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ABSTRACT
Background The aim of this work was to identify new
genetic causes of Rett-like phenotypes using array
comparative genomic hybridisation and a whole exome
sequencing approach.
Methods and results We studied a cohort of 19
Portuguese patients (16 girls, 3 boys) with a clinical
presentation significantly overlapping Rett syndrome
(RTT). Genetic analysis included filtering of the single
nucleotide variants and indels with preference for de
novo, homozygous/compound heterozygous, or
maternally inherited X linked variants. Examination by
MRI and muscle biopsies was also performed.
Pathogenic genomic imbalances were found in two
patients (10.5%): an 18q21.2 deletion encompassing
four exons of the TCF4 gene and a mosaic UPD of
chromosome 3. Variants in genes previously implicated
in neurodevelopmental disorders (NDD) were identified
in six patients (32%): de novo variants in EEF1A2,
STXBP1 and ZNF238 were found in three patients,
maternally inherited X linked variants in SLC35A2, ZFX
and SHROOM4 were detected in two male patients and
one homozygous variant in EIF2B2 was detected in one
patient. Variants were also detected in five novel NDD
candidate genes (26%): we identified de novo variants
in the RHOBTB2, SMARCA1 and GABBR2 genes; a
homozygous variant in EIF4G1; compound heterozygous
variant in HTT.
Conclusions Network analysis reveals that these genes
interact by means of protein interactions with each other
and with the known RTT genes. These findings expand
the phenotypical spectrum of previously known NDD
genes to encompass RTT-like clinical presentations and
identify new candidate genes for RTT-like phenotypes.

INTRODUCTION
Rett syndrome (RTT) is a severe neurodevelopmen-
tal disorder (NDD) affecting mostly girls, charac-
terised by an apparently normal prenatal and
perinatal period followed by a stagnation in devel-
opment and a severe regression in language and
motor skills.1 RTT is clinically divided into classical
and atypical forms of the disease.2 The clinical
diagnostic criteria for RTT can be revisited in
table 1. Patients with RTTor RTT-like clinical pres-
entation often present with severe intellectual dis-
ability (ID), autistic features and epilepsy, and their
differential diagnosis includes Angelman syndrome,

Pitt-Hopkins syndrome (PTHS) and some epileptic
encephalopathies.3–5

Whole exome sequencing (WES), has had a
major impact in medical practice, leading to the
identification of several new genes involved in
ID.6–8 We used a genomic approach combining
array comparative genomic hybridisation (aCGH)
and WES to find genetic causes of disease in a
group of RTT-like patients who tested negative for
MECP2 mutations and—whenever clinically appro-
priate—CDKL5 mutations. We were able to detect
pathogenic variants and very likely pathogenic var-
iants that we believe can account for the RTT-like
phenotype in 13 (68%) of these patients.

METHODS
Patients
We enrolled 19 patients (16 girls and 3 boys) with
idiopathic neurodevelopmental phenotypes that
clinically overlap with RTT and their unaffected
parents (trios). The patients were selected from a
previously established database of patients with
idiopathic ID and confirmed as eligible by consult-
ing with medical geneticists, paediatric neurologists
and neurodevelopmental paediatricians, using the
revised clinical criteria for RTT diagnosis.1 We
included patients meeting sufficient criteria for the
diagnosis of Rett (classical or atypical)—except for
documented regression, which was not considered
mandatory. Exclusion criteria were also taken into
account (tables 1 and 2; online supplementary
data1).
Before enrolment all patients had undergone

routine diagnostic workup, including brain MRI
and metabolic screen. MECP2 analysis was per-
formed by Sanger sequencing and qPCR for all
patients and CDKL5 sequencing was undertaken
for patients presenting early onset seizure variant.
No patient presented with clearly congenital forms,
hence FOXG1 was not tested. Patients would only
be enrolled in the study if their complementary
exams had been normal or with abnormalities that
could not clearly explain the phenotype.

Molecular analysis
For all patients included in this work an aCGH
analysis was performed first, followed by WES
(provided aCGH profile had been normal or
inconclusive).
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Array comparative genomic hybridisation
aCGH analysis was performed using two different platforms:
human genome CGH Agilent 180K custom array and Illumina
HumanOmniExpress beadchip array (see online supplementary
part 2; figure S2.1). All genomic coordinates are in build
GRCh37/hg19.

Exome sequencing and variant detection
Exomes were enriched with Agilent’s SureSelect All Human
Exome V.4 Kit (51 Mb encompassing the exons of 20 965 genes),
followed by AB SOLiD5500xl System sequencing (Life
Technologies). Filtering of single nucleotide variants and indels is
described in online supplementary data2. Preference was given to
(1) de novo variants, (2) homozygous or compound heterozygous
variants compatible with an autosomal recessive mode of trans-
mission and (3) X linked variants. The impact of variants was pre-
dicted using in silico tools, namely SIFT,9 PolyPhen2,10 Mutation
Assessor,11 Mutation Taster,12 PMut13 and Condel.14 Alignment
for amino acid conservation among species was performed
using the ClustalW2 webtool (http://www.ebi.ac.uk/Tools/msa/
clustalw2/) (see online supplementary data2; figure S2.2).

Selection and interpretation of the variants
Candidate variants were validated by Sanger sequencing in the
trios. Variants were selected for Sanger confirmation as
described in online supplementary data2 and in figure S2.3. The
variants selected for Sanger sequencing confirmation are
described in online supplementary data1, table S1.19. The
primers designed for this purpose are listed in online supple-
mentary data2, table S2.2. The variants were classified according
to the flow chart depicted in online supplementary figure S2.4,
adapted from de Ligt and colleagues.6

Network analysis
We performed gene network analysis to: (1) verify if our candi-
date genes interacted among themselves and with the known

RTT genes (MECP2, CDKL5, FOXG1), (2) study the topology
of these interactions, (3) predict additional genes that may be
involved in RTT if they are shown to interact with a large
number of genes in the query set, (4) identify common bio-
logical themes by exploring functional enrichment analysis of
Gene Ontology (GO) terms.

Network analysis was performed with GeneMANIA
(V.3.1.2.7, http://www.genemania.org/).15 16 Given a set of input
genes, GeneMANIA finds related genes using a very large set of
functional association data, including protein interactions,
genetic interactions, pathway, coexpression, colocalisation,
shared protein domain and predicted functional relationship.
GeneMANIA also allows for functional enrichment analysis. For
our analysis, the genes used as input were the already known
RTT genes (MECP, CDKL5, FOXG1) as well as the genes
selected as likely causing RTT-like phenotype in our cohort.

For additional details on the methodology of the gene
network analysis performed using GeneMANIA (V.3.1.2.7) see
online supplementary data2.15 16

RESULTS
Patients’ clinical profile
We enrolled 19 patients (16 girls and 3 boys) with ages between
6 and 31 years (mean age 15.8±6.3 years), with idiopathic neu-
rodevelopmental phenotypes that clinically overlapped with
RTT, as well as their unaffected parents (trios). The patients
were selected from a previously established database of patients
with ID and confirmed as eligible using the revised clinical cri-
teria for RTT diagnosis.1 All patients had normal routine diag-
nostic workup, including brain MRI, which for RTT diagnosis
purpose was classified as ‘normal’ if the alterations present were
not a consequence of a perinatal or postnatal insult, neurometa-
bolic disease or severe infection; this was the case for patients 1,
2, 6, 14, 15 and 17. Detailed description of the MRI findings
for these patients can be found in the online supplementary
data. Metabolic screen, MECP2 analysis by Sanger sequencing

Table 1 Clinical diagnostic criteria for Rett syndrome (adapted from Neul and colleagues1)

Main criteria Supportive criteria Exclusion criteria Required for classic RTT Required for variant RTT

Partial/complete loss of acquired
purposeful hand skills

Breathing disturbances (awake) Brain injury secondary to
trauma (perinatal or postnatal)

A period of regression
followed by recovery or
stabilisation

A period of regression
followed by recovery or
stabilisation*

Partial/complete loss of acquired spoken
language

Bruxism (awake) Neurometabolic disease All main criteria and none
exclusion criteria

At least 2 of the 4 main
criteria

Gait abnormalities: Impaired (dyspraxic)
or absent

Impaired sleep pattern Severe infection that causes
neurological problems

Supportive criteria are not
required, although often
present in typical RTT

At least 5 out of 11
supportive criteria

Stereotypical hand movements (wringing/
squeezing, clapping/tapping, mouthing,
washing/rubbing automatisms)

Abnormal muscle tone Grossly abnormal psychomotor
development in the first
6 months of life

Peripheral vasomotor
disturbances
Scoliosis/kyphosis
Growth retardation
Small cold hands and feet
Inappropriate laughing/screaming
spells
Diminished response to pain
Intense eye communication
—‘eye pointing’

*Because MECP2 mutations are now identified in some individuals prior to any clear evidence of regression, the diagnosis of ‘possible’ RTT should be given to children under 3 years
old who have not lost any skills but otherwise have clinical features suggestive of RTT. These individuals should be reassessed every 6–12 months for evidence of regression. If
regression manifests, the diagnosis should then be changed to definite RTT. However, if the child does not show any evidence of regression by 5 years, the diagnosis of RTT should be
questioned.
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Table 2 Clinical characterisation of the cohort relative to RTT clinical diagnosis criteria

Proband_
ID Gender Rett Regression

Main criteria Minor criteria Comorbidities

Partial/
complete
loss of
acquired
hand
skills

Partial/
complete
loss of
spoken
language

Gait
abormalities

Stereotypical
hand
movements

Breathing
disturbances

Bruxism
when
awake

Impaired
sleep
pattern

Abnormal
muscle
tone

Peripheral
vasomotor
disturbances

Scoliosis /
Kyphosis

Growth
retardation

Small
cold
hands/
feet

Laughing /
Screaming
spells

Diminished
response
to pain

Intense
eye
communi-
cation Epilepsy

Autism
Spectrum
Disorder

1 F Classical Y Y Y Y Y Y N N Y N Y Y Y Y Y Y Y

2 F Classical Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y

3 F Classical Y Y Y Y Y Y N N Y N N N N Y N N Y Y

4 F Classical Y Y Y Y Y N N Y Y Y Y N Y Y N Y Y Y

5 F Atypical Y N Y Y Y Y Y N Y N N N Y Y N Y N N

6 F Atypical Y Y Y Y N N N N Y N Y Y Y N N Y N Y

7 F Atypical Y Y N N Y Y Y Y N Y Y Y Y Y N Y Y Y

8 F Atypical Y Y Y N Y N N N Y Y Y N Y Y N N Y Y

9 F Atypical N Y Y N Y Y Y Y Y N N N Y Y N Y N Y

10 F Like N Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y N

11 F Like N N Y Y Y N Y Y N Y N Y Y N Y Y Y N

12 F Like N N Y Y Y Y Y Y N Y Y N Y N Y Y Y N

13 F Like N Y Y Y N N Y Y Y N Y N N Y N N Y N

14 M Like N N Y Y Y Y Y Y Y N N N N N Y N Y Y

15 M Like N Y Y Y Y N N Y Y N N N N Y N N Y Y

16 F Like N N Y Y Y N N N N N Y N Y Y

17 F Like N N Y N Y Y Y Y Y N Y Y N Y Y N Y Y

18 F Like N N N Y Y N Y Y N Y N N Y N Y N N Y

19 M Like N N Y Y N N Y N N Y Y N Y N Y Y N Y

Blank cells=information not provided.
F, Female; ID, intellectual disability; M, Male; N, No, Y, Yes.
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and qPCR, as well as CDKL5 sequencing (if early onset seizure
variant) were performed for all patients.

The main clinical findings of the patients are summarised in
table 2 (more detailed in online supplementary data1). We have
classified the patients according to Neul and colleagues, as: (1)
classical RTT, if they had had regression and presented all 4
main criteria; (2) atypical RTT, if they had had regression and
met at least 2 of the 4 main criteria and 5 of the 11 minor cri-
teria, and (3) RTT-like, if they met criteria for RTT (classical or
atypical) except for documented regression. The most common
comorbidities in this cohort were epilepsy, affecting 74% (14 of
19), and autism spectrum disorder (ASD) in 74% (14 of 19) of
the patients. All patients were sporadic cases and no other rele-
vant findings were reported in their family history, except where
specified below. The clinical features of the cohort are sum-
marised in table 2.

Global yield of genomic analysis
Using the combined aCGH and WES analysis we were able to
detect genomic imbalances in 10.5% (2 out of 19) of the
patients and single nucleotide variants in 58% (11 out of 19)
patients (summary of the results in online supplementary table
S1.1 and interpretation workflow in online supplementary
figure S2.1). We detected a de novo 18q21.1 microdeletion
encompassing the TCF4 gene in patient 7, which was confirmed
by qPCR, and a mosaic UPD of chromosome 3 in patient 16
(see online supplementary figures S1.1 and S1.2, respectively).
For patients without diagnostic findings in the aCGH analysis,
we performed WES analysis (see online supplementary figure
S2.2–S2.4). A summary of the WES results is provided in tables
3 and 4: six variants in six genes previously described as asso-
ciated with NDDs (table 3); likely pathogenic variants in five
genes not described as associated with a RTT-like or ID related
phenotype but which, due to their functions, may account for
the disease in the patients (table 4).

Patients with CNVs causing RTT-like phenotypes
Patient 7 is a girl who had an apparently normal development
up until the age of 4 months, when regression was noticed.
Hand stereotypies were documented around 30 months; still,
acquisition of some hand skills occurred around 6 years of age,
but these were lost 3 years later. Currently the patient is an
adult with moderate ID, epilepsy and autistic behaviour.
Additionally, she presents with eight minor criteria for RTT
diagnosis, including respiratory disturbances—more precisely
hyperventilation. Overall, the patient was classified as atypical
RTT. Microarrays revealed a de novo 0, 25 Mb microdeletion at
chromosome 18q21.1 encompassing four exons of TCF4 and
the MIR4529 gene (see online supplementary figure S1.1). Loss

of function mutations and microdeletions affecting TCF4 have
been described in patients with PTHS.19 20 34 The natural
history of RTT and PTHS overlaps significantly, the latter being
usually considered in the differential diagnosis of RTT. The fact
that the patient is a girl, lacks dysmorphisms, started to show
stereotypies around 2.5 years old and hyperpnoea at 7 years
lead to the consideration of RTTas a first possibility.

Patient 16 is a 9 year-old girl who showed developmental
stagnation at around 6 months, which coincided with appear-
ance of West syndrome and deceleration of head growth. She
has slowly acquired motor skills, with some purposeful grasp
and ataxic gait. Severe ID and hand wringing raised the diagnos-
tic hypothesis of RTT. aCGH analysis revealed an entire
chromosome 3 with log R ratio (LRR)=0 and B Allele
Frequency (BAF) split (0.3 and 0.6), compatible with mosaic
UPD of chromosome 3 (see online supplementary figure S1.2).
This abnormality occurred de novo and is predicted to be
present in about 75% of the cells of the patient.35 Only three of
all the genes in chromosome 3 are predicted to be differently
expressed according to parental lineage: ALDH1L1 and ZIC1
are paternally imprinted, and HES1 is maternally imprinted.36

When considering the possibility of a variant in heterozygosity
in the mother/father being present in homozygosity in the
child’s cells with UPD, only a maternal missense variant in
SRGAP3 found in the WES analysis fits this hypothesis.
Interestingly, SRGAP3 encodes a Slit-Robo Rho GTPase activat-
ing protein that has been implicated in the pathogenesis of
ID.37 38

Patients with variants in genes previously associated with
similar phenotype
Patient 5 is a 5 year-old girl who regressed at around 8 months
of life. Though the child presents with severe ID and no lan-
guage, some psychomotor developmental milestones were
attained, with tiptoe walking around 2 years of age. Hand
stereotypies, intense eye communication, breathing disturbances
(apnoea followed by hyperpnoea) and screaming spells
prompted the clinical diagnosis of atypical RTT. Though
severely microcephalic, the patient’s brain MRI did not reveal
any relevant morphological changes. Also, the patient does not
have short stature. In this patient, a de novo c.C556T,
p.(R186X) variant was detected in the ZNF238 gene (see online
supplementary figure S1.5).

Patient 17 is a 6 year-old girl who presented with seizures at
1 month of life and whose development was significantly
delayed, with first words around 3 years and walking at 4 years
of age. The patient also has hand stereotypies, bruxism and
crying spells when awake, sleep problems, hyperpnoeas and
apnoeas, and poor eye contact. In this patient a de novo c.

Table 3 List of patients with variants found in genes previously associated with neurodevelopmental phenotype

Proband Gene Location NM number cDNA Protein Related phenotype Reference

5 ZNF238 chr1:244217659 NM_006352 c.C556T p.(R186X) ID; 1q43q44 deletion syndrome 17, 18

7 TCF4 chr18:52996207–53243605 Microdeletion encompassing 4 exons Pitt-Hopkins syndrome 19, 20

8 EIF2B2 chr14:75470349 NM_014239 c.C380T p.(A127V) Leucoencephalopathy with vanishing white matter 21

14 STXBP1 chr9:130425592 NM_001032221 c.T538C p.(C180R) Early infantile epileptic encephalopathy 22, 23

15 SLC35A2 chrX:48762414 NM_001042498 c.G772A p.(V258M) Early onset epileptic encephalopathy; Congenital
disorder of glycosylation type II

23, 24

17 EEF1A2 chr20:62127259 NM_001958 c.G274A p.(A92T) ID and epilepsy 6, 25

19 SHROOM4 chrX:50378637 NM_020717 c.C436T p.(R146W) Stocco dos Santos syndrome 26

ID, intellectual disability.
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Table 4 List of patients with variants in candidate disease genes

Proband Gene

Variant:
genomic
coordinates NM number cDNA Protein

Functional impact prediction

Gene Function KO/KD phenotype*

Expression
in Human
Neocortex† ReferencesSIFT PolyPhen2 MutAsse. Condel Pmut MutTast

2 HTT chr4:3133374
chr4:3162034

NM_002111 c.C2108T
c.C3779T

p.(P703L)
p.(T1260M)

NP
NP

P
P

P
NP

P
NP

NP
NP

P
P

Ubiquitously
expressed nuclear
protein that regulates
transcription; involved
in vesicular traffic

Conditional mutants are
small with progressive
neurodegeneration

Moderate 27, 28

4 SMARCA1 chrX:128599594 NM_139035 c.G2897T p.(G966V) P P P P P P Chromatin
remodelling; Wnt
signalling; Interacts
with FOXG1

Hemizygous male/
homozygous female KO
show abnormal neuron
proliferation and
differentiation, increased
brain and heart weight

Moderate 29, 30

9 GABBR2 chr9:101133817 NM_005458 c.G1699A p.(A567T) P NP P NP NP P γ-aminobutyric acid
(GABA) type B
receptor; Regulation
of neurotransmitter
release

Homozygous KO mice
show clonic seizures,
hyperactivity, anxiety.

High 31

11 RHOBTB2 chr8:22865220 NM_001160036 c.A1528G p.(N510D) P P NP P NP NP Rho GTPase family;
Binds to CUL3

ND High 32

11 EIF4G1 chr3:184038482 NM_182917 c.G602A p.(R201H) P P NP P NP P Recruitment of mRNA
to the 40S ribosomal
subunit

ND High 33

*The Jackson laboratory, 2014.
†Allen Institute for Brain Science, 2004.
KO, knockout; KD, knockdown; ND, not described.
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G274A, p.(A92T) substitution in the EEF1A2 gene was found
(see online supplementary figure S1.15).

Patient 8 is a 13 year-old girl and the first child of a healthy
and non-consanguineous couple. She seemed to have a normal
development up until 24 months when regression was noticed
in language and hand manipulation, followed by the first signs
of autistic behaviour-like impairment in social interactions
around 30 months. Concomitant hand stereotypies, ataxia,
rigidity and screaming spells led to the classification of the
patient as RTT-like. The patient also presented continuous
tremor but no spasticity or optic atrophy. Brain MRI performed
when the patient was 3 years old did not reveal significant
alterations. In this patient a homozygous recessive variant c.
C380T, p.(A127V) in the EIF2B2 gene was found (see online
supplementary figure S1.7).

Patient 14 is a 12 year-old boy who presented with West syn-
drome at 1 month of age and severe developmental delay, in
addition to poor eye contact, hyperventilation episodes,
bruxism when awake, decreased response to pain and midline
hand stereotypies. This RTT-like patient has a de novo c.
T538C, p.(C180M) variant in the STXBP1 gene (see online sup-
plementary figure S1.13). A missense mutation in amino acid
180 was described in 2008.39 Although variable,40 the core
phenotype of STXBP1 mutations seems to include epilepsy
within the 1st months of life.41 Mutations in STXBP1 can also
cause ID without epilepsy22 and it may actually be a relatively
common cause of severe ID,42 which highlights the role of
STXBP1 in cognitive function alone. Recently, patients with
STXBP1 mutations were noted to have head and upper limb
stereotypies (eg, hand flapping)43 but midline hand stereotypies
are reported for the first time in our study. While our manu-
script was in preparation a de novo missense variant in STXBP1
was reported in a girl with classical Rett diagnosis.44

Patient 15 is an 8 year-old boy whose development stagnated
around 6 months; his psychomotor development was signifi-
cantly delayed, language and gait never being attained. The
patient also had an abnormal sleep pattern, inconsolable crying
spells and hand and head stereotypies, as well as autism fea-
tures; he was classified as RTT-like. WES revealed a c.G772A, p.
(V258M) variant in the SLC35A2 gene (see online supplemen-
tary figure S1.14). The patient’s mother also carried the variant
and presented with a random X inactivation. The variant was
also present in the patient’s skin biopsy. Transferrin isoelectric
focusing analysis in the patient was normal. Interestingly, upon
reanalysis of the clinical data, we found that the patient also had
facial dysmorphisms, gastro-oesophageal reflux, epileptic
encephalopathy (but not West syndrome), microcephaly and
brain malformations (namely brain atrophy, thin corpus callo-
sum and frontoparietal periventricular heterotopies), resembling
other patients with SLC35A2 variants.23 24

Patient 19 is 14 year-old boy with dyspraxic gait and no lan-
guage, who acquired purposeful grasp only around 2 years of
age. Eye pointing, kyphosis, peripheral vasomotor disturbances
and small cold hand and feet lead to the classification as
RTT-like. This patient carries two maternally inherited X linked
variants: a c.C436T, p.(R146W) variant in SHROOM4 and a c.
G409A, p.(D137N) variant in ZFX (see online supplementary
figures S1.17 and S1.18). Extended pedigree analysis reveals
that patient 19 is an isolated case and both variants are inherited
from the healthy mother, who has a random X inactivation
pattern. SHROOM4 encodes a regulator of cytoskeletal architec-
ture and has been associated with X linked ID.26

Other variants in genes previously associated with NDDs but
which weren’t in accordance with the inheritance patterns

described in the literature were also found in some cases (see
online supplementary data1, tables S1.2–S1.18).

Patients with variants in genes possibly relevant for ID
pathogenesis
For five of the patients enrolled in the study, likely pathogenic
variants were found in functionally relevant and/or candidate ID
genes.

Patient 2 is a 18 year-old girl who showed developmental
regression around 6 months of life and 2 months later started to
have partial complex seizures as well as lack of interest in inter-
acting with the environment. This classical RTT patient meets
all four main criteria in addition to eight supportive criteria. On
neurological exam it was also observed that the patient had
swallowing problems, dystonia and bradykinesia (but not rigid-
ity) in addition to continuous manual stereotypies (but not
chorea). Interestingly, brain MRI performed when the patient
was approximately 5 years old showed significant striatum
atrophy (especially in the caudate nuclei) as well as mild atrophy
of the cortex and cerebellar vermis. WES revealed two com-
pound heterozygous variants in the HTT gene (see online sup-
plementary figure S1.3): a maternal c.C2108T, p.(P703L) and a
paternal c.C3779T, p.(T1260M). The latter variant is described
in single nucleotide polymorphism database (dbSNP) as a poly-
morphism (rs34315806) with a minor allele frequency of
T=0.0276/138.

Patient 4 is a girl who has been classified as classical RTT. She
had moderate developmental delay, superimposed by regression
at around 5 years of age. Currently, at 25 years of age, the
patient is severely autistic, non-verbal, can’t walk, has lost pur-
poseful hand use and has hand sterotypies, in addition to seven
minor criteria (see details in table 2). She carries a de novo
variant c.G2897T, p.(G966V) in SMARCA1 (see online supple-
mentary figure S1.4).

Patient 9 had developmental stagnation at 7 months followed
by regression, currently (at age 19 years) presenting with severe
ID. She was classified as an RTT variant in light of her absence of
language, hand stereotypies and lack of hand use, breathing distur-
bances (hyperventilation), bruxism, abnormal sleep cycle, crying
spells, autistic features, eye pointing and small feet. She has never
had seizures. A de novo variant c.G1699A, p.(A567T) in the
GABBR2 gene was found (see online supplementary figure S1.8).

Patient 11 is a 6 year-old girl whose development stagnated at
around 6–9 months, coinciding with the beginning of general-
ised epilepsy. Additional findings that lead to the classification of
the patient as RTT-like include: hand stereotypies, intense eye
communication, sleep problems, peripheral vasomotor distur-
bances, bruxism when awake, growth retardation, diminished
response to pain and resting tremor. Her mother has resting
tremor and is suspected of having psychiatric disease, possibly
early onset dementia. The maternal grandmother is bedridden
and demented. The father is also suspected of having psychiatric
disease. The patient carries a de novo variant c.A1528G,
p.(N510D) in RHOBTB2 (see online supplementary figure
S1.10). She also has a homozygous c.G602A, p.(R201H) variant
in EIF4G1 (see online supplementary figure S1.11).

Bioinformatic analysis of the interactions between the novel
candidate genes and known RTT-like NDD associated genes
Phenotypical overlap between RTT and the patients in our
cohort with variants in genes previously implicated in NDDs
was observed (table 2 and figure 1). Network analysis using
GeneMania revealed that our candidate genes interact with each
other and with the already known RTT genes by means of
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protein (71%), predicted (15%) and genetic (3%) interactions,
as well as coexpression (7%) and participating in a common
pathway (2%) (figure 2).

DISCUSSION
In this study we identified a possible genetic cause of disease in
eight RTT-like patients. Recently, two publications described the
application of WES to smaller series of patients with features of
RTT, where, if we exclude the variants found in MECP2 and
FOXG1 genes, an yield of 27% was found.45 46 However,
important questions such as (1) what other genes may lead to
an RTT-like similar phenotype and (2) which pathways and
genetic mechanisms can lead to such a specific phenotype still
remain unanswered. To try to clarify these questions we under-
took genomic analysis by aCGH and WES in a group of 19
trios whose index presented NDD with RTT-like features
achieving an yield of 37% (excluding a case of uniparental
dissomy and variants found in candidate genes).

Regarding the WES results, in 6 of the 19 patients we
detected variants in genes previously associated with overlap-
ping neurodevelopmental phenotypes, namely: SLC35A2,
STXBP1, ZNF238, EEF1A2, EIF2B2 and SHROOM4 (table 3).
On the other hand, five patients present novel variants in genes
with known function in the central nervous system and which,
to the best of our knowledge, have not been clearly associated
with ID in humans (HTT, SMARCA1, GABBR2, RHOBTB2 and
EIF4G1) (table 4). All these genes, taking into account their
function, are good candidates to be disease-causing. HTT

encodes a protein that directly interacts with MeCP227 and
Mecp2-deficient mice have reduced expression of Htt in the
entire brain, leading to a defect in the axonal transport of
Bdnf.28 RTT and Huntington disease seem to share features at a
molecular level (nuclear interaction for transcriptional regula-
tion and axonal trafficking through BDNF)27 and neuropatho-
logical findings (striatum atrophy)47 and clinical presentation (of
compulsive movement disorder plus cognitive dysfunction).

Another of our candidates, SMARCA1 (alias SNF2L), encodes
a protein which was described to function antagonistically with
Foxg1 in the regulation of brain size in mice.29 48

GABBR2 encodes a γ-aminobutyric acid type B receptor that
is involved in neuronal activity inhibition through the regulation
of neurotransmitter release.31 Recently, de novo missense var-
iants in GABRR2 were identified in two different patients with
infantile spasms.49

RHOBTB2 belongs to the Rho GTPases family and was
found to bind to CUL3.32 De novo nonsense variants in CUL3
were identified in two separate next-generation sequencing
studies using ASD (autism spectrum disorder) probands,50 51

EIF4G1 encodes a translation initiation factor involved in the
recruitment of mRNA to the 40S ribosomal subunit.33 Variants
in EIF4G1 have been associated with autosomal dominant
forms of Lewy body dementia52 and Parkinson’s disease (with
and without dementia) however the real impact of some of
these variants is still unclear.53–56 Interestingly patient 11
(homozygous) and her mother (heterozygous) present resting
tremor, a typical sign of Parkinson’s disease. Considering the

Figure 1 Scheme representing phenotype overlap of the genes already identified as causing neurodevelopmental disorders and the RTT phenotype.
The phenotypes clearly blend, suggesting that the RTT spectrum may still be expanding.
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biological processes in which RHOBTB2 and EIF4G1 are
involved, it is likely that either one of the variants or the com-
bination of both in the patient might have contributed towards
the development of the disease.

When analysing the phenotypes associated with genes previ-
ously implicated in NDDs, they overlap with those observed in
our sample of RTT-like patients. In fact, there seems to be a
spectrum of clinical presentation that allows for the delineation
of a core phenotype as well as distinctive clinical features, that
could help guide/interpret genetic testing in future patients, as
summarised in figure 1. Furthermore, the gene-gene interaction
analysis revealed that our candidate genes interact with each
other and with the already known RTT genes mainly by means
of protein interactions (71%), predicted functional relationships
(15%) and coexpression (7%) (figure 2).16 Functional enrich-
ment analysis revealed that the top GO biological process terms
were under the parent terms Translation (GO:0006412) and
Glial cell differentiation (GO:0010001). Careful analysis of the
network also allows for identification of possible additional can-
didates such as GABBR1, which has genetic interactions with
FOXG1, physical interactions with GABBR2 and coexpression
with STXBP1 and TCF4.

In this work, the identification of variants in genes that had
already been associated with overlapping but still distinctive

NDDs brings new insight into the differential diagnosis of RTT
and might allow for the aetiological diagnosis of RTT-like
patients. We point out seven novel candidate genes, which may
be implicated in RTT-like clinical presentations. It is important to
highlight that replication of these results in more patients is
required for a proper genotype-phenotype correlation and the
establishment of differences and similarities with RTT.
Functional studies would also be of great value. In conclusion, we
expanded the phenotypical spectrum of previously known NDD
genes to encompass RTT-like clinical features, and suggest novel
genes that might be associated with those. Although this group of
disorders is genetically heterogeneous, the novel and previously
identified genes converge in common pathways and only a better
understanding of the pathophysiology of NDDs will allow for
development of efficient targeted therapies in the future.
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