

Microcontrolled and networked
based mobile robot electronic
system

Microcontrolled and networked
based mobile robot electronic
system

i

Acknowledgements

Special regards own to all persons who made this project possible:

The director of the European Centre for Mechatronics: Prof. Dr.-Ing. P. Drews.

Special thanks to project supervisor Prof. Dr.-Ing. Günther Starke, who always

believed on my capacity to fulfil the work.

Special thanks to project supervisor Dipl.-Ing. Christoph Dreyer, for his

mentoring, guidance and kindness, in all good and difficult moments of this

work.

Special thanks to the supervisor Prof. Dr. Fernando Ribeiro who always cleared

doubts and uncertainties even from abroad. His advices were also essential to

show a path and his availability was very kind.

ii

iii

Abstract

Mobility is a key issue in robotics and a challenging subject for any research

and development project. It combines cognitive capabilities focused on

sensorial input and human interaction with intelligent control of the drive

systems and requires real mechatronics engineering solutions to enable robust

and reliable operation.

This thesis describes the electronic system used on a mobile tank-robot and the

network and micro-controlled based interface system to drive it.

A new control architecture is presented on this thesis. The purpose of the

presented system architecture is to develop a remote control platform to replace

and increase the processing capacity of an old mobile platform as well as to

obtain a modular control-system inheriting flexibility and easy to upgrade

platform.

A two wire bus protocol called I2C bus was implemented in the system to

reduce the hardware upgrade issues as well as software involved, giving the

system expansible capabilities.

This protocol intends to reduce system circuit complexity and makes a friendly

environment where multiple devices are intended to be added and controlled.

QT libraries were widely used to develop desktop processing and to make it a

platform independent system; it means that the software platform can be use in

a Windows, Windows CE, MAC, LINUX or an embedded Linux environment.

iv

The developed system architecture is based in a multiprocessor platform; it is

composed by two computers interconnected wirelessly by a client/server model

and by a microcontroller to perform critical tasks and to interconnect I2C bus

communication as well as to interface the motor drivers, encoders and display.

Resulting architecture combines I2C (Inter Integrated Circuit) bus architecture,

Client/Server, Qt libraries, atmega16 microcontroller technology, MD03 drivers

and it was built from scratch (except for the mechanical structure) and all the

problems that occurred during the development phase were sorted out giving a

solid and confident characteristic to this robot.

A final and informal presentation was carried out at the APS – European Center

of Mechatronics [W1] and as main conclusions it can be said that the robot

showed high stability with both fast and smooth control. The commands sent by

the client are correctly interpreted and technical problems (as loss of internet

connection) passed successfully.

Key Words – Tank, Mobile Robot, Client/Server, Qt libraries, C++ desktop

programming, Atmega16 microcontroller, Encoders, MD03 motor drivers, I2C

(Inter Integrated Circuit) bus.

v

Table of contents

Acknowledgements i
Abstract iii
Table of contents v
1. Introduction and Goals 1
1.1. Thesis structure 2
2. State of the Art 5
2.1. iRobot Create™ Programmable Robot 7
2.2. MobileRobots's P-series 9
2.3. SWORDS 12
2.4. Talon robot soldiers shipped to Iraq 13
2.5. Termibot 14
2.6. 914 PC-Bot 16
3. Presentation and Implementation architecture 17
3.1. The robot 17
3.2. Block Diagram 18
4. Detailed working method 21
4.1. D.C. Motor 21
4.1.1 Composition of a D.C. motor 21
4.1.2 Principle of operation 22
4.1.3 Robot motors characteristics 23
4.2. PWM Signal 24
4.3. Gearheads 25
4.4. Drivers 26
4.5. Encoder 29
4.6. Batteries 32
4.7. Step-Down Switching Regulator 34
4.8. AVR Programmer 35
4.9. I2C - TWI 36
5. Microcontroller Unit 41
5.1. Introduction 41
5.2. Header Files Structure 43
5.3. PIN List 44
5.4. Files 45

vi

5.4.1 atmega16.c 45
5.4.2 error_support.c 46
5.4.3 external_interrupt.c 47
5.4.4 generics.c 48
5.4.5 lcd.c 49
5.4.6 motor.c 50
5.4.7 timer.c 51
5.4.8 twimaster.c 52
5.4.9 usart.c 54
6. Desktop Processing 67
6.1. Introduction 67
6.2. The Client 69
6.3. Client Class 69
6.4. User interface and applications 71
6.5. The Server 73
6.6. Server Class 74
6.7. Serial Port 74
6.8. Setup Window and Log Window 75
6.9. User Interface and applications 76
6.10. Identical user interface components between Server and Client 79
7. Schematic, Proto-board, Strip-board, PCB and hardware connections 81
7.1. Control hardware schematic 81
7.2. Proto-board and Strip-Board 82
7.3. PCB Schematic 85
7.4. 3D PCB 86
7.5. Hardware Connections 86
8. Software and Hardware considerations 89
9. Discussion 91
10. Conclusion / Further work 95
Bibliography and WWW References 97
Table of figures 103
Table of tables 105
Table of flowcharts 107
Table of abbreviations 109
Attachments – Motor Specifications 111

1

1. Introduction and Goals

Nowadays mobile robots are desired at several services to perform man tasks

with increased safety in any kind of duties.

Mobility is a key issue in robotics and a challenging subject for any research

and development project. It combines cognitive capabilities focused on

sensorial input and human interaction with intelligent control of the drive

systems and requires real mechatronics engineering solutions to enable robust

and reliable operation.

In the European Centre for Mechatronics [W1] mobile robots have been under

research for years. A mobile platform with semi-autonomous functionality has

been developed years ago. It has been used as a demonstration and test

platform to study mobility and cognitive control.

In the University of Minho [W3] and RWTH University [W2] that kind of research

is also important and the industry support gives a solid development sign to the

institutions.

As the on board vehicle control system capacity has reached its limit, a new

system architecture with higher powerful controller elements was planned to

replace the old one.

In this context the key objective of the project was to design and develop a new

embedded system able to control the mobile platform.

2

To meet this goal a number of tasks were considered:

 Introduction to vehicle system architecture and drives functionality

 Introduction to microcontroller technology

 Development of a microcontroller hardware platform

 Development of a concept to control the drives and to enable driving

modes

 Development of controller software

 Development of a user interface for remote control

 Integration and functionality tests

 Documentation

The practical work was carried out on the labs of the APS - European Centre for

Mechatronics.

The duration of the project was 5 months.

Technical assistance was provided by the APS project engineer Christoph

Dreyer.

Supervisor in Germany is Prof. Günther Starke, Head of Research at the APS.

Technical assistance and Supervisor in Portugal was provided by Prof. Dr.

Fernando Ribeiro.

1.1. Thesis structure

This report is organized on the following order:

 State of the Art

 Robot presented and system block diagram implemented

 D.C. Motors theoretical introduction, PWM signals, Gear heads, Motors

Drivers and Encoders, Power regulators, Microcontroller programmers

and I2C protocol

3

 Microcontroller unit details

 The desktop programming (Server/Client) and (Server/Microcontroller)

 The schematics, Proto-board, Strip-board, PCB and hardware

connections

 A chapter about software and hardware considerations

 Conclusions

4

5

2. State of the Art

Robots are more and more available for research and commercial applications.

This robot is under research phase of development, as well as the control

structure of the system.

The market shows some robots solutions that are either autonomous or remote-

controlled being the first more common.

Remote-controlled robots can be found widely in military robots but service or

tactical robots are usually autonomous.

Some chassis with only motors and without any control can also be found but

comparing them to this one can lay to misunderstood since this robot has also

software to the client and server and hardware like the microcontroller system

and sensors.

Since this robot was developed under 5 month and is still under development, it

is not fair to make a direct comparison with other already finish robots. Even

through the state of the art compares this work with most relevant similar

projects.

Usually, preceding the autonomous development, a solid mechanic structure

and control system is designed as well as low level programming to drive the

motors and to make use of sensors. In this robot system those things were

tested and the I2C communication support was included as well of serial and

TCP/IP. The robot is remote control and has feedback regards to temperature,

current, speed and position. Further developments on this robot should consider

the application of autonomous algorithms.

6

The proposed robot system has not a specific application. Comparisons will

also be carried out with military devices, due to its powerful motor power, size

and mechanical parts and like this robot military robot are not autonomous.

This work was developed in 5 months, and it included full research, testing and

hardware and software built up. The products presented in the state of the art,

took a few years to developed, were created by large engineering teams,

reason why probably these products are often provided with more sensors and

automatism controls as well as they are already on the market.

The existing robots are usually expensive and lack autonomy, reason why

several approaches of robotic platforms are being devolved in several

companies, according to specific requirements like size, cost, behaviours, easy

user interface, etc.

Old robot platforms were designed to a specific hardware, and sensor

upgrading would imply a hard work in re-programming and in physical

attachments. The system proposed is applied specifically to this robot, but can

easily be connected to other mobile systems.

The proposed robot uses I2C to avoid complexity at hardware and software

level. The robot can easily grow with new hardware with only 2 wires, for

communications with the controller, which decreases the complexity of adding

new components. At the same time, the platform independent server computer

can easily be equipped with USB components with “plug and play” capabilities.

7

2.1. iRobot Create™ Programmable Robot

Figure 1 shows the iRobot,

Figure 1 – iRobot [W24]

According to [W24], iRobot is, since at least 15 years, a global leader in

robotics. It has platforms for technological development and its software is

network based and developers can program the robot behaviour.

Like the robot system proposed in this thesis, the low-level software

infrastructure is complete and in the future it is necessary to program high level

behaviours. Loggers and debugging tools are also provided in both robots but

the iRobot itself (figure 1) is a small robot with upgrade capabilities as shown in

figure 2. These platforms are normally used as the base system, and then new

sensors are attached and software developed so that the robot is adapted to

perform the required task.

Like this proposed method, the iRobot Command Module also used the same

family of microcontroller, the ATMega168.

8

Figure 2 – iRobot pack [W24]

Figure 3 – the iRobot Packbot in Iraq [W25]

One of the applications is the iRobot Packbot used in Iraq, as shown in figure 3.

“April 24, 2007 - The remarkable success of robots in Iraq and Afghanistan is

now well documented. UAVs have proven invaluable at every level and robotic

ground systems, primarily iRobot’s Packbot, have performed tens of thousands

of missions and saved countless lives from the dreaded Improvised Explosive

Device (IED).” [W25]

9

2.2. MobileRobots's P-series

Pioneers, PeopleBots, PowerBots and PatrolBots are physically different robots,

from the MobileRobots's P-series, but with the same standard core architecture.

[W28]

“Since 1995, Mobile Robots platforms have contained all of the basic

components for sensing and navigation in a real-world environment, including

battery power, motors drive and wheels, position / speed encoders, and

integrated sensors and accessories. They are all managed via an onboard

microcontroller and mobile-robot server software.” [W28]

Differently than the proposed platform system, these robots are called

“Embedding Linux in a Mobile Robot”.

Figure 4 shows the Pioneer 2-DX and block diagram, which has similarities in

the block diagram even though in a primitive way.

Figure 4 – ActivMedia Mobile Robot Pioneer 2-DX [W28]

Figure 5 shows the Pioneer 3-AT that is an evolution of the Pioneer 2-DX and it

is rated at a 6,995$ cost.

10

Figure 5 – ActivMedia Mobile Robot - PIONEER 3-AT [W28]

“Pioneer 3AT is a mobile robotic skid-steer base with 4 drive wheels,

microcontroller, motors, encoders, 1 battery, std. Pioneer software & no sonar,

OS, ARIA, ARNetworking, MobileEyes, MobileSim, Mapper Basic & manuals;

charger & ethernet or laptop connector not included.” [W28]

The bare P3-AT base with included ARIA software has the ability to:

Drive controlled by keys or joystick, paths plan with gradient navigation, display

a map of its sonar and/or laser readings, localize using sonar (with optional

laser upgrade), communicate sensor & control information relating sonar, motor

encoder, motor controls, user I/O, and battery charge data, test activities quickly

with ARIA API from C++ programs, simulate behaviors offline with the simulator

that accompanies each development environment. [W28]

Like the proposed robot, this one can communicate with a client computer but

the microcontroller used is an ARCOS instead of the widely known AVR

Atmega.

Technical specifications:

“The rugged P3-AT 50cm x 49cm x 26cm aluminum body with 21.5cm diameter,

drive wheels loves to run outdoors. The four motors use 38.3:1 gear ratios and

contain 100-pulse encoders. This skid-steer platform is holonomic and can

11

rotate in place moving both wheels, or it can move wheels on one side only to

form a circle of 40cm radius.” [W28]

“A small proprietary ARCOS transfers sonar readings, motor encoder

information and other I/O via packets to the PC client and returns control

commands. Users can run the robot from the client or design their own

programs under RedHat Linux with Motif or under WIN32 using their favorite

C/C++ compiler. Our robotics development environments supply library

functions to handle navigation, path planning and many other robotic tasks.”

[W28]

12

2.3. SWORDS

Figure shows the Swords, one of the tested applications of remote controlled

robots.

Figure 6 – SWORDS Robot [W26]

Swords, aka Special Weapons Observation Remote Direct-Action System, is a

military robot system developed to operate in a combat scene, and it was finish

in January 2006.

“The diminutive remote-controlled US$230,000 SWORDS machine shares the

same base as the Explosive Ordnance Disposal (EOD) Talon robots which

have been deployed in Bosnia, Afghanistan and Iraq. Unlike many of it is flying

robotic (UAV) brethren, the weaponised Talon is not autonomous, being under

the direct control of a soldier watching from up to a mile away through an array

of cameras which can include both night and thermal vision.” [W22]

It makes use of AC power or lithium batteries and is controlled by two joysticks,

one for the robot platform and the other for the weapon. To provide security

over the communications a 40 bit encryption is implemented.

Up to five firing systems can be dealt with this system. [W22]

13

2.4. Talon robot soldiers shipped to Iraq

Figure 7 shows the Talon Robot

Figure 7 – Talon Robot [W27]

US Army launch to Iraq and Afghanistan war one hundred of TALON robots by

the end of 2004. Those robots are equipped with off-the-shelf chemical, gas,

temperature, and radiation sensors.

TALON robots can be used in missions to clearing live grenades to neutralizing

mines in shallow water, and can be adapted for small mobile weapon systems

for military purposes. [W22]

 “The TALON is a general-purpose modular robot with a versatile 64-inch pincer

arm. It is controlled through RF or a fibre optic link from an attaché-sized

operator control unit (OCU) or wearable OCU. On the ground the TALON can

reach a vehicle speed up to 6.6 km/h and last for four-hours run time. Mounted

on the TALON robot are:

• Smiths APD 2000 advanced portable chemical agent detector.

• Draeger Multiwarn II gas detector.

• Raytek Raynger MX4+ temperature sensor.

• Thermo FH40GL radiation detector.” [W22]

14

2.5. Termibot

Termibot, as shown in figure 8, is a remote-controlled robot that makes use of

thermal imaging to detect and eradicate termites.

Figure 8 – Termibot [W30]

Termibot was release in May 2007, to reach places where human pest

controllers cannot go. [W30]

When a telltale heat or moisture signature is detected, Termicam breaks termite

nests open to confirm the infestation, then pumps pest control chemicals

directly into the source. It is an ingenious non-invasive pest control device - but

its appeal is not limited to exterminators.

"It is basically a remote controlled robot that can fit into confined spaces," says

Rice, "it carries a video camera and lights so the operator can see where it is

going and steer it around obstacles. It can go over on a fairly good angle and

right itself if necessary." When the thermal or moisture signature of a termite

hotspot is detected on one of the device's two LCD screens, the Termibot uses

a probe to break open the termite nest, exposing and video recording the

insects as they scuttle to repair the breach. The operator is then able to inject

pest control poisons directly into the termite colony, an effective eradication

15

leaving minimal toxic chemicals around the area in comparison to spraying.”

[W30]

"It is currently controlled via a long cable," Rice tells us, "but we'll have it fully

remote once we've finished further testing. We're currently field testing it under

houses, it is available to all our franchises but because we're busy expanding

and franchising around the world, it won't be ready to go to market until later in

the year." [W30]

“Rice says he's already had several enquiries from outside the pest control

industry; the remote control thermal camera will be of interest to anyone who

needs to use thermal imaging in confined spaces. Once client in Brunei is

looking at having it lightly modified to act as an air conditioning duct cleaner,

and Rice sees applications for the Termibot in sewage and water tunnel

investigations, electrical equipment testing, military and bomb disposal

applications, and even search and rescue to detect the heat signatures of

people trapped under snow or rubble.” [W30]

16

2.6. 914 PC-Bot

Figure 9 – 914 PC-Bot [W29]

Figure 9 shows the 914PC-Bot robot, which costs approximately $5,000.

The 914 can serve as a "networked, mobile sensor platform for RFID readers,

hazmat detectors, and access management devices". The company suggests

"Now you can move the sensor instead the asset”.

The 914 stands 21-inches tall, and weighs about 55 pounds (25kg). It has a

two-wheel drive train with two "caster ball" wheels, each powered by a DC

stepper motor. Other sensors include a camera in the head unit, and a sensor

array comprising eight IR sensors is presumably used for obstacle avoidance.

The 914 is powered by twin 12-volt lead-acid batteries, and comes with a

charger.

“Since the 914 is really just a standard PC trapped in a robot's body, it can run

any standard PC operating system. WhiteBox Robotics supports Linux, as well

as Microsoft's Robotics Studio. When used with Linux, the company also

appears to support the open source Player/Stage robot and sensor

programming library”. [W29]

17

3. Presentation and Implementation architecture

This chapter will present the robot and its block diagram to provide an

understanding of the robot general structure system architecture and the robot

components.

3.1. The robot

Figure 10 shows the robot: it is a solid multi terrain tank style robot and it can be

seen the two chosen motor drivers, the DC converter, the microcontroller

display, the batteries that provide power to the microcontroller system as well as

to the motors. The motors and the encoders can also be seen on this picture.

Figure 10 – The Robot

18

The tank is a Remotetly Operated Vehicle (ROV) and it is in the process of

being built up, updating some of the hardware/software.

3.2. Block Diagram

The block diagram is shown in figure 11, and it shows the way components are

connected.

Figure 11 – Block Diagram

The system is multiprocessor based, because it uses two computers (one Client

and one Server) and one microcontroller. The system is also composed by the

19

drivers, encoders, display. All this hardware is linked either by I2C or I/O Port,

or RS232.

Client and Server based architecture of this robot inherits a wireless network

interconnection to entitle the robot control without any wire-link to the exterior.

Tasks that are likely to be critical to performance like safety are implemented in

the microcontroller. The system robustness is therefore increased comparing to

robot systems based only in computers [B2].

The atmega16 microcontroller is the core of the robot hardware: the display

connected to it gives feedback of the microcontroller state and has an important

duty about diagnose, repair and robot maintenance. For example, if some

hardware failure occurs like a motor drive being disconnected from the I2C bus,

the display will show a message saying “Motor Left: Error, Motor Right: Error”.

Status monitoring of the system parameters during an operation cycle can be

also achieved with the display.

The Server connects to the Atmega16 microcontroller over RS232 protocol.

Atmega16 microcontroller code was written in C language, and the Server and

Client computer code was written in C++ language.

The connection between the DC regulator, the Atmega16 microcontroller, the

encoders and the motor driver power is not represented on the figure, to avoid

confusing mesh of wires on the block diagram.

20

21

4. Detailed working method

This chapter presents the electronic and mechanical robot system components

as well as the theory used to deal with them.

4.1. D.C. Motor

D.C. motors are used rather than other motor types because they are smaller

and have high efficiency. Furthermore, the D.C. motor has a very high start-up

torque and easily absorb sudden changes in load [W22].

DC motors are also simpler to control; even though they are heavier and less

efficient than induction motors.

The use of this type of motors is also efficient in this case because the robot is

powered by batteries which provide the same type of current that these motors

need, and therefore power converters are avoided and consequent loss of

efficiency is spare.

4.1.1 Composition of a D.C. motor

Figure 12 shows a D.C. motor insides.

22

Figure 12 – D.C. motor [W22].

The stator has the motor cover and the magnets that create the stator magnetic

field [W22].

The rotor is mainly formed by a metal carcass carrying coils and the

commutator that selects the coil through which the electric current flows. The

commutator has the duty of transforming the induced altering tension into a

continuous tension [W22].

The motor used by this robot is like the one in the figure [W22] and has an

additional gearbox at the shaft.

4.1.2 Principle of operation

The principle of operation of a D.C. motor is based on rules of electromagnetic

attraction [W22].

The rotor is energised to act as an electromagnet with the polarity given by the

current flow direction [W22].

The figure 13 shows that D.C. motors have two magnets fields, one of them is

fixed (stator) and the other one is physically movable [W22].

23

Figure 13 – Principle of operation [W22]

A torque is created to make the poles of the rotor align to the poles of the stator.

This attraction and repulsion between the magnetic fields make the rotor spin,

which is the movable part, and then the brushes are constantly breaking and

making contact with the commutator [W22].

The maximum torque is achieved when the axis between the poles of the stator

is perpendicular of the poles of the rotor [W22].

“The rotor coils are then energised and de-energised in such a way that as the

rotor turns, the axis of a new pole of the rotor is always perpendicular to that of

the stator. Because of the way the commutator is arranged, the rotor is in

constant motion, no matter what its position. Fluctuation of the resultant torque

is reduced by increasing the number of commutator segments, thereby giving

smoother rotation.”

[W22]

To change the spinning direction of the motor, one of the magnetic fields must

exchange, since the stator has permanent magnets, the way is to invert the

rotor magnetic field. This can easily be accomplished by changing the polarity of

the tension applied to the rotor coils, the direction of the current will, this way,

be reversed as well as the rotation direction [W22].

4.1.3 Robot motors characteristics

The robot has two motors provided from the manufacture ENGEL, the specific

series is GNM5480E and the motors are typed “Permanent Magnets, Direct

24

Current”, they are coupled with gear-heads and main characteristics can be

seen in table 1.

Full table of characteristics can be found in appendix “Motor Specifications” as

well as the dimensions.

Nominal voltage UN 24 Volt

Nominal output power P2 250 W

Efficiency max 85 %

No-load speed no 3,267 rpm

No-load current Io 1,435 mA

Speed constant kn 137 rpm/V

Nominal speed 3,000 rpm

Motor operating temperature range –20 to 100 °C

Table 1 – Robot motor characteristics

4.2. PWM Signal

A powerful and common method to control D.C. Motors over a microcontroller is

by using Pulse Width Modulation (PWM) signal [B1].

PWM signal consists of a square wave and by varying its duty cycle will provide

a proportional variation mean power applied to the D.C. motor [B1].

Figure 14 shows respectively a 10%, 50% and 90% of duty cycle.

Figure 14 – PWM signals of varying duty cycles [B1].

25

4.3. Gearheads

When using a motor, when high speed is not as important as torque, it is usual

to attach a gearhead to the motor shaft [W21].

With a gearbox the motor binary can increase/decrease and the startup effort is

soften/harder according to the number of teeth (ratio).

To avoid degradation and damage of the gear/pinion several gears can be used

instead of only one. This way, the forces are distributed and the material of

which they are built of can be “soften”. The lubrication must be taken into

account, according to the number of wheels. [W21]

To make a gear head description it is necessary to say that it has satellite gears

and an annular gear. The annular gear usually forms the gear head case on the

outside and has gear teeth cut in the inside diameter. Satellite gears are carrier

plates with pins that fit the inside diameters of the satellite gears. Figure 15

illustrates a single-stage planetary gear head having three satellite gears. [W21]

Figure 15 – Gear heads [W21]

The gear shaft is attached directly to the motor shaft and then a bearing couples

the driven load.

The gearbox is selected depending on the maximum required torque and the

duty cycle [W21].

The direction of rotation of this gear head output shaft is the same as the input

one. One of the disadvantages of this gear head is the high noise but, besides

26

that, they are relatively smaller than other types found in the market to the same

operation conditions. [W21]

It increases also loss of efficiency and weight to the system, which could be a

problem in a platform feed by batteries.

The lengthening of the annular gear/case and multiple stages stacking can

allow high gear ratios. [W21]

The gear heads series are “G6.1” and they are of planetary type; it is rated at a

16.8:1 ratio and 70% of efficiency at either clockwise or counter clockwise

direction, the torque is 11Nm.

4.4. Drivers

The medium/high current motors of the robot must be able to run in both

directions and in variable speed. An H-bridge should be projected, to reduce the

time to market, or a solid driver should be chosen.

Because the actual markets provide a reasonable range of driver solutions to

different applications and are price competitive, the conclusion is that the best

solution is to acquire one. It saves time because that kind of project, involving

high currents, from the practical point of view would increase the number of

difficulties which would not provide enough time to take the project this far.

There were three possible drivers to choose from:

One of them is shown in figure 16, the RN-VNH2:

27

Figure 16 – RN-VNH2 Driver [picture provided by the manufacturer datasheet]

This driver [16] does not provide the necessary 250W, the motors require. But it

was used for testing and trial, using a smaller motor.

The atmega16 was programmed to provide the PWM signal [Chappter 4.2.] to

the driver. The direction, speed and acceleration ramps were created and tests

about controlling those values with computers were made as well, those tests

involve the use of the USART (Universal Synchronous Asynchronous Receiver

Transmitter) to perform communication between atmega16 and one computer.

The work previously described was first considered within the project, but then

during the research part about drivers and robot controls technologies, a

protocol called I2C came up.

The protocol will be explained later on [chapter 4.9.], but the choices about

the driver were now about two divergent drivers: one from Sabertooth [17] or

the MD03.

The “Sabertooth 2x10” is a driver capable of driving the robot motors with the

software that was developed and tested with RN-VNH2 Driver.

28

Figure 17 – Sabertooth Driver [W12]

The MD03 is the driver shown at figure 18 and it is a driver capable of

communicating through I2C and up to eight MD03 modules can be connected

(switch selectable addresses) to a system [W23].

The MD03 was chosen because the I2C capabilities matched the project

intention of a modular system design and has the power capabilities that the

system requires.

Figure 18 – MD03 Driver [W23]

In this robot the addresses were chosen with no specific criteria and they can

be seen in table 2.

 Motor Right Motor Left

Adresses 0xB0 0xB2

Table 2 – MD03 addresses of left and right motor

29

“I2C communication protocol with the MD03 module is the same as popular

EEPROM's such as the 24C04.” [W23]

The MD03 has 8 registers numbered 0 to 7.

The reading operation of the registers follows this order:

1. send a start bit

2. send the module address with the read/write bit low

3. send the register number to be read

4. send a repeated start

5. send the module address again with the read/write bit high

[W23]

4.5. Encoder

Nowadays to make use of modern motion control techniques, values

representing locations of the robot movable parts are needed. To perform that

kind of task, the spin of each motor of this robot must be log.

Devices that provide knowledge of where the robot is make possible to

synchronize movements of the robot and, at same time, can give feedback to

the control system in order to act if some kind of behavior is not reached.

This robot has two incremental encoders that are used to precise how much is

each motor running and they provide the speed of each motor after some

computation performed on the microcontroller.

The working method of an incremental encoder is usually based on

transmitting/reception perception:

One disk with holes is in the middle of the transmitter and the receiver.

The transmitter has a stationary light source and the receiver has two stationary

light detectors.

30

The disk is mounted at the shaft. As the disk rotates, the holes in it make the

receivers to get the light each time the hole is aligned with the light transmitter.

Figure 19 can illustrate this process:

Figure 19 – Encoders signals [W20]

The outputs of this system are two square wave signals representing the

number of holes that are reached between the transmitter/receptor, typically

one output is called channel A and the other one is channel B and an extra

channel, usually called channel Z, is often included to detect the “once per

revolution index mark”.

A visual perspective of the output signals above described can be seen in figure

20.

Figure 20 – Encoders signals [W19]

“The position of the two detectors is important. As one senses a change from

dark to light, the other will not sense a change or transition. Because of this

physical arrangement, two detectors give four transitions per division on the

31

disk and each transition occurs at a unique angular position on the shaft. By

counting the transitions, it effectively multiplies the line count by four, hence the

name quadrature (X4) multiplication.” [W18]

To sense the direction of rotation the encoders have two channels 90 electrical

degrees out of phase. A rising edge of the square wave indicates one direction,

and the falling edge of the square senses the other direction.

To get the direction, each encoder, as shown in figure 21, was also coupled to a

D type flip-flop. With channel A as flip-flop clock input signal (clk) and channel B

as the input data signal (D) is possible, using the combination of these two

signals, to obtain the output of the flip-flop (Q) representing the direction of

rotation. Output (Q) is connected to an input pin of atmega16 so the

microcontroller can correctly count pulses that are either to be increased

(Output of the flip-flop is 0) either decreased (Output of the flip-flop is 1).

Combination:

Q signal B low at signal A is rising edge

/Q signal B high at signal A is rising edge

To make use of these sensors, a connection between channels A of each

encoder was connected to an external interrupt of atmega16 which is

programmed to catch rising edges and make the digital count of the pulses.

Figure 21 – Encoder Flip-Flop [W19]

32

Both encoders of the robot can be seen on figure 22.

Figure 22 – Robot encoders

4.6. Batteries

The batteries used in this robot are Lead Acid batteries. They are popular

because they are easily available, rechargeable and inexpensive.

The problem is the heavy weight and large size but, in this robot that is not a

huge problem because the tank is powerful and big enough to carry them.

However, that can be a problem should the robot go on the market or suffer

further improvements.

Another problem is the loose of charge even if they are not in use and high

discharge rates will be translated in a short time battery life.

There exist three main types of lead acid batteries: Wet Cell, Gel Cell, and

Absorbed Glass Mat (AGM). They are mainly distinguished by the price,

degrade, and deep cycle needs.

The Gel Cell batteries were chosen to this project and they are best used in

very deep cycle applications, even so the AGM batteries provide a greater life

cycle. They do not need maintenance and do not flow out acid.

33

“80% of all battery failure is related to sulfating build-up. This build-up occurs

when the sulfur molecules in the electrolyte (battery acid) become so deeply

discharged that they begin to coat the battery's lead plates. The buildup will

become so bad that the battery will die.” [W13]

It is important to know and have in mind some things about lead acid batteries

this way preventing battery failure:

 The first point to remember is not to make a partial recharge of the

batteries, and all charges should be integral accomplished to its

full potential. [W13]

 A second point, and also a very important one, is to recharge

them often because without being used for a long time these

batteries will slowly discharge internally. [W13]

These robot batteries are serial connected to make a 24V power supply, that

connection can be seen on Figure 23.

Battery type is Exide and they are rated as gel cells which are a maintenance-

free motive power batteries technology as well as they are robust, safe and

reliable Low self discharge is also achieved by those.

Figure 23 – Serial Connection between two Exide batteries

34

4.7. Step-Down Switching Regulator

A regulator was needed to convert the 24V from the batteries to a regulated 5V

to feed the microcontroller, encoders and the other components.

The regulator component is a LT1076 that is rated at 2A. It is a monolithic

bipolar switching regulator and requires only a few external parts for normal

operation. It has built-in power switch, oscillator, control circuitry, and all current

limit components.

The classic positive “buck” configuration was adopted and the switch output is

specified to swing 40V below ground which is perfect to the 24V of the robot

because it is in the middle of the rated range.

The schematic of the regulator can be seen on figure 24 and the board on figure

25.

Figure 24 – Regulator Schematic [LT1074 datasheet]

35

Figure 25 – Regulator Board

4.8. AVR Programmer

To flash the microcontroller with applications, a programmer is needed.

The microcontroller chosen for the project is part of the AVR family.

Although the microcontroller itself is described in chapter 5. , the programmer

is here described.

The circuit presented on figure 26 and PonyProg flash program [W6] was

chosen because of its low price and because it can be easily built by anyone.

The problem of this circuit is that it needs to be used together with PonyProg

[W6] to enable flashing the microcontroller using RS232, although “USB to

RS232” adapters often do not work or they are very slow (more than 10 minutes

to program). To avoid USB adapter, the solution to a laptop could be a PCMCIA

or a PCI adapter that natively emulate a COM port but a PCMCIA card was

tested and even so it was very slow.

So, to flash the microcontroller with this programmer, a desktop computer with

native COM port was used. This approach will not allow robot microcontroller

remote programming and beside that JTAG and AVR Studio integrations are

not possible.

In the future, to provide a fast remote microcontrollers programming the “Atmel

AVRISP MK2” or “AVR Dragon” programmer would provide better results as

36

well as other advantages as the AVR Studio Integration, USB Serial In-System

Programming and the JTAG Support (“Hardware debug” with “AVR Studio” in

real time, which means that the instructions carried out with AVR Studio

debugger can automatically be seen on the hardware).

The board can be seen on figure 27.

Figure 26 – “SI-Prog” Programmer Schematic

Figure 27 – Programmer Board

4.9. I2C - TWI

One of the robot problems is that, to provide them with more “intelligence” more

and more sensors are added and that implies more cabling.

To minimize that, I2C (Inter Integrated Circuit) also known as TWI (Two Wire

Interface) [W15] is the communication protocol chosen because it can easily

link multiple devices together with only two wires each [W17] in a bus style.

37

I2C devices have a built-in addressing scheme to be distinguishable and avoid

the need for chip select or arbitration logic which increases system simplicity as

well as reduces budget in extra hardware such as multiplexers and logic chips.

Standard I2C devices operate up to 100Kbps but fast-mode devices can

operate up to 3.4Mbps with the version 2.0 high speed mode.

Almost all available I2C devices can operate at speeds up to 400Kbps.

I2C provides good support for communication with various devices. On-board

peripheral devices can be accessed intermittently; it is a simple, low-bandwidth,

short-distance communication protocol.

Philips originally developed I2C for communication and due to patent concerns

Atmel uses the name TWI (Two Wire Interface).

Several I2C-compatible devices are manufactured by several companies and

can be found in embedded systems. Some example are EEPROMS, thermal

sensors, and real-time clocks, video decoders and encoders, audio processors,

displays, motor driver, etc.

Figure 28 shows a typical I2C interconnection system:

Figure 28 – I2C typical interconnection system [W14]

Figure 29 shows the specific interconnections with the I2C bus: the

microcontroller is the master of the I2C Bus and both drivers are I2C slave

devices.

38

The two resistors are called “pull-up resistors”; they need to be present on the

clock line (SCL) and on the data line (SDA). They are used to do the interface

between different types of logic devices and they ensure that the circuit

assumes the default value when no other component forces the line input state.

Since the chips design are often open-collector, the chip can only pull the lines

low and they float to VDD otherwise; this way, the master can sense if a

simultaneous transmission occurs, letting the pin float and sensing the line, if

the line is still at VDD, probably, no transmission is being accomplished from

any other device [W17].

Programming of atmega16 master software is described at chapter 5.4.8

Figure 29 – Robot I2C interconnection system

The two I2C signals are Serial Data (SDA) and Serial Clock (SCL).

I2C matches Master/Slave topology.

The I2C Master is the device that can start and stop communications and has

usually the duty of controlling the clock.

I2C

SDA

SCL

39

An I2C Slave is a device that is addressed by the master. When the master

asks a slave for data, the slave has the possibility to hold off the master in the

middle of a transaction using “clock stretching” [W17] (the slave keeps SCL

pulled low until it is ready to continue). This makes synchronism of slow slave

devices possible, but most I2C slave devices do not use this feature.

It is duty of every I2C Slave to monitor the bus and to respond only to its own

address.

I2C protocol supports multiple masters and multiple slaves.

Transmitting protocol inherits that data sending of each byte, starts with the

MSB (Most Significant Byte).

Figure 30 shows a typical communication between a master issuing the start

condition (S) followed by a 7-bit slave device address to start a communication

with a slave.

The eighth bit after the start (read/not-write) is used to signal the slave if the

master sends more instructions (slave will receive more data) or if the master is

ready to receive data (slave can transmit data).

After each byte sent by the master, the slave must reply with an ACK bit to

signal the reception of the previous byte.

This 9-bit pattern is repeated if more bytes need to be transmitted.

Figure 30 – I2C Packages [W14]

40

The issue of the stop condition (P) is accomplished instead of the ACK at the

end of a master reading transaction (slave transmitting).

If a master write transaction (slave receiving) is being performed, the master

issue the stop condition (P) when it receives the last ACK of the data sent.

This chapter presented some of the robot system electronics, some mechanical

components were also presented, as well of drivers and I2C characteristics.

41

5. Microcontroller Unit

In this chapter the microcontroller software is presented in order to provide

understanding about the microcontroller unit and its duties.

Communications protocol used from the server to the microcontroller and from

the microcontroller to the server will also be presented.

5.1. Introduction

There is a large variety of microcontrollers on the market. Atmega16 belongs to

AVR family and was the microcontroller chosen to make a new embeddable

system capable to control each I2C motor driver system, to read encoders and

to give local feedback, through a display, and to perform communications with

the server.

Other microcontroller family could be chosen to the robot system but the cost of

the device programming and compiler should not get high and preferably must

be freely available. 8051, Microchip PIC®, and Atmel AVR® were possibilities

that matches the criteria.

Traditional 8051 have a simple architecture and it is familiar to most embedded

engineers. The amount and quality of tools and sample source code available is

large but it is common that each manufacturer provides proprietary features and

migration from one variant to another usually implies a new programmer circuit.

The typical architecture of some models are standard for several manufacturers

but those do not have engrossing stuff like A/D and D/A converters, I2C, In-

circuit programming, etc. [B2] That lack of standardization and upgrading

problems do not meet this project objectives, so it was placed apart.

42

A PIC microcontroller was considered an expensive solution, much more than

the Atmel AVR (The PIC official programmer (PICstart Plus) cost 3 times more

than the AVR one (STK500) [B2]).

AVR microcontroller is manufactured by Atmel [W4] and its family is largely

used worldwide so it is easy to get access to libraries or fragmented source

codes all over the internet [W10], its versatility possibly to make use of several

different features and to perform simple future migration of the source code

within the same microcontrollers family; it is also possible to use different

compilers and different programming languages.

Atmega16 has a number of features which make it desirable to this project. It

has 3 Timers, 4 PWM channels, I2C also known as TWI (Two Wire Interface), 8

ADCs (Analogic/Digital Converter), USART (Universal Synchronous

Asynchronous Receiver Transmitter), SPI (Serial Port Interface) and 32 I/O

ports [W9]. Atmega16 pinout can be seen on figure 31.

Figure 31 – Atmega16 pinout [W9]

“AVR Studio” was the editor and debugger used; it is freeware and has a very

good and powerful debug mode and simulator [W11] .

43

The language used is C; the medium level rate of this language makes a good

power/control ratio which makes the robot programming flexible.

The way the program was made intended to have modularity and an easy to

use structure for any future programmer who will improve the robot.

Modularity was achieved by using many files, each one giving its own main

functions; even so they can depend on others, for example: USART functions

uses MOTOR functions after decoding a command sent by the Server

computer.

Each file can be compiled separately and then linked together. This provides a

saving of time since it is not necessary to recompile the complete application

when making a single change but only the file that contains it.

A systematic way of writing the program was chosen to provide an easy reading

of it.

 All include files that some C file need is specified at the header file (.h)

 Main and external variables are also included at the header file (.h)

Only the local variables are defined on the respective “.Cpp” file

This chapter will present each one of the several “.Cpp” files and flowcharts of

some functions.

5.2. Header Files Structure

The organization makes possible a fast access of functions, variables, etc.

So each header file has the same template layout which consist of defining, at

first include files, followed by constant definitions and variables used, at last,

functions prototypes are declared.

44

5.3. PIN List

List of all currently used PIN’s as well as a description is presented at table 3,

even so, some might be described during this chapter.

PIN Variable Name

Description

PIN

DDR

PORT

error_led1_PIN LED signal of error nr. 1. 7 DDRA PORTA

error_led2_PIN LED signal of error nr. 2. 7 DDRD PORTD

encoder0_direction_PIN Encoder right Direction

Signal.

Set this pin high means

running forward and set this

pin low means running

backward.

4 DDRD PORTD

encoder1_direction_PIN Encoder left Direction

Signal.

Set this pin high means

running forward and set this

pin low means running

backward.

5 DDRD PORTD

INT0 Encoder right Channel

Signal,

Used to count pulses from

the encoder.

2 DDRD PORTD

INT1 Encoder left Channel

Signal.

Used to count pulses from

the encoder.

3 DDRD PORTD

LCD_DATA0_PIN Pin for 4bit data bit 0 (Least

Significant Data Bit).

0 DDRA PORTA

LCD_DATA1_PIN Pin for 4bit data bit 1. 1 DDRA PORTA

45

LCD_DATA2_PIN Pin for 4bit data bit 2. 2 DDRA PORTA

LCD_DATA3_PIN Pin for 4bit data bit 3 (Most

Significant Data Bit)

3 DDRA PORTA

LCD_RS_PIN Pin for RS (Register

Select) line

This pin determines

whether the data you're

about to write is a

command or a data byte.

4 DDRA PORTA

LCD_RW_PIN Pin for RW (Read/Write)

line.

Set this pin high to read

from the display. Set this

pin low to write to it.

5 DDRA PORTA

LCD_E_PIN Pin for Enable line.

This line works to clock in

data and commands.

6 DDRA PORTA

SDA I2C/TWI Data line. 1 DDRC PORTC

SCL I2C/TWI Clock line.

It is used to synchronize all

data transfers over the I2C

bus.

0 DDRC PORTC

Table 3 – All Pin List

5.4. Files

The files that compose atmega16 applications will be presented below:

5.4.1 atmega16.c

Atmega.c is the main file of whole microcontroller application.

46

Initializations of the modules (error support, usart, lcd, encoder, i2c, timers,

interrupts and motor drivers) are accomplished at the main file (atmega16.c),

reason why atmega16 header file connects all needed modules, as shown in

figure 32.

After all initializations, the program will run in an infinite loop waiting for any

external interrupt, commands sent over the serial port and waiting for timer

interruptions that will perform some computation as velocity calculations, Virtual

Heart Beat commands and to share data from the sensor to the server.

5.4.2 error_support.c

This module is used to help the programmer at the debug stage.

Features provided are the basic turn on and turn off of LEDS.

At the moment two LED’s are defined:

 LED Number 1: PORTA.7

Figure 32 – atmega16.h interconnections

47

 LED Number 2: PORTD.7

It is very easy to include this file in any other and give them this kind of debug

capability and to increase the number of LEDS or change its port connections!

The functions provide are:

void error_support_init(void);

Initialization of LEDS ports and pins (output).

void error_on(int led_number);

Turn a LED On.

void error_off(int led_number);

Turn a LED Off.

5.4.3 external_interrupt.c

This module is used by the encoders.

Robot has two quadruped encoders, each one is connected to an External

Interrupt and, each time a transition is made by any encoder the microcontroller

will count it.

Derived from the asynchronous and unpredicted pulse occurrence, an external

interrupt was configured, this way this “time-critical” operation is separated from

the main program execution [B1].

Generically, two main types of external interrupts could be implemented:

Figure 33 plots those types of signals.

48

Figure 33 – Level- and edge-sensitive interrupt signals [B1]

Level-sensitive interrupts are attended at either a low or high level [B1].

Edge-sensitive interrupts are attended at a transition that can be defined to be

rising edge or falling edge sensitive interrupt [B1].

An edge-sensitive approach was chosen because even if, in theory, a pulse

count can be skipped when a subsequent interrupt occurs [B1] (in practice, test

with both robot wheels running at same speed shown that the processor catch

all pulses); an approach with a level-sensitive interrupt would certainty provide

worth results because that type of interruption suspends other processing

during all level time [B1] an then pulses would be missed if both wheels were

running at the same speed.

Another PIN is defined, for each encoder, at the header file, with purpose of

know whenever the encoder is running forward or backwards and then the

microcontroller knows if it has pulses to be increased or decreased respectively.

The way those PINs gets its state was detailed described at chapter 4.5.

5.4.4 generics.c

This module provides two functions:

49

void delay_ms(unsigned short ms);

Used to make a variable delay.

void wait_until_key_pressed(void);
Used to read a switch, actually is define to read PIND.2.

5.4.5 lcd.c

This module implements a free to use HD44780U LCD library; the author is

Peter Fleury [W16], after changes of PINs options, adjustments to use a 4 PIN

data transfer and after prepare it to a 20x4 LCD, it looks just perfect to

communicate with the LCD.

The main provided functions are:

void lcd_init(uint8_t dispAttr);

Initialize the display and selects the type of cursor.

void lcd_clrscr(void);
Clear the display and set cursor to home position.

void lcd_gotoxy(uint8_t x, uint8_t y);
Set cursor to specified position.

lcd_puts(const char *s);
Display string without auto linefeed.

A function to display an integer number was also added:

void lcd_puti(int int_value);
Display int value.

An example of application can be written with the following commands:

lcd_gotoxy(0,2);
lcd_puts("MD03 Right = OK!!");

50

This example is used, after the LCD initialization, at the start of the main

program, inside a function to test the communication to the motor drivers

(motor_drivers_init_test();) the result is writing on the display "MD03 Right =

OK!!” at the 1st column and 2nd line, providing that feedback to the robot user.

5.4.6 motor.c

This module functions control the motor drivers, main functions are below

described and interconnections can be seen in figure 34:

void motor_drivers_init_test(void)
It is used to make initial tests to the motor drivers by testing I2C communication

with both drivers; it also updates the variable motor_driver_error with the result

of the test.

That variable is also useful to avoid sending commands to the driver when it is

not connected, that way the microcontroller does not halt trying to send

commands to a disconnected motor driver and so tests with others sensors and

the server computer can be made without these drivers.

Feedback is also achieved through the LCD.

void break_motor(void)
It is used to provide a simple and fast way to break the motors.

51

5.4.7 timer.c

Functions related to the timers are implemented in timer.c / timer.h files.

As usual at embedded systems [B1], when the timer is activated, the program

will change its flow to the respective interruption function, at atmega16 that

function is SIGNAL (SIG_OVERFLOW1) and when it is completed it returns to

the place where it was before.

(SIG_OVERFLOW1 is the address of the interruption vector respect to the

timer/counter 1 overflow)

At figure 35, interconnections with this module can be seen.

Timer purpose is to:

 Calculate speed of each robot motor.

 Deal with “Virtual Heart Beat” a.k.a. “Emergency Ping”.

 Automatically send sensor data to the Server.

void starttimer1(void);
Used to start number 1 timer.

Figure 34 – motor.h interconnections

52

void stoptimer1(void);
Used to stop number 1 timer.

A “Virtual Heart Beat”, is identified at the code as an “emergency ping”, one was

created between Server/Client and other between Server/Microcontroller. The

purpose is to avoid a robot control loss.

What concerns the microcontroller, it can be described as a command that is

sent to the server every 2 seconds. When the server receives it, it has the duty

to resend that command. If, after four seconds, no acknowledge of the previous

ping is received then the microcontroller sends a command to both drivers to

stop the motors. This way the robot stops and damages caused by an

uncontrolled robot are avoided.

5.4.8 twimaster.c

This module implements a free to use I2C library; author is Peter Fleury [W16].

It is used to provide functions to operate the I2C bus and to communicate with

I2C devices.

Figure 35 – timer.h interconnections

53

The main functions provided in this library are:

void i2c_init(void);
I2C master interface initialization.

Need to be called only once for each device.

void i2c_stop(void);
Terminates the Data transfer and releases the I2C bus.

unsigned char i2c_start(unsigned char addr);
Issues a start condition and sends slave address and transfer direction; returns

0 if the device is accessible or 1 if failed to access device.

unsigned char i2c_rep_start(unsigned char addr);
Issues a repeated start condition and sends slave address and transfer

direction;

Returns 0 if the device is accessible or 1 if failed to access device.

void i2c_start_wait(unsigned char addr);
Issues a start condition and sends slave address and transfer direction.

unsigned char i2c_write(unsigned char data);
Sends one byte to I2C device;

Returns 0 for a successful writing or 1 if the writing process fails.

unsigned char i2c_readAck(void);

Reads one byte from the I2C slave device, requests more data from device and

returns read byte from I2C device.

unsigned char i2c_readNak(void);

Reads one byte from the I2C slave device; Reading operation is followed by a

stop condition.

Returns read byte from I2C device.

54

As an application example, the following commands:

i2c_start_wait (MD03_l+I2C_WRITE); // set device addr. & write mode

i2c_write(addr_direction); // write address

i2c_write(0); // ret=0 -> Ok, ret=1 -> no ACK

i2c_stop();

Writes to the left motor driver a clockwise direction (0).

5.4.9 usart.c

This module is used to interact with the USART (Universal Synchronous and

Asynchronous serial Receiver and Transmitter).

To connect RS-232 devices to the atmega16 USART a line drive is need

[Max232 Datasheet].

Connection schematic is show in figure 36.

Figure 36 – Atmega16 and RS-232 connection

USB RS232

Converter

55

Table 4 specifies connections made:

Atmega16 Max232 Max232
USB-RS232
converter

Pin 14 (PD0/RX) Pin 12 (R1Out) Pin 13 (R1IN) Pin 3 (TX)

Pin 15 (PD1/TX) Pin 11 (T1IN) Pin 14 (T1OUT) Pin 2 (RX)

Pin 31 (GND) Pin 15 (GND) Pin 15 (GND) Pin 5 (GND)

Table 4 – Pin connections between server and atmega16

This module provides a communication system between atmega16 and the

server program.

It also does interpretation, followed by correspondent actions, of any commands

provided from the server and is able to send commands provided from other

modules of atmega16 microcontroller (e.g. timers [chapter 5.4.7]) to the

server.

Baud Rate constant is calculated at the header file, it is needed for the oscillator

frequency (F_OSC) and the desired baud rate (UART_BAUD_RATE), so, it is

easy to change the crystal oscillator because no extra math is needed to be

carried out, only F_OSC constant has to be changed in that case. Similarly,

changes of baud rates only need an update of the respective constant.

The actual baud-rate, data bits, parity, number of stop bits and flux control type

can be seen at table 5 and are specified at the server and at atmega16

microcontroller.

Baudrate 38400 bps

Databits 8 bits

Parity None

Stopbits 1bit

Fluxcontrol none

Table 5 – Connection between server and atmega16 microcontroller through

RS-232

56

Communication between the Serial Ports is dealt with the following functions:

void usart_putc(unsigned char c);
Send a character.

void usart_puts (char *s);
Send a string.

void USART_init(void);
Atmega16 USART initializations.

Figure 37 show interconnections within timer module.

A protocol of communication was developed to get an understanding between

atmega16 microcontroller and server program; two versions were experimented

because problems occured with the first one.

Protocol initializations are carried out with the following function:

void USART_init_variables(void);

After a command interpreting, the following function is called to provide its

execution:

void UsartExeCmd(void);

Others functions were implemented:

void Send_Sensor_data_with_Usart(void);
Sends robot sensors data to the USART (relatively to each motor it sends

position, velocity, current and temperature)

void Send_Emergency_Ping_with_Usart(void);
Sends the server the “Virtual Heart Beat” command, also known as “Emergency

Ping” command.

57

“1st attempt” communication protocol from the Server
Computer to the Atmega16 microcontroller and problems about
it

Each Command/Value frame received by the atmega16 USART must have

three bytes defining a command, followed by three bytes defining a value; all of

them in ASCII format.

Table 6 shows the word composition layout.

Word Composition nr.
1

……. Word Composition nr.
N

Function Value ……. Function Value

3bytes 3bytes …… 3bytes 3bytes

Table 6 – Word Composition (1st attempt version)

This approach worked well for some time in the practical point of view but, from

time to time, a control loss occurs letting the robot drift. That happened because

the microcontroller stops to interpret commands due to a synchronisation loss

Figure 37 – usart.h interconnections

58

which happened randomly when a transmission error occurred. Unfortunately,

this error behaviour overcome could not be reached without a microcontroller

reset.

That behaviour shows that commands with a fixed number of bytes, as well as a

fixed number of respective values, are not a good choice due to the

resynchronization problems in case of transmission errors.

Communication Protocol from the Server Computer to the
Atmega16 microcontroller

Each Command/Value frame receive by the atmega16 USART, to be correctly

interpreted, must have at least one alphanumeric byte followed by at least one

numerical value and finally a ‘Z’ character will flag the end of each

command/value frame.

All characters must be in ASCII format.

Word composition layout is shown at table 7:

Word Composition nr. 1 ……. Word Composition nr. n

Function Value ‘Z’ ……. Function Value ‘Z’

x bytes y bytes 1 byte …… u bytes v bytes 1 byte

Table 7 – Word Composition

Communication stability is improved because if a communication lack occurs,

the command is misunderstood but, at least, synchronism loss is avoided.

Flexibility was also improved by this method because commands and values

can have different sizes.

An example of a shared command from the Server to the Atmega16 can be

seen in table 8, the frame is sent over RS232, at line one, the purpose is to set

the left motor acceleration to a 215 value; at line two, acceleration is set to 8.

59

M L A 2 1 5 Z

M L A 8 Z

Table 8 – Examples of shared commands from Server to Atmega16

A function:

QString conv_double_QString(double value_input)

It is used to convert a double integer value to a QString. It is widely used

because the values are sent in ASCII format.

60

START: Atmega16
Serial Interruption

rec

LastUsartValue

LastUsartValue_str

LastUsartCmd

Char variable type that has the last character received over USART

Integer variable that is built to have the last value received over USART

String variable that is built to have the last value received over USART

String variable that is built to have the last command received over USART

END

 rec >= ‘A’

 rec == ‘Z’

 It is the last char. The command must be executed.
LastUsartValue=atoi(LastUsartValue_str)

 Adjust the type of the values.

Usart_Exe_Cmd()

Execute the command and reinitializes the

variables to a new command.

 It is a command. Build the full command
LastUsartCmd[n_char_received_4this_cmd++]=rec; . Build the full command

 It is a value. Build the full value
LastUsartValue_str[n_char_received_4this_val++]=rec; . Build the full value

Yes

No

Yes

No

Flowchart 1 – Atmega16 Serial Interruption

61

Communication Protocol from the Atmega16 microcontroller to
the Server Computer

Sending data protocol from the atmega16 microcontroller to the server

computer is different than the opposite direction.

Server computer usually requires, either all sensors data or a considerable

amount of data besides only a specific value, so, instead of sending an extra

character (as the ‘Z’ character in the communication from the server to the

atmega16) to signal the end of a specific frame, the process is implemented to

make a frame validation each time a new alphanumeric character appears.

This way, to process the last received frame, the server must receive an extra

frame: that last frame is usually the “END0” and does nothing except handling

the server the possibility to know that the previous value received has been

completed.

“END0” frame is, in reality, an undefined command/value by the server

computer and so it can be replaced by any other appearance as “E0” or any

other undefined command/value.

After a command/value is identified, another function is called to execute.

Resuming, atmega16 microcontroller can send several sets of commands and

values with different sizes and, when server receives the command/value

“END0” it guarantees the process of the last command/value.

To ensure a correct explanation of the whole communication process, it needs

to keep in mind that inherent the serial port process, the operating system gets

a variable amount of data from the serial port buffer and the server applications

get that frame which can contain several sets of commands/value. To deal with

all amount and unpredictable data, every time the server gets data, a copy to a

new variable is carried out and it is accomplished a reset of the old buffer to a

null value and then the identifying process of commands/values is started. This

62

way the buffer does not get too long and the commands/values indentifying

process have static data within the process (the buffer update is in other thread,

reason why it has a dynamic growth).

A shared command example, from the Atmega16 to the Server, can be seen at

table 9, the frame is sent over RS232, at line one, the right encoder position has

a 6459 value; at line two, it can be seen a frame which identifies the encoder

right position to 210 value and its velocity to value 5; at line three it can be seen

an usually shared command that is the “Virtual Heart Beat” aka “Emergency

Ping”.

E R P 6 4 5 9 E N D 0

E R P 2 1 0 E R V 5 E N D 0

E M P 0 E N D 0

Table 9 – Examples of shared commands from Atmega16 to the Server

63

START: Server
Serial Interruption

command=""

value=""

processing_string_input

S_SP_Received_from_Serial

QString variable type that has the last command received over
USART

QString variable that is built to have the last value received over
USART

QString variable that is used to have a copy of the USART buffer.

QString variable that represents the USART buffer

I

 processing_string_input.length()>=i++

processing_string_input.at(i-1)<'A')

value+=processing_string_input.at(i-1); It is a part of a value (number)

it is a new command, so lets execute this one!!

S_SP_Command_input(command,atoi(value))

Yes

No

Yes

No

value.length()>0

 // Reinitialize to prepare another command
value="";
command="";

command+=processing_string_input.at(i-1);

Yes

No

 // Reinitialize to prepare another command
processing_string_input="";
value="";
command="";

Verify sent to
client

64

Verify sent to client

END

Send the values from the serial port directly to the client

Robot_Server_Send_Command_to_Client();

slider_server_Auto_send_sensor_to_client-

>value()==1 OR

send_data_from_serial_back_to_client==1

 // Reinitialize to prepare another command
send_data_from_serial_back_to_client=0;

Yes

No

Flowchart 2 – Server Serial Interruption

65

Microcontroller unit was presented as well as the developed software, used

communications protocol between the server computer and the microcontroller

were presented as well.

66

67

6. Desktop Processing

This chapter will fall upon the server and the client programming, robot user

interface and system configurations.

6.1. Introduction

The proposed system makes use of two computers based on a server-client

architecture. Client computer is not critical but the server used is, at the

moment, a common laptop but later it will be replaced with an industrial and

low-power consumption one.

The language used for the desktop processing is C++ and Qt libraries and tools

were widely used.

Since Qt libraries are used, this system is platform independent, which means

that the software platform can be use in a Windows, Windows CE, MAC, LINUX

or an embedded Linux environment.

The use of a computer in the system was made because the computer can

achieve plug and play updates through USB ports, can make some parallel

computation and the space of a laptop in the robot is not critical because the

robot is big and a lot of space is still free for other components.

“Qt sets the standard for high-performance, cross-platform application

development. It includes a C++ class library and tools for cross-platform

development and internationalization”

 [W5]

68

Figure 38 shows the Qt framework block diagram.

Figure 38 – Qt Block Diagram [W5]

Qt makes use of a work based philosophy in objects and uses Signal/Slots

directives which can be connected with each others.

The idea of a desktop software application is to provide high level processing

and to provide users to work remotely with the robot.

Two software applications were made:

One to the “Server” and another to the “Client” computer, communication

between them is carried out through TCP/IP protocol.

A “Virtual Heart Beat” which is identified at the code as an “emergency ping”,

was created between the Server/Client and between the Server/Microcontroller

pair to avoid a robot control loss.

What concerns the Client/Server, it can be described as a command that is sent

from the Server to the Client every 2 seconds.

When the Client receives it, it has the duty to resend that command.

69

If, after four seconds, no acknowledge of the previous ping is received then a

command to stop the motors is sent from the server to the microcontroller to

avoid damages caused by an uncontrolled robot.

6.2. The Client

Client is used to transfer the user interface values directly to the server and is

able to interpret incoming commands proceeding from the server in order to

provide users to know Temperature and Current values of each motor drives

and also the Position and Velocity values of each motor.

It also needs to interpret the “Virtual Heart Beat” (“emergency ping”) between

the server and the client to avoid the robot control loss which can be derived, as

example, from a supposedly energy lack that could turn off the wireless router

or even the client computer.

6.3. Client Class

Client class makes possible to create a client based on an IP address and

respective port:

Constructor is shown below:

Client(const QString &host, Q_UINT16 port);

The following function, SendStrToServer(QString texto), makes possible to

send a QString to the server computer and activates a Signal called

logSentText providing a way to log communications data accomplished by the

client.

Client has a socket to receive data: readyRead() signal is connected to the

socketReadyRead() slot; this slot also provides a way to log the

communications data by emitting the logRecText() signal.

70

An interconnection of those signals/slots example is shown below, the syntax is

flexible but the first argument is always a QObject, and then the signal/slots are

specified.

If the signals/slots belong to the same QObject, it can be specified just once,

otherwise the connection needs both QObjects.

connect(client, SIGNAL(logSentText(const QString&)),cliente_log_sent,
SLOT(append(const QString&)));

connect(socket, SIGNAL(readyRead()), SLOT(socketReadyRead()));

Others private Slots of each Client can be used, their names self-explain their

behavior:

 closeConnection();

 sendToServer();

 socketReadyRead();

 socketConnected();

 socketConnectionClosed();

 socketClosed();

 socketError(int e);

71

6.4. User interface and applications

Figure 39 shows the Client application user interface; some description can also

be seen under chapter 6.10.

Figure 39 – Client User Interface

The Client needs to interact with the Server computer in order to send

commands that the user wants the robot to have.

Client needs to listen data from the Server, that data can be provided from the

robot sensors but it is the server that transmits it (if the Server options are

defined to).

The user interface includes a QgroupBox named “Client” which has Qbuttons to

connect to an IP address that can be chosen through a QlineEdit.

72

Data is sent in ASCII format and the adopted protocol of exchanged commands

between the server and the client is the same as from atmega16 to the server:

Several commands/values set with different size are being concatenated every

time a character is received and when the word “END” appears the processing

starts.

Client will interpret all data it received and sends, each command/value, one by

one, to a function that will execute those commands; that function is

Client_Interpret_Command_Receive_from_Server(QString command, int
value).

Commands that are currently being used are shown in the table 10:

TD Turn Spin box (Turn Direction)

TV Turn Velocity

TA Turn Acceleration

MRA Motor Right Acceleration

MRV Motor Right Velocity

MLA Motor Left Acceleration

MLV Motor Left Velocity

RAD0 Read All Data

Table 10 – currently used commands

Examples of shared command between Server and Client can be seen on table

11: line one has a command example to set the right motor velocity to 50; line

two has a command example to perform all sensors read and to set both motors

velocity to 68.

M L V 0 5 0 E N D 0

Table 11 – Examples of shared commands between Server and Client

T V 0 6 8 R A D 0 R A D 0

73

Client has a QButton, as shown in figure 40, to signal the Server that the Client

commands should automatically be sent to the robot:

Figure 40 – Automatic send commands to robot

To do that, every time any slider is released, it will check if “automatic send

option” is active, and if so, “Send Button” associated function is called.

(pushButton_Robot_Client_Send_Command_to_Server_clicked())

Independently to the “Automatic send command to Robot” option, it is possible

to send the server data from velocity, acceleration and direction through the

“Send to Robot” QButton, and commands to read temperature, current, velocity

and acceleration through the “Read Robot Sensors” Qbutton; the “Stop Robot”

Qbutton sends commands to put both motors with zero velocity.

6.5. The Server

The Server is used to interpret data from the client, to communicate with the

microcontroller unit and is able to operate the robot in a standalone mode

(without the Client).

Server has a Client user interface copy and once it receives any Client

commands, it performs interpretations and adjusts the sliders values at the

Server user interface side.

Server can send commands to provide client with Temperature and Current

values of each motor driver and also the Position and Velocity values of each

encoder.

74

6.6. Server Class

Server class makes possible to create a server based on a specific TCP/IP port:

Data transmission from the Server to the Client is identical as from the Client to

the Server; the only difference is the behavior of the interpreted commands.

The data_recived_over_network(const QString& str_input) function is called

each time the server receives data from a client.

When the “END” word appears in a communication frame, all commands are

interpreted, one by one, by the S_Command_received_from_client (QString
command, int value) function.

The Robot_Server_Send_Command_to_Client() function is used to send the

robot sensors data to the client application.

6.7. Serial Port

With SerialPort class it is possible to have control of the Server Computer Serial

Port.

Several Slots can be used, their names self-explain their behavior:

 openPort();

 closePort();

 saveBaudrate(QString);

 sendToPort(QByteArray);

 end();

As example, saveBaudrate(QString) slot is useful to make the baudrate setup

options remembered between sessions.

75

The following signals are useful to get/send data from/to the serial port as well

as to signal the connections results.

 sConnected(QString);

 sDisconnected();

 sSerialError(int);

 sDataWritten(QByteArray);

 sDataRead(QByteArray);

The S_SP_Analise_Data_input() function is used to interpret data from the

serial port and when any command/value is interpreted it calls the

S_SP_Command_input (QString command, int value) function to deal with

the robot sensors data and it can follow those values to the client as well as it

will update the servers user interface.

Note: Communications protocol between atmega16 microcontroller and server

computer can be seen at chapter 5.4.9

6.8. Setup Window and Log Window

The Server has a menu where the “Setup Window” (Figure 41) and the “Log

Window” (Figure 42) can be reached.

Setup window allow choosing the Com Port definitions as well as the Network

port. Last settings are remembered between sessions.

Log Window is very useful to show every shared data through the Serial Port,

debug purposes and behaviors tracking may be performed by making use of

this window.

76

Figure 41 – Setup: Serial Com Port and Network settings

Figure 42 – Logging Serial Port

6.9. User Interface and applications

The server user interface is shown on figure 43, some description can also be

seen under the next chapter (6.10.).

77

Figure 43 – Server User Interface

Server has a QButton, as shown in figure 44, to provide that the commands are

automatically sent to the robot.

Figure 44 – Automatic send command to Robot option

The behavior is the same as described in a similar button on the Client side

(Figure 40):

Each time any slider is released, it will check if automatic send option is active,

and if so, the “Send Button” associated function is called.

(pushButton_Robot_Server_Send_Command_To_Serial_clicked()).

Independently of the “Automatic send command to Robot” option, it is possible

at any time, to send commands to the robot (through RS232). Data from

velocity, acceleration and direction can be sent through the “Send to Robot”

78

Qbutton, and commands to read temperature, current, velocity, acceleration

through “Read Robot Sensors” Qbutton; the “Stop Robot” Qbutton sends

commands to put both motors with zero velocity.

The server has also a Qbutton, as shown in figure 45, to provide data from the

robot sensors to be automatic sent to the client.

Figure 45 – Automatic send sensor data to Client

To do that, every time the server interprets the sensors data from the Serial

Port, it will forward those values to the client if this option is enabled.

Data transfers between the Server and the Serial Port can be seen, as shown in

figure 46, through two QtextEditregards to “Received over Serial Port” and

“Sent over Serial Port”.

Qbuttons to reserve/release the COM Port to the server are also provided and

the Serial Port state can be seen through a QlineEdit.

It is also possible to directly send any command though the “Send to Serial

Port” QlineEdit and the “send” Qbutton.

Figure 46 – “Send over serial Port” - QbuttonGroup

79

6.10. Identical user interface components between
Server and Client

The user interface portion shown in figure 47 is identical between the server

and the client, even through the internal behavior is different because, at the

server side, commands are interpret and sent over RS232 to the robot but, at

the client side, commands are sent to the server over TCP/IP.

Figure 47 – Identical user interface components between Server and Client

“Motor Left” and “Motor Right” QbuttonGroups are used to perform the motors

control individually and the “Turn” QbuttonGroup is used to do the control of

both motors at once. Each one has Qsliders connected with CspinBox to

provide a graphic interface of the desire motors velocity and acceleration.

Near each individual motor controls, the “Sensor Readings” QbuttonGroup is

used to feedback temperature, current, position and velocity values

respectively.

80

Typically, instead of individually control each motor, the robot is controlled by

setting its velocity and acceleration and then a Qdial widget is used to set the

robot turn direction.

“Direction Zero” Qbutton is used to easily put the robot running forward.

Debug facilities are achieved through two Qbuttons and two QtextEdit, as

shown in figure 48; with simple functions presented at the code, it is possible to

get feedback behaviours and it is useful to identify possible problems that might

occur during the programming stage.

Figure 48 – Debug facilities widgets

Data transfers between Server and Client can be seen, as shown in figure 49,

through two QtextEdit regards to “Received over the network” and “Sent over

the Network”.

Figure 49 – Data transfers between Server and Client

Some developed programming examples, user interface and user options were

discussed in this chapter.

81

7. Schematic, Proto-board, Strip-board, PCB and
hardware connections

This chapter shows the physical connections and interfaces to the

microcontroller as well of schematics and the control unit developed PCB’s.

7.1. Control hardware schematic

The control unit schematic is shown in figure 50; it was designed in Eagle [W7].

Eagle, is a PCB and schematic design software, which is freeware making it

desirable to learn and use.

Even through Eagle could be more “user friendly”, it has an easy startup

learning stage.

It is very popular software which means that it is relatively easy to get new

parts.

82

Figure 50 – Controller unit schematic

7.2. Proto-board and Strip-Board

On a first stage, all of this hardware was on a proto-board (figure 51), but a

strip-board (figure 52) was also made.

The proto-board is still usable and it is probably desirable in future system

improvements since it is easy to connect extra hardware to it and to change the

components place. Even so, it is not as solid as the strip-board.

83

Proto-board organization was taken into account at the developing stage but the

strip-board can be even more organized and compact.

Figure 51 shows the board and below is a legend to help future workers of this

project to use it.

1 2
3

4 5 6 7
 9
 8 10
 11 12 13
14

 15

Figure 51 – Proto-Board

Figure 52 shows the strip-board that is more robust and much smaller than the

proto-board but is not so flexible, even so more I2C devices are easily

84

connected to it; below it is a legend to help future workers of this project to use

it.

 1 3 5 7 10

 9 12 13
 14
 8 11
 6

Figure 52 – Strip-Board

Figure 51 and figure 52 legends:
1) Power connectors (The red color cable corresponds to the +5V and the

Black one to the ground).

2) Programmer (the red color flat cable needs to be respected).

3) Power on LED used to signal if the board is powered.

4) Proto-board connection of the Programmer (the red color flat cable

needs to be respected).

5) Reset button used to reset the microcontroller.

6) I2C Bus, all I2C components are connected to this bus.

 The first column/line is the SDA and has blue wires.

 The second column/line is SCL and has orange wires.

 (The wires of SDA and SCL from the motor driver have correspondent

colors).

7) LCD Connector

85

8) Atmega16 Microcontroller and 16 MHz Crystal

9) Resistors to control the display backlight intensity and contrast

10) Error LEDs to debug. (Matching error (1) and error (2) at debug software)

The upper one is being used when the motor driver initialization is not ok.

The bottom one is used when the microcontroller looses the connections

with the server. This LED is turned ON and commands to stop motor are

sent to the drivers.

11) RS232-TTL converter.

12) Flip-Flop D to help the microcontroller to know the direction of the

encoders.

13) Encoders connectors.

14) RS232 connector.

15) USB/RS232 converter to interconnect the server and the microcontroller.

7.3. PCB Schematic

PCB schematic was also carried out on Eagle, and figure 53 shows it.

Figure 53 – PCB

86

7.4. 3D PCB

3D PCB, as shown in figure 54, was made with an Eagle [W8] freeware add-on

help and with the POV-Ray that is freeware tool of 3D design.

Figure 54 – 3D PCB

7.5. Hardware Connections

Figure 55 shows the D.C. regulator as well as the motor drivers, their fuses and

capacitors, as well as the used robot display. Below it is a legend to help future

workers of the project to use it.

87

 1 2 3 4 5 6

 7 8

Figure 55 – Components – D.C. Regulator, Motor Drivers, Fuses and Display

Figure 55 legend:
1) 5V DC Regulator (Polarity and each side voltage is written with a pen).

2) Left driver fuse.

3) Left driver.

4) Right driver.

5) LCD display.

6) Right driver fuse.

7,8) 10n capacitors (to avoid electrical noise).

Schematics and the developed control unit PCB’s are presented.

88

89

8. Software and Hardware considerations

This chapter will present the interconnections process between components, as

well as the debug troubleshoots and adopted solutions to them.

One of the difficult expression points on a report is the hardware and software

debug phase.

This process consists of connecting all the hardware and software components

which were successfully tested individually.

What concerns hardware, tests were carried out with a small motor and with a

small power supply. After that, the robot motors were tested with a 24V battery

and the microcontroller was fed by the fixed power supply, now all the power is

provided through the batteries.

Software debug can be split into the Desktop and the Microcontroller parts.

First the USART was implemented and then the PWM signals followed by

debug LEDs.

Communication between the server and the microcontroller serial port were

tested, followed by communication between server/client.

Everything was connected together as well as the I2C communications with the

motor drivers.

One of these motor characteristics is the electromagnetic brake; it needs a 24V

feed to release the motor. The breaks are constantly open in what this project

concern, but, to achieve low power consumption, a relay will be added further to

possibility control through the microcontroller.

90

Sometimes the motor driver control did crash and left the motors running. This

problem was sorted out by adding a 10nF capacitor to each motor to avoid

noise as well as rewriting the application with a better programming philosophy.

A “Virtual Heart Beat” was created between Server/Client and between

Server/Microcontroller to avoid control loss of the robot.

This chapter presented some of the problems that occurred, as well as the

adopted solutions.

91

9. Discussion

Some important issues are raised in this chapter.

1. Robot has no velocity control?
It was planned to use PID control when robot showed the need for it.

The robot shows it can go through a straight line at any speed on all

practical experiments. Off-Road tests were not performed; eventually, to

increase accuracy, extra control might be needed in that kind of

environment.

2. Why does the robot make use of a Server computer instead of only
a microcontroller or a small board package like the “FOX Board”
that can run a real Linux operating system with the size of only 66 x
72 mm?
The purpose of the system was flexibility. Investment in specific

hardware was avoided because the robot has not a practical use these

days. That way a laptop was used because it was cheap and flexible.

Multi-platform capabilities were developed, so, whenever it makes sense

to invest in a low-power or smaller Server, the software is prepared to it.

3. Robot microcontroller makes use of I2C and UART
communications. Which other choices were considered?
I2C and SMBus are popular 2-wire protocols where data transfer makes

use of only two wires.

These kinds of protocols reduce circuit complexity to a system where

multiple devices are intended to be added and controlled.

The most significant differences between I2C and SMBus are relative to

timeout, minimum clock speed, voltage levels and current levels.

92

I2C can be more than 30 times faster and slave devices have no timeout,

which means that slaves can be slower in performance. [W31]

1-WIRE bus makes use of only one wire for addressing and data transfer

but achieves lower data rates and distance range, reason why it is

typically used to communicate with small inexpensive devices. [W33]

These buses, and even more with the 1-WIRE bus, increase overhead at

addressing and acknowledge stages; overhead can be reduced by using

more wires to address the devices.

CAN (Controller Area Network) is an advanced communication protocol,

it makes use of 2 or 4 wires to data transfer and achieves a 40 meters

bus instead of only 4 meter by the I2C but CAN operates only at 1Mbps

instead of the 3.4Mbps of the I2C protocol.

SPI (Serial Peripheral Interface) is based in an 8-bit serial shift register

and a programmable shift clock. It has the advantage of a better noise

immunity comparing to I2C. Addressing SPI devices is made by adding

an extra wire to each device, reason why this protocol increases circuit

complexity as the number of devices rise in a system.

Besides that, at top speed SPI is 3 times slower than I2C. [W32]

I2C is used in industry in small systems (smaller than 4 meters) and

meet complexity and speed that this robot system is intended.

4. Why was a PCB projected but not implemented?
A PCB was supposed to be built instead the Proto-Board but, due to

time-limitations at the ending of this thesis it was put aside.

Priorities/Facilities ratio had importance at this point and this project

developing will be continued and improved for, probably, several years,

reason why it is, at the moment, probably precocious to make it.

5. How was the 10nF capacitor of each motor chosen?

93

That was a value chosen by the motor driver manufacturer and it is

specified at the MD03 datasheet.

6. In a remote or hard access environment reconnecting the server
could be an issue. What if some communication problem happens,
how is the reconnection made?
“Virtual Heart Beat” handles this situation; it stops the robot when no ping

is received at the specified time but whenever it receives a behindhand

ping from the microcontroller or from the Client, the process relaunches

again.

7. If several I2C master are connected to the system, what happens

when two of them communicate at the same time?

At the moment only one I2C master is implemented but, if for some

reason, another master exist they can interact with each other by making

use of arbitration logic and the “Bus busy detection” theory. [W34]

8. Besides the critical duty of robot stopping when the “Virtual Heart
Beat” processes indicate, which other critical duties have the
microcontroller?
It has the duty of calculating robot speed and position by reading each

motor encoder with accuracy and has the duty to be the I2C Master

which will generates the clock signal and address a slave when needed.

9. Does the robot have some proximity sensor or any device to sense
external environment?

Not at the moment. It will have in new improvements during further

developments.

10. Does the robot have any reference point when inserted in one
environment?
The reference is carried out when the robot is turned on.

94

At start, all variables are set to zero and values relative to how much

each motor run are relative to that start moment.

By adding other sensor to the system, the philosophy of setting the

reference can be different than the actual.

11. Why has the server a graphical interface?
Could the graphic programming language be implemented only at
the Client side?
A graphical user interface was implemented at the server because, that

way it is possible to make “Access Restrictions”.

The Server can have full control of the robot, but the Client is able only to

ask data to the Server, and it is the Server who decides what the Client

can do.

At developing stage, the Server can be programmed to do anything and

a “Remote Desktop Environment” can be used to control the robot

without any restrictions.

95

10. Conclusion / Further work

A final and informal presentation was carried out at the APS.

As main conclusions it can be said that the robot showed high stability with

either fast or smooth control. The commands sent by the client are correctly

interpreted and technical problems (as loss of internet connection) were

successfully passed.

The system was built from the scratch except of the mechanical structure and

all the problems that occurred during the developing phase were sorted out

which gave the solid and confident characteristic of the robot.

The mobile robot was developed, with communications parts between all

components.

The use of I2C gives a proof of efficiency, fast and expansible concept.

The software developed at desktop level, by use of Qt libraries, makes the

system portable and flexible and the low level developed software at the

microcontroller unit makes the system fast at duties as the robot position, speed

and acceleration calculation, I2C communication and leave the desktop free for

other duties.

Working abroad was a grateful experience, which allowed me to know people,

other institutions, to meet different cultures, languages and to achieve more

technical knowledge and working skills.

96

97

Bibliography and WWW References

 Bibliography

[B1] Michael Barr, Anthony Massa, ” Programming Embedded Systems”,

O'Reilly, ISBN: 0-596-00983-6, cp8, cp9, cp13

Here you can have an approach of embedded systems processing.

Different types of Interruption handling on a microcontroller as showed

A PWM tutorial with and some simple examples are showed.

A brief I2C explanation is presented.

[B2] Lewin A.R.W. Edwards, ” Open-Source Robotics and Process Control

Cookbook - Designing and Building Robust,Dependable Real-Time

Systems”, Newnes, ISBN: 0-7506-7778-3

 References WWW

[W1] http://www.aps-mechatronik.de/

Main page of APS - European Centre for Mechatronics

Here it is possible to find information referring members of the center,

investigation developing projects, etc.

(Accessed on March, 2008).

[W2] http://www.fb6.rwth-aachen.de/en/1.php

Main page of Faculty of Electrical Engineering and Information

Technology of RWTH University.

98

Here it is possible to find information referring members of the

department, teaching activities and investigation developing projects,

etc.

(Accessed on March, 2008).

[W3] www.dei.uminho.pt

Main page of Industrial Electronics and Computers department of

University of Minho. Here it is possible to find information referring

members of the department, teaching activities and investigation

developing projects, etc.

(Accessed on March, 2008).

[W4] http://www.atmel.com
Page of Atmel.

Here you can find information about microcontrollers and the

datasheet about atmega16, debuggers (AVRStudio) and other Atmel

product.

 (Accessed on March, 2008).

[W5] http://trolltech.com/products/qt
http://trolltech.com/products/qt/features

Page of QT.

Here you can find information about QT, help documentation with

libraries specifications and features.

(Accessed on March, 2008).

[W6] http://www.lancos.com/prog.html
Page of PonyProg flash programmer.

Here it is possible to find the newest version of the software as well as

different solutions to the programmer hardware.

(Accessed on March, 2008).

[W7] http://www.cadsoft.de/
Page of Eagle

99

Here you can download the freeware version of Eagle as well as many

libraries of components

(Accessed on March, 2008).

[W8] http://www.matwei.de/doku.php?id=en:eagle3d:eagle3d
Page of Eagle 3D

Here you can download the freeware and open source version of

Eagle 3D add-on as well of documentations about to use it.

 (Accessed on March, 2008).

[W9] http://www.atmel.com/dyn/resources/prod_documents/doc2466.pdf
Datasheet of the microcontroller atmega16 provided by the

manufacturer Atmel.

Here you can find information about the microcontroller atmega16 and

some example code.

(Accessed on March, 2008).

[W10] http://www.AVRfreaks.net
Here you can find a large collection of projects suitable to learn you

more about the AVR.

(Accessed on March, 2008).

[W11] http://www.atmel.com/dyn/resources/prod_documents/doc2466.pdf
AVR Studio

(Accessed on March, 2008).

[W12] http://www.dimensionengineering.com/Sabertooth2X10.htm
Here it is possible to find Sabertooth specifications
(Accessed on March, 2008).

[W13] http://societyofrobots.com/batteries.shtml
Page of Society of Robots.

Here you can find information about robots and how they are made

and a nice tutorial about the different types of batteries

100

(Accessed on March, 2008).

[W14] http://www.embedded.com/story/OEG20010718S0073
Page of Embedded Systems Design,

Here you can find a nice tutorial about I2C functions.

(Accessed on March, 2008).

[W15] http://www.nxp.com/acrobat_download/applicationnotes/AN102161.pdf
Phillips manual about I2C.

(Accessed on March, 2008).

[W16] http://jump.to/fleury
Page of Peter Fleury

Here you can find libraries to use I2C and LCD with the atmega16

microcontroller

(Accessed on March, 2008).

[W17] http://en.wikipedia.org/wiki/I2C
Page of Wikipedia.

Here you can find nice tutorial about I2C functions.

(Accessed on March, 2008).

[W18] http://www.ormec.com/mktdocs/encres.htm
Page of ORMEC’s - Motion control solutions

Here you can find nice tutorial about encoders.

(Accessed on March, 2008).

[W19] http://lab.artematrix.org/papers/Homebrew_Shaft_Encoder.pdf
Encoder

(Accessed on March, 2008).

[W20] ftp://ftp.ni.com/pub/devzone/pdf/tut_4623.pdf
Page of the national instruments with some principles of encoders

(Accessed on March, 2008).

101

[W21] http://www.faulhaber-group.com/n390840/n.html
Page of the manufacturer of this robot gearheads.

This you can find a nice tutorial about choosing the gearheads and

how are they composed.

(Accessed on March, 2008).

[W22] www.crouzet.com/catalogue_web/pdf/ENG/ndb12_eng.pdf

Brief Description about D.C. motors

(Accessed on March, 2008).

[W23] www.robotstorehk.com/md03tech.pdf
Motor driver MD03 Datasheet

(Accessed on March, 2008).

[W24] www.irobot.com
iRobot Homepage

(Accessed on March, 2008).

[W25] http://www.gizmag.com/go/7151/
iRobot in Iraq

(Accessed on March, 2008).

[W26] http://www.gizmag.com/go/5098/
SWORDS Robot

(Accessed on March, 2008).

[W27] http://www.gizmag.com/go/3550/
Tallon Robot

(Accessed on March, 2008).

[W28] http://www.linuxdevices.com/articles/AT3782871866.html
http://www.activrobots.com/ROBOTS/p2at.html

2008, MobileRobots Inc. (Accessed on March, 2008).

102

ActivMedia Mobile Robot (Pioneer and other types of robots)

[W29] http://linuxdevices.com/news/NS8152651349.html
914 PC-Bot

(Accessed on March, 2008).

[W30] http://www.gizmag.com/go/7208/
Remote-controlled robot uses thermal imaging to detect and eradicate

termites.

(Accessed on March, 2008).

[W31] http://www.maxim-ic.com/appnotes.cfm/an_pk/476
I2C and SMBus comparing.

(Accessed on March, 2008).

[W32] http://www.ucpros.com/work%20samples/Microcontroller%20Communi

cation%20Interfaces%201.htm
I2C and SPI comparing

(Accessed on March, 2008).

[W33] http://en.wikipedia.org/wiki/1-Wire
1-Wire Interface specifications

(Accessed on March, 2008).

[W34] http://www.i2c-bus.org/multimaster/

I2C Multi-Master Environment.

(Accessed on March, 2008).

103

Table of figures

Figure 1 – iRobot [W24] 7
Figure 2 – iRobot pack [W24] 8
Figure 3 – the iRobot Packbot in Iraq [W25] 8
Figure 4 – ActivMedia Mobile Robot Pioneer 2-DX [W28] 9
Figure 5 – ActivMedia Mobile Robot - PIONEER 3-AT [W28] 10
Figure 6 – SWORDS Robot [W26] 12
Figure 7 – Talon Robot [W27] 13
Figure 8 – Termibot [W30] 14
Figure 9 – 914 PC-Bot [W29] 16
Figure 10 – The Robot 17
Figure 11 – Block Diagram 18
Figure 12 – D.C. motor [W22]. 22
Figure 13 – Principle of operation [W22] 23
Figure 14 – PWM signals of varying duty cycles [B1]. 24
Figure 15 – Gear heads [W21] 25
Figure 16 – RN-VNH2 Driver [picture provided by the manufacturer datasheet] 27
Figure 17 – Sabertooth Driver [W12] 28
Figure 18 – MD03 Driver [W23] 28
Figure 19 – Encoders signals [W20] 30
Figure 20 – Encoders signals [W19] 30
Figure 21 – Encoder Flip-Flop [W19] 31
Figure 22 – Robot encoders 32
Figure 23 – Serial Connection between two Exide batteries 33
Figure 24 – Regulator Schematic [LT1074 datasheet] 34
Figure 25 – Regulator Board 35
Figure 26 – “SI-Prog” Programmer Schematic 36
Figure 27 – Programmer Board 36
Figure 28 – I2C typical interconnection system [W14] 37
Figure 29 – Robot I2C interconnection system 38
Figure 30 – I2C Packages [W14] 39
Figure 31 – Atmega16 pinout [W9] 42

104

Figure 33 – atmega16.h interconnections 46
Figure 33 – Level- and edge-sensitive interrupt signals [B1] 48
Figure 35 – motor.h interconnections 51
Figure 36 – timer.h interconnections 52
Figure 36 – Atmega16 and RS-232 connection 54
Figure 38 – usart.h interconnections 57
Figure 38 – Qt Block Diagram [W5] 68
Figure 39 – Client User Interface 71
Figure 40 – Automatic send commands to robot 73
Figure 41 – Setup: Serial Com Port and Network settings 76
Figure 42 – Logging Serial Port 76
Figure 43 – Server User Interface 77
Figure 44 – Automatic send command to Robot option 77
Figure 45 – Automatic send sensor data to Client 78
Figure 46 – “Send over serial Port” - QbuttonGroup 78
Figure 47 – Identical user interface components between Server and Client 79
Figure 48 – Debug facilities widgets 80
Figure 49 – Data transfers between Server and Client 80
Figure 50 – Controller unit schematic 82
Figure 51 – Proto-Board 83
Figure 52 – Strip-Board 84
Figure 53 – PCB 85
Figure 54 – 3D PCB 86
Figure 55 – Components – D.C. Regulator, Motor Drivers, Fuses and Display 87
Figure 57 – Motor Dimensions 112

105

Table of tables

Table 1 – Robot motor characteristics 24
Table 2 – MD03 addresses of left and right motor 28
Table 3 – All Pin List 45
Table 4 – Pin connections between server and atmega16 55
Table 5 – Connection between server and atmega16 microcontroller through RS-232

 55
Table 6 – Word Composition (1st attempt version) 57
Table 7 – Word Composition 58
Table 8 – Examples of shared commands from Server to Atmega16 59
Table 9 – Examples of shared commands from Atmega16 to the Server 62
Table 10 – currently used commands 72
Table 11 – Examples of shared commands between Server and Client 72
Table 12 – Robot motor characteristics 112

106

107

Table of flowcharts

Flowchart 1 – Atmega16 Serial Interruption 60
Flowchart 2 – Server Serial Interruption 64

108

109

Table of abbreviations

I/O Input / Output

TCP/IP Transmission Control Protocol / Internet Protocol

I2C Inter-Integrated Circuit

TWI Two Wire Interface

DC Direct Current

PWM Pulse-width modulation

USART Universal Synchronous Asynchronous Receiver

Transmitter

APS European Centre for Mechatronics

DDR Data Direction Register

ASCII American Standard Code for Information Interchange

A.K.A. Also Known As

AGM Absorbed Glass Mat

110

111

Attachments – Motor Specifications

The robot has two motors provided from the manufacture ENGEL, the series is

GNM5480E and the motors are typed “Permanent Magnets, Direct Current”

they are coupled with gear-heads and the characteristics can be seen at table 1

and the dimensions at figure Error! Reference source not found..

Nominal voltage UN 24 Volt

Armature resistance R 0.106

Nominal output power P2 250 W

Efficiency max 85 %

No-load speed no 3,267 rpm

No-load current Io 1,435 mA

Stall torque MH 1,005 oz-in

Friction torque MR 14.16 oz-in

Speed constant kn 137 rpm/V

Back-EMF constant kE 7.30 mV/rpm

Torque constant kM 9.87 oz-in/A

Maximum peak current kI 115 Amps

Rotor inductance L 0.33 mH

Nominal speed 3,000 rpm

Nominal torque 112.71 oz-in

Mechanical time constant m 11.6 ms

Rotor inertia J 52.4 x10-3oz-in-sec2

Thermal resistance
Rth1/

Rth 2
1.8 °C/W

Thermal time constant w 40 minutes

112

Motor weight lbs.

Maximum ambient temperature 40 (104) °C (°F)

Motor operating temperature range
–20 to 100

(–4 to 212)
°C (°F)

Table 12 – Robot motor characteristics

Figure 56 – Motor Dimensions

