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12.1 INTRODUCTION

Premature degradation of ordinary Portland cement (OPC) concrete 

infrastructure is a current and serious problem related to the fact that 

OPC concrete presents a higher permeability that allows water and other 

aggressive elements to enter, leading to carbonation and chloride-ion 

attack, resulting in corrosion problems [1].

Pacheco-Torgal et  al. [2] mentioned the case of a tunnel in Dubai, 

which had been concluded in 1975 and needed to be completely repaired 

after just 11 years, a case of pile foundations that had disintegrated after just 

12 years, and also a study on Norway OPC concrete bridges that indicated 

that several presented corrosion problems 24 years after they were built. As 

a consequence, worldwide concrete infrastructure rehabilitation costs are 

staggering. For example in the United States, where about 27% of all high-

way bridges are in need of repair or replacement, the needs are estimated to 

be over US$1.6 trillion by 2021, and the corrosion deterioration cost due 

to deicing and sea salt effects is estimated at over US$150 billion. In the 

European Union, nearly 84,000 reinforced and prestressed concrete bridges 

require maintenance, repair, and strengthening with an annual budget of 

£215 M, and that estimate does not include traffic management costs [3].

Many of the degraded concrete structures were built decades ago when 

little attention was given to durability issues. Concrete durability means 

above all minimizing the possibility of aggressive elements to enter the 
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concrete, under certain environmental conditions for any of the  following 

transport mechanisms: permeability, diffusion, or capillarity. The use of 

concrete surface treatments with waterproofing materials (also known as 

sealers) to prevent the access of aggressive substances is an important way 

of contributing to concrete durability. Almusallam et al. [4] studied several 

concrete coatings concluding that epoxy and polyurethane coatings per-

formed better than acrylic, polymer, and chlorinated rubber coatings.

Other authors [5,6] showed that although some waterproof materials 

are effective for a particular transport mechanism (diffusion, capillarity, per-

meability), they may not be for another. They compared the waterproofing 

capacity of concrete with three polymeric resins (epoxy, silicone, acrylic) 

and mentioned that the silicone-based one is more effective (99.2%) in 

reducing water absorption by capillarity than the epoxy resin (93.6%), 

but in terms of chloride diffusion the epoxy resin is 100% effective, while 

the silicone varnish does not go beyond 67.5%. Epoxy coatings exhibited 

excellent durability under the laboratory and field-test conditions and 

are recommended for protecting concrete in cooling tower basins against  

sulfur-oxidizing or other acid-producing bacteria [7].

Medeiros and Helene [8] used a water-repellent material based on 

silane-siloxane, noticing that although it is effective to reduce the water 

absorption by capillarity of concrete (reduced from two to seven times), it 

only managed to achieve a reduction of the chloride diffusion from 11% 

to 17% and also failed to prevent the access of water by permeability.

Pacheco-Torgal and Jalali [9] confirm that the surface treatment of 

concrete with a water-repellent material is effective, but above all more 

cost effective when compared with the alternative of using a polymer 

additive in the composition of concrete.

In 2013, Brenna et  al. [10] studied the efficiency of four commercial 

concrete coatings (a polymer-modified cementitious mortar and three elas-

tomeric coatings) against chloride-induced corrosion, concluding that the 

polymer-containing mortar shows the best effect on delaying chloride pen-

etration in concrete. In summary, the most common surface treatments use 

polymeric resins based on epoxy, silicone (siloxane), acrylics, chlorinated 

rubber, polyurethanes, or polymethacrylate.

Bijen [11] mentioned that the epoxy resins have low resistance to 

ultraviolet radiation and polyurethanes are sensitive to high-alkalinity 

environments. Polyurethane is obtained from isocyanates, known world-

wide for their tragic association with the Bhopal disaster. As for chlo-

rinated rubber it derives from reacting butyl rubber with chlorine; it is 
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important to remember that chlorine is associated with the production 

of dioxins and furans, which are extremely toxic and also bioaccumula-

tive. Several scientist groups already suggest that chlorine-based industrial 

products should be prohibited [12].

Besides, the European Union has approved Regulation (EU) 305/2011, 

related to construction products regulation, which will replace the cur-

rent Directive 89/106/CEE, already amended by Directive 1993/68/EEC, 

known as the Construction Products Directive. A crucial aspect of the new 

regulation relates to the information regarding hazardous substances [13].

Recent investigations on the geopolymer field [14] reveal a third cat-

egory of mortars with high potential to enhance the durability of concrete 

structures. Investigations in the field of geopolymers have exponentially 

increased after the research results of Davidovits [15], who developed and 

patented binders obtained from the alkali activation of metakaolin, coin-

ing the term “geopolymer” in 1978. The technology of alkali activation,  

however, predates this terminology by several decades [16].

For the chemical designation of the geopolymer, Davidovits suggested 

the name “polysialates,” in which sialate is an abbreviation for aluminosili-

cate oxide. The sialate network is composed of tetrahedral anions [SiO4]
4− 

and [AlO4]
5− sharing the oxygen, which needs positive ions such as (Na+, 

K+, Li+, Ca++, Na+, Ba++, NH4
1, H3O

+) to compensate for the electric 

charge of Al3+ in tetrahedral coordination (after dehydroxilation the alu-

minum changes from coordination 6 (octahedral) to coordination 4 (tetra-

hedral). However, Provis and Van Deventer [17] mentioned that the sialate 

nomenclature “implies certain aspects of the geopolymer gel structure 

which do not correspond to reality.”

In 2014, Provis presented a rigorous a useful definition of these mate-

rials: “alkali-activated materials are produced through the reaction of an 

aluminosilicate—normally supplied in powder form as an industrial by-

product or other inexpensive material—with an alkaline activator, which 

is usually a concentrated aqueous solution of alkali hydroxide, silicate,  

carbonate or sulfate” [18].

In the last decade several authors have reported research in a large 

number of aspects related to geopolymers.

However, very few studies [19–21] have addressed the use of geopoly-

mers for enhancement of concrete structures’ durability. Since geopolymer 

performance concerns the resistance to acid attack, is far better than that 

of Portland cement [16], which means that these materials could be an 

alternative low-toxicity coating material.
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This paper presents results of an experimental investigation on the 

resistance to chemical attack (with sulfuric, hydrochloric, and nitric acid) 

of several materials: OPC concrete, high-performance concrete (HPC), 

epoxy resin, acrylic painting, and a fly ash–based geopolymeric mortar.

12.2 EXPERIMENTAL WORK

12.2.1 Materials, Mix Design, Mortar and Concrete Mixing, and 
Concrete Coating

The characteristics of the aggregates (coarse and sand) used are shown in 

Table 12.1 and in Fig. 12.1. The fly ash used in the geopolymeric mor-

tars was supplied by Sines-EDP and according to the NP EN 450-1 it 

belongs to the B-class and has an N-class fineness modulus. Geopolymeric 

mortars were a mixture of aggregates, fly ash, calcium hydroxide, and 

alkaline silicate solution. The mass ratio for aggregates/fly ash and acti-

vator was 2/1/0.6. A 10% percentage substitution of fly ash by calcium 

hydroxide in the mixture was also used. This is because the use of minor 
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Table 12.1 Characteristics of the aggregates

Max  

dimension

Fine  

content

Density  

(kg/m3)

Water  

absorption

Sand 4.0 ≤3 2660 0.2

Coarse aggregates 8.0 ≤1.5 2620 0.6
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Figure 12.1 Aggregate particle-size distribution of the sand and of the coarse 

aggregate.
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calcium hydroxide percentages is pivotal for the strength and durability of 

geopolymers [22,23]. The alkaline activator was prepared prior to use. An 

activator with sodium hydroxide and sodium silicate solution (Na2O = 

13.5%, SiO2 = 58.7%, and water = 45.2%) was used with a mass ratio 

of 1:2.5. Previous investigations showed that this ratio lead to the high-

est compressive strength results in geopolymeric mortars [14]. The sand, 

fly ash, and calcium hydroxide were dry mixed before being added to 

the activator. Three different sodium hydroxide concentrations (10, 

14, and 18 M) were used. The fresh mortar was cast and allowed to set 

at room temperature for 24 h before being removed from the molds and 

kept at room temperature (20°C) until tested in compression and flex-

ural strength. An OPC (CEM I 42,5 N) was used to prepare the concrete 

mixtures. Two concrete mixes (normal and HPC) were designed using 

the Faury concrete mix design method (Table 12.2). The concrete mixing 

starts with the introduction of the coarse aggregates in the mixer, followed 

by the sand for 2 min; then OPC is introduced and mixed to the aggre-

gates for 2 more minutes. Then, 70% of the water is introduced in the 

mixer and all the ingredients are mixed for 2 min. Finally, the remaining 

water is added for 2 min and everything is mixed for 2 more minutes.

The concrete specimens were conditioned at a temperature equal to 

21 ± 2°C cured in a moist chamber until they have reached 28 days. An 

epoxy resin often used as concrete coating protection against acid attack 

with a commercial reference Sikagard 62 PT was used for coating of the 

two concrete mixtures. The epoxy adhesive is a two-component system 

(resin and hardener) with a bulk density of 1.35 kg/dm3. After mixing the 

two components, the mixture remains workable for 20 min at 20°C or just 

0 min at 30°C. An acrylic paint often used as concrete coating protection 

to prevent the access of aggressive substances with a commercial reference 

Sikagard 660 ES was also used for coating of the two concrete mixtures. 

This material has a bulk density of 1.30 kg/dm3 and is provided by the 

manufacturer as ready to be used.

p0090

Table 12.2 Concrete mix proportions per cubic meter of concrete

Cement  

(kg)

Sand  

(kg)

Coarse  

aggregates  

(kg)

Water W/C

NC 270 1135 732 182 0.65
BED 442 876 782 205 0.45
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12.3 EXPERIMENTAL PROCEDURES

12.3.1 Compressive Strength

The compressive strength was performed under NP EN 206-1. Tests were 

performed on 100 × 100 × 100 mm3 concrete specimens. The compres-

sive and flexural strength data of geopolymeric mortars was obtained using  

160 × 40 × 40 mm3 specimens according to EN 1015-11. Compressive 

strength for each mixture was obtained from an average of three cubic 

specimens determined at the age of 28 days of curing.

12.3.2 Water Absorption by Immersion

Tests were performed on 40 × 400 × 80 mm3 specimens. Specimens 

were tested with 28 days curing. The specimens were immersed in water 

at room temperature for 24 h. First, the weight of the specimens while sus-

pended by a thin wire and completely submerged in water is recorded 

as Wim (immersed weight). After that, the specimens were removed from 

water, and placed for 1 min on a wire mesh allowing water to drain; then 

visible surface water is removed with a damp cloth and weight is recorded 

as Wsat (saturated weight). All specimens were placed in a ventilated oven 

at 105°C for not less than 24 h and allowing that two successive weigh-

ings at intervals of 2 h show an increment of loss not greater than 0.1% 

of the last previously determined weight of the specimen. The weight of 

the dried specimens is recorded as Wdry (oven-dry weight). The absorption 

coefficient is determined as following equation:

 A(%)
W W

W W

sat dry

sat im

100 (12.1)

12.3.3 Capillary Water Absorption

Capillary water absorption was carried out using 40 × 400 × 80 mm3 

specimens in the case of geopolymeric mortars and 100 × 100 × 100 mm3 

specimens for concrete. After 28 days in a moist chamber the specimens 

were placed in a 105°C oven for 24 h. The test consists of placing the 

specimens in a container with enough water so that one side of the sam-

ple will remain immersed. This test is carried out according to Standard 

LNEC E393. Water absorption has been measured after 5, 10, 20, 30, 60, 

90, 120, 180, 240, 300, 360, 420, and 480 min. Capillarity water absorption 

was obtained from an average of three specimens.
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12.3.4 Resistance to Chemical Attack

The resistance to chemical attack followed a variation of the ASTM C-267 

(Standard test methods for chemical resistance of mortars, grouts, and 

monolithic surfacing’s and polymer concretes). The test used in the present 

investigation consists of the immersion of 100 × 100 × 100 mm3 concrete 

(NC, HPC, coated concrete specimens) and fly ash geopolymeric mortar 

specimens with 28 days curing in acid solution. Three different acids were 

used (sulfuric, hydrochloric, and nitric). Three acid concentrations were 

used (10%, 20%, and 30%) to simulate long-term exposure at lower con-

centrations. Other authors used 5% Na2SO4 concentrations and immer-

sion for 12 months [24]. The resistance to acid attack was assessed by the 

differences in weight of dry specimens before and after acid attack at 1, 7, 

14, 28, and 56 days. The chemical resistance was assessed by the differences 

in weight of dry specimens before and after acid attack, since compres-

sive strength of specimens immersed in acid media could not be evalu-

ated. The fly ash–based geopolymeric mortar used in the resistance to acid 

attack was the one associated with the highest compressive strength and 

low water absorption.

12.4 RESULTS AND DISCUSSION

12.4.1 Compressive Strength

Fig. 12.2 shows the results of the compressive strength of the fly ash–based 

geopolymeric mortars after 28 days curing as well as of the two concrete 

mixtures. The results show that the compressive strength of geopolymeric 

mortars is very dependent on the molarity of the sodium hydroxide. 

Increasing the molarity from 10 to 14 M leads to a relevant compressive 

strength loss.

However, further increase from 14 to 18 M shows no noticeable 

effects. Previous investigations [25] have shown that although a high 

alkali content favors the dissolution of Al and Si species of fly ash it can 

also negatively affect its strength. Pacheco-Torgal et  al. [26], who stud-
ied the geopolymerization of mine wastes, noticed the opposite phe-
nomenon. Other authors [27] mentioned that when OH− concentration 
was high enough, dissolution of fly ash was accelerated, but polyconden-
sation was hindered. Normal concrete (NC) has a compressive strength 
around 30 MPa while HPC compressive strength slightly exceeds 45 MPa. 
The standard deviation was low and the coefficient of variation does not 
exceed 12% meaning that the results were statistical relevant.
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12.4.2 Water Absorption by Immersion

The results of water absorption by immersion are showed in Fig. 12.3. 

These results are aligned with compressive strength performance. The fly 

ash geopolymeric mortar with the least water absorption by immersion is 

the one with the highest compressive strength.

s0060

p0125

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

FA 10M FA 14M FA 18M NC HPC

C
o

m
p

re
s
s
iv

e
 s

tr
e
n

g
th

 a
t 

2
8
 d

a
y
s
 c

u
ri

n
g

 (
M

P
a
)

Mixtures

Figure 12.2 Compressive strength.f0015
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The geopolymeric mortars with a sodium hydroxide molarity of 14 

and 18 M show a water absorption around 20%. This means that compres-

sive strength is directly influenced by open porosity. However, previous 

investigations [28] on the field of geopolymers showed that low poros-

ity does not always mean high compressive strength; being that compres-

sive strength is more influenced by NaOH concentration than it is from 

porosity. Both NC and HPC show a water absorption around 15%. This 

falls in the current water absorption by immersion range of current OPC 

concretes used by the construction industry (compressive strength at  

28 days curing between 25 and 45 MPa), of 12–16%.

12.4.3 Capillary Water Absorption

Fig. 12.4 shows the capillary water absorption coefficients. While the fly ash 

geopolymeric mortars with a sodium hydroxide molarity of 14 and 18 M 

show a capillary water absorption around 0.45 kg/m2.h0.5 the geopoly-

meric mortar with the lowest open porosity and the highest compressive 

strength has a 0.1 kg/m2.h0.5 capillary water absorption coefficient.

The capillary water absorption of the two concrete mixes used in this 

investigation is very low, around 0.15 kg/m2.h0.5. As a comparison, a plain 

C30/37-strength class concrete has a capillarity coefficient of 0.251 kg/

m2.h0.5 for 28 days curing [29], while a plain C20/25-strength class 
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concrete (the most used strength class in Europe [30]) has capillarity coef-

ficients between 0.85 and 2.6 kg/m2.h0.5 [31].

12.4.4 Resistance to Chemical Attack

12.4.4.1 Resistance to Sulfuric Acid Attack

Fig. 12.5 shows the weight loss after sulfuric acid attack for the different acid 

concentrations. NC coated with epoxy resin shows the most stable perfor-

mance for all three acid concentrations confirming previous investigations. 
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Figure 12.5 Weight loss due to sulfuric acid attack: (A) 10% acid concentration,  

(B) 20% acid concentration, and (C) 30% acid concentration.
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The fly ash geopolymeric mortar shows a good performance for both 10% 

and 20% sulfuric acid concentration. Fig. 12.6 shows photos of the different 

specimens after immersion in a 20% sulfuric acid concentration. Even for a 

30% sulfuric acid concentration this mortar shows a good acid resistance for 

immersion until 14 days. HPC specimens show the third-best performance. 

It shows a minor weight loss after 56 days in a 10% sulfuric acid concentra-

tion. For a 20% sulfuric acid concentration the weight loss is clear beyond 

14 days, reaching a maximum of 9%. When the concentration increases to 

30%, the weight loss starts after 7 days immersion and reaches a maximum 

of 20% after 56 days. Specimens of NC coated with acrylic paint show the 

same performance of uncoated concrete specimens for both 10% and 20% 

sulfuric acid concentration. Only for the 30% acid concentration and long-

term immersion can this coat be of some use.

Since NC and HPC have almost similar capillary water absorption, 

the differences in acid resistance lie in the leaching of calcium hydrox-

ide (Ca(OH)2) from the pore solution and decalcification of CSH, which 

must be lower in the latter case due to a much higher Portland cement 

content. In the sulfuric acid attack, sulfate ions react with calcium hydrox-

ide, forming calcium sulfate dihydrate-gypsum (Fig. 12.2), and with alu-

minate hydrates, forming ettringite (Fig. 12.3).

 H SO Ca(OH) CaSO2 4 2 41 → (12.2)

 
3 3 6 25

3 3 31

4 2 3 2 2

2 3 4 2

CaSO CaO Al O H O H O

CaO Al O CaSO H O

1 1⋅ ⋅

→ ⋅ ⋅ ⋅

 (12.3)
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Figure 12.5 (Continued)
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Figure 12.6 Specimens after immersion in a 20% sulfuric acid solution.f0035
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12.4.4.2 Resistance to Nitric Acid Attack

Weight loss after nitric acid attack is shown in Fig. 12.7. Again, NC 

coated with epoxy resin shows the most stable performance for all three 

acid concentrations. Nitric acid attack at 10% concentration is especially 

destructive for NC even after just 7 days immersion. Nitric acid reacts 

with calcium compounds, forming calcium nitrate, which has a solubility 

of 56%. All the other mixtures show a weight loss not exceeding 2% even 

after 56 days immersion. The behavior for a 20% nitric acid concentration 
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Figure 12.7 Weight loss due to nitric acid attack: (A) 10% acid concentration, (B) 20% 

acid concentration, and (C) 30% acid concentration.
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is almost the same, the difference being that NC shows a higher weight 

loss. When the acid concentration is increased to 30% NC does not show 

an increase in the weight loss. For this very high acid concentration the 

geopolymeric mortar shows a disappointing performance. Allahverdi 

and Škvára [32,33] suggested that the electrophilic attack of nitric acid 
protons results in the ejection of tetrahedral aluminum from the alu-
minosilicate framework and in the formation of an imperfect highly sili-
ceous framework. Other authors [34] also suggested this aluminosilicate 
depolymerization.

12.4.4.3 Resistance to Hydrochloric Acid Attack

Fig. 12.8 shows the weight loss after hydrochloric acid attack for the dif-
ferent acid concentrations. The results are every similar to those of the 
nitric acid attack. A 10% hydrochloric acid concentration is responsible for 
a relevant NC weight loss even after just 7 days immersion. This type of 
acid reacts with calcium compounds, leading to the formation of calcium 
chloride, which has extremely high solubility (46.1 wt%) [35]. The behav-
ior for a 20% nitric acid concentration is almost the same.

The difference being that NC shows a higher weight loss. All the 
other mixtures show a weight loss not exceeding 2% even after 56 days 
immersion. When the hydrochloric acid concentration is increased to 
30%, NC does not show a relevant increase in the weight loss. However, 
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Figure 12.7 (Continued)
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the geopolymeric mortar shows a high weight loss. Davidovits et al. [36] 

reported a 78% weight loss for OPC concrete specimens immersed for 4 

weeks in a 5% hydrochloric acid solution, which is much higher than the 

weight loss of NC after immersion for 56 days in a 30% hydrochloric acid 

solution, which was lower than 10%. This difference is so high that it can-

not be explained by the specimen’s geometry or OPC concrete composi-

tion. A possible explanation could be related to the periodic replacement 
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Figure 12.8 Weight loss due to hydrochloric acid attack: (A) 10% acid concentration, 

(B) 20% acid concentration, and (C) 30% acid concentration.
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Figure 12.8 (Continued)

of the acid solution by the Davidovits study. Just because the pH is raised 

with time, for instance, a solution of sulfuric acid at 5% concentration 

evolves from pH = 1.05–6.95 after 28 days [37].

12.5 COST ANALYSIS

In order to evaluate the economic efficiency of several structural solutions, 

comparisons between the costs of materials were made. The cost calcu-

lations were related to 1 m2 of concrete pavement with 0.3 m thickness. 

Two noncoated solutions (NC, HPC), one with 0.275 m NC thickness 

coated with 0.025 m fly ash geopolymer and two coated with acrylic paint 

and epoxy resin were analyzed. Fig. 12.9 shows the costs of the differ-

ent solutions. The concrete pavement coated by epoxy resin is by far the 

most costly solution. Epoxy coating costs exceed the NC solution costs 

by as much as 100%. Fig. 12.10 shows the cost to remaining mass (after 

acid attack) ratio according to acid concentration. The results show that 

for 10% and even 20% acid concentrations NC shows the best cost effi-

ciency. The cost efficiency of the HPC-based solution is similar to the fly 

ash–based geopolymeric mortar except for a 30% acid concentration.

The results also show that no matter how well epoxy resin per-

forms under acid attack its economic efficiency is the worst between all 

five solutions, being 70% above the cost efficiency of the fly ash–based 

geopolymeric mortar. Only for a 30% acid concentration does the 
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Figure 12.10 Cost to remaining mass ratio (euro/%): (A) 10% acid concentration,  

(B) 20% acid concentration, and (C) 30% acid concentration.

f0055

NC HPC FA_10M Acrylic coat. Epoxy coat.

Coating 6.17 2.72 13.13

Concrete 12.44 17.10 11.40 12.44 12.44

Total cost 12.44 17.10 17.57 15.16 25.57

0.00

5.00

10.00

15.00

20.00

25.00

30.00

C
o
s
t 
(€

/m
2
)

Figure 12.9 Costs of the different concrete pavement solutions.f0050
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Figure 12.10 (Continued)

epoxy-based solution gain some interest. It is important to remember that 

the cost of the fly ash–based geopolymeric mortar is very dependent on the 

cost of sodium silicate (Fig. 12.11). Fig. 12.12 shows a simulation of the 

cost-to-remaining-mass (after acid attack) ratio according to acid concen-

tration when the sodium silicate cost is around 30% of its current cost. 

This means that current investigations aiming to replace sodium silicate 

with low-cost waste glass [38] will increase the cost efficiency of the fly 

ash–based geopolymeric mortar as a coating material for OPC concrete 

infrastructures exposed to harsh chemical environments. Furthermore, the 

future use of waste glass as sodium silicate replacement fits the European 

zero-waste program COM 398 [39].
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Figure 12.11 Cost percentage of fly ash geopolymeric mortar ingredients.f0060
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Figure 12.12 Cost to remaining mass ratio (euro/%) for a low-cost waste glass sodium 

silicate replacement simulation: (A) 10% acid concentration, (B) 20% acid concentra-

tion, and (C) 30% acid concentration.
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12.6 CONCLUSIONS

Worldwide infrastructure rehabilitation costs are staggering. Premature 

degradation of OPC concrete infrastructure is a current and serious prob-

lem related to the fact that OPC concrete presents a higher permeability 

that allows water and other aggressive elements to enter, leading to car-

bonation and chloride-ion attack, resulting in corrosion problems. This 

article presents results of an experimental investigation on the resistance 

to chemical attack of several materials. NC coated with epoxy resin shows 

the most stable performance for all three acid types and acid concentra-

tions. For a very high nitric acid concentration the geopolymeric mortar 

shows a disappointing performance that could be due to the ejection of 

tetrahedral aluminum from the aluminosilicate framework and in the for-

mation of an imperfect highly siliceous framework. The results show that 

no matter how well epoxy resin performs under acid attack its economic 

efficiency is the worst between all the five solutions, being 70% above the 

cost efficiency of the fly ash–based geopolymeric mortar. Current inves-

tigations aiming to replace sodium silicate with low-cost waste glass will 

increase the cost efficiency of the fly ash–based geopolymeric mortar as 

coating material for OPC concrete infrastructure exposed to harsh chemi-

cal environments.
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