrata Makino) (in Japanese), Mokuzai Gakkaishi. 1 (1955) 21–24. 383 

[8] J. Kohara, On permanence of wood II, differences between the ageing processes of cypress 384 
wood and zelkova wood (in Japanese), Wood Ind. 10 (1955) 395–399. 385 

[9] Kohara, Okamoto, Studies of Japanese old timbers, Sci Rep Saikyo Univ 7(1a) 9-20. 7 386 
(1955) 9–20. 387 

[10] F. Kollmann, E. Schmidt, Gefügezerrüttung und festigkeitseinbusse von 388 
dauerbeanspruchtem nadelholz, Holz Als Roh- Und Werkst. 20 (1962) 333–338. 389 

[11] H. Schultz, H. von Aufseb, T. Verron, Eigenschaften eines fichtenbalkens aus altem 390 
dachstuhl, Holz Als Roh- Und Werkst. 19 (1979) 47–50. 391 

[12] J. Kuipers, Effect of age and/or load on timber strength, in: CIB W18, Meet. 18, Florence, 392 
Italy, 1986. 393 

[13] J. Ehlbeck, R. Gorlacher, Die tragfähigkeit von altem konstruktionsholz - Problematik der 394 
beurteilung, in: Bau. Mit Holz, 1990. 395 

[14] W. Rug, A. Seemann, Strength of old timber, Build. Res. Inf. 19 (1991) 31–37. 396 

[15] H.J. Deppe, H. Ruhl, Evaluation of historical construction timber. 1. Density and 397 
compression, Holz Als Roh- Und Werkst. 51 (1993) 379–383. 398 

[16] D. Erhardt, M.F. Mecklenburg, C.S. Tumosa, T.M. Olstad, New versus old wood: differences 399 



15 
 

and similarities in physical, mechanical, and chemical properties, in: Int. Counc. Museums-400 
Committee Conserv. 11th Trienn. Meet., London, UK, 1996: pp. 903–910. 401 

[17] K. Fridley, J. Mitchell, M. Hunt, J. Senft, Effect of 85 years of service on mechanical 402 
properties of timber roof members 1 Experimental observations, For. Prod. J. 46 (1996) 72–403 
78. 404 

[18] R.H. Falk, The propeerties of lumber and timber recycled from deconstructed buildings, in: 405 
PTEC 99 - PACIFIC TIMBER Eng. Conf., G. B. Walford and D. J. Gaunt, Rotorua, New 406 
Zeland, 1999: pp. 255–258. 407 

[19] R.H. Falk, D. DeVisser, S. Cook, D. Stansbury, Effect of damage on the grade yield of 408 
recycled lumber, For. Prod. J. 49 (1999) 71–79. 409 

[20] D.R. Rammer, Evaluation of recycled timber members, in: L.C. Bank (Ed.), 5th ASCE Mater. 410 
Eng. Congr., ASCE, Cincinnati, Ohio, 1999: p. 7. 411 

[21] A.R. Chini, L. Acquaye, M.E. Rinker, Deconstruction and materials reuse: technology, 412 
economic, and policy (CIB Publication 266), in: C.R. Abdol (Ed.), CIB Task Gr. 39 413 
Deconstruction Meet., Wellington, 2001: pp. 138–161. 414 

[22] K. Crews, C. Mackenzie, Development of grading rules for re-cycled timber used in 415 
structural applications, in: WCTE2008 - 10th World Conf. Timber Eng., 2008. 416 

[23] M.J. Smith, An investigation into the strength properties of reclaimed timber joists. Doctoral 417 
Thesys, Northumbria University, 2012. 418 

[24] R.J. Leichti, M. Meisenzahl, D. Parry, Structural timbers from retired Douglas-fir utility poles., 419 
For. Prod. J. 55 (2005) 61–65. 420 

[25] C. Piao, T.F. Shupe, L. Groom, W.A. Nipper, Research update for the treated wood reusing 421 
program at the Calhoun Research Station, in: 105th Annu. Meet. Am. Wood Prot. Assoc., 422 
2009: pp. 209–215. 423 

[26] H. Horie, Strength deterioration od recycled lumber collected from demolition wooden 424 
buildings in Hokkaido, Mokuzai Gakkaishi. 48 (2002) 280–287. 425 

[27] Y. Hirashima, M. Sugihara, Y. Sasaki, A. Kosei, M. Yamasaki, Strength properties of aged 426 
wood III: static and impact bending strength properties of aged keyaki and akamatsu woods, 427 
Mokuzai Gakkaishi. 51 (2005) 146–152. 428 

[28] K. Ando, Y. Hirashima, M. Sugihara, S. Hirao, Y. Sasaki, Microscopic processes of shearing 429 
fracture of old wood, examined using the acoustic emission technique, J. Wood Sci. 52 430 
(2006) 483–489. doi:10.1007/s10086-005-0795-7. 431 

[29] C.J. Lin, T.H. Yang, D.Z. Zhang, S.Y. Wang, F.C. Lin, Changes in the dynamic modulus of 432 
elasticity and bending properties of railroad ties after 20 years of service in Taiwan, Build. 433 
Environ. 42 (2007) 1250–1256. doi:10.1016/j.buildenv.2005.11.031. 434 

[30] S. Kawai, M. Yokoyama, M. Matsuo, J. Sugiyama, Research on the aging of wood in rish, in: 435 
Wood Sci. Conserv. Cult. Herit., 2008: pp. 52–56. 436 

[31] S. Nakajima, Comparison of two structural reuse options of two-by-four salvaged lumbers, 437 
in: WCTE 2010 - World Conf. Timber Eng. - World Conf. Timber Eng., 2008: pp. 1085–1090. 438 

[32] Y. Saito, S. Shida, M. Ohta, H. Yamamoto, T. Tai, W. Ohmura, et al., Deterioration character 439 
of aged timbers insect damage and material aging of rafters in a historic building of 440 
Fukushoji-temple, Mokuzai Gakkaishi. 54 (2008) 255–262. 441 

[33] E. Obataya, Effects of ageing and heating on the mechanical properties of wood, Wood Sci. 442 
Conserv. Cult. Herit. 8 (2009) 16–23. 443 

[34] M. Yokoyama, J. Gril, M. Matsuo, H. Yano, J. Sugiyama, B. Clair, et al., Mechanical 444 
characteristics of aged Hinoki wood from Japanese historical buildings, Phys. Herit. 10 445 
(2009) 601–611. 446 

[35] T. Noguchi, E. Obataya, K. Ando, Effects of ageing on the vibrational properties of akamatsu 447 



16 
 

(Pinus densiflora) wood, Wood Cult. Sci. Kyoto. (2011) 6. 448 

[36] Y. Ooka, H. Tanahashi, K. Izuno, Y. Suzuki, K. Toki, Effects of aged wooden members on 449 
seismic performance of old traditional wooden structures, in: 15th World Conf. Earthq. Eng., 450 
2012. 451 

[37] F.P.L. Department of Agriculture, Forest Service, Wood Handbook, Wood as an Engineering 452 
Material, Madison, WI: U.S., 2010. 453 

[38] W.W. Wilcox, Review ofliterature on the effects of early stages of decay on wood strength, 454 
Wood Fiber. 9 (1978) 252–257. 455 

[39] A. Ceccotti, M. Togni, NDT on ancient timber beams: assessment of strength/ stiffness 456 
properties combining visual and instrumental methods, in: 10th Int. Symp. Nondestruct. 457 
Test. Wood, 1996. 458 

[40] L.W. Wood, Relation of strength of wood to duration of load, For. Prod. Lab. Serv. U. S. 459 
Dep. Agric. R1916 (1951) 10. 460 

[41] C.C. Gerhards, Effect of Duration and Rate of Loading on Strength of Wood and Wood-461 
Based Materials, USDA For. SERVlCE Res. FPL 283. FPL 283 (1977) 26. 462 

[42] P. Hoffmeyer, J.D. Sørensen, Duration of load revisited, Wood Sci. Technol. 41 (2007) 687–463 
711. doi:10.1007/s00226-007-0154-5. 464 

[43] J.L. Sandoz, O. Vanackere, Wood poles ageing and non destructive testing tool. In 465 
Electricity Distribution CIRED. 14th International Conference and Exhibition on (IEE Conf. 466 
Publ. No. 438) (Vol. 3, pp. 26-1). IET., in: CIRED -14th Int. Conf. Exhib. Electr. Distrib. (IEE 467 
Conf. Publ. No. 438), 1997: pp. 26–1. 468 

[44] R.J. Ross, R.F. Pellerin, Nondestructive Testing for Assessing Wood Members in Structures 469 
A Review, Madison, WI: U.S., 1994. 470 

[45] S. Baraneedaran, E.F. Gad, I. Flatley, A. Kamiran, J.L. Wilson, Review of in-service 471 
assessment of timber poles, in: Proc. Aust. Earthq. Eng. Soc., Newcastle, 2009. 472 

[46] M. Kloiber, M. Drdàckya, J.S. Machado, M. Piazza, N. Yamaguchi, Prediction of mechanical 473 
propertiesby means of semi-destructive methods: A review, Constr. Build. Mater. 101 (2015) 474 
1215–1234. 475 

[47] H. Cruz, D. Yeomans, E. Tsakanika, N. Macchioni, A. Jorissen, M.C. Touza Vazquez, et al., 476 
Guidelines for the on-site assessment of historic timber structures, Int. J. Archit. Herit. 9 477 
(2015) 277–289. doi:10.1080/15583058.2013.774070. 478 

[48] L. Yan, Z. Houjiang, Research Situation and Trend on Non-Destructive Testing Method of 479 
Wood Material Mechanical Properties [J], For. Eng. 04 (2010) 12. 480 

[49] P. Niemz, D. Mannes, Non-destructive testing of wood and wood-based materials, J. Cult. 481 
Herit. 13 (2012) s26–s34. 482 

[50] A.O. Feio, J.S. Machado, In-situ assessment of timber structural members: Combining 483 
information from visual strength grading and NDT/SDT methods–A review, Constr. Build. 484 
Mater. 101 (2015) 1157–1165. 485 

[51] H.S. Sousa, J.S. Machado, J.M. Branco, P.B. Lourenço, Onsite assessment of structural 486 
timber members by means of hierarchical models and probabilistic methods, Constr. Build. 487 
Mater. 101 (2015) 1188–1196. 488 

[52] D. Hunt, Properties of wood in the conservation of historical wooden artifacts, J. Cult. Herit. 489 
13 (2012) s10–s15. 490 

[53] H.S. Sousa, J.M. Branco, P.B. Lourenço, Characterization of cross-sections from old 491 
chestnut beams weakened by decay, Int. J. Archit. Herit. 8 (2014) 436–451. 492 

[54] T. Nilsson, R. Rowell, Historical wood–structure and properties, J. Cult. Herit. 13 (2012) s5–493 
s9. 494 

[55] G. Attar-Hassan, The effect of ageing on the mechanical properties of eastern white pine, 495 



17 
 

Assoc. Preserv. Technol. Int. 8 (1976) 64–73. 496 

[56] H. Yorur, S. Kurt, I. Yumrutas, The Effect of Aging on Various Physical and Mechanical 497 
Properties of Scotch Pine Wood Used in Construction of Historical Safranbolu Houses, Drv. 498 
Ind. 65 (2014) 191–196. doi:10.5552/drind.2014.1328. 499 

[57] Y. Hirashima, M. Sugihara, Y. Sasaki, K. Ando, M. Yamasaki, strenght propoerties of aged 500 
wood,I: tensile strength properties of aged keyazi [Zelkova serrata] and akamatsu [Pinus 501 
densiflora] woods, Mokuzai Gakkaishi. 50 (1955). 502 

[58] Z. Cai, M.O. Hunt, R.J. Ross, L. a Soltis, Static and vibration moduli of elasticity of salvaged 503 
and new joists, For. Prod. J. 50 (2000) 35–40. 504 

[59] D. Nicholas, J. Shi, T. Schultz, Evaluation of variables that influence dynamic moe in wood 505 
decay studies, in: Int. Res. Gr. WOOD Prot. - 40th Annu. Meet., Beijing, China, 2009: p. 8. 506 

[60] W. Sonderegger, K. Kránitz, C.-T. Bues, P. Niemz, Aging effects on physical and 507 
mechanical properties of spruce, fir and oak wood, J. Cult. Herit. (2015). 508 
doi:10.1016/j.culher.2015.02.002. 509 

[61] D. Narayanamurti, S.S. Ghosh, B.N. Prasad, J. George, Untersuchungen an einer alten 510 
Holzprobe, Holz Als Roh- Und Werkst. 16 (1958) 19–21. 511 

[62] A.O. Feio, P.B. Lourenço, J.S. Machado, Non-Destructive Evaluation of the Mechanical 512 
Behavior of Chestnut Wood in Tension and Compression Parallel to Grain, Int. J. Archit. 513 
Herit. 1 (2007) 272–292. doi:10.1080/15583050701300475. 514 

[63] P. Witomski, A. Krajewski, P. Kozakiewicz, Selected mechanical properties of Scots pine 515 
wood from antique churches of Central Poland, Eur. J. Wood Wood Prod. 72 (2014) 293–516 
296. doi:10.1007/s00107-014-0783-y. 517 

[64] WCLIB, Grading rules for West Coast lumber. Standard No. 17. West Coast Lumber 518 
Inspection Bureau, Portland, Oreg, West Coast Lumber Insp. Bur. Portland, Oreg. (1996). 519 

[65] J. Froidevaux, T. Volkmer, K. Anheuser, P. Navi, Viscoelasticity behavior of modern and 520 
aged wood, in: COST Action IE0601, Izmir Int. Conf. Viscoelasticity Behav. Mod. Aged 521 
Wood Julien, 2010. 522 

[66] N.H. Kloot, The effect of moisture content on the impact strength of wood, Aust. J. Appl. Sci. 523 
5 (1954) 183–186. 524 

[67] H. Weimar, Aspekte der stofflichen charakterisierung von altholz. MSc thesis. Hamburg, 525 
Universität Hamburg., 2000. 526 

[68] C. Piao, T.F. Shupe, C.Y. Hse, R.C. Tang, Nondestructive Evaluation of Young ’ s Moduli of 527 
Full-Size Wood Laminated Composite Poles, in: 7th Pacific Rim Bio-Based Compos. Symp., 528 
Science & Tecnique Literature Press, Nanjing, China, 2004: pp. 291–298. 529 

[69] J. Brandon Davis, Suitability of Salvaged Timber in Structural Design. Master Thesys. Civil 530 
and Environmental Engineering. United States Military Academia. Massachussetts Institute 531 
of Technology, 42 pp., Massachusetts Institute of Technology, 2012. 532 

[70] M. Yokoyama, J. Sugiyama, S. Kawai, Mechanical characteristics of aged Hinoki 533 
(Chamaecyparis obtusa Endl.) wood from Japanese historical buildings, in: Multidiscip. 534 
Conserv. a Holist. View Hist. Inter., 2010: pp. 1–10. 535 

[71] T. Inagaki, H. Yonenobu, S. Tsuchikawa, Near-infrared spectroscopic monitoring of the 536 
water adsorption/desorption process in modern and archaeological wood, Appl. Spectrosc. 537 
62 (2008) 860–865. 538 

[72] R.W. Anthony, K.D. Dugan, D.J. Anthony, A grading protocol for structural lumber and 539 
timber in historic structures, APT Bull. 40 (2009) 3–9. 540 

  541 



18 
 

Table 1 – Summary of the literature investigating the aging effect on the mechanical properties of 542 
wood and timber.  543 

reference species 
approximate 

age 
mechanical 
properties* 

specimens 
dimensions 

(wxhxL - cm3)** 

Ando et al. (2006) 
Pinus densiflora, Sieb. et 

Zucc. 
270 fv 3x3x3 

Attar-Hassan G 
(1976) 

Pinus strobus, L. 142 Ef, fc, fm, fv, ft 12x15x230 (A) 

Cai et al. (2000) Pinus taeda, L. 90 Ef 5x3x90 (A) 

Chini et al. (2001) Southern pine 85 Ef, fm, fv 4.8x9.7x60 (A) 

Crews et al. (2008)  hardwood ? Ef, fm 5x5x300-5x19x300 

Deppe et al. (1993) Pinus sylvestris, L. 600 fc - 

Ehlbeck et al. 
(1990) 

softwood ? fc - 

Erhardt et al. (1996) Pinus sylvestris, L. 300-400 Ef S 

Falk (1999) 
Pseudotsuga menziesii, (Mirb.) 

Franco 
55 fc, fm 

14x19x330 
19x19x320 

Falk et al. (1999) 
Pseudotsuga menziesii, (Mirb.) 

Franco; Tsuga heterophylla 
(Raf.) Sarg. 

90 Ef, fm 5x25x490 

Feio et al. (2007)  Castanea sativa, Mill. ?  fc 5x5x10 

Fridley et al. (1996) ? 85 Ef, fm S 

Froidevaux et al. 
(2010) 

Picea abies, Karst. 100-700 Et,Ec 0.3x0.3x5 

Hirashima et al. 
(1955) 

Zelkova serrata, Makino; Pinus 
densiflora, Siebold & Zucc 

115-290 ft S 

Hirashima et al. 
(2005) 

Zelkova serrata, Makino; Pinus 
densiflora, Siebold & Zucc 

115-290 Ef, fm, w S 

Horie (2002) 

Picea jezoensis, (Siebold & 
Zucc.) Carr.; Abies 

sachalinensis, F.Schmidt 
27 a 83 Ef, fm S 

Kawai et al. (2008) 
Chamaecyparis obtusa, 

(Siebold & Zucc.) Endl. 
up to 1600 Ef, fm, w S 

Kohara (1953-1955) 

Zelkova serrata, Makino; 
Chamaecyparis obtusa, 

Siebold & Zucc 
310-530 

Ef, fc, h, fm, fv, 
w 

S 

Kollmann et al. 
(1962) 

pitch pines 30 Ef, w L 

Kranitz (2014) 
Picea abies, Karst.; Abies 

alba, Mill.; oak 
90-250 Ef, fm, w 2x2x30 

Kuipers (1986) ? 100-120 fc, fv L 

Leichti et al. (2005) 
Pseudotsuga menziesii, (Mirb.) 

Franco 
20-90 Ef, fm 5x5x30 

Lin et al. (2007) 

Cyclobalanopsis longinux, 
(Hayata) Schottky; Schima 

superba, Gardner & Champ; 
Castanopsis carlesii,Hayata; 
Litsea acuminata (Teschner) 
Kosterm; Cyclobalanopsis 

gilva (Blume) Oerst.; Pasania 
harlandii, Hance 

20 Ef, fm 2x2x32 
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Nakajima (2008) ? ≈ 20 Ef, fm 3.8x8.9x236 

Narayanamurti et 
al. (1958) 

Tectona grandis, L.f.  1800  fc S 

Ooka et al. (2012) 

Zelkova serrata, Makino; 
Cryptomeria japonica (L.f.) 

D.Don, Chamaecyparis 
obtusa, (Siebold & Zucc.) 
Endl.; Pinus densiflora, 

Siebold & Zucc 

90-375 Ef, fm, fc, Et,Ec 3x3x60 

Piao et al. (2009) southern pines 8 a 17 Ef, fm 2x2x41 

Rammer (1999) 
Pseudotsuga menziesii, (Mirb.) 

Franco 
? Ef, fm 

15x35x540 
25x46x530 

Rug et al. (1991) 
pine, oak, Picea abies, Karst.; 

Fagus sylvatica, L. 
60-140 fc 

1.5 (diameter) x4 
2x2x3 

Schultz et al. (1979) Picea abies, Karst. >300 fc, fm, ft 16x16x230 

* Ef = bending MOE; fm = bending strength; fc = compressive strength; h = hardness parallel to the 544 
grain; fv = shear strength; ft = tensile strength; w = impact bending strength; Et/Ec = tensile or 545 
compressive MOE; ? = unknown data. **A = average dimensions; S= small and clear specimens 546 
(unknown dimensions); L= structural timber (unknown dimensions).  547 
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 548 

Fig. 1 – percentage difference between old and new wood/timber bending MOE. Positive values 549 
indicate higher MOE for old timber. When a specific value is not indicated in the research 550 
work, the trend is indicated as increment (+) or decrement (-).  551 
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 552 

Fig 2 – percentage difference between old and new wood/timber bending strength (MOR). Positive 553 
values indicates higher MOR for old timber.   554 
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 555 

Fig 3 – percentage difference between old and new wood/timber compressive strength. Positive 556 
values indicates higher compressive strength for old timber. When a specific value is not 557 
indicated in the research work, the trend is indicated as increment (+) or decrement (-). 558 
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