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Abstract
We report on our approach towards creating socially intelligent robots, which is heavily inspired by recent experimental
findings about the neurocognitive mechanisms underlying action and emotion understanding in humans. Our approach
uses neuro-dynamics as a theoretical language to model cognition, emotional states, decision making and action. The
control architecture is formalized by a coupled system of dynamic neural fields representing a distributed network of
local but connected neural populations. Different pools of neurons encode relevant information in the form of self-
sustained activation patterns, which are triggered by input from connected populations and evolve continuously in time.
The architecture implements a dynamic and flexible context-dependent mapping from observed hand and facial actions
of the human onto adequate complementary behaviors of the robot that take into account the inferred goal and inferred
emotional state of the co-actor. The dynamic control architecture was validated in multiple scenarios in which an anthro-
pomorphic robot and a human operator assemble a toy object from its components. The scenarios focus on the robot’s
capacity to understand the human’s actions, and emotional states, detect errors and adapt its behavior accordingly by
adjusting its decisions and movements during the execution of the task.
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1 Introduction

A major challenge in modern robotics is the design of
socially intelligent robots that can interact or cooperate
with people in their daily tasks in a human-like way.
Needless to say that non-verbal communication is an
essential component for everyday social interactions.
We humans continuously monitor the actions and the
facial expressions of our partners, interpret them effort-
lessly regarding their intentions and emotional states,
and use these predictions to select adequate comple-
mentary behavior. Thus, natural human-robot interac-
tion or joint activity requires that assistant robots are
endowed with these (high level) social cognitive skills.

There have been various kinds of interaction studies
that have explored the role of emotion/affect in human-
robot interaction (HRI) (Breazeal, 2003a, 2003b;
Cañamero & Fredslund, 2000; Hegel, Spexard, Wrede,
Horstmann, & Vogt, 2006; Kirby, Forlizzi, & Simmons,
2010; Novikova & Watts, 2015). The results of such

studies have clearly shown that endowing robots with –
the recognition and display of human-like – emotions/
affects critically contributes to making the HRI more
natural and meaningful, from the perspective of the
human interacting with the robot (Breazeal, 2003a,
2003b; Cañamero, 2005; Hegel et al., 2006; Kexdzierski,
Musznski, Zoll, Oleksy, & Frontkiewicz, 2013).
However, in all these interaction experiments the robot
and the human were not a team, in that the interactions
did not involve joint action tasks. One exception goes
to the work reported in Scheutz, Schermerhorn, and
Kramer (2006), where the robot and the human were
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both needed for the task and neither robot nor human
could accomplish the task alone. Their results have
shown that expressing affect and responding to human
affect with affect expressions can significantly improve
team performance in a joint human-robot task.
However, the human and the robot interacted solely
based on ‘natural’ language, there was no physical
interaction, and the robot was not making autonomous
decisions, i.e. the robot always carried out human
orders (see also Scheutz, 2011).

The work reported here aims to contribute to filling
in this gap. Our approach is motivated by recent
research in cognitive psychology and cognitive neu-
roscience that posits that various kinds of shared emo-
tions can, not only motivate participants to engage and
remain engaged in joint actions, but also facilitate pro-
cesses that are central to the coordination of partici-
pants’ individual actions within joint action, such as
representing other participants’ tasks, predicting their
behavior, detecting errors and correcting accordingly,
monitoring their progress, adjusting movements and
signaling (Michael, 2011; Rizzolatti & Sinigaglia,
2008).

In order to combine emotions into the decision mak-
ing and complementary behavior of an intelligent robot
cooperating with a human partner our group relies on
the development of control architectures for human-
robot interaction that are strongly inspired by the
neuro-cognitive mechanisms underlying joint action
(Bekkering et al., 2009; Poljac, van Schie, & Bekkering,
2009; van Schie, van Waterschoot, & Bekkering, 2008)
and shared emotions in humans (Carr, Iacoboni,
Dubeau, Mazziotta, & Lenzi, 2003; Iacoboni et al.,
2005; Wicker et al., 2003). We believe that implement-
ing a human-like interaction model in an autonomous
assistive robot will greatly increase the user’s accep-
tance to work with the artificial agent since the co-
actors will become more predictable for each other (see
also Fong, Nourbakhsh, and Dautenhahn (2003);
Kirby et al. (2010)).

Humans have a remarkable ability to perform fluent
organization of joint action, achieved by anticipating
the motor intentions of others (Sebanz, Bekkering, &
Knoblich, 2006). An impressive range of experimental
findings, about the underlying neurocognitive mechan-
isms, support the notion that a close perception-action
linkage provides a basic mechanism for real-time social
interactions (Newman-Norlund, van Schie, van Zuijlen,
& Bekkering, 2007; Wilson & Knoblich, 2005). A key
idea is that action observation leads to an automatic
activation of motor representations that are associated
with the execution of the observed action. It has been
advanced that this motor resonance system supports an
action understanding capability (Blakemore & Decety,
2001; Fogassi et al., 2005; Fogassi & Rizzolatti, 2013).
By internally simulating action consequences using their
own motor repertoire the observer may predict the

consequences of others’ actions. Direct physiological
evidence for such perception-action systems came with
the discovery of the so-called mirror neurons in the pre-
motor cortex of the macaque monkey (for a review see
Rizzolatti and Craighero (2004)). These neurons are a
particular class of visuomotor neuron that are active
during the observation of goal-directed actions (such as
reaching, grasping holding or placing an object) and
communicative actions, and during execution of the
same class of actions (Ferrari, Gallese, Rizzolatti, &
Fogassi, 2003; Rizzolatti, Fogassi, & Gallese, 2001).
Later, Fogassi et al. (2005) discovered mirror neurons
in the area PF/PFG that code the (ultimate) goal of an
observed action sequence, e.g. ‘reaching-grasping-pla-
cing’. A detailed review and discussion regarding the
anatomical and functional organization of the pre-
motor and parietal areas of monkeys and humans, and
also, how the mirror neuron mechanism is involved in
understanding the action and intention of others in imi-
tative behavior can be found in Rizzolatti, Cattaneo,
Fabbri-Destro, and Rozzi (2014).

More recently, Bekkering et al. (2009) have investi-
gated the role of the human mirror neuron system in
joint action. Specifically, they have assessed through
neuroimaging and behavioral studies, the role of the
mirror neuron system while participants prepared to
execute complementary actions, and compared with
imitative actions. They have shown that the human
mirror neuron system may be more active during the
preparation of complementary actions than during imi-
tative actions (Newman-Norlund et al., 2007), suggest-
ing that it may be essential in dynamically coupling
action observation on to (complementary) action exe-
cution, and that this mapping is much more flexible
than previously thought (Poljac et al., 2009; van Schie
et al., 2008).

There is also good evidence in neuroscience studies
that a facial expressions mirroring system exists. The
work by Leslie, Johnson-Frey, and Grafton (2004)
shows results that are consistent with the existence of a
face mirroring system located in the right hemisphere
(RH) part of the brain, which is also associated with
emotional understanding (Ochsner & Gross, 2005).
Specifically, the right hemisphere premotor cortex may
play a role in both the generation and the perception of
emotionally expressive faces, consistent with a motor
theory of empathy (Leslie et al., 2004). That mirror
neuron activation is associated with facial emotion pro-
cessing has also been supported in a more recent study
by Enticott, Johnston, Herring, Hoy, and Fitzgerald
(2008). van der Gaag, Minderaa, and Keysers (2007)
present a more in-depth study on the role of mirror
neurons in the perception and production of emotional
and neutral facial expressions. The understanding of
other people from facial expressions is a combined
effort of simulation processes within different systems,
where the somatosensory, motor and limbic systems all
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play an important role. This process might reflect the
translation of the motor program, emotions and soma-
tosensory consequences of facial expressions, respec-
tively (Keysers & Gazzola, 2006). The simulation
processes in these individual systems have been previ-
ously described in the literature (Gallese, Fadiga,
Fogassi, & Rizzolatti, 1996; Keysers et al., 2004;
Wicker et al., 2003). Specifically, and at a neuronal
level, premotor mirror neurons might resonate the
facial movement and its implied intention (Carr et al.,
2003; Iacoboni et al., 2005), insula mirror neurons
might process the emotional content (Wicker et al.,
2003), and somatosensory neurons might resonate pro-
prioceptive information contained in the observed
facial movement (Keysers et al., 2004). This process is
coherent with current theories of facial expression
understanding (Adolphs, 2006; Carr et al., 2003; Leslie
et al., 2004), pointing out that different brain systems
collaborate during the reading of facial expressions,
where the amount and pattern of activation is different
depending on the expression being observed.

Current works that take a neuro/bio inspired
approach for the integration of emotions into architec-
tures for artificial intelligence focus on more low level
aspects of emotions. The work by Talanov, Vallverdu,
Distefano, Mazzara, and Delhibabu (2015) explores
how to produce basic emotions by simulating neuro-
modulators in the human brain, and applying it to
computational environments for decision making.
Lowe, Herrera, Morse, and Ziemke (2007) explore how
a dynamical systems perspective can be combined with
an approach that views emotions as attentional
dispositions.

In previous work, we have developed a cognitive
control architecture for human-robot joint action that
integrates action simulation, goal inference, error detec-
tion and complementary action selection (Bicho,
Erlhagen, Louro, & Costa e Silva, 2011; Bicho,
Erlhagen, Louro, Costa e Silva, Silva, & Hipólito,
2011), based on the neurocognitive mechanisms under-
lying human joint action (Bekkering et al., 2009). For
the design and implementation, our group takes a neu-
rodynamics approach based on the theoretical frame-
work of Dynamic Neural Fields (DNFs) (Erlhagen &
Bicho, 2006, 2014; Schöner, 2008). The robot is able to
successfully collaborate with a human partner in joint
tasks (e.g. construction tasks, assisting to drink), but
thus far has paid attention only to hand actions and to
the task itself.

This work extends the cognitive architecture by
endowing the robot with the ability to detect and inter-
pret facial expressions of the human co-actor, in order
to infer his emotional state. The focus is on – free float-
ing – basic emotions (e.g. happiness, sadness, neutral,
anger-irritation, fear) that function as rapid appraisals
of situations in relation to goals, actions and their con-
sequences (Oatley & Johnson-Laird, 1987, 2014). From

the integration of reading motor intentions and emo-
tional states into the robot’s control architecture, we
are endowing the robot with the required high level
cognitive skills to be a more intelligent socially aware
partner.

The results illustrate how the human emotional state
influences various aspects of the robot behavior. We
show how it influences the decisions that the robot
makes, e.g. the same goal directed hand action in the
same context but with a different emotional state has a
bias on the robot’s decisions. We show how the emo-
tional state can have a role in the robot’s error handling
capabilities, specifically, how the same error is treated
in different ways. Also, how the robot can use its emo-
tional expressive capabilities to deal with a human part-
ner persisting in error. And finally, how the human’s
emotional state can influence the time it takes for the
team to complete the joint construction task.

The rest of the paper is organized as follows: In the
next section, we present an overview of the cognitive
control architecture that integrates emotions to modu-
late the distributed decision making process of an intel-
ligent robot cooperating with a human in joint tasks.
In the model details section, we show how the theoreti-
cal framework of dynamical neural fields was used to
implement the described control architecture. Next, the
joint task that will be carried out by the human-robot
team and details on the anthropomorphic robot ARoS
utilized in the experiments are presented. The effects of
the human partner’s emotional states in the robot’s
behavior are presented and described in the results sec-
tion. The paper ends with a discussion of the presented
results and an outlook for future work. The supple-
mental material provides additional model details,
which also includes a list of all parameter values.

2 Cognitive architecture for human-robot
joint action modulated by emotional
states

Figure 1 presents a sketch of the multi-layered dynamic
neural field architecture for joint action consisting of
various neural populations. It reflects the neurocogni-
tive mechanisms that are believed to support human
joint action (Bekkering et al., 2009) and shared emo-
tional facial expressions (Carr et al., 2003; Iacoboni
et al., 2005; Wicker et al., 2003).Every neural popula-
tion can receive input from multiple connected popula-
tions that may be located in different layers.

Ultimately, the architecture implements a context-
dependent mapping between observed action and exe-
cuted action (Erlhagen, Mukovskiy, & Bicho, 2006a;
Poljac et al., 2009; van Schie et al., 2008). The funda-
mental idea is that the mapping takes place on the level
of abstract motor primitives defined as whole object-
directed motor acts like reaching, grasping, placing,
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attaching or plugging. These primitives encode the
motor act in terms of an observable end state or goal
rather than in terms of a detailed description of the
movement kinematics (Rizzolatti & Craighero, 2004;
Schaal, 1999). Also, there is evidence of premotor mir-
ror neurons that might resonate to the facial movement
and its implied intention (Carr et al., 2003; Iacoboni
et al., 2005).

The cognitive architecture used in this work has its
core in the work presented in Bicho, Erlhagen, Louro,
and Costa e Silva (2011); Bicho, Erlhagen, Louro, Costa
e Silva, Silva, and Hipólito (2011), where only hand
actions have been considered. In the work reported here,
additional layers have been added to reflect the extra
information (for example, observed facial actions) used
by the robot in its distributed decision making process.
That is, the inferred partner’s emotional state, inferred
goal and selection of an adequate complementary beha-
vior. The latter includes selection of an appropriate
goal-directed hand-action and facial-action set to be per-
formed and displayed by the robot.

An observed hand movement that is recognized by
the vision system as a particular primitive (e.g. reach,

grasp with top grip or side grip) is represented in the
Action Observation Layer (AOL). This layer also
incorporates neural populations that code facial
actions (e.g. raise inner part of eyebrows, lip corners
down) identified by the vision system, as well as a
qualitative quantification of the movement of the
hand, head and body.

The Action Simulation Layer (ASL) implements the
idea that by automatically matching the co-actor’s hand
and facial actions onto its own sensorimotor representa-
tions without executing them, the robot may simulate
the ongoing action and facial expression and their con-
sequences. ASL consists of two DNFs layers. One DNF
with neural populations representing entire chains of
hand action primitives that are in the motor repertoire
of the robot (e.g. reaching-grasping-placing or reaching-
grasping-holding out) – named Action Simulation of
Hand Actions (ASHA) layer. The other DNF with
neural populations representing facial action sets (e.g.
lift eyebrows – open mouth – express surprise) – named
the Action Simulation of Facial Actions (ASFA) layer.

In the case of goal-directed hand actions, the chains
are linked to neural representations of specific goals or

Figure 1. Schematic view of the cognitive architecture for joint action. It implements a flexible and dynamic mapping from
observed hand and facial actions (AOL) onto complementary actions and emotional expressive faces (AEL) taking into account the
inferred motor intention (IL), the inferred emotional state of the partner (ESL), detected errors (EML), contextual cues (OML) and
shared task knowledge (CSGL). The goal/intention inference and emotional state inference capabilities are based on motor
simulation (ASL). In the supplemental material a picture containing all the synaptic links between the pools of neurons can be seen.
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end states (e.g. attach wheel to base) that are repre-
sented by neural populations in the Intention Layer
(IL). Facial action sets are linked to specific emotional
states represented in the Emotional State Layer (ESL).
This layer influences the IL, since an emotional state
can play a role in identifying an intention. If a chain (in
ASL) is activated by observation of its first motor act,
the observer may be able to predict future motor beha-
vior and the consequences of the whole action sequence
before its complete execution, effectively inferring the
partner’s motor intention ahead of time. However, in
some situations the observation of the first motor act
per see, might not be enough if the motor act being
observed is part of multiple chains. Likewise, a single
facial action unit may by part of several different facial
expressions. In order to disambiguate, additional con-
textual information is required to be integrated into the
inference process (Erlhagen, Mukovskiy, Chersi, &
Bicho, 2007). The Object Memory Layer (OML) that
represents the robot’s memorized knowledge about the
location of the different objects in the two working
areas, plays a key role. Another important source of
information, vital to the success of the task is the
shared task knowledge about the possible sequences of
sub-tasks (e.g. assembly steps in a joint assembly task).
This information is provided by the Common Subgoals
Layer (CSGL), which contains neural populations rep-
resenting the subgoals of the task (e.g. individual
assembly steps) that are currently available for the
team. For example, in the case of an assembly task, the
subgoals are continuously updated in accordance with
the assembly plan based on visual feedback about the
state of the construction and the inferred goal of the
co-actor (represented in the IL). Neurophysiological
evidence suggests that in sequential tasks distinct popu-
lations in Pre-Frontal Cortex (PFC) represent already
achieved subgoals and subgoals that are still to be
accomplished (Genovesio, Brasted, & Wise, 2006). In
line with this finding, CSGL contains two connected
DNF layers with population representations of past
and future events. The connections linking the neural
populations in one DNF to the other DNF encode the
different serial order of subgoals of the task (see Sousa,
Erlhagen, Ferreira, and Bicho (2015) for how these can
be learned by tutor demonstration and feedback).

The Action Execution Layer (AEL) contains popu-
lations representing the same goal-directed action
sequences and facial actions sets that are present in the
ASL. Hence, all the goal-directed action sequences and
facial actions sets that the robot is able to identify
(populations present in the ASL), are the same actions
that the robot is able to execute (populations in AEL).
This implements a mirror neuron mechanism, where
the robot understands a goal-directed action or a set of
facial actions because it also knows how to execute
them. Each population in AEL integrates inputs from
the IL, ESL, OML and CSGL to select among all

possible actions the most appropriate complementary
behavior. Specifically, the ESL (representing the
inferred co-actor’s emotional state) contributes to the
selected emotional state to be expressed by the robot.
The mapping from ESL to AEL implements some
aspects of shared emotions in joint action (Michael,
2011). For example, if the human is in a positive state
(Happy) the robot expresses also a Happy expression.
This effect is known as emotion contagion and occurs
when one person’s perception of another person’s emo-
tional expression can have effects that are relevant to
an interaction, if the perceiver thereby enters into an
affective state of the same type (Michael, 2011). In fact,
one important way in which emotion contagion can
function as a coordination smoother within joint action
is by means of alignment. A key benefit of alignment is
manifested by the likelihood of the increase in the par-
ticipants’ motivation to act jointly, since people tend to
find other people with similar moods to be warmer and
more cooperative, and prefer to interact with them
(Locke & Horowitz, 1990).

The implemented context-sensitive mapping from
observed actions on to-be executed complementary
actions guarantees a fluent team performance if no
errors occur (Bekkering et al., 2009). However, if an
unexpected or erroneous behavior of the partner
occurs, neural populations in the Error Monitoring
Layer (EML) are sensitive to a mismatch on the goal
level, on the level of action means to achieve a valid
sub-goal, and on the level of motor execution. This
allows the robot to detect errors in user’s intention
and/or action means to achieve a subgoal, and execu-
tion errors (e.g. a piece the robots was moving falls
down), and thus allows the robot to efficiently cope
with such situations. The ESL also plays a role in influ-
encing the EML, implementing some aspects of shared
emotions in joint action. Michael (2011) talks about
the various types of shared emotions present in joint
action tasks. One of the types of shared emotions used
in our work is the emotion detection, which can facili-
tate prediction and monitoring of the partner’s actions,
and can also act as a signaling function. For example, a
positive emotional expression, such as a smile, may sig-
nal approval of another participant’s action or pro-
posed action (Michael, 2011). This way in our joint
task, if the human partner is in a positive (e.g. Happy)
emotional state, this might mean she/he is committed
and engaged in the task, and thus it is not the probable
that partner will make errors. In this situation, the pro-
cessing of the DNFs detecting errors in action means
and intention are disabled, since this allows to decrease
the computational efforts the robot’s decision making
processes, and hence the time it takes to select a com-
plementary action is accelerated. In addition, if the
human is in a positive emotional state, it means that
she/he is comfortable with the robot and therefore one
can increase the robot’s movement velocity. Altogether
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this allows for the joint task to be completed in less
time. Conversely, if the robot infers the human is in a
negative emotional state (e.g. Sad), then it might be
that the human is (also) not fully committed in the task
and hence can be more prone to errors. The detection
of a negative emotional state is used as a signal to acti-
vate the full processing of the EML. This is consistent
with the modeling study by Grecucci, Cooper, and
Rumiati (2007), who proposed a computation model of
action resonance and its modulation by emotional sti-
mulation, based on the assumption that aversive emo-
tional states enhance the processing of events. This
way, the robot is fully alert to all types of errors that
can occur during the execution of the task, being able
to anticipate them, and act before they occur. This is
fundamental for efficient team behavior.

Through direct connections to the AEL, population
activity in the EML may bias the robot’s planning and
decision process by inhibiting the representations of
complementary actions normally linked to the inferred
goal and exciting the representations of a corrective
response. In order to efficiently communicate detected
errors to the human partner a corrective response may
consist of a manual gesture like pointing or a verbal
comment to attract the partners’ attention (Bicho,
Louro, & Erlhagen, 2010).

Finally, it is important to highlight the connections
from the ESL to both the AEL and motor control.
These connections implement the idea that perceived
emotions play an important role not only in an early
stage, during decision making and action preparation
(AEL layer) of a complementary action, but also the
latter may affect the execution at the kinematics level
(motor control). This is motivated by recent studies in
neuroscience by Ferri, Campione, Dalla Volta,
Gianelli, and Gentilucci (2010); Ferri, Stoianov, et al.
(2010), having investigated the link between emotion
perception and action planning & execution within a
social context. In summary, they have demonstrated
that assisting an actor with a fearful expression requires
more smooth/slow movements, compared to assisting
an actor with a positive emotional (e.g. Happy) state.

3 Dynamical neural fields as a theoretical
framework for the implementation

Dynamical Neural Fields (DNFs) provide a theoretical
framework to endow artificial agents with cognitive
capacities like memory, decision making or prediction
(Erlhagen & Bicho, 2006; Schöner, 2008). DNFs are
based on dynamic representations that are consistent
with fundamental principles of cortical information
processing, implementing the idea that task-relevant
information about action goals, action primitives or
context is encoded by means of activation patterns of
local populations of neurons.

Each layer of the model is formalized by one or
more DNFs. The basic units present in these models
are local neural populations with strong recurrent inter-
actions that cause non-trivial dynamic behavior of the
population activity. One important property that can
be observed, is that population activity initiated by
time-dependent external signals may become self-
sustained in the absence of any external input. This
property of the population dynamics behaves like an
attractor state and is thought to be essential for orga-
nizing goal-directed behavior in complex dynamic
situations, they allow the nervous system to compen-
sate for temporally missing sensory information or to
anticipate future environmental inputs.

The presented DNF based architecture for joint
action is built as a complex dynamic system in which
activation patterns of neural populations in the various
layers can appear and disappear continuously in time
as a consequence of input from connected populations
and external sources to the network (e.g. vision, speech)
and as defined by field dynamics.

A particular form of DNF first analyzed by Amari
(1977), was used for modeling. In each layer i, the activ-
ity ui(x, t) at time t of a neuron at field location x is
described in equation (1) (for mathematical details see
Erlhagen & Bicho, 2014)

ti

dui x, tð Þ
dt

= � ui x, tð Þ+ Si x, tð Þ

+

Z
wi x� x9ð Þfi ui x9, tð Þð Þdx9� hi

ð1Þ

where the parameter ti . 0 defines the time scale and
hi . 0 the resting level of the field dynamics. The inte-
gral term describes the intra-field interactions defined
to be of lateral inhibition type described by equation
(2)

wi(x)=Ai exp
�x2

2s2
i

� �
� winhib, i ð2Þ

where Ai . 0 describes the amplitude, si . 0 the stan-
dard deviation of the Gaussian. The inhibition
(winhib , i . 0) is assumed to be constant, only sufficiently
activated neurons contribute to interaction. The thresh-
old fi(u) is a sigmoidal function with slope parameter b

and threshold u0, described in equation (3)

fi uið Þ=
1

1+ exp �b ui � u0ð Þ½ � ð3Þ

The model parameters are adjusted to ensure that
the field dynamics are bi-stable (Amari, 1977), allowing
the attractor state of a self-stabilized activation pattern
to coexist with a stable homogeneous activation distri-
bution, that represents the absence of specific informa-
tion (resting level –hi). When the input (Si(x, t)), to a
local population is sufficiently strong, the
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homogeneous state loses stability and a localized pat-
tern in the dynamic field evolves, however, weaker
external signals lead to a subthreshold, input-driven
activation pattern in which the contribution of the
interactions is negligible.

DNFs enable us to also implement a working mem-
ory function through the existence of self-stabilized
activation patterns. The existence of a single, self-
stabilized pattern of activation in a dynamic field is also
closely linked to decision making. In the different layers
of the architecture subpopulations – encoding different
hand action chains (ASHA), facial action sets (ASFA),
goals (IL), complementary goal directed hand actions
(AEHA), complementary facial actions (AEFA) and
detected errors (EML) – interact through lateral inhibi-
tion. These inhibitory interactions lead to the suppres-
sion of activity below resting level in competing neural
pools whenever a certain subpopulation becomes acti-
vated above the threshold. The population for which
the summed input from connected populations is high-
est wins the competition process.

To represent and memorize simultaneously the loca-
tion of several objects, and multiple common subgoals,
the spatial ranges of the lateral interactions in layers
OML and CSGL were adapted to avoid a direct com-
petition between different populations, enabling these
layers to support a multi-peak solution. The updating
of the memorized information is performed by defining
proper dynamics for the inhibition parameter, hi, of the
population dynamics (Bicho, Mallet, & Schöner, 2000).

The summed input from connected fields ul is given
as Si(x, t)= k

P
l Sl(x, t). The parameter k scales the

total input to a certain population relative to the thresh-
old for triggering a self-sustained pattern. This guaran-
tees that the inter-field couplings are weak compared to
the recurrent interactions that dominate the field
dynamics (for details see Erlhagen and Bicho (2006)).
The scaling also ensures that missing or delayed input
from one or more connected populations will lead to a
subthreshold activity distribution only. The input from
each connected field ul is modeled by a Gaussian func-
tion described in equation (4)

Sl x, tð Þ=
X

m

X
j

amjclj tð Þ exp � x� xmð Þ2

2s2

 !
ð4Þ

where clj(t) is a function that signals the existence or
evolution of a self-stabilized activation pattern in ul

centered at position yj, and amj is the inter-field synaptic
connection between subpopulation j in ul to subpopula-
tion m in ui. Inputs from external sources (e.g. vision)
are also modeled as Gaussians. As an example,
Figure 2 shows the input from a connected population
j in layer ul connected to a target population m in layer
ui, modeled by a Gaussian function. This input is
applied whenever the activation in population j is

above the threshold for a self-stabilized activation
peak.

4 Setup of the human-robot experiments

To test the dynamic neural field architecture for
human-robot collaboration we have chosen a joint
assembly paradigm in which the team has to construct
a toy ‘vehicle’ from parts that are initially distributed
on a table (see Figure 3). The toy ‘vehicle’ is composed
of three sections. The lower section consists of a round
platform with an axle on which two wheels have to be
attached and then each fixed with a nut. In the middle

Figure 2. Schematic view of two connected DNFs. For
simplicity only one inter-field connection is shown. The
activation pattern in field ul centered at yj (representing the
center of the population j) propagates through inter-field
synaptic link amj to subpopulation m in field ui and creates a
Gaussian input (dashed-line) as defined by equation (4).

Figure 3. Anthropomorphic robot ARoS and the scenario for
the joint construction task.
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section, four columns that differ in their color have to
be plugged into specific holes in the platform. Finally,
at the top section, the placing of another round object
on top of the columns finishes the task. The parts have
been designed to facilitate the workload of the vision
and the motor system of the robot.

The working areas of the human and the robot do
not overlap, the spatial distribution of the parts on the
table obliges the team to coordinate handing-over
sequences. It is assumed that each team mate is respon-
sible for assembling one side of the toy, although, some
assembly steps may require that one actor helps the
other by holding a part still in a certain position. Both
the human and the robot can perform the same assem-
bly actions.

It is assumed that both partners know the construc-
tion plan and keep track of the subtasks that have been
already completed by the team. The prior knowledge
about the sequential execution of the assembly work is
represented in layer CSGL of the DNF-architecture, by
connections between populations encoding subsequent
assembly steps (for how these connections could have
been established through learning by demonstration
and tutor’s feedback see Sousa et al. (2015)). Since the
desired end state does not uniquely define the logical
order of the construction, at each stage of the construc-
tion the execution of several subtasks may be simulta-
neously possible. The main challenge for the team is
thus to efficiently coordinate in space and time the
decision about actions to be performed by each of the
team mates. The task is complex enough to show the
impact of goal inference, emotional state inference,
action understanding and error monitoring on comple-
mentary action selection.

The robot ARoS used in the experiments has been
built in our lab (Silva, Bicho, & Erlhagen, 2008). The
robot consists of a stationary torus, on which a 7 DOFs
AMTEC arm (Schunk GmbH) with a 3-fingers dexter-
ous gripper (Barrett Technology Inc.), a stereo camera
rig mounted on a pan-tilt unit, a PS3Eye camera with
an adapted lens, are mounted. In addition, the robot
has a monitor located on the chest, which is used to
produce expressive faces in order to improve interaction
with the human. The expressive faces the robot is able
to produce, are performed using the same facial action
primitives (Action Units) that can be recognized by the
vision system. A speech synthesizer (Microsoft Speech
SDK 5.1) allows the robot to communicate the result of
its reasoning to the human user.

The vision system is composed of two independent
systems, that provide distinct information. The first
system is a stereo camera rig mounted on a pan-tilt unit
and provides information about objects (class and
pose), hands (position, velocity, and classification of
(static) hand gestures, such as grasping and communi-
cative gestures like pointing) and the state of the con-
struction task. The information about the objects

combines color based search algorithms with stereo
data to extract the desired information. Concerning the
human hands, the vision system combines a color based
search algorithm with invariant moments (Hu, Ming-
Kuei, 1962) to distinguish the different gestures. The
second system is composed of a single camera (PS3Eye)
with an adapted lens dedicated to the human face. It
uses the faceAPI library from SeeingMachines to
extract information from the face in the form of Action
Units. The system uses the Facial Action Coding
System created by Ekman and Friesen (1978), as a cod-
ing system to describe facial actions.

For the control of the arm-hand system we applied a
global planning method in posture space that allows us
to integrate optimization principles derived from
experiments with humans (Costa e Silva, Costa, Bicho,
& Erlhagen, 2011). The goal is to guarantee collision
free robot motion that is perceived by the human user
as smooth and goal-directed.

5 Results

To validate the dynamic neural field architecture we
designed and conducted real-time human-robot experi-
ments in scenarios of the joint construction task
described above.

For better understanding we divided the construc-
tion task in three logic stages, lower section (wheels and
nuts), middle section (columns) and top section (Top
Floor).

The focus is on showing and explaining how decision
making and error detection are affected by the human
partner’s emotional state. In all cases, the initial spatial
distribution of parts forces both actors to demand and
hand-over parts. There is no verbal communication
from the human to the robot. This obliges the robot to
continuously monitor and interpret the actions of its
co-worker. Both the human and the robot can manipu-
late the parts (e.g. plug a wheel on the axle). The robot
uses speech to communicate to the human partner the
outcome of the goal inference and decision making pro-
cesses implemented in the dynamic neural field model.
As our studies with naive users show, this basic form of
verbal communication facilitates natural and fluent
interaction with the robot (Bicho et al., 2010).

To validate the high level cognitive control architec-
ture, five different experiments were designed. Each
experiment addresses a specific feature with different
scenarios, in order to better understand how the part-
ner’s emotional state can affect the robot’s behavior.
Experiment 1 explores how the robot’s decisions can be
influenced by the partner’s emotional state. Experiment
2 shows how the inferred user’s emotional state can
influence how the robot detects and handles errors dur-
ing task execution. Experiment 3 shows how the robot,
by expressing emotional facial expressions, deals with a
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human persisting in an error. Experiment 4 presents a
comparison of the influence of the user’s emotional
state in the time the task takes to be performed. Finally,
Experiment 5 shows the dynamic nature of the architec-
ture in a longer interaction, where the robot adjusts its
behavior in real time, in response to the change of the
human emotional state.

The graphics presented for each scenario, show the
time evolution of fields activity in some layers of the
control architecture. It would be impractical to show
the evolution in all layers of the architecture, hence,
only key layers for each scenario will be presented.

The main contribution of this work is the integration
of emotions into the robot’s cognitive architecture.
Hence, before presenting the interaction results, we
provide details on how the information acquired by the
vision system regarding the human face is handled.
Figure 4 presents snapshots of the analysis performed
by the system developed for this robot. A dedicated
camera placed on the robot acquires an image of the
face, which is then processed by combining the library
faceAPI from SeeingMachines with some post-
processing algorithms implemented using the OpenCV
library. The system is continuously processing (at 60
fps) and coding the face according to the FACS
(Ekman, Friesen, & Hager, 2002), resulting in a real-
time description of the face with Action Units (AUs)
(see Appendix Table 1).

The entry point in the architecture for the informa-
tion provided by the vision system is the Action
Observation Layer (AOL). Three DNFs in this layer
are responsible for representing information about
detected facial muscle movements that are associated
to the eyes, eyebrows and mouth. Figure 5 shows the
time evolution of the DNFs involved in the processing
of this visual information, and the simulation and infer-
ence of the user’s emotional state (layers AOL, ASFA
and ESL respectively).

On top, and regarding AOL, one can see a DNF,
uAOL FaceDetect(x, t), that codes the presence (or absence)
of a human face and the three DNFs responsible
for representing AUs related to the eyebrows
(uAOL Eyebrows(x, t)), mouth (uAOL Mouth(x, t)) and eyes
(uAOL Eyes (x, t)). These fields provide input SASFA (x, t)
to the DNF uASFA(x, t) that contains neural popula-
tions that respond or not to the presence of the several
AUs detected. The field activity uASFA (x, t) provides
the input to the DNF in ESL, uESL(x, t), which depend-
ing on the initial active populations and other dynamic
factors, such as time and quantity of (head/hand)
movement, produces an activation at the correspondent
inferred emotional state. In Appendix Table 3 which
combinations of AUs and human movements cause the
inference of which emotional state is being shown.

The example presented in Figure 4, starts with a
facial expression where no AUs are present. Hence
from times T1 to T2, the activity in uAOL Eyebrows (x, t)),

mouth (uAOL Mouth (x, t)) and eyes (uAOL Eyes (x, t) code
absence of AUs, while the bump of activity in field
uAOL Face (x, t)) represents the presence of the human
face. During this time interval only this input arrives to
uASFA (x, t) which produces a pattern of activation that
represents solely ‘face detected’ and thus activity in
uESL (x, t) produces a bump of activity centered at the
emotional state ‘Neutral’.

Next, from times T2 to T3, the human raises its eye-
brows (see Figure 4b) producing an activation in
uAOL Eyebrows (x, t) representing the detection of AUs 1
and 2. As a consequence of the spread of field activa-
tion from AOL to ASFA, a bump of activity in
uASFA (x, t) emerges centered in the population ‘Raise
eyebrows’, which in turn leads to a bump of activity in
uESL (x, t) representing an inferred emotional state of
‘Surprise’.

Afterward, from times T3 to T4, the human then
opens the mouth by dropping its jaw, getting coded by
the vision system as AUs 1+2+26 (Figure 4c). This
gives rise to several inputs, SASFA (x, t), competing for a
decision in uASFA (x, t). The population representing
‘raise eyebrows & mouth open’ wins the competition.
However, the inferred emotional state, represented in
uESL (x, t), remains as ‘Surprise’. This demonstrates the
ability to detect the same emotional state in more than
one way.

Finally, in the time interval T4-T5, the human smiles
maintaining the eyebrows raised, the resulting expres-
sion is coded with AUs 1+2+12 (Figure 4d). The dis-
appearance of AU 26 and presence of AU 12 changes
the competition in uASFA (x, t), and ultimately, the win-
ning population in this field then triggers in uESL(x, t) a
different inferred emotional state, i.e. ‘Happy’.

Figure 4. Face analysis by the vision system.
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Next, we focus on scenarios addressing several
aspects of human-robot joint action.

5.1 Experiment 1: Influence of the human’s
emotional state in the robot’s decisions

Experiment 1 is composed of two scenarios, 1-1 and 1-
2, and explores how the same action being performed
by the human in the same context of the task, but car-
ried out with a different emotional state, can trigger in
the robot different decisions for the complementary
action. We used only the construction of the lower

section of the task, attach the wheels and fix them with
nuts.

The objects disposition for the current experiment is
the following:

� robot’s workspace: 2x Nut;
� human’s workspace: 2x Wheel, Column 1, Column

2, Column 3, Column 4, Top Floor.

For Scenario 1-2, we added a Nut in the human’s
workspace but hidden from the robot’s view. Video
snapshots of the human-robot join action in Scenario

Figure 5. Field activities in layers AOL, ASFA and ESL, in response to the information provided by the vision system regarding the
user’s facial expressions depicted in Figure 4.
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1-1 and Scenario 1-2 are shown in Figures 6 and 7
respectively.

In both scenarios the human starts with grasping a
wheel (Figures 6(a) and 7(a)) and inserting it (Figures
6(c) and 7(c)). When the human grasps the wheel, the
robot infers that he will insert it and decides to hand-
over a nut to the human partner because it is the part
he will need next.

The difference in the two scenarios happens here.
While in Scenario 1-1 the human continues to display a
neutral face (Figure 6(f)), the robot hands over the nut
(Figure 6(e)), the human accepts and inserts it (Figure
6(g)). In Scenario 1-2, when the robot verbalizes its
decision to handover a nut the human expresses anger
(Figure 7(f)). This makes the robot understand that the
human does not want the nut (Figure 7(e)), and as a
consequence the robot changes its decision and asks
the human to hand over a wheel (Figure 7(g)), so that
it can insert a wheel on its side of the construction.

In Scenario 1-1, the human working with the robot
exhibits a neutral emotional state during the entire
interaction, and so, all the decisions made by the robot
incorporate no positive nor negative emotions from its
human partner. The field activity in the Emotional
State Layer (ESL) codes the inferred human’s emo-
tional state. Figure 8(a) shows the field activation
uESL (x, t) in this layer, which always has a bump of
activity centered in in the same position (‘Neutral’)
throughout the duration of the task. The change in the
inferred emotional state of the human during interac-
tion Scenario 1-2 is presented in Figure 8(b). As can be
seen, in the time interval T2-T3, a shift in the bump of
activation from ‘Neutral’ to ‘Anger’ occurs.

The influence of the human emotional state in the
robot’s decisions regarding its complementary behavior is
clearly demonstrated by analyzing the DNF uAEHA (x, t)
in the Action Execution Layer (Figure 9). This field
selects an adequate complementary goal-directed hand
action. In Scenario 1-1, after the human grasped the
wheel, the robot selected the action of handing over a nut
(Figure 9(a): see bump of activation coding ‘Give nut’).
In Scenario 1-2, the robot initially makes the same deci-
sion (Figure 9(b): Field activation, times T1 to T2), but in
response to the anger expressed by the human, the robot
changes its decision to ‘Request a wheel’ (Figure 9(b):
Field activation, times T2 to T3). The preshaping present
in Figures 9(a) and 9(b), of the populations coding the
actions ‘Point to wheel’ and ‘Request wheel’, means alter-
native actions the robot could in principle select.

5.2 Experiment 2: Influence of the human’s
emotional state in the robot’s error detection
and handling capabilities

Experiment 2 contains two scenarios, 2-1 and 2-2, and
explores how the robot deals with errors in reaction to

different inferred emotional states. While in Scenario 2-
1 the human is displaying a happy expression (Figure
10(b)), in Scenario 2-2 the human has a fearful expres-
sion (Figure 11(b)). We show how the same error being
committed during the construction task is detected in
different ways, influenced by the human emotional
state.

The two scenarios start with the lower section of the
toy robot assembled, i.e. the Wheels and Nuts are
already inserted in the Base. Thus, the next assembly
steps consist of mounting the four columns. We impose
a specific serial order for plugging the columns:
Column 1 ! Column 2 ! Column 3 ! Column 4.
The different columns are identified by their color pat-
terns. Given the reachable workspace of the two agents,
it happens that Column 1 and Column 4 can only be
mounted by the robot, while Column 2 and Column 3
can only be mounted by the human partner.

The object disposition is: robot’s workspace: Wheel
(inserted), Nut (inserted), Column 4; human’s work-
space: Wheel (inserted), Nut (inserted), Column 1,
Column 2, Column 3, Top Floor.

Both scenarios start in the same way, with the robot
requesting the human to handover Column 1 (See
Figures 10(a) and 11(a)). However, the human ignores
the robot’s request and instead grasps Column 3 with
the intention to insert it (Figures 10(c) and 11(c)). This
is an error because Column 3 cannot yet be mounted.

When the human operator is in a positive emotional
state the (expected) probability that he will commit
errors is low because this signals that he is engaged in
the joint task. In Scenario 2-1, the fact that the human
is displaying since the beginning a happy facial expres-
sion, has made the robot disable the processing of the
DNFs in the Error Monitoring Layer (EML) responsi-
ble for detecting user’s errors in intention and errors in
the means. Thus, although the robot is able to infer, at
the moment of grasping, that the intention of the
human is to insert Column 1, it is not able to predict
that the user’s intention/goal is wrong. The human
advances and inserts Column 3 (Figure 10(e)). The
robot detects that this was error only after the column
was plugged (error in execution) and orders the human
to correct the error he has made (Figure 10(g)).

In Scenario 2-2, the human is in a negative emotional
state, this causes the robot to enable the processing of
all the error detection components in the EML. As a
consequence, as soon as the human grasps Column 3 to
insert, the robot interprets this as an error in intention
and prevents the error from occurring (Figure 11(e)).

The main difference in Scenarios 2-1 and 2-2 is due
to the expressed emotional state by the human, whose
inferred state by the robot is coded in activation of the
DNF uESL (x, t) in ESL. Figure 12(a) shows a bump of
activation representing ‘Happy’ throughout the dura-
tion of Scenario 2-1, while Figure 12(b) shows a bump
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of activation in a different location representing ‘Fear’
during Scenario 2-2.

The influence of the emotional state in the robot’s
error detection capabilities can be observed in the
EML (Figure 13). While in Scenario 2-1 the robot
detected the error ‘Insert Column 3’ as an Execution
Error (Figure 13(a)), in Scenario 2-2, the same error
was anticipated and detected as an Error in Intention
(Figure 13(b)).

The fact that the human was in a happy emotional
state prevented the robot from anticipating the error.
When the human displays a happy emotional state the
robot assumes the construction is going well and dis-
ables the detection of errors in intention and errors in
means, this way it can accelerate the processing and
make decisions faster, with the downside of the robot
being unable to anticipate errors the human can com-
mit. However if an error is actually performed, the
robot will be able to detect it and issue a warning or
corrective order to this fact.

5.3 Experiment 3: Reaction of the robot to the
human’s persistence in error

In the interaction Scenarios 2-1 and 2-2 described in
the previous section, the human partner has accepted
the warnings and corrective orders issued by the robot.
The robot has never displayed a negative emotional
state toward the human partner. Experiment 3 will
explore how the robot, by producing expressive faces
when required, can react to a stubborn human, and
thus induce a change of his behavior/attitude (see video
snapshots in Figures 14 and 15).

The situation is the same as the previous Scenario 2-
2, but this time the negative emotional state displayed
by the human operator is ‘Anger’. All DNFs in EML
are therefore activated (their activation can be seen in
Figure 16).

The robot starts by requesting Column 1 to the
human (Figure 14(a)). However, the human grasps
Column 3 (Figure 14(c)) and the robot infers that he

Figure 6. Video snapshots for scenario 1-1.
Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp1-
Scen1_1.html

Figure 7. Video snapshots for scenario 1-2.
Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp1-
Scen1_2.html

Silva et al. 361



will insert that column (see activation uASHA (x, t) in
times T2-T3, Figure 17). As before, the robot detects
that the human’s goal to plug Column 4 is wrong (see
activation uEML Intention (x, t) in times T2-T3, Figure
16(a)), and warns that he will commit an error (Figure
14(e)). Despite the warning, the human proceeds to
insert Column 3 (Figure 14(g)), and as a consequence
the robot now detects it as an execution error and
issues a corrective action (see activation uEML Exec (x, t)
in times T3-T4, Figure 16(b)). Ignoring the robot, the
human persist in the error. In response to this persis-
tence and because the user is in an Angry state (see
action uESL (x, t) times T1-T5, Figure 19), the robot

takes a stand by expressing (also) an angry face (see
activation uAEFA in times T5-T6, Figure 18) and
explaining again that an error was committed (Figures
14(i) and 15(a)).

Thus far, the robot had never displayed a negative
emotion toward the human partner. Thus he gets sur-
prised (Figure 15(d)) by the robot’s anger. See activa-
tion in uESL (x, t) at time T6 (Figure 19). The human
finally accepts the robot’s correction and removes the
inserted column from the Base (Figure 15(c)). The
robot then takes a neutral expression (Figure 18, times
T7) and requests again that Column 1 is inserted on its
side (Figure 15(e)). But because the human expresses
surprise in response to the robot’s request, the decision
of the robot changes from preparing to receive Column
1 to pointing toward to it (Figure 15(g)). This gesture
drives the attention of the human operator to the
requested column. The human finally grasps and hands
over Column 1 to the robot (Figure 15(i)), and the deci-
sion of the robot is to receive it. The temporal evolu-
tion of these changes in the selected goal-directed hand

Figure 8. Experiment 1: Emotional state layer. (a) Scenario 1-1:
ESL. (b) Scenario 1-2: ESL.

Figure 9. Experiment 1: Action execution layer–goal-directed
hand actions. (a) Scenario 1-1: AEHA. (b) Scenario 1-2: AEHA.

Figure 10. Video snapshots for Scenario 2-1.
Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp2-
Scen2_1.html
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gestures of the robot can be seen in the activation of
uAEHA (x, t), times T6-T8, Figure 20.

5.4 Experiment 4: Influence of the human’s
emotional state in task time

In Experiment 4 we explore how the human’s emotional
state might influence the time that it takes to complete
the task. We use as a test scenario, the construction of
the lower section of the toy vehicle.

Three scenarios were designed, in each scenario the
human kept the expression of the same emotional state
throughout the duration of the task. In the first sce-
nario the human expressed a negative emotional state
(Fear), in the second the human was in a neutral state,
and in the third the human displayed a positive emo-
tional state (Happy). In all scenarios, the distribution
of the objects in the robot’s and human’s workspace
was the same.

Table 1 shows the results of the three interaction sce-
narios. When the human is in a fearful state, the robot
adjusts the arm movements to be slower and takes
more time explaining its actions in order to not startle
the human. In a neutral state, the robot uses a medium
velocity for the arm movements. When the human dis-
plays a happy emotional state, the robot assumes the

Figure 11. Video snapshots for Scenario 2-2.
Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp2-
Scen2_2.html

Figure 12 Experiment 2: Emotional state layer. (a) Scenario 2-
1: ESL. (b) Scenario 2-2: ESL.

Figure 13. Experiment 2: Error monitoring layer. (a) Scenario
2-1: EML – Error in Execution. (b) Scenario 2-2: EML – Error in
Intention.

Table 1. Experiment 4: Time to complete the task as a
function of the human emotional state.
Videos online at:
4-1: http://marl.dei.uminho.pt/public/videos/adb/Exp4-Scen4_1.html
4-2: http://marl.dei.uminho.pt/public/videos/adb/Exp4-Scen4_2.html
4-3: http://marl.dei.uminho.pt/public/videos/adb/Exp4-Scen4_3.html

Scenario Emotional
state

Time

4-1 Fear 2 min 55 s
4-2 Neutral 2 min 30 s
4-3 Happy 1 min 50 s
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task is running smoothly, increases the velocity for the
arm movements, disables the processing of DNFs
responsible for the detection of some types of errors,
decreasing the time it takes to make decisions.

What the results show in this particular experiment
is, the negative expressions impact in the task time by
increasing it when compared to a neutral emotional
state, 16% in this case. And when in a positive emo-
tional state, the task time is reduced by 27% when
compared to the neutral state, but due to disabling
the detection of some types of errors, its more prone
for errors to occur, since the robot cannot anticipate
them.

5.5 Experiment 5: A longer interaction
scenario–dynamically adjusting behavior to
the expressed human emotional state

As a final interaction scenario, we performed the entire
construction task where the human cooperating with
the robot shifts the expressed emotional state from neg-
ative (Fear) to neutral and then positive (Happy).

The task starts with the human presenting a fearful
expression (see Figure 21(b)). The robot adjusts its arm
movement velocity to be slower in order to not startle
the human, also it takes more time explaining its actions
(see Figure 21(a)).

Figure 14. Video snapshots for Experiment 3.
Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp3.html

Figure 15. Video snapshots for Experiment 3 (continued).
Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp3.html
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After the wheels are inserted the human presents a
neutral expression during the insertion of the nuts (see
Figure 21(d)). The robot adjusts the movement velocity
to medium and verbalizes less information.

When the middle section is assembled, the human is
expressing happiness (see Figure 21(f)), so the robot
also smiles and increases the movement velocity for the
arm. Here one can see how the robot dynamically and
in real time adjusts its behavior – information verbali-
zation and movement velocity – during the execution
of the task.

6 Discussion

Decision making refers to the process of selecting a par-
ticular action from a set of alternatives. When acting
alone, an individual may choose a motor behavior that
best serves a certain task based on the integration of
sensory evidence and prior task knowledge. In a social
context, this process is more complex since the outcome
of one’s decisions and emotions can be influenced by
the decisions and emotions of others. A fundamental
building block of social interaction is thus the capacity
to predict and understand actions and emotional states
of others. This allows an individual to select and pre-
pare an appropriate motor behavior in joint action
tasks (Michael, 2011; Sebanz et al., 2006).

Here, we have presented a DNF-architecture that
combines the role of emotions in the decision making
and movement execution of an autonomous and

socially aware robot cooperating with human partners
in real-world joint tasks. The proposed architecture is
strongly inspired by converging evidence from cognitive
and neurophysiological studies suggesting that mirror
neurons encoding different levels of abstraction coexist
and that there is an automatic but highly context-
sensitive mapping from observed on to-be-executed
actions as an underlying mechanism (Bekkering et al.,
2009; Rizzolatti & Sinigaglia, 2008).

Dynamic neural fields model the emergence of per-
sistent neural activation patterns that allow a cognitive
agent to initiate and organize behavior informed by
past sensory experience, anticipated future environmen-
tal inputs and distal behavioral goals. The DNF-archi-
tecture for joint action reflects the notion that cognitive
representations, i.e. all items of memory and knowl-
edge, consist of distributed, interactive, and overlap-
ping networks of cortical populations (‘cognit’ from
Fuster (2006)). Network neurons showing suprathres-
hold activity are participating in the selection of
actions, emotional states and their associated conse-
quences. Since the decision-making normally involves
multiple, distributed representations of potential

Figure 16. Experiment 3: Error monitoring layer.

Figure 17. Experiment 3: Action simulation layer–simulation of
goal-directed hand actions.

Figure 18. Experiment 3: Action execution layer–facial actions
set execution.

Figure 19. Experiment 3: Emotional state layer.

Figure 20. Experiment 3: Action execution layer–goal-directed
hand actions.
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actions that compete for expression in overt perfor-
mance, the robot’s goal-directed behavior is continu-
ously updated for the current environmental and social
context. Important for decision making in a collabora-
tive setting, inferring others’ goals and emotional states
from their behavior is realized by internal motor simu-
lation based on the activation of the same joint repre-
sentations of (hand and facial) actions and their
environmental effects (‘mirror mechanism’, Rizzolatti
and Sinigaglia (2008); for a recent review see Rizzolatti
et al. (2014)). Through this automatic motor resonance
process, the observer becomes aligned with the co-actor
in terms of actions, emotional states and goals. This
alignment allows the robot to dynamically adapt its
behavior to that of the human co-actor, without expli-
cit communication (for an integration of verbal com-
munication in the DNF-architecture see Bicho et al.
(2010)).

The implementation of aspects of real-time social
cognition in a robot based on continuously changing
patterns of neuronal activity in a distributed, interactive
network strongly contrasts with traditional views of
human-like (social) intelligence. These realize the under-
lying cognitive processes as a manipulation (based on
formal logic and formal linguistic systems) of discrete
symbols that are qualitatively distinct and entirely sepa-
rated from sensory and motor information. These
approaches have provided many impressive examples
of intelligent behavior in artificial agents (for review see

Vernon, Metta, & Sandini, 2007), and we do not deny
that the sequence of decisions shown in our robotics
experiments could be implemented by symbolic plan-
ning as well. However, it is now widely recognized by
the robotics and cognitive science communities that the
symbolic framework has notorious problems coping
with real-time interactions in dynamic environments
(Haazebroek, Van Dantzig, & Hommel, 2011; Kozma,
2008; Levesque & Lakemeyer, 2008). In human-robot
joint tasks, the robot has to reason about a world that
may change at any instance of time due to actions taken
by the user. Even if we consider that the processing in
the perceptual and decision modules would allow con-
tinuously updating the robot’s plan in accordance with
the user’s intention and emotional state, the extra pro-
cessing step needed to embody the abstract action plan
in the autonomous robot would challenge the fluent
and seemingly effortless coordination of decisions and
actions that characterize human joint action in familiar
tasks.

Bayesian models represent a popular alternative
approach for modeling decision and integration pro-
cesses in the face of uncertainty (Körding & Wolpert,
2006). It is important to note that the dynamic field
framework is compatible with central aspects of prob-
abilistic models. For instance, the pre-activation below
threshold of several populations in the action execution
layer due to prior task knowledge and contextual infor-
mation may be interpreted in the sense of a probability
density function for different complementary actions.
This prior information has to be combined with evidence
about the inferred goal and emotional state of the co-
actor. In fact, it can be shown that in the input-driven
regime the field dynamics may implement Bayes’ rules
(Cuijpers & Erlhagen, 2008). In our view, there are two
major advantages of the dynamic neural field approach.
First, stabilizing decision against noise, fluctuations and
temporary absence of information in the input stream, is
of particular importance. Second, as an example of the
dynamical approach to cognition (Schöner, 2008), a
DNF-based model allows us to address the important
temporal dimension of coordination in joint action
(Sebanz et al., 2006). The decision process linked to com-
plementary actions unfolds over time under multiple
influences which are themselves modeled as dynamic
representations with proper time scales.

We have tested the DNF-architecture in real-time
human-robot joint action experiments in the context of
a construction task.

In Experiment 1, we have demonstrated how the
emotional state of the human partner can affect the
decisions made by the robot. Specifically, it was shown
that in the same context, a different emotional state dis-
played by the human can trigger a different comple-
mentary behavior on the robot.

In Experiment 2, we have explored how the per-
ceived emotions may play a role in the way the robot

Figure 21. Video snapshots for Experiment 5.
Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp5.html
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detects and handles different types of errors. When the
human co-worker is in a positive emotional state, this
is taken as a signal that the human is engaged in the
task, and thus, it is not probable that he/she will com-
mit errors. The load of the Error Monitoring processes
can be decreased by deactivating the anticipation of
errors in intention and errors in the action means. The
result is that the robot can make decisions faster. In the
case that the human co-worker makes an error, this is
detected a posteriori as an execution error. Conversely,
when the human is in a negative emotional state (e.g.
Anger) this is used as a signal that the human user is
not committed to the task, and thus it is probable that
he/she is more prone to making errors. All Error
Monitoring processes are activated and this enables the
robot to prevent the occurrence of errors by anticipat-
ing errors at the goal/intention level.

In Experiment 3 we have demonstrated how the
robot can deal with a human operator persisting in
making an error. It was shown that by expressing emo-
tional states and verbalization of more information, the
robot can induce the (stubborn) human to change his
attitude and accept the robot’s corrective suggestions.

The above summarized experiments have shown that
perceived emotions play an important role in an early
stage, during decision making and action preparation
of a complementary action (AEL layer). In Experiment
4 it was shown that perceived emotions also play a role
later because they may affect the execution at the kine-
matics level (Motor control). In this experiment, three
persons expressing different emotional states (Neutral,
Fear, Happy) worked with the robot. When the human
co-worker seemed to be in a fearful state, the robot
adjusted the arm-hand movements to be slower and
took more time verbalizing its reasoning in order to
not startle the human. Conversely, when the human
displayed a positive emotional state, the robot adjusted
the arm-hand movements, and verbalization, to be
faster. In a neutral state, the robot used a medium velo-
city for the arm-hand movements and verbalization.
The overall result was that the time to complete the
task decreases when the human partner is in a positive
emotional state. However, to perform a more in depth
study on this matter, a bigger study with more partici-
pants is required to make it possible to present statisti-
cally relevant results.

Finally, Experiment 5 has shown a longer interaction
scenario – the complete construction of the toy vehicle –
with the human shifting his emotional state, and the
robot adapting in real time its behavior to these changes.

As we have shown, the adopted dynamic perspective
offers in general a high degree of flexibility in joint task
execution. However, in the present implementation of the
DNF-architecture the neural representations and their
connectivity were tailored by the designer. It is highly
desirable to endow the robot with a developmental pro-
gram that would allow it to autonomously learn and

represent new representations (Asada et al., 2009; Weng,
2004). Using correlation-based learning rules (Gerstner &
Kistler, 2002) with a gating that signals the success of
behavior, we have shown for instance how goal-directed
mappings between action observation and action execu-
tion that support an action understanding capacity may
develop during learning and practice (Erlhagen,
Mukovskiy, & Bicho, 2006a; Erlhagen, Mukovskiy,
Bicho, Panin, et al., 2006). Importantly, the developmen-
tal process, through Hebbian learning rules, may explain
the emergence of new task-specific populations that have
not been introduced to the architecture by the human
designer. Recently, we have demonstrated how the robot
may autonomously develop – through tutor demonstra-
tion and feedback during joint performance – the connec-
tions between the populations in the two layers of the
CSGL that code the possible serial orders and the longer
term dependencies between subgoals.

The work on learning and development in the DNF-
architecture for joint action is consistent with the work
of Keysers and Gazzola (2014) who have analysed how
mirror neurons could develop and become a dynamic
system that performs active inferences about the
actions, sensations and emotions of others and allows
joint actions despite sensory motor delays.

Various works have explored automatic facial expres-
sion recognition in human-computer interaction (see
Pantic & Bartlett, 2007; Tian, Kanade, & Cohn, 2005).
However, a human-robot scenario presents additional
challenges: lack of control over lighting conditions, relative
poses, the inherent mobility of the robot and separation
between robot and human. These are limitations imposed
on our robot that are also present in other works (e.g
Wimmer, MacDonald, Jayamuni, & Yadav, 2008). The
vision system limitations prevented us from performing
experiments with a larger numbers of human subjects.
The vision system relies on the acquisition of a neutral
face of the subject to perform the Action Units coding,
which might not be possible at all times. Also, the features
extraction is not robust enough to detect subtle and micro
expressions, which in more naturalistic scenarios would be
the most common expressions. Tests conducted to the sys-
tem by using the Cohn–Kanade face database (Kanade,
Cohn, & Tian, 2000) reveal detection rates for some
Action Units above 70% (4, 12 15), others have detection
rates just above 50% (1, 2, 5, 26). This led us to instruct
the participants in our studies to perform posed expres-
sions to improve the system detection rate.

Regardless of the sensorial limitations, the DNF-
architecture proved to be ready to cope with the
demands of truly real world human-robot joint action
scenarios. When dealing with multiple information
sources, which in the real world might not be reliable
or consistent, our DNF based cognitive architecture is
able to cope with these situations, even when the infor-
mation is not available all at the same time. Being able
to synthesize, in an embodied artificial agent, the
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cognitive demands of real-time interactions with a
human co-actor whose displayed emotional states mod-
ulate the robot’s behavior shows that the dynamic
neural field theory provides a promising research pro-
gram for bridging the gap that still exists in natural and
(socially) intelligent human-robot joint action.

In the future, further user studies need to be con-
ducted to assess how the robot can be more expressive,
and also how we can explore the subject of face recog-
nition to allow the robot to customize the interaction
based on the person that is interacting with it.

Supplemental material

In the supplemental material one can find the meaning and
connection scheme for the neural pools in the layered DNF
architecture, numerical values for the dynamic field para-
meters, and the numerical values for the inter-field synaptic
weights.
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Cañamero, L., & Fredslund, J. (2000). How Does It Feel?

Emotional Interaction with a Humanoid LEGO Robot. In
K. Dautenhahn (Ed.), Socially intelligent agents: The

human in the loop. papers from the aaai 2000 fall sympo-

sium (pp. 23–28). Cape Cod, MA: AAAI Press.
Carr, L., Iacoboni, M., Dubeau, M.-C., Mazziotta, J. C., &

Lenzi, G. L. (2003). Neural mechanisms of empathy in

humans: a relay from neural systems for imitation to lim-
bic areas. Proceedings of the National Academy of Sciences

of the United States of America, 100(9), 5497–502. doi:

10.1073/pnas.0935845100
Costa e Silva, E., Costa, F., Bicho, E., & Erlhagen, W. (2011).

Nonlinear optimization for humanlike movements of a

high degree of freedom robotics arm-hand system. In
Computational science and its applications-iccsa 2011

(pp. 327–342). Berlin Heidelberg: Springer.
Cuijpers, R. H., & Erlhagen, W. (2008). Implementing baye-

sain rule with neural fields. In Artificial neural networks-

icann 2008 (pp. 228–237). Berlin Heidelberg: Springer.
Ekman, P., & Friesen, W. V. (1978). Facial action coding sys-

tem: A technique for the measurement of facial movement.
In P. C. Ellsworth, & C. A. Smith (Eds.), From appraisal to

emotion: Differences among unpleasant feelings. motivation

and emotion (Vol. 12, pp. 271–302). Palo Alto, CA: Con-
sulting Psychologists Press (1988).

Ekman, P., Friesen, W. V., & Hager, J. C. (2002). Facial action

coding system. Salt Lake City, USA: Research Nexus divi-
sion of Network Information Research Corporation.

Enticott, P. G., Johnston, P. J., Herring, S. E., Hoy, K. E., &

Fitzgerald, P. B. (2008). Mirror neuron activation is associ-
ated with facial emotion processing. Neuropsychologia, 46,
2851–2854.

Erlhagen, W., & Bicho, E. (2006). The dynamic neural field

approach to cognitive robotics. Journal of Neural Engineer-

ing, 3, R36–R54.

368 Adaptive Behavior 24(5)

https://www.researchgate.net/publication/281273898_From_Appraisal_to_Emotion_Differences_Among_Unpleasant_Feelings?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/281273898_From_Appraisal_to_Emotion_Differences_Among_Unpleasant_Feelings?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/281273898_From_Appraisal_to_Emotion_Differences_Among_Unpleasant_Feelings?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/281273898_From_Appraisal_to_Emotion_Differences_Among_Unpleasant_Feelings?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/258568670_A_dynamic_field_approach_to_goal_inference_error_detection_and_anticipatory_action_selection_in_human-robot_collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/258568670_A_dynamic_field_approach_to_goal_inference_error_detection_and_anticipatory_action_selection_in_human-robot_collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/258568670_A_dynamic_field_approach_to_goal_inference_error_detection_and_anticipatory_action_selection_in_human-robot_collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/258568670_A_dynamic_field_approach_to_goal_inference_error_detection_and_anticipatory_action_selection_in_human-robot_collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/258568670_A_dynamic_field_approach_to_goal_inference_error_detection_and_anticipatory_action_selection_in_human-robot_collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/258568670_A_dynamic_field_approach_to_goal_inference_error_detection_and_anticipatory_action_selection_in_human-robot_collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/246942073_New_Version_of_the_Facial_Action_Coding_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/246942073_New_Version_of_the_Facial_Action_Coding_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/246942073_New_Version_of_the_Facial_Action_Coding_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/239537771_Facial_action_coding_system_A_technique_for_the_measurement_of_facial_movement?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/239537771_Facial_action_coding_system_A_technique_for_the_measurement_of_facial_movement?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/222514740_Emotion_and_Sociable_Humanoid_Robots?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/222514740_Emotion_and_Sociable_Humanoid_Robots?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/222514740_Emotion_and_Sociable_Humanoid_Robots?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/221079772_Implementing_Bayes'_Rule_with_Neural_Fields?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/221079772_Implementing_Bayes'_Rule_with_Neural_Fields?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/221079772_Implementing_Bayes'_Rule_with_Neural_Fields?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/52008580_Nonlinear_Optimization_for_Human-Like_Movements_of_a_High_Degree_of_Freedom_Robotics_Arm-Hand_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/52008580_Nonlinear_Optimization_for_Human-Like_Movements_of_a_High_Degree_of_Freedom_Robotics_Arm-Hand_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/52008580_Nonlinear_Optimization_for_Human-Like_Movements_of_a_High_Degree_of_Freedom_Robotics_Arm-Hand_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/52008580_Nonlinear_Optimization_for_Human-Like_Movements_of_a_High_Degree_of_Freedom_Robotics_Arm-Hand_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/52008580_Nonlinear_Optimization_for_Human-Like_Movements_of_a_High_Degree_of_Freedom_Robotics_Arm-Hand_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/49731153_Neuro-cognitive_mechanisms_of_decision_making_in_joint_action_A_human-robot_interaction_study?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/49731153_Neuro-cognitive_mechanisms_of_decision_making_in_joint_action_A_human-robot_interaction_study?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/49731153_Neuro-cognitive_mechanisms_of_decision_making_in_joint_action_A_human-robot_interaction_study?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/49731153_Neuro-cognitive_mechanisms_of_decision_making_in_joint_action_A_human-robot_interaction_study?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/49731153_Neuro-cognitive_mechanisms_of_decision_making_in_joint_action_A_human-robot_interaction_study?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/49731153_Neuro-cognitive_mechanisms_of_decision_making_in_joint_action_A_human-robot_interaction_study?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/49731153_Neuro-cognitive_mechanisms_of_decision_making_in_joint_action_A_human-robot_interaction_study?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/49731153_Neuro-cognitive_mechanisms_of_decision_making_in_joint_action_A_human-robot_interaction_study?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/45721846_Integrating_Verbal_and_Nonverbal_Communication_in_a_Dynamic_Neural_Field_Architecture_for_Human-Robot_Interaction?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/45721846_Integrating_Verbal_and_Nonverbal_Communication_in_a_Dynamic_Neural_Field_Architecture_for_Human-Robot_Interaction?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/45721846_Integrating_Verbal_and_Nonverbal_Communication_in_a_Dynamic_Neural_Field_Architecture_for_Human-Robot_Interaction?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/45721846_Integrating_Verbal_and_Nonverbal_Communication_in_a_Dynamic_Neural_Field_Architecture_for_Human-Robot_Interaction?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/22242887_Dynamic_of_pattern_formation_in_lateral-inhibition_type_neural_fields?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/22242887_Dynamic_of_pattern_formation_in_lateral-inhibition_type_neural_fields?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/22242887_Dynamic_of_pattern_formation_in_lateral-inhibition_type_neural_fields?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/11859122_From_the_Perception_of_Action_to_the_Understanding_of_Intention?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/11859122_From_the_Perception_of_Action_to_the_Understanding_of_Intention?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/11859122_From_the_Perception_of_Action_to_the_Understanding_of_Intention?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/10816694_Neural_Mechanisms_of_Empathy_in_Humans_A_Relay_from_Neural_Systems_for_Imitation_to_Limbic_Areas?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/10816694_Neural_Mechanisms_of_Empathy_in_Humans_A_Relay_from_Neural_Systems_for_Imitation_to_Limbic_Areas?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/10816694_Neural_Mechanisms_of_Empathy_in_Humans_A_Relay_from_Neural_Systems_for_Imitation_to_Limbic_Areas?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/10816694_Neural_Mechanisms_of_Empathy_in_Humans_A_Relay_from_Neural_Systems_for_Imitation_to_Limbic_Areas?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/10816694_Neural_Mechanisms_of_Empathy_in_Humans_A_Relay_from_Neural_Systems_for_Imitation_to_Limbic_Areas?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/10816694_Neural_Mechanisms_of_Empathy_in_Humans_A_Relay_from_Neural_Systems_for_Imitation_to_Limbic_Areas?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7271060_How_Do_We_Know_the_Minds_of_Others_Domain-Specificity_Simulation_and_Enactive_Social_Cognition?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7271060_How_Do_We_Know_the_Minds_of_Others_Domain-Specificity_Simulation_and_Enactive_Social_Cognition?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7271060_How_Do_We_Know_the_Minds_of_Others_Domain-Specificity_Simulation_and_Enactive_Social_Cognition?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7271060_How_Do_We_Know_the_Minds_of_Others_Domain-Specificity_Simulation_and_Enactive_Social_Cognition?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/6867397_The_dynamic_neural_field_approach_to_cognitive_robotics?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/6867397_The_dynamic_neural_field_approach_to_cognitive_robotics?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/6867397_The_dynamic_neural_field_approach_to_cognitive_robotics?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/5301458_Mirror_neuron_activation_is_associated_with_facial_emotion_processing?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/5301458_Mirror_neuron_activation_is_associated_with_facial_emotion_processing?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/5301458_Mirror_neuron_activation_is_associated_with_facial_emotion_processing?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/5301458_Mirror_neuron_activation_is_associated_with_facial_emotion_processing?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/2478017_Towards_Sociable_Robots?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/2478017_Towards_Sociable_Robots?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/profile/Emanuel_Sousa?el=1_x_11&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==


Erlhagen, W., & Bicho, E. (2014). A Dynamic Neural Field

Approach to Natural and Efficient Human-Robot Colla-

boration. In Neural fields (pp. 341–365). Berlin Heidelberg:

Springer.
Erlhagen, W., Mukovskiy, A., & Bicho, E. (2006a). A

dynamic model for action understanding and goaldirected

imitation. Brain Research, 1083, 174–188.
Erlhagen, W., Mukovskiy, A., Bicho, E., Panin, G., Kiss, C.,

Knoll, A., & . . . Bekkering, H. (2006). Goaldirected imitation

for robots: A bio-inspired approach to action understanding and

skill learning.Robotics and autonomous systems, 54, 353–360.
Erlhagen, W., Mukovskiy, A., Chersi, F., & Bicho, E. (2007b,

jul). On the development of intention understanding

for joint action tasks. In 2007 ieee 6th international confer-

ence on development and learning (pp. 140–145). London:

Imperial College London. doi: 10.1109/DEVLRN.2007.

4354022
Ferrari, P. F., Gallese, V., Rizzolatti, G., & Fogassi, L.

(2003). Mirror neurons responding to the observation of

ingestive and communicative mouth actions in the monkey

ventral premotor cortex. European Journal of Neuroscience,

17, 1703–1714. doi: 10.1046/j.1460-9568.2003.02601.x
Ferri, F., Campione, G. C., Dalla Volta, R., Gianelli, C., &

Gentilucci, M. (2010). To me or to you? When the self is

advantaged. Experimental brain research, 203, 637–646.
Ferri, F., Stoianov, I. P., Gianelli, C., D’Amico, L., Borghi,

A. M., & Gallese, V. (2010). When action meets emotions:

how facial displays of emotion influence goal-related beha-

vior. PloS One, 5, e13126.
Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F.,

& Rizzolatti, G. (2005). Parietal lobe: From action organi-

zation to intention understanding. Science (New York,

N.Y.), 308(5722), 662–667. doi: 10.1126/science.1106138
Fogassi, L., & Rizzolatti, G. (2013). The Mirror Mechanism

as Neurophysiological Basis for Action and Intention

Understanding. In A. Suarez, & P. Adams (Eds.), Is science

compatible with free will? (pp. 117–134). New York, NY:

Springer New York. doi: 10.1007/978-1-4614-5212-6_9
Fong, T., Nourbakhsh, I. R., & Dautenhahn, K. (2003). A

survey of socially interactive robots. Robotics and Autono-

mous Systems, 42(3–4), 143–166. doi: 10.1016/S0921-

8890(02)00372-X
Fuster, J. M. (2006). The cognit: a network model of cortical

representation. International Journal of Psychophysiology,

60, 125–132.
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996).

Action recognition in the premotor cortex. Brain, 119,

593–609. doi: 10.1093/brain/119.2.593
Genovesio, A., Brasted, P. J., & Wise, S. P. (2006). Represen-

tation of future and previous spatial goals by separate

neural populations in prefrontal cortex. The Journal of

Neuroscience, 26, 7305–7316.
Gerstner, W., & Kistler, W. M. (2002). Mathematical formu-

lations of hebbian learning. Biological Cybernetics,

87(5–6), 404–415.
Grecucci, A., Cooper, R. P., & Rumiati, R. I. (2007). A computa-

tional model of action resonance and its modulation by emo-

tional stimulation. Cognitive Systems Research, 8(3), 143–160.
Haazebroek, P., Van Dantzig, S., & Hommel, B. (2011). A

computational model of perception and action for cogni-

tive robotics. Cognitive Processing, 12, 355–365.

Hegel, F., Spexard, T., Wrede, B., Horstmann, G., & Vogt, T.
(2006). Playing a different imitation game: Interaction with

an Empathic Android Robot. In G. Sandini, & A. Billard
(Eds.), 2006 6th ieee-ras international conference on huma-

noid robots (pp. 56–61). Genova, Italy: IEEE. doi: 10.1109/
ICHR.2006.321363

Hu, & Ming-Kuei. (1962). Visual pattern recognition by
moment invariants. IEEE Transactions on Information

Theory, 8, 179–187. doi: 10.1109/TIT.1962.1057692
Iacoboni, M., Molnar-Szakacs, I., Gallese, V., Buccino, G.,

Mazziotta, J. C., & Rizzolatti, G. (2005). Grasping the

intentions of others with one’s own mirror neuron system.
PLoS Biology, 3, e79. doi: 10.1371/journal.pbio.0030079

Kanade, T., Cohn, J. F., & Tian, Y. (2000). Comprehensive

database for facial expression analysis. In F. M. Titsworth
(Ed.), Proceedings of the fourth IEEE international

conference on automatic face and gesture recognition

(fg’00) (pp. 46–53). Grenoble, France: IEEE Comput.
Soc. doi: 10.1109/AFGR.2000.840611

Keysers, C., & Gazzola, V. (2006). Towards a unifying neural

theory of social cognition. Progress in Brain Research, 156,
379–401. doi: 10.1016/S0079-6123(06)56021-2

Keysers, C., & Gazzola, V. (2014). Hebbian learning and pre-

dictive mirror neurons for actions, sensations and emo-
tions. Philosophical Transactions of the Royal Society B,
369(1644), 20130175, 1–11.

Keysers, C., Wicker, B., Gazzola, V., Anton, J.-L., Fogassi,

L., & Gallese, V. (2004). A touching sight: SII/PV activa-
tion during the observation and experience of touch. Neu-

ron, 42, 335–346. doi: 10.1016/S0896-6273(04)00156-4
Kirby, R., Forlizzi, J., & Simmons, R. (2010). Affective social

robots. Robotics and Autonomous Systems, 58, 322–332.
doi: 10.1016/j.robot.2009.09.015

Körding, K. P., & Wolpert, D. M. (2006). Bayesian decision

theory in sensorimotor control. Trends in Cognitive

Sciences, 10, 319–326.
Kozma, R. (2008). Intentional systems: Review of neurody-

namics, modeling, and robotics implementation. Physics of
Life Reviews, 5, 1–21.

Kedzierski, J., Muszynski, R., Zoll, C., Oleksy, A., & Front-

kiewicz, M. (2013). EMYS - Emotive Head of a Social
Robot. International Journal of Social Robotics, 5,
237–249. doi: 10.1007/s12369-013-0183-1

Leslie, K. R., Johnson-Frey, S. H., & Grafton, S. T. (2004).

Functional imaging of face and hand imitation: Towards a
motor theory of empathy. NeuroImage, 21, 601–607. doi:

10.1016/j.neuroimage.2003.09.038
Levesque, H., & Lakemeyer, G. (2008). Cognitive robotics.

Foundations of Artificial Intelligence, 3, 869–886.
Locke, K. D., & Horowitz, L. M. (1990). Satisfaction in inter-

personal interactions as a function of similarity in level of
dysphoria. Journal of Personality and Social Psychology,
58, 823–31.

Lowe, R., Herrera, C., Morse, A., & Ziemke, T. (2007). The

Embodied Dynamics of Emotion, Appraisal and Atten-
tion. In L. Paletta, & E. Rome (Eds.), Attention in cognitive

systems. theories and systems from an interdisciplinary view-

point (Vol. 4840, pp. 1–20). Berlin, Heidelberg: Springer.
doi: 10.1007/978-3-540-77343-6_1

Michael, J. (2011). Shared emotions and joint action. Review

of Philosophy and Psychology, 2, 355–373. doi: 10.1007/
s13164-011-0055-2

Silva et al. 369

https://www.researchgate.net/publication/285996130_A_Dynamic_Neural_Field_Approach_to_Natural_and_Efficient_Human-Robot_Collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/285996130_A_Dynamic_Neural_Field_Approach_to_Natural_and_Efficient_Human-Robot_Collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/285996130_A_Dynamic_Neural_Field_Approach_to_Natural_and_Efficient_Human-Robot_Collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/285996130_A_Dynamic_Neural_Field_Approach_to_Natural_and_Efficient_Human-Robot_Collaboration?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/285797377_Action_recognition_in_the_premotor_cortex?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/285797377_Action_recognition_in_the_premotor_cortex?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/285797377_Action_recognition_in_the_premotor_cortex?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/261956809_Hebbian_learning_and_predictive_mirror_neurons_for_actions_sensations_and_emotions?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/261956809_Hebbian_learning_and_predictive_mirror_neurons_for_actions_sensations_and_emotions?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/261956809_Hebbian_learning_and_predictive_mirror_neurons_for_actions_sensations_and_emotions?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/261956809_Hebbian_learning_and_predictive_mirror_neurons_for_actions_sensations_and_emotions?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/257780600_EMYS-emotive_head_of_a_social_robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/257780600_EMYS-emotive_head_of_a_social_robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/257780600_EMYS-emotive_head_of_a_social_robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/257780600_EMYS-emotive_head_of_a_social_robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/224060440_Playing_a_different_imitation_game_Interaction_with_an_Empathic_Android_Robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/224060440_Playing_a_different_imitation_game_Interaction_with_an_Empathic_Android_Robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/224060440_Playing_a_different_imitation_game_Interaction_with_an_Empathic_Android_Robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/224060440_Playing_a_different_imitation_game_Interaction_with_an_Empathic_Android_Robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/224060440_Playing_a_different_imitation_game_Interaction_with_an_Empathic_Android_Robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/224060440_Playing_a_different_imitation_game_Interaction_with_an_Empathic_Android_Robot?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/223783553_Intentional_systems_Review_of_neurodynamics_modeling_and_robotics_implementation?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/223783553_Intentional_systems_Review_of_neurodynamics_modeling_and_robotics_implementation?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/223783553_Intentional_systems_Review_of_neurodynamics_modeling_and_robotics_implementation?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/222404791_Affective_social_robots?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/222404791_Affective_social_robots?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/222404791_Affective_social_robots?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/220479664_A_computational_model_of_action_resonance_and_its_modulation_by_emotional_stimulation?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/220479664_A_computational_model_of_action_resonance_and_its_modulation_by_emotional_stimulation?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/220479664_A_computational_model_of_action_resonance_and_its_modulation_by_emotional_stimulation?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/51151736_A_computational_model_of_perception_and_action_for_cognitive_robotics?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/51151736_A_computational_model_of_perception_and_action_for_cognitive_robotics?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/51151736_A_computational_model_of_perception_and_action_for_cognitive_robotics?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/47460137_When_Action_Meets_Emotions_How_Facial_Displays_of_Emotion_Influence_Goal-Related_Behavior?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/47460137_When_Action_Meets_Emotions_How_Facial_Displays_of_Emotion_Influence_Goal-Related_Behavior?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/47460137_When_Action_Meets_Emotions_How_Facial_Displays_of_Emotion_Influence_Goal-Related_Behavior?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/47460137_When_Action_Meets_Emotions_How_Facial_Displays_of_Emotion_Influence_Goal-Related_Behavior?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/44576497_To_me_or_to_you_When_the_self_is_advantaged?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/44576497_To_me_or_to_you_When_the_self_is_advantaged?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/44576497_To_me_or_to_you_When_the_self_is_advantaged?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/20808458_Satisfaction_in_Interpersonal_Interactions_as_a_Function_of_Similarity_in_Level_of_Dysphoria?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/20808458_Satisfaction_in_Interpersonal_Interactions_as_a_Function_of_Similarity_in_Level_of_Dysphoria?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/20808458_Satisfaction_in_Interpersonal_Interactions_as_a_Function_of_Similarity_in_Level_of_Dysphoria?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/20808458_Satisfaction_in_Interpersonal_Interactions_as_a_Function_of_Similarity_in_Level_of_Dysphoria?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/11008566_Mathematical_Formulations_of_Hebbian_Learning?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/11008566_Mathematical_Formulations_of_Hebbian_Learning?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/11008566_Mathematical_Formulations_of_Hebbian_Learning?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/8685238_Functional_imaging_of_face_and_hand_imitation_Towards_a_motor_theory_of_empathy?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/8685238_Functional_imaging_of_face_and_hand_imitation_Towards_a_motor_theory_of_empathy?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/8685238_Functional_imaging_of_face_and_hand_imitation_Towards_a_motor_theory_of_empathy?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/8685238_Functional_imaging_of_face_and_hand_imitation_Towards_a_motor_theory_of_empathy?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/8612868_A_touching_sight_SIIPV_activation_during_the_observation_and_experience_of_touch?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/8612868_A_touching_sight_SIIPV_activation_during_the_observation_and_experience_of_touch?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/8612868_A_touching_sight_SIIPV_activation_during_the_observation_and_experience_of_touch?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/8612868_A_touching_sight_SIIPV_activation_during_the_observation_and_experience_of_touch?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7996930_Grasping_the_Intentions_of_Others_with_One's_Own_Mirror_Neuron_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7996930_Grasping_the_Intentions_of_Others_with_One's_Own_Mirror_Neuron_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7996930_Grasping_the_Intentions_of_Others_with_One's_Own_Mirror_Neuron_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7996930_Grasping_the_Intentions_of_Others_with_One's_Own_Mirror_Neuron_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7876882_Parietal_Lobe_From_Action_Organization_to_Intention_Understanding?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7876882_Parietal_Lobe_From_Action_Organization_to_Intention_Understanding?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7876882_Parietal_Lobe_From_Action_Organization_to_Intention_Understanding?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/7876882_Parietal_Lobe_From_Action_Organization_to_Intention_Understanding?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/6962030_Representation_of_Future_and_Previous_Spatial_Goals_by_Separate_Neural_Populations_in_Prefrontal_Cortex?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/6962030_Representation_of_Future_and_Previous_Spatial_Goals_by_Separate_Neural_Populations_in_Prefrontal_Cortex?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/6962030_Representation_of_Future_and_Previous_Spatial_Goals_by_Separate_Neural_Populations_in_Prefrontal_Cortex?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/6962030_Representation_of_Future_and_Previous_Spatial_Goals_by_Separate_Neural_Populations_in_Prefrontal_Cortex?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/4282917_On_the_development_of_intention_understanding_for_joint_action_tasks?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/4282917_On_the_development_of_intention_understanding_for_joint_action_tasks?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/4282917_On_the_development_of_intention_understanding_for_joint_action_tasks?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/4282917_On_the_development_of_intention_understanding_for_joint_action_tasks?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/4282917_On_the_development_of_intention_understanding_for_joint_action_tasks?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/4282917_On_the_development_of_intention_understanding_for_joint_action_tasks?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/2605734_Comprehensive_Database_for_Facial_Expression_Analysis?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/2605734_Comprehensive_Database_for_Facial_Expression_Analysis?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/2605734_Comprehensive_Database_for_Facial_Expression_Analysis?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/2605734_Comprehensive_Database_for_Facial_Expression_Analysis?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/2605734_Comprehensive_Database_for_Facial_Expression_Analysis?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/2605734_Comprehensive_Database_for_Facial_Expression_Analysis?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==


Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A.
M., & Bekkering, H. (2007). The mirror neuron system is
more active during complementary compared with imita-
tive action. Nature Neuroscience, 10, 817–818.

Novikova, J., & Watts, L. (2015). Towards artificial emotions
to assist social coordination in HRI. International Journal
of Social Robotics, 7, 77–88. doi: 10.1007/s12369-014-
0254-y

Oatley, K., & Johnson-Laird, P. N. (1987). Towards a cogni-
tive theory of emotions. Cognition and Emotion, 1, 29–50.

Oatley, K., & Johnson-Laird, P. (2014). Cognitive approaches
to emotions. Trends in Cognitive Sciences, 18, 134–140.

Ochsner, K. N., & Gross, J. J. (2005). The cognitive control
of emotion. Trends in Cognitive Sciences, 9, 242–9. doi:
10.1016/j.tics.2005.03.010

Pantic, M., & Bartlett, M. S. (2007). Machine Analysis of
Facial Expressions. In K. Kurihara (Ed.), Face recognition

(pp. 237–366). Vienna, Austria: I-Tech Education and
Publishing.

Poljac, E., van Schie, H. T., & Bekkering, H. (2009). Under-
standing the flexibility of action-perception coupling. Psy-
chological Research, 73, 578–86. doi: 10.1007/s00426-
009-0238-y

Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S.
(2014). Cortical mechanisms underlying the organization
of goal-directed actions and mirror neuron-based action
understanding. Physiological Reviews, 94, 655–706. doi:
10.1152/physrev.00009 .2013

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron
system. Annual Review of Neuroscience, 27, 169–92. doi:
10.1146/annurev.neuro.27.070203.144230

Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophy-
siological mechanisms underlying the understanding and
imitation of action. Nature Reviews Neuroscience, 2,
661–70. doi: 10.1038/35090060

Rizzolatti, G., & Sinigaglia, C. (2008). Mirrors in the Brain:
How Our Minds Share Actions and Emotions (Translated
ed.). New York: Oxford University Press.

Schaal, S. (1999). Is imitation learning the route to humanoid
robots? Trends in Cognitive Sciences, 3, 233–242. doi:
10.1016/S1364-6613(99)01327-3

Scheutz, M. (2011). The Inherent Dangers of Unidirectional
Emotional Bonds between Humans and Social Robots. In
P. Lin, K. Abney, & G. A. Bekey (Eds.), Robot ethics: The
ethical and social implications of robotics (pp. 205–221).
Cambridge, Massachusetts: MIT Press.

Scheutz, M., Schermerhorn, P., & Kramer, J. (2006). The util-
ity of affect expression in natural language interactions
in joint human-robot tasks. In M. A. Goodrich, A. C.
Schultz, & D. J. Bruemmer (Eds.), Proceeding of the 1st

acm sigchi/sigart conference on humanrobot interaction - hri

’06 (p. 226). New York, USA: ACM Press. doi: 10.1145/
1121241. 1121281
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Table 1. Description of Action Units (AUs) and appearance
changes caused by each AU in the face, according to Ekman
et al. (2002).

AU Name Description

AU1 Inner Brow Raiser Inner portion of the
eyebrows up.

AU2 Outer Brow Raiser Outer portion of the
eyebrows up.

AU4 Brow Lowerer Lowers the entire eyebrow.
AU5 Upper Lid Raiser Eyes wide open.
AU7 Lid Tightener Eyes half closed.
AU9 Nose Wrinkler Causes wrinkles to

appear in nose.
AU12 Lip Corner Puller Lip corners up (Smile).
AU15 Lip Corner

Depressor
Lip corners down.

AU20 Lip Stretcher Pulls the lips back laterally.
AU25 Lips Part Open mouth slightly.
AU26 Jaw Drop Open the mouth.

Table 2. Combinations of AUs and human movements capable
of activating an emotional state in ESL (the detection of an AU
implies that the face is detected).

Inferred
emotion

AUs and human movements

Disgust 4+ 12+ 25 / 4+ 25 / 9+
15 / 9 / 4+ 9 / 4+ 5+ 9

Anger 4+ 5 / 4+ 7 / 4+Head Movement High
Fear 1+ 2+ 5+ 20+ 26 / 4+ 20 / 1+ 20

5 + Hand Movement Low
Sadness 1+ 4+ 15 / 1+ 4 / 1+ 15 / 4+ 15

1 + Hand Movement Low
15 + Hand Movement Low

Neutral Face detected
Surprise 1+ 2 / 1+ 2+ 5 / 1+ 2+ 26 /

1+ 2+ 5+ 26
Happiness 12 / 1+ 2+ 12 / 12+ 26

Table 3. Experiment 1: Scenario 1-1.

Label Time (s)

T1 5
T2 43
T3 46

Table 4. Experiment 1: Scenario 1-2.

Label Time (s)

T1 5
T2 14
T3 21
T4 30

Table 5. Experiment 2: Scenario 2-1.

Label Time (s)

T1 2
T2 8
T3 15
T4 23

Table 6. Experiment 2: Scenario 2-2.

Label Time (s)

T1 3
T2 17
T3 20
T4 29

Table 7. Experiment 3.

Label Time (s)

T1 3
T2 13
T3 17
T4 23
T5 38
T6 42
T7 58
T8 64

Appendix

Silva et al. 371

https://www.researchgate.net/publication/246942073_New_Version_of_the_Facial_Action_Coding_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==
https://www.researchgate.net/publication/246942073_New_Version_of_the_Facial_Action_Coding_System?el=1_x_8&enrichId=rgreq-8986be20f93fc8a82f666d02fd557830-XXX&enrichSource=Y292ZXJQYWdlOzMwOTAyNjkzODtBUzo0NDM4NjU5MzgzMDUwMjVAMTQ4MjgzNzI5NDc3Mw==


About the Authors

Rui Silva received his MSc in Industrial Electronics and Computers Engineering, with specializa-
tion on ‘‘Automation, Control and Robotics’’ at the University of Minho, Portugal, in 2008. He
is finishing his doctoral studies on ‘‘Electronics and Computers Engineering’’. His research inter-
ests are focused on Computer Vision, Non-linear Dynamical Systems, Simulation, Robotics and
Facial Expression Recognition. Currently he is working at Displax - Multitouch Technologies.

Luı́s Louro received a PhD in the area of Automation and Robotics (PhD program on Electronics
and Computers Engineering) at University of Minho, in 2010. He was a research assistant at the
European projects ‘‘Artesimit–Artefact Structural Learning through Imitation’’ and ‘‘JAST - Joint
Action Science and Technology’’. His research interests are Autonomous and Anthropomorphic
Robotics, Human-Robot Interaction. Currently he has a post-doc position at the University of
Minho, Portugal, and he is an assistant professor at Lusı́ada University, Portugal.

Tiago Malheiro received his MSc in Industrial Electronics and Computers Engineering, with
specialization on ‘‘Automation, Control and Robotics’’ and ‘‘Embedded Systems’’ from
University of Minho, Portugal, in 2011. He is currently working toward a PhD in robotics focus-
ing on the development of pro-active robots to assist dependent persons. His research interests
are focused on Robotics, Non-linear Dynamical Systems, and Embedded Systems.

Wolfram Erlhagen is Associate Professor at the Department of Mathematics at the University
of Minho, Portugal. He has been PI in several European and national projects in the ICT topic.
His multidisciplinary research covers the multi-scale analysis of neuronal activity, the functional
modeling of brain circuits, and the implementation of neuro-based models in autonomous
robots. In close cooperation with experimental groups he applies his theoretical investigations to
problems of motor planning, visual perception and reasoning with the ultimate goal to bridge
Cognitive Sciences to Robotics.

Estela Bicho is Associate Professor at the Department of Industrial Electronics at University of
Minho, Portugal, where she is responsible for courses in Non-linear Dynamical Systems, Control
and Robotics and heads the research lab on Autonomous (mobile and anthropomorphic)
Robotics & Dynamical systems. She obtained the PhD degree in Robotics, Automation and
Control, in 1999, from the University of Minho. Her PhD work received the honor price from
Portuguese-IBM (1999). Her research concentrates on the use of dynamical systems for the
design and implementation of neuro-cognitive control architectures for flexible control of high-
DOF robotics systems, including human-robot interaction and joint action. She has been PI in
several national and EU funded research projects in robotics.

372 Adaptive Behavior 24(5)

View publication statsView publication stats

https://www.researchgate.net/publication/309026938



