
GParticles: a flexible GPU-based particle library
Tiago Dinis

Departamento de Informática
Universidade do Minho

Email: tiagoddinis@gmail.com

António Ramires Fernandes
Centro Algoritmi

Universidade do Minho
Email: arf@di.uminho.pt

Abstract—Particle systems are widely used to create visual
effects with a large number of elements (or particles). Earlier
works were CPU based, while recent developments use the GPU
to take advantage of the fact that, in most cases, particles are
independent entities. In here, we propose a GPU-based library
that focuses on extensibility and ease of use. The library allows for
virtually any particle logic to be implemented, supporting fully
programmable shader based effects, facilitating the definition of
multiple resources and providing full control over the particle
system’s simulation execution. Projects can be easily specified
using XML, and extended via shaders and stubs, C functions that
can be executed in between particle system’s processing stages.
The examples presented illustrate the potential of the API, with
multiple particle systems acting in a sequence, later extended to
create custom graphic effects.

Index Terms—particle systems, gpu simulation, real time
graphics.

I. INTRODUCTION

A particle system is a collection of individual entities that
have both a set of data and behavior rules. During their
life cycle, these entities, or particles, can interact with the
environment and with each other, forming a large-scale system
that models a visual effect. Particle systems are extensively
used in computer graphics to reproduce fuzzy and natural
phenomena, volumetric effects or large, behaviorally complex
systems, e.g, simulations of birds flocking, a fire and its
cinders, or imaginary fluids with unrealistic dynamics.

Some particle systems are CPU-focused [7][9]. On these
implementations, the entirety of the system data is managed
on the CPU and only transferred to the graphics hardware for
the rendering stage. Due to the CPU’s higher flexibility over
the GPU, particle systems that use this approach are easier to
program and design [10]. However, the transfer bandwidth of
particle data for rendering purposes can be a major bottleneck
and severely limit the maximum number of particles rendered
each frame.

One viable alternative is to delegate particle system simula-
tion stages to the GPU [8][11][11][13][14][5]. As a result, par-
ticle data communication is reduced, allowing the development
of systems composed by millions of particles, and the use of
previously owned CPU processing power for other application
tasks. This approach will also leverage most particle system
simulations, since they can be modeled as a highly parallel
workload that fits well with the GPU.

In this paper we present a GPU-centric particle library1

whose architecture aims at extensibility and user-friendliness.
The system is capable of high performance since particle data
is GPU resident, therefore limiting/eliminating data transfer
bottlenecks. The library remains flexible and supports particle
systems with virtually any behavior without the need to be
recompiled every time something is changed. It provides a
collection of powerful and convenient utilities to create and
extend particle systems, defined through an XML file and
custom functions that act as replacements for pre-existing
code. Furthermore, the library allows full control of the
execution of multiple particle systems at a fine grain, allowing,
for instance, the sequencing of effects or the definition of
triggers to change/start/stop a particular particle system.

The remainder of this document is structured as follows:
section II presents some of the related work, focusing on
GPU-centric systems; section III describes the architecture of
the proposed library; section IV goes through the available
extensibility options for particle system development; section
V details GParticles’ important utility features; section VI
provides a simple example showcasing common features of
GParticles; section VII presents a more complex example
that models, with GParticles, a crude animation system where
each object is viewed as a particle; section VIII provides a
performance evaluation report; section IX concludes the paper
and presents avenues for future work.

II. RELATED WORK

Particle simulation can be done through stateless or stateful
systems.

Stateless (or parametric) systems, do not preserve state
between iterations [2]. Instead, they use finite mathematical
expressions with a set of initial values and global parameters,
such as elapsed time, gravity force, and starting particle posi-
tions and velocities, to compute a particle’s current properties
[1]. This approach results in efficient simulations and is easily
implemented on the GPU. However, since particle behavior
is attached to a deterministic expression, it soon becomes
unfeasible to model interactions with the environment and
differing simulation paths for individual particles. As a result,
the stateless approach is limited to simple, isolated particle
systems.

1https://github.com/tiagoddinis/GParticles



Stateful (or non-parametric) systems store particle data
throughout iterations, applying numerical integration methods
to calculate the current state of the system. While harder to use
on the GPU, stateful systems are better suited for environment
interaction simulations and branching particle behavior, e.g.,
collisions, randomness, agent intelligence.

Transform feedback was added to the OpenGL version 3.0
improving the implementation flexibility of GPU stateful par-
ticle systems. With this technique, a buffer is connected after
any vertex processing stage (vertex, geometry or tessellation
shaders) to capture generated/transformed data. The transform
feedback buffer can then be used to provide the output vertices
of the current pass as input for the next draw call. Transform
feedback works as an extension of the traditional GPU pipeline
and some examples are available. [3][5][6].

Prior to the existence of transform feedback, GPU-based
particle systems were usually implemented with fragment
shaders, FBOs and textures, where each texture (or each
texture row) could represent a particle property, for instance,
particle position and velocity [1][5]. Floating-point textures
were also made core in version 3.0 and, with that precision
increase, GPU particle systems started being taken more
into consideration. This approach was preferred for a time,
having been used in some commercial products. An example
is Kvant/Spray [8], described as ”a GPU accelerated object
instancing/particle animation system for Unity”, which uses
floating-point textures to store system state. ParticlesGPU
is another engine that uses the same method [13]. It was
developed on top of vvvv [12], a multipurpose toolkit (free
for non-commercial use) suited for large media environments
with physical interfaces and real-time motion graphics. Un-
fortunately, these examples are both lacking in documentation
and confined to the engine/toolkit they were built upon.
ShaderParticleEngine [11] is a library focused on GPU particle
systems for web browsers. Using this API as is provides a
solution for simple particle systems.

Compute shaders, introduced in OpenGL 4.3 core version,
work as single-stage programs (completely separate from the
traditional GPU pipeline) used to compute arbitrary data. They
work similarly to other shader stages, but the work load, set of
input and output values, is not predefined. Compute shaders
are a perfect fit for many tasks, including the processing of
particle data.

In the 2014 edition of the Game Developers Conference
(GDC), Gareth Thomas’ presentation [15] gave an overview
of a compute-based particle system architecture and how
some common functionality, such as collisions, sorting and
rendering could be achieved in this new context. The Doom
video game released in 2016, praised for its stunning visuals,
already presented a graphic option to enable GPU particles,
simulated through compute shaders [14].

While there are many demos available of particle systems
using compute shaders for particle physics, our research was
unable to find an open-source library focused on the devel-
opment of GPU particle systems that allowed users to easily
extend effects at different levels of abstraction, from high-

Fig. 1. GParticles particle system structure

level constructs down to the shaders themselves, and that could
easily be integrated with any C++ application.

III. ARCHITECTURE

This section gives an overview of the various elements that
compose GParticles: subsection III-A explores how data is
organized, stored and accessed; III-B presents particle system’s
and stage’s architecture; III-C introduces GParticles main
high-level components; III-D shows how a GParticles iteration
is processed.

A. Data in GParticles

As previously stated, a particle system is characterized by
having a large collection of data. GParticles allows a system
to have its relevant information spread across several data
resources, which can be one of three OpenGL shader storage
constructs: buffers, atomic counters (or atomics) and uniforms.
These data resources have distinct behaviors and use cases,
and are either global in scope or relative to a single particle
system.

Buffers are fixed size arrays with elements of a certain type.
They are the go-to resource to represent properties of particle
instances, such as their lifetime or position. Buffers can also
be used to communicate between different particle systems.

Atomics are unsigned integer hardware counters that can
only be incremented, decremented, and have its value read.
Although their functionality is limited, atomics are very useful
in such a parallel environment as the GPU. Atomics can
be used to keep track of buffer indices, elapsed processing
iterations or the number of alive particles.

Uniforms work as shader program inputs from the applica-
tion side, being immutable in value during the execution of
the program. Global variables and state such as the elapsed
time since the last frame, or mouse and keyboard state, can
easily be passed on to the GPU through uniforms.

B. Particle Systems and Stages

A particle system has a set of properties and can have an
arbitrary number of stages, see Fig. 1.

Properties are general pieces of information that describe the
system, such as its name, model matrix, control flow variables,
or the number of work groups to be used in computation
stages.

Stages are objects that refer to a shader program, either
made of a single compute shader, or vertex (including vertex,
tessellation and/or geometry) and fragment processing shaders.
Stages are tasked with processing particle data with a specific
goal. Most particle systems use three stages:



Fig. 2. GParticles stage structure

• Emission: controls how new particles are instantiated and
initializes their properties;

• Update: alters particle data according to the specified
behavior. It’s also the stage that tests for collisions and
decides when particles should die;

• Render: defines the graphical representation for each
particle;

To increase flexibility, GParticles allows a particle system to
have an arbitrary number of stages.

Stages are defined by their properties, headers, tags and
stubs, as seen in Fig. 2. Examples of stage properties are:
the shader program handle, maximum number of particles,
and control flow variables, such as the iteration step or last
iteration timestamp. The header set relates the resource name
and the corresponding shader binding point.

Tags are strings set by the user that provide additional
information about the system. Some tags such as ”emission”,
”update” and ”render” indicate GParticles how the stage
program should be generated. Custom stages can be tagged as
”compute” and ”graphics”, generating a single compute pro-
gram stage or one that uses the traditional graphics pipeline,
respectively. The ”paused” and ”active” tags signal GParticles
if the stage is to be be executed. The user can also add tags
that have no particular meaning to GParticles, but give useful
clues for operations he implements, as will be shown in section
VII.

Finally, each stage can receive user-defined C/C++ functions
named stubs that control, from the CPU side of the application,
particle system behavior at runtime. Stubs fill one of two stub
stage slots: ”startStub” and ”endStub” being called before or
after the execution of the stage shader program, respectively.

C. GParticles main components
GParticles strives to be simple in design, with only three

main architectural components: two singletons, GPDATA and
GPSYSTEMS (shown in Fig. 3), and the project loader.

GParticles data singleton, GPDATA, is responsible for stor-
ing all the available data resources. Through GPDATA it’s
possible to access, update, add or remove resources; it also
provides some other useful data, such as the viewport dimen-
sions or the current time in various time units.
GPSYSTEMS holds the loaded particle systems and controls

their execution flow. With this singleton, it’s possible to access,

Fig. 3. GPSYSTEMS and GPDATA components

Fig. 4. GParticles iteration example

update, add, or remove particle systems and its stages. It’s also
through GPSYSTEMS that one can select particle systems to
iterate their simulations.

The project loader loads an XML file with the particle
systems configuration, processes that information and fills the
two singletons with the required data to run the simulations.

D. GParticles iterations

Once a project definition file has been parsed by GParticles’
loader, the GPSYSTEMS singleton processParticles
function can be called, accepting model, view and projec-
tion matrices as parameters (which default to identity ma-
trices if none is provided) and a set of tags. When called,
processParticles iterates through particle systems that
have stages with the corresponding tags and invokes their
execute function, which will begin to process its active
stages. If no tag is selected, every particle system will be
simulated.

When its time for the execution of an active stage, the
concrete stage class binds the required resources through
GPDATA, loads the corresponding program object and runs
it. If present, stage stubs are executed before and/or after the
program object. A GParticles iteration is represented in Fig.
4.

IV. GPARTICLES EXTENSIBILITY

GParticles allows users to design and extend particle sys-
tems at different abstraction levels.

The first level is the XML definition file, where it’s possible
to alter project configurations, resource values and, through
prefabs, quickly exchange between sets of particle system data
and behavior logic. This level of control, however, is depen-
dent on previous implementations; it limits itself to changes



Fig. 5. GParticles template updateMain source

of pre-defined particle properties (their color or lifetime, for
instance) and to the choice of logic presets, such as switching a
system’s emission primitive from cone to sphere. Nevertheless,
this level of control is useful for fast prototyping, quickly
assembling a base configuration and tweaking implementation
exposed variables.

The next level of extensibility are the shader files of
each stage. These are composed by templates, custom logic
functions and modules. Template files contain the main shader
function and generic functions that work as a cohesive logic
construct, common to most particle systems. Templates also
call one or more custom functions. These functions are usually
created on a separate file and define the custom operations
to be applied on particle data during the execution of the
corresponding stage. Currently, GParticles has four different
templates:

• emissionMain: calls the custom emission function if
the maximum number of alive particles the system allows
and the number of particles to be emitted per iteration
limits haven’t been reached;

• updateMain: ages particles and calls the custom
update function if they are still alive, see Fig. 5;

• updateCollisionMain: works the exact same way as
updateMain but, if the particle is currently alive, another
custom function, collision, is called after update,
testing particles against collider primitives defined on the
XML project file;

• billboardMain: calls the custom transform function
that must return an array with four vec4 elements repre-
senting the billboard quad coordinates. These coordinates
are then offsetted by the particle origin position and
projected to screen space. The quad texture coordinates
are also set;

Modules are files that provide a set of auxiliary functions
related to specific tasks. Module functions are mostly inde-
pendent between them and can be used by custom logic files
and templates alike. At the writing of this paper, there are

Fig. 6. Incrementing a uniform resource value

three available modules: ”utilities” provides general helpful
functionality, such as random number generation, construction
of rotation matrices and 3D spaces; ”emission” facilitates
initialization of data relative to 3D particle properties with
emission primitives and velocity vector generators; ”billboard”
has auxiliary functions for billboard manipulation (creation,
stretching and orientation).

Templates, modules and custom logic files are only con-
ceptually distinct; they are concatenated into a single shader
file. However, this distribution of tasks can be a very useful
convention to follow when using GParticles. Users can add
new templates, or just redefine a custom function as detailed
in section VI. New modules can also be written and imported
from the XML project file.

From the CPU application side the user can extend parti-
cle system behavior by directly manipulating data resources
through GPDATA. Fig. 6 demonstrates how a float uniform
could be incremented.

Another powerful application-side extensibility option are
stubs. Having full access to the GParticles API, stubs can
implement virtually any additional logic required for a given
effect. They can do things such as changing data resources
values and particle system execution flow in runtime, or post-
stage processing operations. Section VI showcases an example
where stubs play an important role.

V. UTILITY FEATURES

This section details some features of GParticles that facil-
itate the development of projects both for XML and shader
programming.

A. Header Generation

With the loading of a project, GParticles generates auto-
matically all the required shader headers, the portions of code
that declare the available inputs and variables. This process is
based on the resource configurations indicated on project files.

Listing in Fig. 7 presents an example for a compute shader.

B. The prefab tag

GParticles allows the use of a prefab tag to facilitate the
creation of project definition files, their readability, and reuse
of configurations. A prefab tag references a previously defined
XML file, inserting its content at the tag location during the
project loading process. Prefab files can have slot tags which
signal entry points for additional configurations (defined on
the project file inside inject tags). Injected tags override prefab
tags with the same name attribute. Fig. 8 shows how GParticles
creates the final file to be loaded, from the original XML
project and a prefab.



Fig. 7. Shader header generation from project file configurations

Fig. 8. Exemplification of the use of a prefab

Fig. 9. A simple particle system using prefabs

C. The ’@’ directive

GParticles provides the ’@’ directive as an easy, generic
way to reference instance resources. During the project load-
ing phase, whenever ’@’ is found on a stage file, it is
replaced by the name of the particle system that particular
file is being added to. For instance, writing the instruction
@positions[gid].y -= @deltaTime inside a stage
file referenced by a particle system named ”rocket” would
be the same as writing rocket_positions[gid].y -=
rocket_deltaTime. Creating stage files with ’@’ allows
for clear identification of particle system variables within the
code. Furthermore, it also promotes code reuse, since, if two
particle systems have the same logic, there is no need to create
a file for each one just to reference the differing instance
resources. GParticles’ template files are a great example of
this, making extensive use of the ’@’ directive so they can
be referenced by different particle systems, as long as these
systems provide the required instance resources.

VI. EXAMPLE PROJECT

This section will give a walk-through on how a basic particle
system could be extended to create another effect.

A GParticles project starts with the creation of an XML file
that defines the desired particle systems, their corresponding
properties and stages, and indicates what resources are to be
used. This example begins with a particle system positioned
5 units along the negative Z axis, with default stages and
resources, referenced through prefabs, as shown in Fig. 9.

Once emitted, particles rendered as points will travel in a
straight line, following their position vector direction, and die
after a default amount of time.

The goal is to alter the current project so that it resembles a
water fountain with particles that bounce from the ground.
To achieve this goal, the emission shape is changed from
the default sphere to a cone by injecting an overriding tag
(that references a new file with the custom emission shader
function) in the corresponding prefab customFunction
slot. The particle rendering stage is also changed from points



Fig. 10. Project definition with a custom emission function

Fig. 11. Custom update shader function

to velocity-aware billboards, by selecting another prefab. The
relevant changes are presented in Fig. 10.

The next step is to replace the default update shader function
in order to add gravity to particle movement, define a bouncing
plane at Y = -2, and determine if a particle has bounced from
the plane.

To extend the example further, particle aging should start
only after the first bounce, which implies that we must record
if a particle has bounced. Bounces can be recorded in a new
particle property, bounced, injected in the resources prefab in
the ”instance” slot. The values of bounced are set to zero on
particle emission and set to one when the first bounce occurs.

A new file named ”customUpdate” is created where, just
like in the prefab default update function, the particle’s veloc-
ity is added to its position. Prior to that, velocity is updated
to reflect the constant gravity force. Afterwards, the particle
is tested against the plane. To simulate the bouncing effect,
the Y component of velocity is inverted and weighted with a
damping coefficient. The shader code is presented on Fig 11.

The bounced trigger can now be used to set in motion the

Fig. 12. Custom update stage adapted from updateMain template

Fig. 13. Final XML project definition

aging of particles. This is a rare occasion where the update
stage template requires modifications, because its default par-
ticle lifetime control does not align with the desired effect.
The update template contents are copied to a new file and an
if condition is added so the particle is aged only if it has
already bounced from the floor, see Fig. 12.

Since we’re using a custom update stage we must define it
in the XML file. Fig. 13 presents the complete XML project
and Fig. 14 shows both the original and new visual effects.

This example covered common GParticles extensibility op-
tions. To further extend the effect, the user could add particle
systems, stages and the required resources to the project file.
Section VII goes more in-depth on the development process
of complex projects, composed by multiple particle systems
and stubs.

VII. PARTICLE SYSTEM WITH ANIMATION PHASES

This section will walk through the necessary steps to
implement a more complex project in GParticles. This project



Fig. 14. Default (left) and water fountain (right) particle systems

Fig. 15. Overriding default properties for different particle systems

features a space shuttle with two types of propellers, each
with a different propulsion trail color. With a key press,
the shuttle has its auxiliary propellers fuel depleted, with a
visible propulsion trail waning, detaching them as a result. To
demonstrate GParticles flexibility and potential, even for sim-
ple interactive animation systems, everything in the example
will be a particle, including the shuttle itself.

The first step is to create the project definition file and to
reference the ”defaultResources” prefab. Then, two particle
systems named ”auxiliary” and ”main” are created with a po-
sition property where the z coordinate is -50. The ”auxiliary”
particle system will override the ”maxParticles” uniform from
”defaultResources” to 5 while ”main” will do the same thing
to 1, see Fig. 15.

Next, a stage with the ”emission” tag is added to each
particle system. Inside the stage tag, two files are referenced:
the custom stage file and the ”emissionMain” template. On
the custom stage file the shuttle elements are given a color,
a lifetime and a position. The ”main” component sits at the
origin of its particle system matrix while the ”auxiliary”
components are offsetted around the z axis with the radius
of the ”main” component model. The required code for the
auxiliary propellers is presented in Fig. 16.

Another stage with the ”render” tag is added to each
particle system, referencing inside it the model asset path, the
”utilities” module, one custom vertex and one custom fragment
stage files. These custom files draw the model by offsetting its
vertex by the particle position and follow the Phong shading
model, see Fig. 17.

At this point, if the project is run, the shuttle components
are visible allowing their positioning, rotation and scale to be
easily tweaked. This process should be done with the addition

Fig. 16. Custom emission function for propellers

Fig. 17. First shuttle phase

of uniforms to the project file instead of hard coding values.
After every shuttle component is set on the desired position,
the propeller trail particle systems are introduced following
the same process, but with more instances allowed per system
and a point rendertype. These trails should be animated in
time and so, a stage with the ”update” tag is added. That stage
references the ”updateMain” template and a custom file where
the particle systems are incremented with their velocity vector,
which is set on the emission stage to -10 on the z component.

The auxiliary propellers detachment behavior is the next
step (see Fig. 18). On the emission stage, the ”auxiliary”
system propeller particles velocity property becomes equal to
their position offset with the z component inverted, so the
propeller seems to detach itself on the opposite direction of the
moving shuttle. The update stage of the trail particle systems
can be reused to apply the detachment action.

However, instead of being triggered, the propeller detach-
ment happens immediately when the project is run. The last
step is to add the ”paused” tag to the update stage and to create
a stub from the application side to remove that tag when the
spacebar key is pressed, effectively triggering the detachment,
see Fig. 19.

Another stub could be created to extend this behavior

Fig. 18. Shuttle detachment phases



Fig. 19. Stub that triggers detachment phase

Fig. 20. GParticles performance tests results

by first making the trail particles loose speed and fade,
changing uniforms that control those properties. More shuttle
components and corresponding detachment phases could be
added following the same thought pattern: particle systems
with a halted update stage that is activated through stubs and
a triggering input. Since adding these stages would lead to the
repetition of many logic elements, the use of prefabs should
be considered, as it would save development time and improve
the project readability as it grows.

VIII. PERFORMANCE REPORT

Although the focus has been primarily on the development
of a generic architecture for particle simulation, its perfor-
mance is nevertheless relevant. The fps of the particle systems
depicted in Fig. 14 was captured with differing entity numbers
(100, 10000, 1 million) and rendering modes (point, billboard
and model). The testing was performed with an NVIDIA
Geforce 630M (2GB) (see Fig. 20). The entry labeled OpenGL
test draws the same amount of geometry as the particle system
but at random positions. This enables us to have a glimpse of
the relative performance of GParticles. Clearly there is still
room for improvement, for instance exploring the workload
distribution in the compute shaders, nevertheless, these initial
results seem encouraging.

IX. CONCLUSION

A flexible and fully extensible GPU-centric particle system
library was proposed. For the simplest cases, a particle system
can be created resorting only to an XML file configuration that
references behaviour defined in the library’s default prefabs.
Systems with more complexity may require the definition
of shader code, either the full template or just the custom
functions, to provide the additional functionality not present
in default resources, such as a new process to define the
properties of emitted particles, or how thei are updated.

Further control over particle systems can be obtained by
programming with the CPU API, from the flow of particle sys-
tem execution to the values of data resources. Stub functions
allow the definition of all kinds of behaviors to be executed
before or after stages.

It was also shown that the library potential goes beyond
traditional particle systems, particularly with the simple ani-
mation system example.

As future developments we would like to perform an in-
depth study on the performance of GParticles, and add a drag
and drop editor that would aid the creation of the XML project
files.

ACKNOWLEDGMENT

This work has been supported by COMPETE: POCI-01-
0145-FEDER-007043 and FCT – Fundação para a Ciência e
Tecnologia within the Project Scope: UID/CEC/00319/2013.

REFERENCES

[1] L. Latta, Building a Million-Particle System Internet:
http://www.gamasutra.com/view/feature/130535/building a
millionparticle system.php, Jul. 28, 2004.

[2] D. Walton, Stateless Particle Systems Internet: http://drwalton.github.io/
2013/11/06/stateless-particles.html, Nov. 06, 2013.

[3] E. Meiri, Particle System using Transform Feedback Internet, http://
ogldev.atspace.co.uk/www/tutorial28/tutorial28.html, Aug. 28, 2011.

[4] OpenGL.org, Transform Feedback Internet: https://www.opengl.org/wiki/
Transform Feedback, Aug. 17, 2016.

[5] P. Rideout, Noise-Based Particles, Part II Internet: http://prideout.net/
blog/?tag=opengl-transform-feedback, Jan. 29, 2011.

[6] M. Bubnar, Particle System tutorial Internet: http://www.mbsoftworks.
sk/index.php?page=tutorials&series=1&tutorial=26, Jul. 15, 2013.

[7] Unity Technologies, Unity’s particle system manual Internet: https://
docs.unity3d.com/Manual/class-ParticleSystem.html, 2016.

[8] K. Takahashi, Kvant Spray Internet: https://github.com/keijiro/
KvantSpray, Jun. 26, 2016.

[9] Epic Games, UE4 Cascade Particle Editor Internet: https:
//docs.unrealengine.com/latest/INT/Engine/Rendering/ParticleSystems/
Cascade/, 2016.

[10] Epic Games, Unreal Engine 4 CPU vs GPUSprite compar-
ison Internet: https://docs.unrealengine.com/latest/INT/Resources/
ContentExamples/EffectsGallery/1 A/, 2016.

[11] L. Moody, ShaderParticleEngine Internet: https://github.com/
squarefeet/ShaderParticleEngine, Apr. 08, 2016.

[12] vvvv, vvvv Internet: https://vvvv.org/, Jul. 17, 2014.
[13] dottore, ParticlesGPU Internet: https://vvvv.org/contribution/

particlesgpu-shader-library, Nov. 09, 2010.
[14] A. Courrèges, Doom graphics study Internet: http://www.

adriancourreges.com/blog/2016/09/09/doom-2016-graphics-study/, Sep.
09, 2016.

[15] G. Thomas, Compute-Based GPU Particle Systems Internet:
http://twvideo01.ubm-us.net/o1/vault/GDC2014/Presentations/Gareth
Thomas Compute-based GPU Particle.pdf, Mar. 17-21, 2014.


