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Exciton-polariton modes arising from interaction between bound excitons in monolayer thin semiconductor
sheets and photons in a Fabry-Perot microcavity are considered theoretically. We calculate the dispersion curves,
mode lifetimes, Rabi splitting, and Hopfield coefficients of these structures for two nearly 2D semiconductor
materials, MoS2 and WS2, and suggest that they are interesting for studying the rich physics associated with the
Bose-Einstein condensation of exciton-polaritons. The large exciton binding energy and dipole allowed exciton
transitions, in addition to the relatively easily controllable distance between the semiconductor sheets are the
advantages of this system in comparison with traditional GaAs or CdTe based semiconductor microcavities. In
particular, in order to mimic the rich physical properties of the quantum degenerate mixture of two bosonic
species of dilute atomic gases with tunable inter-species interaction , we put forward a structure containing two
semiconductor sheets separated by some atomic-scale distance (l) using a nearly 2D dielectric (e.g. h-BN),
which offers the possibility of tuning the interaction between two exciton-polariton Bose-Enstein condensates.
We show that the dynamics of this novel structure are ruled by two coupled Gross-Pitaevskii equations with the
coupling parameter ∼ l−1.

I. INTRODUCTION

Placing a semiconductor structure into a microcavity yields a number of interesting and potentially useful effects related to
resonant coupling between the confined light and elementary excitations in the semiconductors, such as excitons.[1] Since the
pioneering work of Purcell[2] it was realized that the emission properties of a light-emitting structure in a cavity are changed
because of the back action of the reflected light on the emitter. In the strong coupling regime between microcavity (MC) photons
modes and semiconductor excitons, collective excitations named exciton-polaritons are formed.[1] Studies of these excitations in
structures consisting of a quantum well placed in a semiconductor microcavity (two superlattices acting as Bragg mirrors) have
been an area of active research in the recent years.[1, 3–5] Among the most interesting achievements are the polariton laser[6, 7]
and Bose-Einstein condensation of exciton-polaritons[8, 9] with collective dynamics of the condensed phase consistent with
superfluidity.[10] Experiments in this field are quite demanding in terms of quality of the samples, typically based on GaAs or
CdTe multilayer epitaxial structures, which must be grown with very high precision in order to achieve the desired light-exciton
coupling.

Recently developed atomically thin layers of semiconducting transition metal dichalcogenides with chemical formula MX2

(M=Mo, W and X=S, Se) present strong light-matter interactions owing to their direct band gaps and dipole-allowed inter-
band transitions, which can yield relatively high light absorption and intense photoluminescence despite their ultimately small
thickness.[11, 12] In these materials conduction and valence bands are both dominantly d−type and the band extrema are located
at the K and K ′ points of the Brillouin zone (BZ). [13] The simplest effective Hamiltonian contains one hopping parameter t,
a band gap parameter ∆ and a spin-orbit (SO) interaction energy λ.[14] Without SO splitting the spectrum is symmetric with
respect to the midpoint between the top of the valence band (VB) and the bottom of the conduction band (CB),

Ec,v(q) = −∆
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where a is the lattice constant and q is in-plane wavevector with respect to the K (K ′) point of the BZ. For small q the spectrum
(1) is parabolic and one can introduce an effective mass,

mc,v =
~2∆

2a2t2
, (2)

The spin-orbit (SO) interaction splits the valence band into two with different spin orientations permutting between the K and
K ′ valleys; the splitting is equal to 2λ. The effective masses of the three bands (one spin-degenerate CB and two VB’s) become
unequal, although the difference is not too large.[15]

The symmetry group of the wavevector at the K and K ′ points is C3h. Although both conduction and valence band states at
these points are composed of d−orbitals of the transition metal, those near the bottom of the conduction band have zero angular
momentum projection onto z axis perpendicular to the layer (M = 0), while the valence band states near its top correspond to
M = ±1 and, consequently, optical transitions in the vicinity of either K or K ′ point are dipole-allowed.[13, 14, 16] For the
effective Hamiltonian of Ref. 14 the transition matrix element is[16]

Pcv(q ≈ 0) = m0v(τex + iey) , (3)

where τ = ±1 for the K and K ′ points, m0 is free electron mass, ex and ey are unit vectors and the ”velocity” v is defined (in
analogy with graphene) through the hopping parameter and the lattice constant as v = at/~ (note that 2mcv

2 = ∆). The value
of this velocity can be estimated from the DFT results, for instance, for MoS2 v ≈ (5−6)×107cm/s. Therefore we can estimate
|Pcv(0)|2/(2m0) = m0v

2 = ∆(m0/2mc) ≈ 1.5 − 2 eV. Even though this value may look rather small (for comparison, this
parameter is about 20 eV for the II-VI bulk semiconductors), as we shall see below, the oscillator strength is comparable to usual
semiconductor MC materials because of the very small exciton Bohr radius characteristic of the MX2 materials.

Excitonic states in the MX2 2D semiconductors (2DSCs) have been studied both theoretically and experimentally [12, 13, 16–
20] In both absorption and photoluminescence spectra, two strong exciton resonances are observed, commonly labelled A and
B. They are associated with electronic transitions involving an electron and a hole (from the upper VB for A states and from
the lower one for B states), with parallel spins. Since the hole possesses an angular momentum (perpendicular to the plane),
M = ±1, the excitons couple directly to circular polarized light ,[19] however, because of the alternation of the left-hand and
right-hand polarizations between the K and K ′ points the light can have any polarization within the plane. The lowest energy A
and B excitons are analogous to the 1s states of a two-dimensional hydrogen model, [13] even though the higher energy states
do not follow the 2D Rydberg series. [18] The exciton binding energy is quite large in these materials, of the order of hundreeds
of meV [12, 13, 16–20] which makes them interesting for studying exciton physics, in particular, many effects can be studied
at higher temperatures. Indeed, the observation of strong coupling between excitons and photons using a MoS2 monolayer
embedded in a dielectric microcavity, with the formation of exciton-polariton states at room temperature was recently reported
for the first time. [21] Another potential advantage is that 2DSCs are rather tolerant in terms of assembling into heterostructures.
Because of the van der Waals-type bonding between layers, restrictions related to lattice matching are relaxed [11, 22] compared
to traditional semiconductors where molecular beam epitaxy is required to produce high quality heterostructures. Also, one
can mimic multiple quantum well structures by combining MX2 layers with a monolayer thin dielectric, h-BN.[23] Excitation
with circular-polarized light in resonance with e.g. A exciton state will create excitons only in either K or K ′ valley. Using
linear polarized light one can generate excitons in both valleys, where they will have opposite spin orientations. [12] This is
different from standard zinc-blend type semiconductors, where both spin states occur in the same point in k-space. It has been
demonstrated [24] that optical excitation with circular-polarized light can be used to control the exciton populations in different
valleys.

Bose-Einstein condensates (BECs) are many-particle systems demonstrating quantum phenomena at macroscopic level, which
are determined by the microscopic inter-particle interactions. The adjustability of these interactions is important for the under-
standing of the macroscopic properties of such complex systems. The realization of BECs containing two bosonic species
of ultracold dilute alkali atomic gases has provided an extraordinary physical scenario to study a range of quantum phenom-
ena, [25–28] since magnetic-field induced Feshbach resonances provides a tunable interaction between different types of atoms
within two-species BECs, which can be made either positive or negative. [29, 30] This effect allows for the control of phase
separation [28] in such BECs as well as for the study of a number of interesting quantum phenomena, such as the miscibility
of superfluids, [25] the superfluid-to-Mott-insulator transition [26], and glassy phases in bosonic mixtures. [31] Some similar
effects can also occur in so called spinor BECs where an external magnetic field can lead to the formation of (interacting) spin
domains within the condensate. [32]

As far as exciton-polariton BECs are concerned, in principle, similar quantum systems can be realized by designing appro-
priate heterostructures and excitation conditions. Exciton-polaritons possess the distinctive spin-polarization degree of freedom
(spin of the exciton and polarization of the coupled photon), [5] which has been revealed in experiments demonstrating bal-
listic propagation of the excited polaritons accompanied by polarization beats due to redistribution of the emission intensity
between two crossed polarizations [33] and the optical spin Hall effect, which consists in separation of differently polarized
polaritons both in real space and momentum space. [34] Recently, spontaneous symmetry-breaking bifurcations in the polariza-
tion state of two-component exciton-polariton condensates were demonstrated. [35] Here one can also expect spinor BECs with



3

FIG. 1: (Color online) Schematics of a Fabry-Perot microcavity containing one (a) or two (b) nearly 2D semiconductor layers. Qualitative
electric field profiles (Ey component) are shown for lowest–order symmetric TE modes, both “bulk” (full curves) and surface (dashed curves).
In (b) it is assumed that the space between two layers is filled with a material with a dielectric constant ε2 > ε.

an interplay between spin-dependent dynamics and Bose-Einstein condensation [5] and distinct Bogolyubov-type elementary
excitations, [36] which experimental studies could be performed at much higher temperatures compared to atomic condensates.
Yet, exciton-polariton systems with two possible polarization projections onto the growth axis of the hosting semiconductor het-
erostructure cannot be considered as strictly two-species condensates because of the presence of a spin-flipping exciton-exciton
scattering. [37] In this respect a structure composed of MX2 layers placed in a planar microcavity could provide interesting
possibilities for studying the MC exciton polaritons. First, as mentioned above, the spin-flipping exciton-exciton scattering
should be improbable by virtue of the specific band structure of these materials. Secondly, it seems to be suitable for studying
interactions between two distinct Bose-Einstein condensates by creating them in two nearby identical 2DSC layers separated
by a precisely controlled distance (using an atomic-thin dielectric layer).

In this paper we present calculated results for dispersion curves, mode lifetimes, Rabi splittings, and Hopfield coefficients for
such structures with the purpose to stimulate experiments in this direction. We also derive a system of coupled Gross-Pitaevskii
equations for a structure consisting of two parallel 2DSC sheets in a microcavity and evaluate the separation-dependent cross-
interaction for such a novel system. In the following two sections we describe the linear properties of the exciton-polaritons in a
microcavity with one and two MX2 layers. Section IV is devoted to the non-linear regime due to polariton-polariton interaction
owing to the exciton-exciton coupling within and across the layers, and we conclude in Sec. V.

II. EXCITON-POLARITON DISPERSION CURVES

A. Microcavity with one 2DSC sheet

First we consider the case of one 2DSC sheet placed in the symmetry plane of a Fabry-Perot microcavity (see Fig. 1a). For
an empty ideal microcavity of width L, the Fabri-Perot modes are given by [1]

ω
(j)
ph =

c

nc

√(π
L
j
)2

+ k2⊥ ≈
cπ

ncL
j +

~k2⊥
2m

(j)
ph

; j = 1, 2, . . . , (4)
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where k⊥ is in-plane wavevector, m(j)
ph = πnc~

cL j is the “photon mass” and nc =
√
ε is the refractive index of the medium filling

the cavity. Excitons are confined in the 2DSC layer and can be considered here as perfectly two-dimensional, i.e. Ψex(r, z) ∼
Ψ2D
ex (r)δ(z − L/2), because the microcavity width is much larger than the atomic monolayer thickness. The system possesses

translation symmetry in the x− y plane and k⊥ can be identified with q, the exciton centre of mass wavevector. We choose the
x axis along q (see Fig. 1a).

To a first approximation, the 2D optical conductivity of a MX2 layer taking into account the interaction of light with the lowest
energy A and B excitons can be written in the form: [38]

σ2D(ω, q) =
4e2v2

πa2exω

∑
A,B

−i
EA,B + ~2q2/(2mex)− ~ω − i~γA,B

, (5)

where aex andmex are the exciton Bohr radius and mass, respectively, taken as equal for A and B excitons, that can be considered
as experimentally obtainable parameters (aex ≈ 0.7− 1 nm and mex ≈ 0.8− 0.9m0 for MoS2), [15, 16] as well as the exciton
energies, EA and EB . The damping parameters γA and γB can be rather different, as seems to be the case for WS2. [18]
Equation (5) includes the contributions of two valleys (or, equivalently, two spin projections) for each type of exciton. With the
light linearly polarized in the x − y plane, half of the excitons are created in the K valley and the other half in the K ′ valley
(with the opposite spin orientation).

We shall consider both TE (s-polarization) and TM-waves (p-polarization). The uncoupled MC modes can be classified with
respect to their parity and only even modes couple to the 2DSC excitons in the case of Fig. 1a. For TE waves, the electric field
has the only Ey component and its dependence on x and z for even modes can be written as follows:

Ey = sin(kzz)e
iqx , z ≤ L/2 ; (6)

Ey = sin[kz(L− z)]eiqx , z ≥ L/2 , (7)

where we have assumed that MC mirrors are perfect. Here

kz =

√
ε
ω2

c2
− q2 . (8)

The transverse electric field is continuous at z = L/2, which has been taken into account in (7), while the magnetic field
component Hx , proportional to the derivative of Ey with respect to z is discontinuous and the boundary condition reads: [39]

Hx|z=L
2 +0 −Hx|z=L

2 −0
=

4πσ2D
c

Ey . (9)

Similarly, for TM waves, the magnetic field has only one non-zero component, Hy:

Hy = − cos(kzz)e
iqx , z ≤ L/2 ; (10)

Hy = cos[kz(L− z)]eiqx , z ≥ L/2 . (11)

The boundary condition (9) holds here with the replacement Hx → Hy and Ey → Ex, and the latter is continuous. Applying
the boundary conditions (which are written explicitly in the Appendix), the exciton-polariton dispersion relations for the TE and
TM modes, are obtained from the following equations, respectively:

k̃zCotk̃z =
πωL

c
χ̃2D(ω, q) ; (12)

Cotk̃z
k̃z

=
4πc

εωL
χ̃2D(ω, q) , (13)

where we have introduced a dimensionless susceptibility, χ̃2D = iσ2D/c, and wavevector k̃z = 1
2kzL. The dispersion curves

for a microcavity of width L=350 nm (with ε=1) containing a MoS2 or WS2 layer are shown in Fig. 2 (as usual, the damping
parameters were put equal to zero). In the calculations we employed the following data for MoS2 [WS2]: EA = 1.9 [2.1] eV,
EB = 2.1 [2.5] eV, v = 5.5 [6.9]× 107cm/s, aex = 0.8 [1.0] nm.

Notice that on the right of the light line, q = nc
ω
c , the wavevector component along z becomes imaginary and Eqs. (12 )

and (13) describe states with the fields decreasing exponentially with the distance at both sides of the 2DSC layer. While such
modes are common in p-polarization, their existence in s−polarization is specific of nearly 2D polarizable systems, such as
graphene where TE plasmon-polaritons can exist. [39] In fact, they are the limiting case of guided waves in such an ultimate thin
waveguide. We shall call these excitations surface modes in order to distinguish them from “bulk” ones (with real kz ), which
will be referred to as simply MC exciton-polaritons.



5

FIG. 2: (Color online) Exciton-polariton dispersion relations for a microcavity of width L=350 nm containing one 2DSC layer: Left panel:
MoS2, rigth panel: WS2. TE- and TM-modes are represented by solid (blue) and dashed (red) curves, respectively. Dash-dotted (dotted) lines
correspond to bare excitons (MC photons, Eq. (4)). Symbols are the surface modes. Straight dashed line is the light line.

B. Microcavity with two 2DSC sheets

Now we will consider the case of two 2DSC layers separated by a distance l, placed symmetrically in the microcavity of width
L (see Fig. 1b). As we saw in the previous section, the dispersion curves of TE and TM waves are rather similar, so here we
will focus only on the TE modes. We can antecipate that for each mode of the system with one 2DSC layer considered above,
there will be two modes, one symmetric and one antisymmetric. Therefore we can choose the solutions for Ey in the different
MC regions according to this symmetry. Following the same procedure of the previous section (see Appendix for details), we
find that the symmetric modes are governed by the equation:

k̃z

{
Cot[(1− α)k̃z]− Tan[αk̃z]

}
=
πωL

c
χ̃2D(ω, q) (14)

with α = l
L . The corresponding equation for the antisymmetric modes reads:

k̃z

{
Cot[(1− α)k̃z] + Cot[αk̃z]

}
=
πωL

c
χ̃2D(ω, q) . (15)

The dispersion curves determined by Eqs. (14) and (15) are shown in Fig. 3. While the symmetric (S) modes are qualitatively
similar to those of one-2DSC-layer structure, the antisymmetric (AS) modes are almost dispersionless with the frequency almost
coinciding with that of the corresponding uncoupled exciton (A or B). Taking as reference the MC of Fig. 3, the overall splitting
∆31(q) between the upper and lower branches with frequencies ω3(q) (mode 3, B-exciton-like for q → 0 and photon-like for
cq & 2) and ω1(q) (mode 1, photon-like for q → 0 and A-exciton-like if cq & 1.8), respectively is shown in Fig. 4 for several
microcavites with ratio α = 0.01, 0.1, 0.3, 0.5, and 0.7. From the figure it can be seen that (i) the frequency splitting shows a
minimum at certain q = qmin, which depend on the ratio α, and (ii) the value of ∆ω(qmin) decreases as α increases. Also, the
splitting between the S and AS modes increases for smaller interlayer distances (not shown), however, we found that it almost
saturates for α ≤ 0.1.
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FIG. 3: (Color online) The same as Fig. 2 for TE waves in a microcavity containing two 2DSC layers separated by a distance l =3.5 nm. The
symmetric and antisymmetric modes are represented by blue solid and purple dash-dotted lines, respectively. Dashed curves: TE modes for a
MC with a single layer. We assumed ε=1 everywhere in the cavity.

III. LIFETIME, RABI SPLITIING AND HOPFIELD COEFFICIENTS

A. Exciton-polariton lifetime

So far, we solved Eqs. (12), (13), (14) and (15) neglecting the imagiinary part of χ̃2D, that yielded the dispersion curves shown
in Figs. 2 and 3. Now let us consider the same equations keeping the imaginary part. Each of them links three parameters, ω, q
and kz . In Eq. (8) we set q as a real independent parameter, therefore we have four equations for the real and imaginary parts of
ω and kz . The inverse of the imaginary part of ω is the exciton-polariton lifetime, which we shall denote by τ . For the case of
one 2DSC layer, assuming that =ω � <ω, the following simple formula can be derived for the lowest order mode:

τ = γ−1A

(
1 +

πLωLT
c

)
, (16)

where

ωLT =
4e2v2

πa2excEA
(17)

is the oscillator strength of the exciton transition, also known as the longitudinal-transverse exciton splitting. [1] According to
Eq. (16), the exciton-polariton lifetime is higher than that of pure exciton (τ0 = γ−1A ). This is also demonstrated, in the case
of two layers, by the results of numerical solution of the dispersion approximations, shown in Fig. (5). We see that for the
photon-like mode 3 the lifetime tends to infinity because pure photons do not decay neither escape from the microcavity in our
model. In contrast, for the case of MoS2 where the middle branch in Fig. 3 (B-exciton-like if cq > 1.8 eV, mode 2) is essentially
a bare exciton (see Fig. 7b below where a discussion of the Hopfield coefficients is given) and the lifetime is almost equal to τ0.
In the case of WS2 we observe a maximum near cq = 1.4 eV, which is explained for the fact that the mode 2 presents a stronger
coupling to the electromagnetic field (see Fig. 7b, right panel).
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FIG. 4: (Color online) Overall frequency splitting ∆31 = ω3 − ω1 versus q between the uppermost, ω3, and the lowest, ω1, exciton-polariton
symmetric branches of Fig. 3 for several values of the ratio α = l/L.

FIG. 5: (Color online) Calculated lifetimes (in units of τ0 = γ−1
A ) for three lowest exciton-polariton modes in a MC containing two 2DSC

layers. In the calculation we chose ~γA = 0.00001 eV corresponding to the exciton radiative lifetime of 70 ps.
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FIG. 6: (Color online) Minimal mode separations, ∆31 (overall splitting) and ∆21 (Rabi splitiing for A exciton-polaritons neglecting B
excitons) vs distance between two 2DSC layers. Dashed lines indicate the corresponding values for one 2DSC layer placed in the MC
symmetry plane.

B. Rabi splitiing and Hopfield coefficients

Rabi splitting (RS) is a measure of strength of the coupling between the exciton and the microcavity modes. [1] In our case
its definition is not straightforward because there are two anti-crossings not far from eaxch other (see Figs. 2 and 3) and all
three oscillators are coupled, at least, in a certain range of q. In Fig. 6 we present the minimum values of the splittings, ∆31

(which q-dependence is shown in Fig. 4) and ∆21 = ω2 − ω1. The latter can be considered as the Rabi splitting in a common
sense (minimum separation between two lowest energy polariton features observed experimentally). For the MC width L = 350
nm (corresponding to a detuning of −126 meV with respect to A-exciton for MoS2) the RS value is ∆min

21 ≈ 0.16 eV for
both MoS2 and WS2 (see Fig. 6), which is comparable to traditional QWs placed in a semiconductor microcavity. [1] In the
first experimental work on exciton-polaritons in a MC with an embedded MoS2 layer, [21] a Rabi splitting of ≈ 50 meV was
reported for a smaller detuning of −40 meV. Our calculations for that case (taking ε = 2 and L =236 nm yields a − 40 meV
detuning) give ∆min

21 ≈ 0.16 eV. This approximately 2.5-fold descrepancy can be partially because of the non-ideality of the
real microcavity and also can be explained for uncertainty of the input parameters. For instance, considerably larger values of
the exciton Bohr radius (aex=1.35 nm for A excitons in MoS2) have been suggested in the literature. [40] If we used this value
as input parameter, the spliiting would be decreased by a factor of two. Finally, we would like to point out that for structures
with two 2DSC layers RS can be modulated by ±30% by varying the separation between the layers (see Fig. 6).

Now we proceed to the quantum-mechanical description of the exciton-polaritons. Let us consider a microcavity with one
2DSC layer. The Hamiltonian describing the interaction of A and B excitons with cavity photons reads:

H =
∑
q

[
Ec(q)P †qPq + EA(q)A†qAq + EB(q)B†qBq

+ gA−ph(q)P †qAq + gB−ph(q)P †qBq + H. C.
]
, (18)

where Aq(A†q), Bq(B†q) and Pq(P †q) are annihilation (creation) operators for the two types of excitons and the cavity photons,
respectively, and E

A
(q), E

B
(q) and Ec(q) are the energies of the decoupled excitons and photons. The photon-exciton interac-

tion energies are represented by gA−ph(q) and gB−ph(q). We include into consideration only the lowest MC mode with j = 1
because the other modes have much higher energies and nearly do not interact with the A and B exciton states.

The Hamiltonian (18) is diagonalized by using the polaritonic basis with the unitary transformation [41]

α(i)
q = κ

(i)
ph(q)Pq + κ

(i)
B (q)Bq + κ

(i)
A (q)Aq ; i = 1, 2, 3 , (19)
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where α(i)
q are the annihilation operators for exciton-polaritons of three branches (which will be labelled by i = 1, 2, 3) and κ(i)j,

(j = 1ph, A, B) are the Hopfields coefficients (HC). [1] The quantity (κ
(i)
j )2 represents the contribution of the exciton, A or B,

or the photon mode 1 to the polariton mode i. The first two of them determine the polariton-polariton interaction, which occurs
through the excitonic part of these composite excitations and will be considered in the next section. The Hopfield coefficients
fulfill the normalization condition,

(κ
(i)
ph(q))2 + (κ

(i)
B (q))2 + (κ

(i)
A (q))2 = 1 . (20)

The transformation matrix of Eq. (19) can be expressed through the eigenvectors of the Hamiltonian (18) and its columns are
orthogonal. Together with the normalization conditions (20), there are six relations for the coefficients κ(i)j , i.e. only three of
them are independent (for each q). We can use the polariton dispersion curves calculated in the previous section (plus those of
bare excitons and MC photons) to determine these coefficients, thus avoiding an explicit definition of the interaction parameters
gA−ph, etc and achieving the correspondence between the quasiclassical and quantum-mechanical pictures.

The solution for the HCs is given by:

κ
(i)
ph(q) =

∆
(i)
A (q)∆

(i)
B (q)√

∆
(i)2
A (q)∆

(i)2
B (q) + ∆

(i)2
B (q)g2A−ph(q) + ∆

(i)2
A (q)g2B−ph(q)

;

κ
(i)
A (q) = −

∆
(i)
B (q)gA−ph(q)√

∆
(i)2
A (q)∆

(i)2
B (q) + ∆

(i)2
B (q)g2A−ph(q) + ∆

(i)2
A (q)g2B−ph(q)

;

κ
(i)
B (q) = −

∆
(i)
A (q)gB−ph(q)√

∆
(i)2
A (q)∆

(i)2
B (q) + ∆

(i)2
B (q)g2A−ph(q) + ∆

2(i)
A (q)g2B−ph(q)

, (21)

where ∆
(i)
A,B(q) = EA,B − Ei is the energy difference between the exciton A, B and the i-th polariton mode (notice that the

system is isotropic in the x − y plane). The exciton-photon interaction parameters are expressed through the energies of the
coupled and uncoupled modes as follows: [42]

g2A−ph(q) = ∆
(1)
A (q)∆

(2)
A (q)

∆
(1)
B (q)[Ec(q)− E1(q)]−∆

(2)
B (q)[Ec(q)− E2(q)]

∆
(1)
B (q)∆

(2)
A (q)−∆

(2)
B (q)∆

(1)
A (q)

(22)

and g2B−ph is obtained from (22) by permutting the indices A and B. The q dependence of the Hopfield coefficients for the
present case is shown in Fig. 7. It can be observed that the lowest exciton-polariton mode is practically uncoupled from B
exciton for both materials. Exactly at the crossing point (cq ≈ 0.85 eV for MoS2) these polaritons are half photons, half A
excitons, while for larger q they become nearly bare A excitons. It means that one can disregard B excitons when focusing
on this polariton branch, that would simplify the analysis. We notice that the values and the q dependence of the coefficients
κ
(1)
A and κ(1)ph for MoS2 are quite similar to to those extracted from the experimentally measured angle-resolved reflectivity

spectra. [21] The second polariton branch (Fig. 7b) is mostly a composition of A and B excitons, with an admixture of photons
near the crossing point, and the third branch ( Fig. 7c) is photon-like for large wavevectors. The Hopfield coefficients will be
used in the next section to determine the polariton-polariton interaction parameters in the high excitation regime.

IV. NON-LINEAR REGIME

Bose-Einstein condensates of exciton-polaritons have been experimentally realized in semiconductor microcavities (see
Refs. 8–10). The theoretical description of their dynamics is based on the Gross-Pitaevskii (GP) equation, [43] which can
be derived from the following many–body Hamiltonian: [44]

H =

∫
drΨ̂†(r)

[
− ~2

2mp
∇2

r + Vc

]
Ψ(r)

+
1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r)Ψ̂(r′) , (23)

where mp is the polariton mass (which is determined by the second derivative of the polariton dispersion curve at q = 0),
Vc(r) is a confinement potential and V (r − r′) describes two-particle interactions. In the standard procedure one assumes
that the operator Ψ̂(r, t) can be approximated by its expectation value, Φ(r, t), and the two-particle potential is approximated
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FIG. 7: Hopfield coefficients for exciton-polaritons in a microcavity with one 2DSC layer placed in the symmetry plane.

by a δ-function, V (r − r′) = Λδ(r − r′), which yields the GP equation with Λ denoting the particle-particle self-interaction
parameter. [44] In our case r should be considered as a two dimensional vector in the x− y plane.

The polariton-polariton interaction potential is the exciton-exciton coupling renormalized due to the change of the basis (from
excitons and photons to polaritons), projected onto the polariton branch i which we are interested in. It can be shown (see e.g.
Ref. 45) that the renormalization involves an integral of the form:

1
(2π)4

∫
dr′′dr′′′

∫
dk1dk2dqṼ

ex−ex(q)κ(i)ex (k1)
?
κ(i)ex (k2)

?
κ(i)ex (k1 − q)κ(i)ex (k2 + q)

× exp {i [q(r′′ − r′′′) + k1(r− r′′) + k2(r′ − r′′′)]} ,

where r′′, r′′′ and all wavevectors are two-dimensional and Ṽ ex−ex(q) is the Fourier transform of the exciton-exciton interaction
potential; here ex = A or B. The Hopfield coefficients are almost independent of the wavevector when its modulus is relatively
small (see Fig. 7), so the usual approximation [1, 45, 46] is to replace all four of them in the above integral by X ≡ κ

(i)
ex (0),

which yields a dramatic simplification,

V (r− r′) = |X|4
∫
dqṼ ex−ex(q)eiq(r−r

′) . (24)

If Ṽ ex−ex(q) only weakly depends on q, the inegral in (24) gives a δ-function and thus the necessary step for obtaining the GP
equation is justified.

Under excitation with a circular-polarized light all the A-type excitons have the same spin polarization and their condensate
can be described by a scalar order parameter. The particle-particle interaction within such a condensate is due to both Coulomb
and exchange interaction between the excitons with parallel spins, which has been considered in a number of works [37, 47]
showing that indeed Ṽ ex−ex(q) ≈ const for qaex << 1 and the polariton-polariton interaction parameter can be approximated
as [47]

Λ = 6RAa
2
ex|X|4 , (25)
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where RA is the A-exciton Rydberg constant.[48] Linear-polarized light can be considered as a superposition of left-hand and
right-hand polarized photons and, theoretically, can create a condensate consisting of two differently polarized polariton species
within a 2DSC layer. Such condensates are described by a spinor order parameter,[5]

Φ(r,t) =

[
Φ1(r,t)
Φ2(r,t)

]
. (26)

Its components obey a system of two coupled GP equations:

i~
∂

∂t
Φ(r,t) = LΦ(r,t) , (27)

where L is a 2×2 nonliner operator given by

L =

 −
~2

2mp
∇2

r + Vc + Λ |Φ1|2 Λ12Φ1Φ?2

Λ21Φ?1Φ2 − ~2

2mp
∇2

r + Vc + Λ |Φ2|2

 . (28)

Here Λ12 = Λ?21 is a parameter representing the interaction of excitons with opposite spins.
As mentioned above, excitons with different spin polarizations occupy different valleys in the Brillouin zone of the 2DSC

material, so there is no particle exchange between two subsystems and each component Φi satisfies a separate normalization
condition, ∫

|Φi(r,t)| = Ni ; i = 1, 2 ,

where Ni denotes the number of polaritons in the i-th condensate. Usually for QW excitons the interaction is much stronger
for parallel spins,[5, 45] so one can expect |Λ12| << Λ and a rather weak coupling between two BECs. However, some
futher mechanisms can operaste. As known, the orientation of the condensate polarization can be pinned along one of the
crystallographic axes of the sample, which manifests a difference between two perpendicular directions in the x − y plane and
can be due some anisotropy in the microcavity.[5] Such a condensate with a certain polarization state can be characterized by a
scalar order parameter and an effective interaction parameter (a combination of Λ and Λ12). [49]

Let us consider now two 2DSC layers in a microcavity, as shown in Fig. 1b, where it is possible to create two condensates
(one in each 2DSC layer) separated by a distance l. Its many–body Hamiltonian can be written as

H2 =
∑
i=1,2

H(i) +
1

2

∫
dr1dr2Ψ̂†1(r1)Ψ̂†2(r2)V12(r1 − r2 − lez)Ψ̂1(r1)Ψ̂2(r2) , (29)

whereH(i) is given by (23) and V12 describes the interaction between two different condensates (we shall consider each of them
as scalar for simplicity). In the mean field approximation, neglecting the q-dependence of the Hopfield coefficients, the last term
in (29) can be written as

U12 =
1

2
|X|4

∫
dr1dr2|Φ1(r1)|2V ex−ex12 (r1 − r2 − lez)|Φ2(r2)|2 , (30)

where Ṽ12(r1−r2−lez) is the exciton-exciton interaction potential betweem different 2DSC sheets and the Hopfield coefficients
have been assumed to be the same for both condensates. The coupling between the condensates located in different 2DSC sheets
takes place due to the electromagnetic interaction between the excitons. It is mediated by transient dipoles associated with
resonant exciton transitions and is similar to the Förster resonant energy transfer process (FRET)[50]. The energy of the dipole-
dipole interaction between two excitons separated by a radius–vector R = r1 − r2 − lez is[50]

V ex−ex12 (R) =
µ1 · µ2 − 3(µ1 · eR)(µ2 · eR)

εR3
, (31)

where µi denotes the dipole moment of the exciton located in the sheet i = 1, 2 and eR = R/R. It has to be averaged over
all possible orientations of µ1,2 in the x − y plane, therefore, if the dipoles are uncorrelated, the averaging will yield zero and
there is no direct Coulomb interaction between the condensates. However, if we consider µ1,2 as transient dipoles due to exciton
transitions coupled to the MC field, they will be the same for a symmetric MC mode, since the considered structure is symmetric
with respect to the plane z = L/2. If we consider a TE mode, the electric field has only y component and we have

µ1x = µ2x = 0 ;

µ1y = µ2y = αE0
y |z=L

2 ±
l
2
,
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where α is the exciton polarizability and E0
y denotes the electric field in empty microcavity. In analogy with a quantum dot, the

exciton polarizability can be written as [51]

α(ω) = χ̃2D(ω)a2exb0 , (32)

where b0 is the exciton extension along z (of the order of the 2DSC layer thickness). Therefore we can write:

〈µ1 · µ2〉 =
(
αE0

y |z=L/2±l/2
)2

.

Therefore the inter-condensate interaction energy is written as

U12 =
1

2

(
αE0

y |z=L/2±l/2
)2 |X|4 ∫ dr1|Φ1(r1)|2

∫
dr2K(r1 − r2)|Φ2(r2)|2 , (33)

with the kernel

K(r1 − r2) = K(r12, φ) =
r212(1− 3 cos2 φ) + l2

(r212 + l2)5/2
, (34)

where φ is the angle between r12 = r1 − r2 and the y axis. The variation of (29) with (33) with respect to Φi leads to coupled
integro-differential equations. In order to simplify them to differential GP equations, we shall make the following (rather crude)
approximation:

K(r1 − r2) ≈
{∫

drK(r)

}
δ2D(r1 − r2) , (35)

where the term in brackets is the q = 0 Fourier component of the kernel and δ2D denotes the 2D Dirac function. The integral in
(35) is equal to 4π

15l . Thus, Eq. (30) can be written as

U12 =
2π

15l
|X|4

(
αE0

y |z=L/2±l/2
)2 ∫

dr|Φ1(r)|2|Φ2(r)|2 , (36)

and the system under consideration can be described formally by the same two coupled GP equations (28). The parameter Λ is
given by Eq. (25) and the inter-condensate interaction constant is

Λ12 =
4π

15l
|X|4

(
αE0

y |z=L/2±l/2
)2

. (37)

The dependence of Λ12 on l (roughly ∼ l−1 for small l) together with the number of particles N1 and N2 in each condensate
provide means to control the coupling effect between the two condensates.

V. CONCLUSION

In summary, we analyzed the properties of exciton–polaritons in a Fabry-Perot microcavity containing one or two monolayer-
thin semiconductor sheets taking as examples MoS2 and WS2 and calculated the dispersion curves, mode lifetimes, Rabi split-
tings, and Hopfield coefficients. Our results suggest that they are interesting for studying the rich physics associated with the
Bose-Einstein condensation of exciton-polaritons. Both materials seem appropriate for this purpose; WS2 may look more at-
tractive because of the larger separation between the A and B excitons and, consequently, easier analysis, however, even for
MoS2 the fraction of B excitons in the lowest polariton branch is rather small. One interesting feature of these materials is the
separation of excitons with opposite spins in k-space. If a Bose-Einstein condensate is created involving both spin orientations,
it should be called a two-species BEC (similar to cold atom sistems [25–28]) rather than a spinor condensate. May be it is
possible to separately control the number of particles in each subsystem by using an elliptically polarized light.

We also considered polariton properties and derived a system of coupled Gross-Pitaevskii equations for a microcavity con-
taining two condensates localized in different semiconductor sheets. The Rabi splitting in this structure is enhanced, compared
to the case of a single semiconductor sheet, for small inter-sheet distances. It reaches values similar to those characteristic of
hybrid organic-inorganic systems with simulataneous coupling of two degenerate excitons and a microcavity photon. [52] The
(non-linear) inter-condensate interaction is resonant (similar to FRET) and approximately inversely proportional to the distance
separating two sheets. It can be controlled by adjusting this distance with a very high precision by using the atomically thin
dielectric h-BN. In principle, it should be also possible to create two condensates independently by using two lasers, that should
lead to different scenarios governed by the population numbers of both BEC’s. It would also open a new way of extension of
experiments with polariton condensates making use of their interaction with uncondensed polaritons. [53, 54] On the theoretical
side, the analysis of coupled GP equations (28) with adjustable coupling parameter can yield new classes of solutions known in
non-liear optics [55] but so far unexplored in the field of Bose-Einstein condensates.
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Appendix A: Polariton dispersion relation for MC with two 2DSC sheets

The z coordinates of the 2DSC sheets are z1,2 = (L ∓ l)/2. The system is symmetric with respect to z = L/2 plane, so
we can foresee that there are two modes for each polariton mode of the system with one 2DSC sheet, one symmetric and one
antisymmetric. Here we shall assume that the dielectric constant of the material filling the regions 0 ≤ z ≤ z1 and z2 ≤ z ≤ L
is ε1, while the space between the semiconductor layers can be filled with another dielectric with the dielectric constant ε2.

For TE waves the electric field component is written as follows:

Ey = sin(k(1)z z)eiqx , 0 ≤ z ≤ z1 ;

Ey =

[
a cos[k

(2)
z (z − L/2)]

b sin[k
(2)
z (z − L/2)]

]
× eiqx , z1 ≤ z ≤ z2 ;

Ey = ± sin[k(1)z (L− z)]eiqx , z2 ≤ z ≤ L , (A1)

where the upper (lower) line or sign corresponds to symmetric (antisymmetric) mode, a and b are some constants and

k(i)z =

√
εi
ω2

c2
− q2 , i = 1, 2 . (A2)

The magnetic field component Hx is obtained from (A1) through the Maxwell equation ∂H/∂t = −c(∇×E). The application
of boundary conditions, (9) and continuity ofEy at z = z1 yields two equations for each case (and boundary conditions at z = z2
are satisfied automatically since the symmetry has been taken into account), from which the constant a or b can be eliminated.
Therefore we have, for symmetric modes:

ck
(1)
z

ω
− ck

(2)
z

ω
tan (k(1)z z1) tan (k(2)z l/2) =

4πiσ2D
c

tan (k(1)z z1) , (A3)

and for anti-symmetric modes:

ck
(1)
z

ω
+
ck

(2)
z

ω
tan (k(1)z z1) cot (k(2)z l/2) =

4πiσ2D
c

tan (k(1)z z1) . (A4)

If we put k(1)z = k
(2)
z , Eqs. (A3) and (A4) simplify to Eqs. (14) and (15). For l→ 0 the frequency of the symmetric mode tends

to that of a MC containing a single 2D semiconductor layer with the optical conductivity 2σ2D, while for the anti-symmetric
mode we have ω → ω0. The corresponding surface modes are obatained by substituting k(i)z = iκi into (A3) and (A4).

Considering now TM waves, the magnetic field component is written as:

Hy = − cos(k(1)z z)eiqx , 0 ≤ z ≤ z1 ;

Hy =

[
a sin[k

(2)
z (z − L/2)]

b cos[k
(2)
z (z − L/2)]

]
× eiqx , z1 ≤ z ≤ z2 ;

Hy = ± cos[k(1)z (L− z)]eiqx , z2 ≤ z ≤ L , (A5)

with the same distinction between symmetric and anti-symmetric modes as above. Using boundary condition for Hy at z = z1,

Hy|z=z1+0 −Hy|z=z1−0 =
4πiσ2D
ω

(
1

ε

∂Hy

∂z

)∣∣∣∣
z=z1

, (A6)

1

ε1

∂Hy

∂z

∣∣∣∣
z=z1−0

=
1

ε2

∂Hy

∂z

∣∣∣∣
z=z1+0

, (A7)
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we obtain the following dispersion relations:

1− ε2k
(1)
z

ε1k
(2)
z

tan (k(1)z z1) tan (k(2)z l/2) =
4πiσ2Dk

(1)
z

ε1ω
tan (k(1)z z1) (A8)

for the symmetric modes, and

1 +
ε2k

(1)
z

ε1k
(2)
z

tan (k(1)z z1) cot (k(2)z l/2) =
4πiσ2Dk

(1)
z

ε1ω
tan (k(1)z z1) (A9)

for the anti-symmetric modes.
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Staehli, et al., Nature 443, 409 (2006).
[9] R. Balili, V. Hartwell, D. W. Snoke, L. Pfeiffer, and K. West, Science 316, 1007 (2007).

[10] A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lematre, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick,
et al., Nature 457, 291 (2009).

[11] L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov,
et al., Science 340, 1311 (2013).

[12] M. Palummo, M. Bernardi, and J. C. Grossman, Nano Letters 15, 27942800 (2015).
[13] F. Wu, F. Qu, and A. H. MacDonald, Phys. Rev. B 91, 075310 (2015).
[14] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).
[15] R. M. Ribeiro, private communication (2015).
[16] C. Zhang, H. Wang, W. Chan, C. Manolatou, and F. Rana, Phys. Rev. B 89, 205436 (2014).
[17] K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, Phys. Rev. Lett. 113, 026803 (2014).
[18] A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Phys. Rev.

Lett. 113, 076802 (2014).
[19] C. Mai, Y. G. Semenov, A. Barrette, Y. Yu, Z. Jin, L. Cao, K. W. Kim, and K. Gundogdu, Phys. Rev. B 90, 041414 (2014).
[20] M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki, and M. Potemski, Nature Nanotech-

nology 10, 503 (2015).
[21] X. Liu, T. Galfsky, Z. Sun, F. Xia, E. chen Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, Nature Photonics 9, 30 (2014).
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