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Abstract 

 

The early detection of gastrointestinal cancer, in the dysplastic stage, is essential to 

increase the patient survival rate. Spectroscopic techniques, particularly diffuse reflectance and 

fluorescence, can improve the gastrointestinal dysplasia detection, since these techniques can be 

used to extract biochemical and morphologic information related with the status of a 

gastrointestinal tissue. 

Several research groups have developed prototypes for the extraction of diffuse reflectance 

and fluorescence signals applied to gastrointestinal cancer detection. Despite their advantages 

associated with the gastrointestinal cancer identification, they have several disadvantages related 

with the use of complex, high-cost and sophisticate components such as xenon lamps, lasers, 

monochromators, optical fibers and high quantum efficiency detectors, which may hamper their 

wide use as well as their huge clinical value. Therefore, it is of utmost importance to develop a 

low-cost, miniaturized and minimal invasive microsystem for spectroscopic signals extraction.  

As a result, in this work it is proposed the implementation of a microsystem, which 

comprises in a single chip, an optical filter system for selection and extraction of the diffuse 

reflectance and fluorescence signals in relevant spectral bands, a silicon photodiodes matrix (4×4) 

and its readout electronics, and miniaturized light emitting diodes. The main applications of this 

microsystem are: its use as a portable device in a surgery room for inspection of total removing of 

the cancerous or dysplastic tissue; and its integration with the standard endoscopes and 

colonoscopes using it as an auxiliary, to the physician, in early gastrointestinal cancer detection. 

Along this thesis, important steps towards that microsystem implementation were 

achieved. In a first step experimental measurements were performed, with phantoms 

representative of the main absorbing, scattering and fluorescence properties of gastrointestinal 

tissues (containing hemoglobin, polystyrene microspheres to represent collagen fibers, and the 

fluorophores NADH and Carbostyril 124, the latter representing collagen), in order to study the 

diffuse reflectance and fluorescence typical spectra and their temperature dependence. Moreover, 

the viability of using only 16 spectral bands (between 350 and 750 nm) for signals extraction was 

discussed, proving the feasibility of an optical filter system implementation in the final microsystem. 

Therefore, it were designed, fabricated and characterized 16 MgO/TiO2 and SiO2/TiO2 

based thin-film optical filters. Their characterization performed through optical transmittance, 
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selectivity, profilometry and scanning electron microscopy, allowed understanding the deviations 

between the simulated characteristics and the ones experimentally obtained. Moreover, the optical 

filters results showed transmittances ranging from 50% to 90% approximately, and a full width half 

maximum (FWHM) averaging from 11 nm to 20 nm, which fits the required application. The 

fabricated optical filters had some deviations considering their simulated characteristics, which can 

be explained by the complexity of the optical filters design, for example, the materials refractive 

index dependence with wavelength and thin-film thickness. 

The diffuse reflectance and fluorescence signals that pass through the optical filters can 

be measured with an on-chip silicon photodetectors matrix (4×4), based on n+/p-epilayer junction 

photodiodes with an active area of 100 × 100 µm2, and a light-to-frequency converter, per each 

photodiode, that enables producing a digital signal with a frequency proportional to the photodiode 

current. As a result, the design and implementation of a CMOS microsystem comprising these 

components were performed. The photodiodes characterization showed a responsivity of 

200 mA/W at 550 nm, approximately, and the light-to-frequency converter connected to the 

photodiode showed a linear response (R2>0.99) with a sensitivity of 25 Hz/nA at 550 nm, 

approximately. The behavior of the current-to-frequency converter, with an external current source 

directly injected in its input, was also studied allowing to confirm its linearity in the range of currents 

produced in this application, its power consumption of 1 mW, and its maximum input current, 

approximately 300 µA. This CMOS approach avoids the need of an expensive readout optical 

microsystem, since it is possible to integrate the photodiodes and the readout electronics in a small 

silicon area (275 × 100 µm2 per photodiode and its respective converter). 

The performance of the implemented microsystem and the fabricated optical filters was 

evaluated, using phantoms (also containing hemoglobin, polystyrene microspheres, NADH and 

Carbostyril 124). The obtained results have shown the viability of the microsystem (including the 

optical filter system) to extract diffuse reflectance and fluorescence signals. Some issues were 

noted on the sensitivity of the implemented optical setups for the on-chip measurements. However, 

some solutions were proposed for the remaining problems, specifically the future use of 

miniaturized light emitting diodes and the direct deposition of the optical filters on the top of the 

photodetection system. Finally, the direct integration of optical filters on top of the photodiodes was 

discussed and a new approach was tested.  
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Resumo 

A deteção precoce do cancro gastrointestinal, na fase de displasia, é essencial para o aumento 

da taxa de sobrevivência do paciente. As técnicas de espetroscopia, particularmente a refletância difusa 

e a fluorescência, permitem melhorar a deteção de displasia gastrointestinal, ao poderem ser utilizadas 

para a extração de informação bioquímica e morfológica associada ao estado do tecido gastrointestinal. 

Diversos grupos de investigação têm desenvolvido protótipos para a extração de sinais de 

refletância difusa e de fluorescência, para aplicação na deteção do cancro gastrointestinal. Apesar das 

vantagens associadas com a identificação do cancro gastrointestinal, esses sistemas apresentam 

várias desvantagens relacionadas com a utilização de componentes complexos, de elevado custo e 

sofisticados, como por exemplo, lâmpadas de xénon, lasers, monocromadores, fibras óticas e 

detetores de elevada eficiência, que podem dificultar a sua ampla utilização, bem como o seu elevado 

valor clínico. Portanto, é de extrema importância o desenvolvimento de um microssistema de baixo 

custo, miniaturizado e minimamente invasivo para a extração de sinais de espetroscopia. 

Assim, neste trabalho é proposta a implementação de um microssistema, num único chip, 

compreendendo: um sistema de filtros óticos para a seleção dos sinais de refletância difusa e de 

fluorescência em bandas espetrais relevantes; uma matriz de fotodíodos de silício (4×4) e a respetiva 

eletrónica de leitura; e díodos emissores de luz miniaturizados. As principais aplicações deste 

microssistema são: a sua utilização como sistema portátil numa sala de cirurgia para inspeção da 

remoção total do tecido maligno ou displásico; ou a sua integração com os sistemas de endoscopia e 

colonoscopia, servindo como auxiliar de diagnóstico, na deteção precoce de cancro gastrointestinal. 

Com a realização desta tese foram dados passos importantes para a implementação desse 

microssistema. Numa primeira fase, foram realizados testes experimentais, com um grupo de 

fantomas representativos das propriedades de absorção, difusão e de fluorescência dos tecidos 

gastrointestinais (contendo hemoglobina, microesferas de polistireno representando as fibras de 

colagénio, e os fluoróforos NADH e Carbostyril 124, este último para representar o colagénio), de forma 

a obter os espetros típicos de refletância difusa e de fluorescência e a influência da temperatura do 

fantoma nos mesmos. Para além disso, a viabilidade de usar apenas 16 bandas espetrais (entre 350 

e 750 nm) para a extração dos sinais espetroscópicos foi discutida, provando a exequibilidade da 

implementação de um sistema de filtros óticos no microssistema final. 

Assim, foram desenhados, fabricados e caracterizados 16 filtros óticos baseados em filmes 

finos de MgO/TiO2 e SiO2/TiO2. A sua caracterização do ponto de vista da transmitância ótica, 

seletividade, profilometria e microscopia eletrónica de varrimento, permitiu perceber os desvios 
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verificados entre as características simuladas e as obtidas experimentalmente. Para além disso, os 

resultados da caracterização dos filtros óticos mostraram transmitâncias óticas que variam entre 50% 

e 90%, aproximadamente, e uma largura a meia-altura (FWHM) média entre 11 nm e 20 nm, o que é 

adequado para a aplicação pretendida. Os filtros óticos fabricados possuem alguns desvios das suas 

características simuladas, o que pode ser explicado pela complexidade no projeto de filtros óticos, por 

exemplo, a dependência dos índices de refração com o comprimento de onda e espessura do filme 

fino. 

Os sinais de refletância difusa e fluorescência que atravessam os filtros óticos podem ser 

medidos através de uma matriz de fotodetetores de silício (4×4), baseada em fotodíodos do tipo 

n+/p-epilayer com uma área ativa de 100 × 100 µm2, e um conversor luz-frequência, um por cada 

fotodíodo, que permite produzir um sinal digital com uma frequência proporcional à corrente gerada 

pelo fotodíodo. Assim, o projeto e a implementação de um microssistema CMOS incluindo esses 

componentes foram executados. A caracterização dos fotodíodos da matriz resultou num valor de 

responsividade de 200 mA/W a 550 nm, aproximadamente, e a do conversor luz-frequência, quando 

ligado a um fotodíodo, resultou numa resposta linear (R2>0.99) com uma sensibilidade de 25 Hz/nA 

a 550 nm, aproximadamente. O comportamento do conversor corrente-frequência, com uma fonte de 

corrente externa diretamente injetada na sua entrada, foi também estudado, permitindo confirmar a 

sua linearidade na gama de correntes envolvidas nesta aplicação, a sua potência de consumo de 

1 mW, e a sua corrente de entrada máxima, aproximadamente 300 µA. Esta abordagem em tecnologia 

CMOS evita a utilização de um microssistema ótico de leitura de elevado custo, uma vez que torna 

possível a integração dos fotodíodos e respetiva eletrónica de leitura numa área de silício pequena 

(275 × 100 µm2 por fotodíodo e respetivo conversor).  

Foi avaliado o desempenho do microssistema implementado e dos filtros óticos fabricados 

usando fantomas (mais uma vez contendo hemoglobina, microesferas de polistireno, NADH e 

Carbostyril 124). Os resultados obtidos provaram a viabilidade do microssistema (incluindo o sistema 

de filtros óticos) para a extração de sinais de refletância difusa e de fluorescência. Foram notados 

alguns problemas na sensibilidade dos setups óticos implementados para as medições on-chip. No 

entanto, foram também propostas algumas soluções para os respetivos problemas, especificamente o 

uso futuro de díodos emissores de luz miniaturizados e a deposição direta dos filtros óticos no sistema 

de fotodeteção. Finalmente, a integração dos filtros óticos depositados diretamente em cima dos 

fotodíodos foi discutida e uma nova abordagem foi testada. 

 

  



    

_____________________________________________________________________________ 

xi 

Index 

 
1 Introduction ............................................................................................................................ 1 

1.1 Gastrointestinal cancer: global incidence .......................................................................... 1 

1.2 Gastrointestinal tract: anatomy, functionality and cancer progression ................................ 4 

1.3 Optical spectroscopy for gastrointestinal cancer detection: state of the art ........................ 8 

1.4 Motivation and objectives ............................................................................................... 21 

1.5 Organization of the thesis ............................................................................................... 22 

References .......................................................................................................................... 23 

2 Optical spectroscopy techniques ........................................................................................... 27 

2.1 Diffuse reflectance spectroscopy: basic theory ................................................................ 27 

2.2 Fluorescence spectroscopy: basic theory ........................................................................ 30 

2.3 Diffuse reflectance signal study: temperature dependence and typical spectra intensity and 

shape .................................................................................................................................. 32 

2.4 Fluorescence signal study .............................................................................................. 35 

2.4.1 Temperature dependence and typical spectra intensity and shape ........................... 35 

2.4.2 Absorption and scattering distortions in the fluorescence spectra ............................. 41 

2.5 Spectroscopy models for signals analysis ....................................................................... 43 

2.6 Conclusion .................................................................................................................... 46 

References .......................................................................................................................... 47 

3 Thin-film optical filters ........................................................................................................... 51 

3.1 Thin-films properties: basic theory .................................................................................. 51 

3.2 Optical filters design based on thin-films ......................................................................... 64 

3.2.1 Optical filters structure ............................................................................................ 64 

3.2.2 Optical filters materials ........................................................................................... 67 

3.2.3 Optical filters simulations ........................................................................................ 68 



 

_____________________________________________________________________________ 

xii 

3.3 Thin-films deposition process ......................................................................................... 70 

3.4 Optical filters design adjustment .................................................................................... 73 

3.5 Optical filters fabrication and characterization ................................................................. 76 

3.6 Conclusion .................................................................................................................... 82 

References .......................................................................................................................... 83 

4 Microsystem design and implementation on CMOS technology .............................................. 85 

4.1 Photodiodes matrix ........................................................................................................ 85 

4.2 Readout electronics ....................................................................................................... 93 

4.2.1 Light-to-frequency converter .................................................................................... 93 

4.2.2 Light-to-frequency converter: experimental tests ....................................................... 98 

4.2.3 Current-to-frequency (IF) features .......................................................................... 100 

4.3 Conclusion .................................................................................................................. 103 

References ........................................................................................................................ 103 

5 Experimental results ........................................................................................................... 107 

5.1 Optical filters performance: diffuse reflectance and fluorescence signals measurements on 

tissue phantoms ................................................................................................................ 107 

5.2 Microsystem performance: on-chip diffuse reflectance signal extraction on tissue 

phantoms .......................................................................................................................... 110 

5.3 Microsystem performance: on-chip fluorescence signal extraction on tissue phantoms .. 113 

5.4 Integration of the optical filters on the top of the silicon photodiodes ............................. 116 

5.4.1 CMOS die patterning and optical filters deposition ................................................. 116 

5.4.2 Integrated optical filters characterization ................................................................ 119 

5.4.3 Full integration of the optical filters on the photodetection system .......................... 122 

5.5 Conclusion .................................................................................................................. 123 

References ........................................................................................................................ 124 

6 Conclusions and future work ............................................................................................... 125 

6.1 Conclusions ................................................................................................................. 125 



    

_____________________________________________________________________________ 

xiii 

6.2 Future Work ................................................................................................................. 127 

Appendices............................................................................................................................ 131 

Appendix I – Commercial optical filters used ...................................................................... 131 

Appendix II – Commercial optical filters available ................................................................ 133 

Appendix III – Commercial photodiode used for the characterization of the CMOS 

photodiodes ....................................................................................................................... 139 

Appendix IV - Intensity curve of the light source used for the on-chip measurements ............ 141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

_____________________________________________________________________________ 

xiv 

 

 

 

  



    

_____________________________________________________________________________ 

xv 

Index of Figures 

Figure 1.1 Representation of the GI tract organs (adapted from [11]). ......................................... 5 

Figure 1.2 Structure organization of the esophageal wall (adapted from [14]).............................. 6 

Figure 1.3 White-light endoscopic image of a SCC (A) and its exposure to violet-blue light (B), 

(reprinted from [16] with permission from Elsevier). ................................................................... 7 

Figure 1.4 BE imaged with high-resolution endoscopy (adapted from [17] with permission from 

Elsevier). ................................................................................................................................... 7 

Figure 1.5 Diffuse reflectance signal (A) and intrinsic fluorescence signal (B) of different tissues. In 

(A) the higher intensity lines (in black) correspond to a reflectance spectrum of a non-dysplastic BE 

tissue site; the low intensity lines (in gray) correspond to a low-grade dysplastic BE tissue site. In 

(B) the solid lines correspond to a non-dysplastic BE tissue site and the dashed lines correspond 

to a high-grade dysplastic BE tissue site (adapted from [13] with permission from Elsevier). ........ 9 

Figure 1.6 Spectroscopic system used by Georgakoudi et al. [18] for spectroscopy signals 

extraction. The optical probe was composed by 6 collection fibers surrounding a central light 

delivery fiber (reprinted from [18] with permission from Elsevier). ............................................. 10 

Figure 1.7 Opto-mechanical system used by Tunnell et al. [23] for spectroscopic signals extraction; 

trig. (trigger); SMA (SubMiniature version A); L (lenses); M (mirrors), (reprinted from [23] with 

permission from SAGE Ltd). ..................................................................................................... 11 

Figure 1.8 Spectroscopic system used by Mayinger et al. [24] for fluorescence signal extraction 

(reprinted from [24] with permission from Elsevier). ................................................................. 12 

Figure 1.9 Spectroscopic system used by Lovat et al. [25] for diffuse reflectance measurements 

(reprinted from [25] with permission from BMJ publishing group Ltd). ...................................... 13 

Figure 1.10 Spectroscopic system used by Dhar et al. [26] for diffuse reflectance measurements 

(adapted from [26] with permission from Elsevier).................................................................... 14 

Figure 1.11 Hybrid optical system developed by Bing Yu et al. [27] for absorption and scattering 

coefficients quantification in phantoms (reprinted from [27] with permission from SPIE 

publications). ........................................................................................................................... 15 

Figure 1.12 Quantitative spectroscopic imaging system developed by Chung-Chieh Yu et al. [8] for 

diffuse reflectance and fluorescence measurements: (A) instrumentation principle, green beams 

are illumination and red beams are collection; (B) block diagram of the system; (C) schematic 

diagram of the optical head (reprinted from [8] with permission from OSA). .............................. 16 



 

_____________________________________________________________________________ 

xvi 

Figure 1.13 Optical system implemented by Lo et al. [28] for diffuse reflectance signal extraction 

(reprinted from [28] with permission of OSA). ........................................................................... 17 

Figure 1.14 Optical system used by Mallia et al. [29] for spectroscopy signals extraction (reprinted 

from [29] with permission from John Wiley and Sons). ............................................................. 18 

Figure 1.15 Optical system used by Jayanthi et al. [30] for spectroscopy signals extraction 

(reprinted from [30] with permission from Wiley). ..................................................................... 18 

Figure 1.16 (A) White light endoscopy image of early gastric cancer. (B) Narrow band magnifying 

image of early gastric cancer showing irregular microvascular and microsurface patterns (reprinted 

from [33] with permission from GII Editorial Office). ................................................................. 20 

Figure 1.17 Spectroscopy microsystem for diffuse reflectance and fluorescence signals extraction. 

The optical filters select the signals in the relevant spectral bands (the number of layers in the 

optical filters in only representative). The UV and white-light sources are used for tissue illumination, 

featuring the fluorescence and diffuse reflectance measurements, respectively (not scaled, adapted 

from [39] with permission from OSA). ...................................................................................... 22 

 

Figure 2.1 Schematic overview of DRS (adapted from [2] with permission from Future Medicine 

Ltd). ........................................................................................................................................ 27 

Figure 2.2 Molar extinction coefficient for HbO2 and Hb (data extracted from [7]). ..................... 28 

Figure 2.3 Diagram of the fluorescence emission phenomenon, including the vibrational relaxation 

(adapted from [14]). ................................................................................................................ 31 

Figure 2.4 Relative positions of absorption and fluorescence (the curves shape and intensity is 

merely representative), (adapted from [13] with permission from Wiley). ................................... 31 

Figure 2.5 Schematic overview of the FS (fluorescence spectroscopy) technique with distortions 

introduced by a scattering event (adapted from [2] with permission from Future Medicine Ltd). . 32 

Figure 2.6 Diffuse reflectance spectra for phantom (b) of Table 2.1 at four temperatures. ......... 34 

Figure 2.7 SPSS output for the partial correlation performed with the three phantoms of Table 2.1 

at the four temperatures (DR – Diffuse reflectance). ................................................................. 34 

Figure 2.8 Diffuse reflectance spectra of phantoms (a), (b) and (c) of Table 2.1, at room 

temperature. ........................................................................................................................... 35 

Figure 2.9 Structures of the fluorophores (A) Carbostyril 124 (reprinted from [18]) and (B) NADH 

(reprinted from [19]). ............................................................................................................... 36 



    

_____________________________________________________________________________ 

xvii 

Figure 2.10 Fluorescence spectra ( 350excitation nm) for phantom (b) of Table 2.2 at four 

temperatures. .......................................................................................................................... 37 

Figure 2.11 SPSS output for the partial correlation performed with the three phantoms of Table 

2.2 at the four temperatures (F - Fluorescence). ....................................................................... 38 

Figure 2.12 Fluorescence emission spectra ( 350excitation nm) of NADH 1.5 µg/mL (A) and 

Carbostyril 124 1.5 µg/mL (B) in a diluted solution and in a phantom (with 1 mg/mL of hemoglobin 

and 0.15% of polystyrene microspheres). ................................................................................. 39 

Figure 2.13 Bulk fluorescence spectra ( 350excitation nm) for phantoms (a) to (c) of Table 2.2 at 

room temperature. .................................................................................................................. 40 

Figure 2.14 Diffuse reflectance spectra of phantoms (a), (b) and (c) of Table 2.2, at room 

temperature. ........................................................................................................................... 41 

Figure 2.15 Bulk fluorescence spectra ( 350excitation nm) for phantoms (b), (d) and (e) of Table 

2.3 at room temperature. ........................................................................................................ 42 

Figure 2.16 Experimental intrinsic fluorescence ( 350excitation nm) for all the phantoms of Table 

2.2 and Table 2.3. ................................................................................................................... 43 

Figure 2.17 Representative diffuse reflectance (A) and intrinsic fluorescence (B) spectra for normal 

(upper lines) and dysplastic tissue (bottom lines) (adapted from [28]). ...................................... 45 

Figure 2.18 Reconstructed diffuse reflectance (A) and intrinsic fluorescence (B) spectra for normal 

(upper lines) and dysplastic tissue (bottom lines) (adapted from [28]). ...................................... 45 

 

Figure 3.1 Representation of a single thin-film (adapted from [4] by permission of Taylor and 

Francis Group, and [3]). ........................................................................................................... 51 

Figure 3.2 Representation of a thin-film multilayer (adapted from [4] by permission of Taylor and 

Francis Group). ........................................................................................................................ 53 

Figure 3.3 Plane wave incident on a thin-film (adapted from [4] by permission of Taylor and Francis 

Group). .................................................................................................................................... 57 

Figure 3.4 Representation of two thin-films on a surface (adapted from [4] by permission of Taylor 

and Francis Group). ................................................................................................................. 61 

Figure 3.5 Fabry-Perot interferometer structure. ....................................................................... 64 

Figure 3.6 Fabry-Perot interferometer with dielectric layers (adapted from [4] by permission of 

Taylor and Francis Group). ....................................................................................................... 65 



 

_____________________________________________________________________________ 

xviii 

Figure 3.7 Fabry-Perot interferometer showing multiple reflections in the resonance layer (adapted 

from [4] by permission of Taylor and Francis Group, and [1]). .................................................. 65 

Figure 3.8 Transmittance spectra for the UV/Vis optical filters (A), Vis optical filters (B) and Vis/IR 

optical filters (C), obtained with the TFCalc 3.5 simulations and using the theoretical refractive 

indices (TP: filter maximum transmittance peak wavelength), (adapted from [11] with permission 

from OSA). .............................................................................................................................. 70 

Figure 3.9 Geometry of the automated deposition system (Nordiko 3000) with a 6 target 

configuration, in order to allow sequential deposition of the films. The film thickness uniformity is 

± 2% over 150 mm diameter area (reprinted from [11] with permission from OSA). .................. 70 

Figure 3.10 Comparison between the theoretical refractive indices and the ones obtained 

experimentally, for different thicknesses (d) of SiO2 (A), TiO2 (B) and MgO (C). The thicknesses are 

measured by profilometry (adapted from [11] with permission from OSA). ................................ 72 

Figure 3. 11 Transmittance spectra for an optical filter (simulated on the TFCalc 3.5) initially 

designed for 510 nm maximum transmittance peak. The two curves are obtained using the 

theoretical refractive indices (theoretical n) and the experimental refractive indices (Experimental 

n), maintaining the layers structure thicknesses and materials (adapted from [11] with permission 

from OSA). .............................................................................................................................. 74 

Figure 3.12 Simulated transmittance spectra for the UV/Vis optical filters (A), Vis optical filters (B) 

and Vis/IR optical filters (C) after the design adjustment, i. e., obtained with the TFCalc 3.5 

simulations and using the experimental refractive indices (TP: filter maximum transmittance peak 

wavelength), (adapted from [11] with permission from OSA). .................................................... 76 

Figure 3.13 Experimental transmission curve of the borosilicate glass substrate measured using a 

commercial UV-Vis-NIR spectrophotometer (Shimadzu UV-3101PC). ......................................... 77 

Figure 3.14 Transmittance spectra obtained experimentally for the UV/Vis fabricated optical filters 

(A), Vis fabricated optical filters (B) and Vis/IR fabricated optical filters (C), (TP: filter maximum 

transmittance peak wavelength), (adapted from [11] with permission from OSA). ...................... 78 

Figure 3. 15 Photographs of some of the fabricated optical filters. ............................................ 79 

Figure 3.16 SEM image showing the cross-section of the 458 nm Fabry-Perot optical filter (A) and 

the 516 nm Fabry-Perot optical filter (B); magnification 200 000 × (RC: resonance cavity), (adapted 

from [11] with permission from OSA). ...................................................................................... 81 

Figure 3.17 Surface 3-D map of a TiO2 thin-film. ....................................................................... 82 

 



    

_____________________________________________________________________________ 

xix 

Figure 4.1 Cross section of the vertical photodiodes implemented by the CMOS technology: (A) 

n-well/p-epilayer; (B) p+/n-well; (C) n+/p-epilayer (adapted from [4] with permission from 

IEEE). ...................................................................................................................................... 86 

Figure 4.2 Absorption coefficient and penetration depth of light in silicon (adapted from [5]). .... 87 

Figure 4.3 Quantum efficiency of the three types of vertical photodiodes implemented by the 

standard CMOS technology: (A) n-well/p-epilayer; (B) p+/n-well; (C) n+/p-epilayer (adapted from 

[5]). ......................................................................................................................................... 87 

Figure 4.4 Layout of the 4×4 photodiodes matrix of the implemented chip. ............................... 88 

Figure 4.5 Cross-section of each fabricated n+/p-epilayer photodiode (not scaled). In the AMIS 

Technology (from Europractice) layout, the p+ implant mask is designed, while the n+ implant 

mask is not designed once the process knows that where it is an active mask without p+ implant, 

it will be an n+ implant (adapted from [8])................................................................................ 89 

Figure 4.6 SEM image of the 4×4 photodiodes matrix (45º tilt). ................................................ 89 

Figure 4.7 Optical setup used for the photodiodes spectral characterization. ............................. 90 

Figure 4.8 Photodiode currents obtained with the fabricated photodiodes of the matrix (Phd 1 and 

Phd 2) and the commercial photodiode used as reference (Commercial). ................................. 90 

Figure 4.9 Optical power incident in each fabricated photodiode. .............................................. 91 

Figure 4.10 Responsivity of the fabricated photodiodes. ........................................................... 91 

Figure 4.11 Quantum efficiency of the fabricated photodiodes. ................................................. 92 

Figure 4.12  Optical transmittance simulation showing the effect of the two dielectric layers above 

a photodiode, using the software TFCalc 3.5. ........................................................................... 92 

Figure 4.13 Photodiode current as a function of wavelength for four different temperatures of the 

medium (22 ºC, 37 ºC, 40 ºC and 42 ºC). ............................................................................... 93 

Figure 4.14 Representative scheme of one photodiode and its respective readout electronic circuit 

(adapted from [8]). .................................................................................................................. 94 

Figure 4.15 Schematic circuit of the implemented LF converter. Its power supply (VDD) is 3.5 V. The 

Schmitt trigger comparator reference values are 2.5 V and 1.1 V in the Vcap terminal (adapted 

from [8]). ................................................................................................................................. 95 

Figure 4.16 Simulated signals (from software S-Edit from Tanner EDA) of the LF converter with an 

input current (Input in Figure 4.15) of 100 nA: Vcap signal is the M2 gate voltage; TriggerDischarge 

signal is the St output signal responsible to discharge the M2 capacitor; Output signal is the LF 



 

_____________________________________________________________________________ 

xx 

output signal with a duty-cycle of 50% and a frequency proportional to the photodiode current 

(adapted from [8]). .................................................................................................................. 95 

Figure 4.17 Detailed region of Figure 4.16, highlighting the capacitor discharging (adapted from 

[8]). ......................................................................................................................................... 95 

Figure 4.18 Layout of the LF converter of the implemented chip. .............................................. 97 

Figure 4.19 SEM image (x55) of the LF converters implemented on the chip (45º tilt). .............. 98 

Figure 4.20 Photodiode currents for different light source powers. ............................................ 98 

Figure 4.21 Output frequencies for different light source powers. .............................................. 99 

Figure 4.22 Frequency as a function of photodiode current for three fixed wavelengths: 450 nm 

(A), 550 nm (B) and 700 nm (C). ............................................................................................. 99 

Figure 4.23 Measured frequency of the IF converter as a function of the input current. ........... 101 

Figure 4.24 Zoom of Figure 4.23, showing the output frequency of the IF converter as a function 

of input currents up to 600 nA. .............................................................................................. 101 

Figure 4.25 Zoom of Figure 4.23, showing the output frequency of the IF converter as a function 

of input currents up to 63 nA. ................................................................................................ 102 

 

Figure 5.1  Experimental diffuse reflectance spectra of phantoms (a), (b) and (c) of Table 5.1, 

measured with commercial equipment (solid lines) and reconstructed spectra (dashed lines) 

obtained using the discrete intensity values extracted with the fabricated optical filters (discrete 

points), (adapted from [1] with permission from OSA). ........................................................... 109 

Figure 5.2 Experimental fluorescence spectra of phantoms (d), (e) and (f) of Table 5.1, measured 

with commercial equipment (solid lines) and reconstructed spectra (dashed lines) obtained using 

the discrete intensity values extracted with the fabricated optical filters (discrete points), (adapted 

from [1] with permission from OSA). ...................................................................................... 109 

Figure 5.3 Optical setup for the on-chip diffuse reflectance measurements. ............................ 111 

Figure 5.4 Diffuse reflectance spectra measured with one of the photodiodes of the microsystem 

(on-chip photodiode) and with the S2386-5K Hamamatsu photodiode (commercial photodiode). 

The phantoms (a) to (d) are represented on Table 5.3. ........................................................... 112 

Figure 5.5 Optical setup for the on-chip fluorescence measurements. ..................................... 113 

Figure 5.6 Fluorescence signals ( 350excitation nm) for phantoms (a), (b), (c) and (d) of Table 5.4 

obtained with the optical setup of Figure 5.5. ......................................................................... 114 



    

_____________________________________________________________________________ 

xxi 

Figure 5.7 Triangular quartz cuvette used for the fluorescence measurements on the 

spectrofluorometer (SPEX® FluoroLog® 2). ........................................................................... 115 

Figure 5.8 Fluorescence signals ( 350excitation nm) for phantoms (a), (b), (c) and (d) of Table 5.4 

obtained with the commercial spectrofluorometer. .................................................................. 116 

Figure 5.9 Silicon holder with the cavity/hole for the CMOS die (not scaled). .......................... 117 

Figure 5.10 SEM image (45º tilt) of the implemented CMOS die (acquired with a JEOL JSM-6010LV 

SEM instrument [at 3B’s Research Group, University of Minho]). Each photodiode of the 4×4 matrix 

has an active area of 100 × 100 µm2 and each photodiode of the 2×2 matrix has an active area of 

250 × 250 µm2 (an extra matrix added on the on chip microsystem that could be useful for 

spectroscopic tests). .............................................................................................................. 117 

Figure 5.11 Photograph of the CMOS die glued on the silicon holder (the dimensions of the silicon 

holder are specified of Figure 5.9). ......................................................................................... 118 

Figure 5.12 Coating (track 1) and development (track 2) system (SVG [silicon valley group]). .. 118 

Figure 5.13 Microscope (Olympus BH2-UMA) image (10×) of a CMOS die with the 540 nm optical 

filter deposited on two photodiodes (indicated with arrows). .................................................... 120 

Figure 5.14 Optical transmittance for the optical filter programmed for the 540 nm. ............... 121 

Figure 5.15 SEM images (obtained using a AURIGA Compact FIB-SEM instrument at 3B’s Research 

Group, University of Minho)  showing the cross-section of the optical filter deposited on the 250 × 

250 µm2 photodiode (A) and in the 100 × 100 µm2 photodiode (B). ........................................ 122 

Figure 5.16 Band pass filter between 350 and 500 nm, to eliminate the second order effects of 

the UV/Vis region optical filters. ............................................................................................. 123 

 

Figure 6.1 Schematic of the final microsystem (some input variables can be controlled using a 

microcontroller). .................................................................................................................... 128 

Figure 6.2 Layout of the final microsystem, extracted from the L-Edit, with all the components 

represented on Figure 6.1...................................................................................................... 129 

 

Figure I.1 Transmittance spectra of the fabricated optical filters in the UV/Vis region and 

commercial optical filters used to eliminate the second order effects. The transmittance curves 

were obtained using a UV-Vis-NIR spectrophotometer (Shimadzu UV-3101PC), (TP: filter maximum 

transmittance peak wavelength). ............................................................................................ 131 



 

_____________________________________________________________________________ 

xxii 

Figure I.2 Transmittance spectra of the fabricated optical filters in the Vis region and commercial 

optical filters used to eliminate the second order effects. The transmittance curves were obtained 

using a UV-Vis-NIR spectrophotometer (Shimadzu UV-3101PC), (TP: filter maximum transmittance 

peak wavelength). .................................................................................................................. 132 

Figure I.3  Transmittance spectra of the fabricated optical filters in the Vis/IR region and 

commercial optical filter used to eliminate the second order effects. The transmittance curves were 

obtained using a UV-Vis-NIR spectrophotometer (Shimadzu UV-3101PC), (TP: filter maximum 

transmittance peak wavelength). ............................................................................................ 132 

 

Figure III.1 Responsivity of the commercial photodiode Hamamatsu S1336-5BQ (data fitting at 

Excel using the spectral response curve presented at: 

www.hamamatsu.com/eu/en/product/category/3100/4001/4103/S1336-5BQ/index.html).

 ............................................................................................................................................ 139 

 

Figure IV.1 Normalized intensity curve of the light source used for the on-chip 

measurements. ..................................................................................................................... 141 

 

 

  



    

_____________________________________________________________________________ 

xxiii 

Index of Tables 

Table 1.1 Estimated numbers for the incidence (cases) and mortality (deaths) for stomach cancer 

in the world and in the European Union, in 2012 [3]. ................................................................. 1 

Table 1.2 Estimated numbers for the incidence (cases) and mortality (deaths) for colorectal cancer 

in the world and in the European Union, in 2012 [3]. ................................................................. 2 

Table 1.3 Estimated numbers for the incidence (cases) and mortality (deaths) for esophageal 

cancer in the world and in the European Union, in 2012 [3]. ...................................................... 2 

Table 1.4 Estimated numbers for the incidence (cases) and mortality (deaths) for colorectal cancer 

in Portugal, in 2012 [7]. ............................................................................................................ 3 

Table 1.5 Estimated numbers for the incidence (cases) and mortality (deaths) for stomach cancer 

in Portugal, in 2012 [7]. ............................................................................................................ 4 

Table 1.6 Estimated numbers for the incidence (cases) and mortality (deaths) for esophageal 

cancer in Portugal, in 2012 [7]. ................................................................................................. 4 

 

Table 2.1 Phantoms prepared for temperature tests of the diffuse reflectance signal. ................ 33 

Table 2.2 Phantoms prepared for temperature tests of the fluorescence signal. ........................ 37 

Table 2.3 Phantoms prepared to better observe the absorption and scattering distortions on the 

fluorescence spectra. ............................................................................................................... 41 

 

Table 3.1 Optical filters in the UV/Vis, Vis and Vis/IR regions and respective layer thicknesses, with 

the combinations MgO/TiO2 and SiO2/TiO2 (RC: Resonance Cavity), (reprinted from [11] with 

permission from OSA). ............................................................................................................. 68 

Table 3.2  Optical filters in the UV/Vis, Vis and Vis/IR regions and respective layer thicknesses, 

with the combinations MgO/TiO2 and SiO2/TiO2, after the design adjustment (RC: Resonance 

Cavity), (reprinted from [11] with permission from OSA). .......................................................... 75 

Table 3.3 Comparison between the simulated maximum transmittance peak and the one obtained 

experimentally for the fabricated optical filters (reprinted from [11] with permission from OSA). 79 

Table 3.4 Comparison between the optical filters theoretical thickness with the experimental one 

obtained by profilometry and by SEM (adapted from [11] with permission from OSA). ............... 81 

 



 

_____________________________________________________________________________ 

xxiv 

Table 4.1 IF response considering different doping levels (simulation). .................................... 102 

Table 4.2 IF response considering different temperatures (simulation). ................................... 103 

 

Table 5.1 Phantoms used for the spectroscopic measurements with the fabricated optical 

filters. .................................................................................................................................... 108 

Table 5.2  Spearman’s correlation coefficients (ρs) for each of the test phantom. .................... 110 

Table 5.3 Created phantoms for the experimental diffuse reflectance measurements with the on-

chip microsystem and the fabricated optical filters. ................................................................. 111 

Table 5.4 Created phantoms for the experimental fluorescence measurements with the on-chip 

microsystem and the fabricated optical filters. ........................................................................ 114 

 

Table II.1 Commercial bandpass optical filters from Edmund Optics. ...................................... 134 

Table II. 2 Commercial bandpass optical filters from Thorlabs. ............................................... 135 

Table II. 3 Commercial bandpass optical filters from Newport. ................................................ 136 

 

  



    

_____________________________________________________________________________ 

xxv 

List of Symbols 

 

Symbol Description Unit 

a  Absorption coefficient m-1 

r  Amplitude reflection coefficient - 

  Angular frequency rad.s-1 

g  Anisotropy factor - 

MOSC  Capacitor capacitance F 

MOSt  Capacitor charging time s 

L  Capacitor gate length m 

W  Capacitor gate width m 

iC  Concentration of the main absorber molecule mol. L-1 

MOSV  
Difference between the highest and lowest potential in the 

capacitor 
V 

  Electric charge density C.m-3 

  Electric conductivity S.m-1 

J  Electric current density vector A.m-2 

D  Electric displacement vector C.m-2 

E  Electric field vector V.m-1 

eq  Electron charge C 

EC  Energy stored in the capacitor J 

excitation  Excitation wavelength m 

τF Excited-state lifetime s 

k  Extinction coefficient m2.kg-1 

i  Extinction coefficient of the main absorber molecule m-1/mol.L-1 

ΦF Fluorescence quantum yield - 

f  Frequency Hz 

HH Half-wave layer with high refractive index - 



 

_____________________________________________________________________________ 

xxvi 

Symbol Description Unit 

LL  Half-wave layer with low refractive index - 

q  Interference order of the Fabry-Perot interferometer - 

  Light incidence angle rad 

H  Magnetic field vector A.m-1 

B  Magnetic induction vector T 

  Magnetic permeability of the medium H.m-1 

Y  Optical admittance S 

OPL  Optical path length m 

OP  Optical power W 

pC  Parasitic capacitance F 

silicond  Penetration depth of light in silicon m 

0  Permeability of the free space H.m-1 

0  Permittivity of the free space F.m-1 

  Permittivity of the medium F.m-1 

x0  Permittivity of the silicon dioxide F.m-1 

  Phase of the wave rad 

  Phase thickness rad 

sC  Photodiode capacitance F 

I  Photodiode current A 

1pR  Photodiode resistance Ω 

td  Physical thickness of the quarter-wave layers (mirrors) m 

sd  Physical thickness of the resonance cavity m 

d  Physical thickness of the thin-film m 

h  Planck constant J.s 

xC0  PMOS gate capacitance per square meter F.m-2 

r  Position vector m 

  Quantum efficiency - 

H  Quarter-wave layer with high refractive index - 



    

_____________________________________________________________________________ 

xxvii 

Symbol Description Unit 

L  Quarter-wave layer with low refractive index - 

's  Reduced scattering coefficient m-1 

R  Reflectance - 

n  Refractive index - 

tn  Refractive index of the quarter-wave layer - 

sn  Refractive index of the resonance cavity - 

mn  Refractive index of the substrate - 

PhR  Responsivity A.W-1 

s  Scattering coefficient m-1 

silicon  Silicon absorption coefficient m-1 

ρs Spearman’s correlation coefficient  - 

c  Speed of light in free space m.s-1 

xt 0  Thickness of the gate oxide layer m 

t  time s 

T  Transmittance - 

v  Velocity of light in a medium m.s-1 

)( MOStV  Voltage in the capacitor gate V 

k  Wave vector rad.m-1 

  Wavelength m 

2pR  Wire resistance from the photodiode to the St connection Ω 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

_____________________________________________________________________________ 

xxviii 

 
 
 
 
 
 
 
 
 
 
 
 
  



    

_____________________________________________________________________________ 

xxix 

List of Terms 

Term  Designation 

ADC Adenocarcinoma 

AC Alternating current 

BE Barrett’s esophagus 

CCD Charge couple device 

CMOS Complementary metal oxide semiconductor 

IF Current-to-frequency 

DRS Diffuse reflectance spectroscopy  

DWL Direct write laser 

EDS Energy-dispersive X-ray spectroscopy 

FFD Flip flop D 

FRET Fluorescence resonance energy transfer 

FWHM Full width half maximum 

GI Gastrointestinal 

HMDS Hexamethyldisilazane 

IBD Ion beam deposition 

IPA Isopropyl alcohol 

LED Light emitting diode 

LF Light-to-frequency 

LDA Linear discriminate analysis 

NBI Narrow-band imaging 

NA Numerical aperture 

PMT Photomultiplier tubes 

PR Photoresist 

PCA Principal component analysis 

RF Radio frequency 

NADH Reduced form of nicotinamide adenine dinucleotide 

SEM Scanning electron microscopy 

St Schmitt trigger 



 

_____________________________________________________________________________ 

xxx 

Term  Designation 

SCC Squamous-cell carcinoma 

TPEF Two-photon excitation fluorescence 

UV Ultraviolet 

WHO World health organization 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

_____________________________________________________________________________ 

1 

1 Introduction 

In this chapter, the global incidence of GI (gastrointestinal) cancer is discussed. The 

anatomy and functionality of GI tract and the changes that occur during cancer progression are 

described. Moreover, the most relevant studies performed in the last decades focusing the 

detection of GI cancers using spectroscopy signals measurements are presented. Finally, the 

motivation and the main objectives of this thesis are detailed, as well as the overall organization of 

this document. 

 

1.1 Gastrointestinal cancer: global incidence 

Cancer is referred as one of the main causes of death in the world, with approximately 

8.2 million deaths in 2012, including the GI cancers (1817000 deaths), specifically stomach, 

colorectal and esophageal cancers [1, 2]. 

According to the WHO (world health organization), a cancer is a fast creation of abnormal 

cells that can invade adjacent parts of the body and spread to other organs. It is a multistage 

process, which begins as a pre-cancerous lesion and arises to a malignant tumor. The process is 

the result of the interaction between a person’s genetic factors and three external agents: physical 

carcinogens (for example, UV (ultraviolet) and ionizing radiation); chemical carcinogens (such as 

components of tobacco smoke, food and water contaminants); and biological carcinogens (such 

as infections from viruses, bacteria or parasites) [1]. 

Table 1.1 to Table 1.3 represent the estimated incidence and mortality for three types of 

GI cancers in the world and in the European Union, in 2012 [3]. 

 

Table 1.1 Estimated numbers for the incidence (cases) and mortality (deaths) for stomach cancer in the world and in 

the European Union, in 2012 [3]. 

Stomach cancer 

World European Union 

Cases Deaths Cases Deaths 

952 723 82 58 

Estimated numbers (thousands). 
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Table 1.2 Estimated numbers for the incidence (cases) and mortality (deaths) for colorectal cancer in the world and 

in the European Union, in 2012 [3]. 

Colorectal cancer 

World European Union 

Cases Deaths Cases Deaths 

1361 694 345 152 

Estimated numbers (thousands). 

 

Table 1.3 Estimated numbers for the incidence (cases) and mortality (deaths) for esophageal cancer in the world and 

in the European Union, in 2012 [3]. 

Esophageal cancer 

World European Union 

Cases Deaths Cases Deaths 

456 400 35 30 

Estimated numbers (thousands).  

 

The incidence of stomach cancer varies around the world. More than 70% of the cases are 

in the developing countries and 50% of the world total cases are identified in Eastern Asia (especially 

in China). Concerning its mortality, the highest mortality rates are registered in Eastern Asia and 

the lowest are in Northern America. Moreover, high mortality rates also occur in Central and 

Eastern Europe and in Central and South America. It is also important to note that the worldwide 

incidence of the stomach cancer has been declining over the few decades. This may be due to the 

recognition of some risk factors, such as Helicobacter Pylori infection and some dietary and 

environmental risks [3, 4]. 

Colorectal cancer incidence also varies across the world. It is the third most common 

cancer in men and the second in women. The highest incidence rate is in Australia and New 

Zealand and the lowest in Western Africa. Regarding its mortality, the highest rate is registered in 

the Central and Eastern Europe and the lowest in Western Africa. Risk factors for the colorectal 

cancers include: low socioeconomic status (which can influence the colorectal cancer screening), 
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physical inactivity, unhealthy diet, smoking, obesity, tobacco, alcohol, family history of colorectal 

cancer and adenomatous polyps and personal history of inflammatory bowel disease [3, 5]. 

Concerning the esophageal cancers, around 80% of the cases in the world occur in less 

developed regions and the incidence rate in men are 2 times higher than in women. Esophageal 

cancer has a low survival rate and its mortality rates follow its geographical pattern for incidence. 

The highest mortality rates are in Eastern Asia and Southern Africa for men and in Eastern and 

Southern Africa for women. Usually, esophageal cancers occur in one of two different ways: SCC 

(squamous-cell carcinoma) arising from the stratified squamous epithelium that lines the 

esophagus; and ADC (adenocarcinoma) arising from columnar glandular cells that replace the 

squamous epithelium in the esophagus. Three decades ago, the majority of the esophageal cancers 

were SCCs. However, the incidence of the ADCs has been increasing. Regarding the main risk 

factors, tobacco, alcohol, red meat, opium consumption, hot tea drinking, poor oral health, low 

intake of fresh fruit and vegetables and low socioeconomic status are associated with a higher risk 

of SCC. On the other hand, obesity, reflux symptoms and BE (barrett’s esophagus1) are recognized 

as risk factors for ADC [3, 6]. 

In Portugal, the most common GI cancer is the colorectal cancer (which is also the third 

most incident type of cancer), followed by the stomach and esophageal cancers.  Table 1.4 to 

Table 1.6 represent the estimated incidence and mortality for these three types of GI cancers in 

Portugal, in 2012. It is also important to note that the esophageal cancer has the highest mortality 

rate, since approximately 89% of the patients with esophageal cancer die from this disease. The 

same happens taking into account the world and European Union incidences and  mortalities  

(Table 1.1 to Table 1.3) [7]. 

 

Table 1.4 Estimated numbers for the incidence (cases) and mortality (deaths) for colorectal cancer in Portugal, in 

2012 [7]. 

Colorectal cancer 

Cases Deaths 

7129 3797 

                                                            
1 The barrett’s esophagus is a condition that is characterized by the presence of metaplastic columnar epithelium in the esophagus replacing the 

stratified squamous epithelium. People with barrett’s esophagus have a higher probability of developing esophagus cancer [6, 18]. 



1 Introduction 
_____________________________________________________________________________ 

_____________________________________________________________________________ 

4 

Table 1.5 Estimated numbers for the incidence (cases) and mortality (deaths) for stomach cancer in Portugal, in 

2012 [7]. 

Stomach cancer 

Cases Deaths 

3018 2285 

 

Table 1.6 Estimated numbers for the incidence (cases) and mortality (deaths) for esophageal cancer in Portugal, in 

2012 [7]. 

Esophageal cancer 

Cases Deaths 

608 540 

 

Therefore, the cancer early detection is really important, since it gives to the patient a 

higher effective treatment chance, increasing the survival rate [8]. This is especially significant for 

the esophageal cancer, since it presents the highest mortality rate. A lot of efforts have been made 

to improve the diagnostic capabilities and this work is also an attempt to improve the GI cancer 

early detection. 

 

1.2 Gastrointestinal tract: anatomy, functionality and cancer 

progression 

The GI tract is a highly specialized organ system that acts as an interface between the body 

and the external environment [9]. In the GI tract, the food consumed by humans is converted to 

compounds (nutrients, water and electrolytes) that are absorbed into the body internal 

environment [9, 10]. Moreover, the GI tract has also the function of metabolizing and eliminating 

the non-nutrient and toxic compounds [9]. 

The organs included in the GI tract are the mouth, esophagus, stomach, small intestine 

and large intestine [9, 10] - Figure 1.1 . Moreover, the pancreas and the liver secrete into the small 

intestine [9]. Finally, the GI system is connected to the vascular, lymphatic and nervous systems 
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in order to facilitate the regulation of the digestive response, the delivery of compounds to the body 

organs and the regulation of food intake [9]. 

Epithelium or epithelial tissue lines the interior of the GI tract [12]. The epithelial tissue 

consists of closely packed sheets with a single or multiple layers of cells with important functions, 

such as: protection, sensory reception, and the secretion, absorption and transport of bioactive 

molecules [12, 13]. The epithelium is separated from the underlying connective tissue by the 

basement membrane [12, 13]. The connective tissue consists of structural proteins (for example, 

collagen and elastin), cells (such as fibroblasts and white blood cells) and blood vessels [13]. 

 

Figure 1.1 Representation of the GI tract organs (adapted from [11]). 

 

The epithelial tissue is classified based on the cell shape and number of cell layers. A sheet 

that contains only one layer of cells is named simple epithelium. With two or more cells layers is 

called stratified epithelium. Both can be classified in squamous, cuboidal and columnar, according 

to the shape of cells comprising the simple and stratified epithelium. Finally, there is the 

pseudostratified epithelium and the transitional epithelium. In the first, there is only one layer of 

cells but with different heights, which gives the impression of a stratified epithelium. In the second 

one, the cells undergo a transition on shape, depending on the epithelium is distended or relaxed. 

As a result, there are eight categories of epithelia: simple squamous; simple cuboidal; simple 

columnar; stratified squamous; stratified cuboidal; stratified columnar; pseudostratified columnar; 

and transitional epithelium [12]. 
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Concerning the type of epithelium that lines the surface of the GI tract, in the mouth and 

esophagus it is the stratified squamous epithelium; in the stomach, small intestine and large 

intestine it is the simple columnar epithelium [12]. 

In general, the wall of GI tract consists of four layers of cells: mucosa, submucosa, and 

muscularis propria. As an example, Figure 1.2 presents the structure organization of the 

esophageal wall [14]. 

The mucosa is arranged in longitudinal folds that disappear upon distention. It consists of 

three sublayers: epithelial layer; lamina propria (a thin layer of connective tissue); and muscularis 

mucosa (a thin layer of longitudinally, irregularly arranged smooth muscle fibers). The submucosa 

contains connective tissue as well as lymphocytes, plasma cells, nerve cells, vascular network and 

mucous glands (whose secretion is important in tissue resistance to acid). Finally, the muscularis 

propria is made of muscle layers with different orientations (such as circular and longitudinal 

orientations) and is responsible for motor function [14, 15]. 

 

Figure 1.2 Structure organization of the esophageal wall (adapted from [14]). 

 

A group of cells that escape the normal controls of growth and division can originate a 

neoplasm or tumor. If the growth does not spread, it is a benign tumor. Contrarily, if it spreads to 

other regions or metastasizes, it is called a malignant tumor or cancer [12]. Most common cancers 

begin in the epithelium [13]. When a malignant tumor is derived from epithelium, it is named 

carcinoma. If the carcinoma is derived from columnar glandular epithelium is named ADC and if it 

is derived from the stratified squamous epithelium it is named  SCC [6, 12]. 
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Figure 1.3 shows a white-light endoscopic image of a macroscopically invisible esophageal 

SCC (A) except for a slight reddish discoloration of the mucosa in the distal part of the esophagus, 

and it exposure to a violet-blue excitation light for fluorescence spectroscopy (B) [16]. The use of 

spectroscopy for GI cancer detection and its importance will be explored on the next section 

(section 1.3). 

 

Figure 1.3 White-light endoscopic image of a SCC (A) and its exposure to violet-blue light (B), (reprinted from [16] with 

permission from Elsevier). 

 

Figure 1.4 shows a BE lesion with suspicious dysplastic areas, at the nine o’clock position. 

As it can be seen, it is hard to detect the dysplastic lesions in the BE lesion with high-resolution 

endoscopy [17]. 

 

Figure 1.4 BE imaged with high-resolution endoscopy (adapted from [17] with permission from Elsevier). 

 

The transformation of a normal epithelium in a cancerous lesion involves a group of gradual 

changes. In an initial stage, the level of expression of certain proteins is altered, followed by an 

increase in the epithelium thickness (hyperplasia) and changes in the morphology and organization 
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of cells, which extent throughout the epithelial layer. If the changes are only in the epithelial layer, 

the lesions are classified as dysplastic or pre-cancerous. Cancer appears when the underlying 

tissues are affected, i. e., the basement membrane is compromised and the transformed cells 

invade the connective tissue and can enter on the circulatory and lymphatic systems and 

metastasize to other organs [2, 13]. 

 

1.3 Optical spectroscopy for gastrointestinal cancer detection: 

state of the art 

GI cancer detection in an early stage, i.e., in the dysplastic or pre-cancerous stage, is 

fundamental once it gives to the patient a higher effective treatment chance, increasing the survival 

rate [8, 13, 18]. However, GI dysplasia is difficult to detect taking into account the conventional 

visual inspection techniques (endoscopy and colonoscopy), due to the lack of gross morphological 

easily visible changes on the tissue in the early stage of cancer [2, 8, 13, 19, 20]. 

As a result, when a cancer suspicion appears, a biopsy or several ones are performed, in 

order to increase the detection probability of the invisible lesions [13]. Biopsies are invasive 

procedures that suffer from undersampling and their results are not immediately available, 

resulting on a delay of patient’s treatment [8]. For all these reasons, it is increasingly important to 

develop new and minimally invasive techniques to guide physicians to the biopsy sites that are 

highly probable to be abnormal, or to eventually replace biopsies and detect early stages of GI 

cancers [2, 13, 19]. 

Optical spectroscopies, including diffuse reflectance and fluorescence spectroscopy, can 

overcome the limitations in the early detection of GI cancers, since they have exquisite sensitivity 

to some cancer biomarkers present on the tissues and they can detect the earliest change on the 

tissue at the morphological and biochemical level [8, 13, 18, 20, 21]. As a result, small changes 

in those biomarkers concentration or in the tissue morphology, due to the dysplasia progression, 

will affect the diffuse reflectance and fluorescence spectra signals of the malignant tissue. In order 

words, the spectroscopy signals shape and intensity will be different when compared with the 

signals from a normal tissue [2, 19, 22]. Figure 1.5 shows some stated results on the literature 

for the diffuse reflectance (A) and fluorescence (B) signals of different tissues. 
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Figure 1.5 Diffuse reflectance signal (A) and intrinsic fluorescence signal (B) of different tissues. In (A) the higher 

intensity lines (in black) correspond to a reflectance spectrum of a non-dysplastic BE tissue site; the low intensity lines 

(in gray) correspond to a low-grade dysplastic BE tissue site. In (B) the solid lines correspond to a non-dysplastic BE 

tissue site and the dashed lines correspond to a high-grade dysplastic BE tissue site (adapted from [13] with permission 

from Elsevier). 

 

In the next paragraphs, a brief description of the most relevant studies in the last decades, 

about the development of prototypes for spectroscopy signals extraction and characterization of GI 

tissues, will be presented. 

Georgakoudi et al. [18] performed a study to assess the potential of fluorescence and 

reflectance signals for evaluating low- and high-grade dysplasia in patients with BE. The signals 

extraction was performed in-vivo during endoscopy and before biopsy to the same site at which the 

spectra were measured. For that purpose, the authors used a complex spectroscopic system based 

on a white light from a Xe (xenon) flash lamp for the reflectance measurements, a 337 nm N2 

(nitrogen) laser for the fluorescence measurements and an optical fiber probe (inserted into the 

accessory channel of the endoscope) – Figure 1.6. The signals were collected (between 350 and 

750 nm) by the probe and coupled to a spectrograph and detector. The spectroscopic signals 

analysis, and their treatment with mathematical models, provided information about the 

biochemical and morphological changes that occur on the tissues during dysplasia progression, 

leading to distinguish the nondysplastic BE from the dysplastic BE (low-grade and high-grade) with 

a sensitivity of 79% and specificity of 88%. The authors showed different types of information that 

can be acquired by treating the extracted signals and the way this information can be used to assist 

a physician in classifying a particular tissue area. Moreover, the accuracy of these spectroscopy 
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techniques was proven since it was possible to distinguish not only high-grade but also low-grade 

dysplastic changes. 

 

Figure 1.6 Spectroscopic system used by Georgakoudi et al. [18] for spectroscopy signals extraction. The optical probe 

was composed by 6 collection fibers surrounding a central light delivery fiber (reprinted from [18] with permission from 

Elsevier). 

 

Tunnell et al. [23] developed an opto-mechanical system (Figure 1.7) to collect the white 

light reflectance and fluorescence spectra within a fraction of a second. The system was controlled 

by a computer with a custom software interface, making possible the real-time data analysis and 

diagnosis. The authors used a complex spectroscopic system based on a Xe flash lamp, a set of 

lasers and an optical fiber probe for light deliver and collection (that was small enough to be 

introduced into the accessory channel of an endoscope). The signals were collected by the probe 

and coupled to a spectrograph with an intensified CCD (charge couple device) detector. The short 

acquisition time was achieved using a set of rotation wheels driven by an AC (alternating current) 

motor. The authors evaluated the system performance collecting reflectance spectra (between 300 

and 800 nm) from a set of tissue phantoms with well defined optical properties. Moreover, they 

collected fluorescence signals from a mixture of biochemicals (excitation between 300 and 500 nm 

and emission between 300 and 800 nm). The authors concluded that the system accurately 

acquires reflectance and fluorescence spectra (based on the known features of the used phantoms 

and mixtures of biochemicals) within a fraction of a second which is an acceptable time frame for 

clinical use. The authors also referred that in the future they can refine spectral analysis algorithms 

and implement diagnostic algorithms providing an instant feedback (to the physician) about the 

state of a tissue (normal, low-grade dysplasia, high-grade dysplasia or cancerous). 
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Figure 1.7 Opto-mechanical system used by Tunnell et al. [23] for spectroscopic signals extraction; trig. (trigger); SMA 

(SubMiniature version A); L (lenses); M (mirrors), (reprinted from [23] with permission from SAGE Ltd). 

 

Mayinger et al. [24] performed a study to assess the potential of fluorescence 

spectroscopy, using violet-blue light excitation energy, for the in-vivo differentiation of normal, 

dysplastic adenomas and cancerous colorectal tissue, during colonoscopic examination and 

biopsy. The fluorescence extraction (between 450 and 750 nm) was performed using a system 

(Figure 1.8) based on a 300 W short-arc Xe lamp with a special switching bandpass filter 

(375 - 478 nm) for the light-induced fluorescence (the violet-blue emission light was fed directly 

into the light cable of the flexible endoscope), an optical fiber probe to extract the fluorescence 

emission spectra (passed down the biopsy channel of the mucosa colonoscope) and a 

spectrograph. The spectra were transferred to a computer for further processing. A biopsy was 

performed at the same site of the fluorescence collection. The authors developed an algorithm for 

the fluorescence spectral analysis based on the ratio of the fluorescence intensity in two spectral 

regions, green and red. This algorithm allowed the diagnosis of colorectal cancer with a sensitivity 

of 96% and a specificity of 93% and the diagnosis of dysplastic adenomas with a sensitivity of 98% 

and a specificity of 89%. 
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Figure 1.8 Spectroscopic system used by Mayinger et al. [24] for fluorescence signal extraction (reprinted from [24] 

with permission from Elsevier). 

 

Lovat et al. [25] performed a study to assess the potential of the elastic scattering 

spectroscopy (also known as diffuse reflectance spectroscopy) to detect high-grade dysplasia or 

cancer in patients with BE. The diffuse reflectance spectroscopy measurements were performed 

in-vivo, during routine endoscopy and biopsy at the same tissue site, and using a system based on 

a pulsed Xe arc lamp, two optical fibers for light delivery and collection (passed into the esophagus 

via the biopsy channel of an endoscope), a spectrometer and a computer to control these 

components  and record the spectra – Figure 1.9. The extracted diffuse reflectance spectra were 

treated statistically (between 370 and 890 nm), leading to differentiate low risk sites (normal and 

low grade dysplasia) from high risk sites (high grade dysplasia and cancer) with a sensitivity of 92% 

and a specificity of 60%. The authors also concluded that if the measurement of diffuse reflectance 

spectra was used to target biopsies during endoscopy, the number of low risk biopsies taken will 

decrease 60% with minimal loss of accuracy. 
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Figure 1.9 Spectroscopic system used by Lovat et al. [25] for diffuse reflectance measurements (reprinted from [25] 

with permission from BMJ publishing group Ltd). 

 

Dhar et al. [26] performed a study to assess the diagnostic potential of the elastic scattering 

spectroscopy in the colon, to differentiate normal mucosa from benign and malignant pathologies, 

specifically, to differentiate normal colonic mucosa, chronic colitis, hyperplastic polyps, 

adenomatous polyps (with dysplasia) and ADC. The spectra were measured in-vivo (between 300 

and 800 nm) during colonoscopy and biopsy at the same site, using a system based on a pulsed 

Xe arc lamp, a spectrometer, two optical fibers (one for transmitting and another to receiving the 

light, passed down the biopsy channel of the colonoscope) and a computer for spectral analysis - 

Figure 1.10. The diffuse reflectance spectra were compared, based on attributes such as light 

intensity ratios at various wavelengths, by using statistical computational analysis methods, 

specifically PCA (principal component analysis) and LDA (linear discriminate analysis). These 

analyses allow to differentiate the normal mucosa from all pathologies with a sensitivity of 92% and 

a specificity of 82%. Moreover, the authors could differentiate the different pathologies between 

them with high sensitivities and specificities. 



1 Introduction 
_____________________________________________________________________________ 

_____________________________________________________________________________ 

14 

 

Figure 1.10 Spectroscopic system used by Dhar et al. [26] for diffuse reflectance measurements (adapted from [26] 

with permission from Elsevier). 

 

Bing Yu et al. [27] developed a hybrid optical system to quantify the absorption and 

scattering coefficients of phantoms based on the measurement of diffuse reflectance spectra 

(between 400 and 600 nm). The optical system was based in a 450 W Xe lamp, a monochromator, 

an optical fiber for illumination, a silicon photodiode with a low-noise current amplifier and a 

computer for spectra analysis - Figure 1.11. The main advantage of using a photodiode was the 

improvement of light collection efficiency because of the larger NA (numerical aperture) of the 

silicon photodiode and its direct contact with the sample. Moreover, the use of the photodiode and 

current amplifier replaced the collection fibers, spectrographs and sophisticated detectors with high 

sensitivity (such as a CCD detector), reducing the system final cost. In order to evaluate the system 

performance, the authors performed diffuse reflectance measurements with homogeneous tissue 

phantoms (mixtures of an absorber [hemoglobin] and a scatterer [1 µm polystyrene spheres]). The 

authors used an inverse Monte Carlo model to accurately extract the absorption and reduced 

scattering coefficients, for each phantom, based on the measured diffuse reflectance spectra. The 

authors also concluded that this hybrid optical device can be expanded into a quantitative spectral 

system for mapping tissue optical properties and that there is a large number of applications for 

which this technology can be suited, such as epithelial precancer and cancer detection. 
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Figure 1.11 Hybrid optical system developed by Bing Yu et al. [27] for absorption and scattering coefficients 

quantification in phantoms (reprinted from [27] with permission from SPIE publications). 

 

Chung-Chieh Yu et al. [8] developed a quantitative spectroscopic imaging system for wide 

area detection of early cancer, by acquiring diffuse reflectance and fluorescence signals. The use 

of diffuse reflectance and fluorescence signals, in combination, allowed extracting quantitative 

information about morphological and biochemical tissue constituents. The developed system was 

divided in 4 modules: module 1 was the light source module, based on a 75 W white light arc lamp 

and a 337 nm nitrogen laser; module 2 was based on a spectrograph/CCD unit; module 3 was a 

computer for data acquisition control and data analysis; and module 4 was the optical head 

comprising optical fibers for light illumination and collection and a 2D scanning mirror, achieving 

wide area coverage - Figure 1.12. At each mirror position, a reflectance and a fluorescence 

measurement was performed. The authors conducted experiments with phantoms in order to 

determine the optimal working distance (22.5 cm, in Figure 1.12). Moreover, for calibrating the 

system and establish its accuracy, the authors performed diffuse reflectance and fluorescence 

measurements (between 387 and 707 nm) with phantoms (mixtures of an absorber [hemoglobin], 

a scatterer [intralipid] and a fluorophore representative of collagen emission [the dye furan 2]). The 

diffuse reflectance signal of each phantom and for each particular position was analyzed with a 

stated model (analytical light diffusion model) to extract the absorption and reduced scattering 

coefficients. These coefficients were used with the respective fluorescence signal (also in a stated 

model) to extract the intrinsic fluorescence of each phantom at a particular position (fluorescence 

only due to the fluorophore, without absorption and scattering distortions). In addition, the authors 

performed ex-vivo measurements with a colon cancer specimen demonstrating the ability of the 

optical system to diagnose malignant lesions, established by the development of an algorithm 

based on the statistical analysis of spectral parameters, to distinguish normal and cancer tissue 
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sites. Finally, the authors demonstrated the clinical applicability of the system presenting in-vivo 

spectral characterization of a hyperkeratotic (hyperplastic) lesion on the ventral tongue of a patient. 

Different diffuse reflectance and fluorescence parameters were acquired and noted between the 

hyperkeratotic region and the surrounding normal mucosa. The authors concluded that the 

developed system was able to provide spectral contrasts (based on tissue parameters) and it was 

designed for openly accessible sites, such as the oral cavity. 

 

Figure 1.12 Quantitative spectroscopic imaging system developed by Chung-Chieh Yu et al. [8] for diffuse reflectance 

and fluorescence measurements: (A) instrumentation principle, green beams are illumination and red beams are 

collection; (B) block diagram of the system; (C) schematic diagram of the optical head (reprinted from [8] with 

permission from OSA). 

 

Lo et al. [28] designed and validated a system for absorption and scattering coefficients 

quantification of tissue phantoms. The system was based on the use of a 450 W Xe lamp, a 

monochromator, an illumination optical fiber, a commercial silicone photodiode for signals 

detection, replacing the costly detection equipment usually used (such as a CCD detector), a 

current amplifier and a computer - Figure 1.13. A hole was done at the center of photodiode for 

the illumination fiber, minimizing the separation between illumination and detection areas and 

maximizing the light collection efficiency. The implemented system was used to extract diffuse 

reflectance signals from tissue phantoms (mixtures of an absorber [hemoglobin] and a scatterer 

[1 µm polystyrene spheres]) between 400 and 600 nm. The signals were treated with an inverse 

Monte Carlo model in order to extract the absorption and scattering coefficients. The results showed 

the system good performance in extracting optical properties of tissue phantoms. Moreover, the 

authors investigated the potential of replacing the Xe lamp and monochromator by five 

commercially available LEDs (light emitting diodes) in the 400-600 nm spectral range. Despite this 

great advance for the system miniaturization and low cost, the authors only proved the good 



1 Introduction 
_____________________________________________________________________________ 

_____________________________________________________________________________ 

17 

performance of the LEDs and photodiode to extract information about phantoms absorption and 

scattering properties, since only the diffuse reflectance signal was extracted. 

 

Figure 1.13 Optical system implemented by Lo et al. [28] for diffuse reflectance signal extraction (reprinted from [28] 

with permission of OSA). 

 

Mallia et al. [29] performed a clinical study to evaluate the potential of fluorescence and 

diffuse reflectance signals extraction for the differentiation of various tissue types in the oral cavity, 

such as normal, hyperplastic/hyperkeratotic (benign), dysplastic and different stages of SCCs. For 

the spectroscopy measurements, the authors used a system based on a diode laser and a tungsten 

halogen lamp, for fluorescence and for diffuse reflectance measurements, respectively; an optical 

fiber probe that delivers the light to the oral tissue and collect the spectroscopy signals; a 

spectrometer; and a laptop computer - Figure 1.14. The spectrophotometric measurements were 

taken in-vivo (between 420 and 720 nm) from a group of volunteers and biopsies or visual 

inspection were performed from the same sites of the measurements. The fluorescence and diffuse 

reflectance signals were used to extract the intrinsic fluorescence signals. After that, the intrinsic 

fluorescence signals were fitted using Gaussian spectral functions, in order to determine 

constituent emission peaks. The Gaussian peak intensities and area ratios at 500, 635 and 685 nm 

were used to discerning different tissue types with high sensitivities and specificities. 
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Figure 1.14 Optical system used by Mallia et al. [29] for spectroscopy signals extraction (reprinted from [29] with 

permission from John Wiley and Sons). 

 

Jayanthi et al. [30] performed a study to access the potential of fluorescence and diffuse 

reflectance spectroscopies in the noninvasive detection of oral cavity cancer. For the in-vivo 

measurements, the authors used a system similar to the one used by Mallia et al. [29], that 

consists in two light sources (a tungsten-halogen lamp to record the diffuse reflectance spectra and 

a 404 nm diode laser for the fluorescence measurements), an optical probe for light deliver and 

collection, a spectrometer and a laptop computer - Figure 1.15. The spectra were recorded 

between 420 nm and 720 nm. The data was analyzed using PCA and LDA, leading to distinguish 

different oral cavity lesions from normal tissues, with high sensitivities and specificities. The 

effectiveness of the diffuse reflectance and fluorescence techniques was accessed by comparison 

with gold standard techniques, biopsies and visual inspection. 

 

Figure 1.15 Optical system used by Jayanthi et al. [30] for spectroscopy signals extraction (reprinted from [30] with 

permission from Wiley). 
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Imaizumi et al. [31] performed an ex-vivo study about the potential of the fluorescence 

imaging technique for detection of colonic adenomas, using a CCD camera to acquire the 

fluorescence images. The fluorescence images from tumor and normal slices were acquired 

between 450 and 490 nm, with excitation at 365 nm (F365ex) and at 405 nm (F405ex), optimized for 

NADH (reduced form of nicotinamide adenine dinucleotide) fluorescence and reference 

fluorescence, respectively. The same slices were subjected to histopathological examination by two 

pathologists that made histopathological diagnoses. Ratio images were created by dividing F365ex by 

F405ex. The results obtained by the authors show that the average signal intensity in F365ex/F405ex in 

adenomas is different from that in the adjacent normal mucosa, which proves the potential of the 

fluorescence imaging as a promising technique for endoscopic detection of early colonic 

adenomas. 

Angelova et al. [20] developed a study about the fluorescence potential for detection of 

gastrointestinal pathologies. The authors performed measurements of biological tissues in-vitro and 

in-vivo. For the in-vitro measurements (excitation between 280 and 440 nm; and emission between 

300 and 800 nm), the authors used a system based on a Xe lamp, monochromators, a fiber optic 

probe and a PMT (photomultiplier tube) detector with high performance. For the in-vivo 

measurements (excitation at 405 nm; and emission between 450 and 900 nm), the authors used 

an optical fiber probe inserted through the instrumental channel of the endoscope for light deliver 

and collection, a high-power LED as excitation source, a microspectrometer and a computer. The 

tissues sites analyzed with fluorescence measurements during endoscopic procedures were also 

histological analyzed for the results verification. Concerning the in-vitro measurements, the 

fluorescence intensity of a tumor area was much lower than that for the normal mucosa (detected 

from one sample from a patient with colon carcinoma surgically removed). Different spectral 

shapes were also reported from the in-vitro study. In the in-vivo study, the authors used an 

exogenous fluorophore (5-ALA/PpIX) as fluorescent marker for dysplasia and tumor detection in 

esophagus, stomach and colon. The results obtained with the use of an exogenous fluorophore 

showed a very good differentiation between normal and abnormal tissues, leading to conclude the 

usefulness for the clinical practice of the exogenous fluorescence diagnosis. 

Liu et al. [32] performed a study to assess the potential of the multiphoton imaging 

technique, including TPEF (two-photon excitation fluorescence), to investigate the esophageal 

cancer. The authors performed ex-vivo measurements using human normal and cancerous 
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esophagus tissues and were mainly focused on the spectral characteristics of human normal and 

cancerous esophageal submucosa. The imaging system used by the authors was a laser scanning 

confocal microscope, with a spectro-grating and a 32 channel high-sensitivity PMT detector, 

combined with a Ti:sapphire mode-locked femtosecond laser. The results obtained by the authors 

showed distinct TPEF signals between the normal and cancer esophagus tissues, in part due to 

the changes in collagen concentration on tissues. The authors demonstrated the potential of the 

multiphoton imaging technique for minimally invasive esophagus cancer diagnosis. 

Finally, NBI (narrow-band imaging) is an optical image-enhanced technology that can be 

used in the early detection of gastric cancers. This technique uses narrow bandwidth filters in the 

red-green-blue sequential illumination system. The filters can be enabled during conventional 

endoscopy. The blue and green lights penetrate less deeply in the gastric mucosa and are mainly 

absorbed by hemoglobin and, that way, vessels appear dark colored. The signals obtained with the 

blue and green filters can be combined to form an image that highlights the vasculature on the 

superficial mucosa, improving the detection of irregular microvascular and microsurface patterns. 

Figure 1.16 shows an example of an image enhanced endoscopy appearance of early gastric 

cancer. On the other hand, the red light penetrates more deeply and, as a result, the deep layers 

of the mucosa (large collecting vessels) can also be observed. One of the limitations of the NBI, 

which is a technique that relies on improved anatomic resolution and contrast, is the fact that 

requires magnification for an ideal use [33-37]. Moreover, comparing with optical spectroscopy, 

with this image technology it is not possible to extract quantitative information about morphological 

and biochemical tissue constituents that provides an objective diagnosis, as happens with diffuse 

reflectance and fluorescence spectroscopies. 

 

Figure 1.16 (A) White light endoscopy image of early gastric cancer. (B) Narrow band magnifying image of early gastric 

cancer showing irregular microvascular and microsurface patterns (reprinted from [33] with permission from GII 

Editorial Office). 
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1.4 Motivation and objectives 

As previously described on section 1.3, several authors have performed studies and 

developed prototypes for spectroscopy signals extraction and detection of GI cancers. However, 

most of the authors use complex and bulky spectroscopy systems, such as Xe lamps, lasers, 

monochromators, optical fibers and high quantum efficiency detectors. Other authors have tried to 

miniaturize their systems, replacing some of the components with photodiodes or LEDs. However, 

they still use some macroscopic equipment and none of the studies integrate, in a single chip, all 

the optical detectors and the readout electronics for digital output signal [2, 38]. 

Taking advantage of the powerful tool, e.g., system on chip integration provided by the 

microtechnology, the development of a spectroscopy microsystem on a chip, without the need of 

regular optical fibers, monochromators or high quantum efficiency detectors, that can be used 

in-loco, will have a high clinical value. This is the main innovation of the work under this thesis. 

This microsystem can be used as a portable system in a surgery room, for inspecting total removing 

of the cancerous tissue during surgery. Moreover, it can also be integrated with the conventional 

endoscopic equipment and be used as an auxiliary in early GI dysplasia detection or to mark 

possible biopsy sites [2, 19, 38]. 

Such microsystem would comprise miniaturized LEDs for spectroscopy illumination and 

an array of silicon photodiodes and its readout electronics for further signal processing. Each 

photodiode has a thin-film optical filter deposited on its top, tuned for each of the relevant spectral 

bands (selected for signals extraction in [39]), therefore allowing the detection of both diffuse 

reflectance and fluorescence signals. Finally, a communication mode can also be considered, all 

integrated in a single chip, for data transmission and its analysis – Figure 1.17 [2, 19, 38].  

This thesis focuses on that microsystem implementation for extraction of the spectroscopic 

signals, using high selective optical filters especially developed for this purpose, photodiodes and 

its readout electronics. The use of an integrated optical filtering system, will allow the extraction of 

diffuse reflectance and fluorescence signals without the use of heavy and complex equipment, such 

as monochromators, featuring system miniaturization and on-chip integration. With all the optics 

integrated on a chip, especially the optical filters deposited on the top of the photodetection system 

(photodiodes), the distances between elements are reduced, allowing a better coupling of light from 

one element to the next. Moreover, the number of optical interfaces is also reduced by contacting 

the various optical components, reducing interfaces at which optical losses can occur [2, 19, 40]. 
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Figure 1.17 Spectroscopy microsystem for diffuse reflectance and fluorescence signals extraction. The optical filters 

select the signals in the relevant spectral bands (the number of layers in the optical filters in only representative). The 

UV and white-light sources are used for tissue illumination, featuring the fluorescence and diffuse reflectance 

measurements, respectively (not scaled, adapted from [39] with permission from OSA). 

 

1.5 Organization of the thesis 

This document is divided in six chapters, covering theoretical sections, development, 

simulation and implementation, as well as the results obtained and their respective discussion. 

Chapter 1 presents the global incidence of GI cancer, as well as a discussion of the anatomy, 

functionality and cancer progression in the GI tract. Moreover, the most significant studies using 

optical spectroscopies for GI cancer detection or GI tissue characterization are described. Finally, 

the motivation for this thesis and its main objectives are also presented. Chapter 2 describes the 

diffuse reflectance and fluorescence spectroscopy techniques, their main features and some of the 

experimental tests performed for signals study. Moreover, the spectroscopic signals analysis and 

their reconstruction with a discrete number of wavelengths is discussed. Chapter 3 deals with the 

design, fabrication and characterization of thin-film optical filters, featuring the miniaturized 

spectroscopy system implementation. Chapter 4 presents the microsystem implementation on 

CMOS (complementary metal oxide semiconductor) technology, including the photodiodes and its 
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readout electronics based on the implementation of LF (light-to-frequency) converters. Chapter 5 

describes the experimental results in the extraction of diffuse reflectance and fluorescence signals 

with the use of the fabricated thin-film optical filters and the CMOS microsystem. Moreover, the 

integration of the optical filters on the top of the CMOS photodiodes is discussed. Finally, the main 

conclusions and future work are presented in Chapter 6. 
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2 Optical spectroscopy techniques 

As previously referred, the final microsystem must be able to measure diffuse reflectance 

and fluorescence signals, whose changes in intensity and shape can be related with GI cancer 

progression. This chapter describes in detail the main characteristics of diffuse reflectance and 

fluorescence spectroscopy techniques, specifically, their typical spectral intensity and shape and 

their dependence with temperature. Moreover, it is discussed the use of some models for analysis 

of the spectroscopic signals, which allows to extract quantitative information related with the 

morphology and biochemistry of a tissue. Finally, the reconstruction of the spectroscopic signals 

with a discrete number of wavelengths is discussed, featuring the final microsystem 

implementation with a narrow-band optical filtering system. 

 

2.1 Diffuse reflectance spectroscopy: basic theory 

DRS (diffuse reflectance spectroscopy) is a technique that measures the light that is 

diffusely reflected from the tissues. When a light beam reaches a target tissue, it interacts with the 

biomolecules present in the tissue through absorption and scattering events. Thus, the diffuse 

reflected signal is the light that returns to a tissue surface after the incident light beam get either 

scattered and/or absorbed in the tissue – Figure 2.1 [1, 2]. 

 

Figure 2.1 Schematic overview of DRS (adapted from [2] with permission from Future Medicine Ltd). 
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The absorption occurs when the frequency of the incident photon in a molecule is equal 

or exceeds the frequency associated with the molecule transition energy. This leads to a reduction 

of the light beam intensity, since the photon energy is transferred to the absorbing molecule [3]. 

Taking into account the epithelial tissues from the GI tract, the hemoglobin is the main 

absorber molecule (in the light spectral range of the reported application – 350 nm to 750 nm). It 

is present in both oxygenated (HbO2) and deoxygenated (Hb) forms, which have slightly different 

absorption properties. The major absorption peaks are in the 350-450 nm and 520-590 nm 

spectral regions [1]. As a result, the hemoglobin concentration can be directly quantified from the 

absorption component of the diffuse reflectance spectrum of a GI tissue. 

The absorption coefficient ( )(a ) is a wavelength ( ) dependent parameter which 

reflects the probability that a photon (with a specific wavelength) will be absorbed by the tissue 

when it traverses an infinitesimal step within the medium. It is dependent of the concentration of 

the main absorber molecule ( iC )  and  its  extinction  coefficient  ( )( i )  through  Equation 2.1 

[2, 4, 5]. )( i represents the absorbing light molecule capacity as a function of wavelength [6]. 

)()10ln()(  iia C   

Equation 2.1 

Figure 2.2 shows the molar extinction coefficient for HbO2 and Hb between 350 nm and 

750 nm.  The main absorption peaks for both forms of hemoglobin are clearly visible. 

 

Figure 2.2 Molar extinction coefficient for HbO2 and Hb (data extracted from [7]). 
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The photons can also be scattered when impinge on a molecule. The scattering in 

biological tissues in caused by the microscopic variations in the refractive index. In scattering, the 

propagation direction of a light beam changes but its intensity is maintained [3]. 

DRS takes into account the photons that get scattered multiple times in the tissue before 

being detected at the tissue surface. Generally, a photon travels between 0.05 and 0.2 mm before 

it gets scattered by some tissue molecule. There are multiple cellular organelles that cause light 

scattering. However, since the tissue scattering occurs predominantly in the forward direction, the 

scattered photons finish traveling most of their time in the connective tissue. As a result, the 

information of the scattering component of the diffuse reflectance signal is related mainly with the 

underlying connective tissue, where the collagen fibers are the major scattering components [1]. 

The parameter that is used  to  describe  tissue  scattering  is  the  scattering  coefficient  

( )(s ), which is also wavelength dependent. )(s  describes the fraction of scattered light per 

unit distance in a scattering medium. It is dependent on the average distance travelled by a photon 

before it gets scattered and on the scatterer concentration. Another important  parameter  is  the 

reduced scattering coefficient ( )(' s ) which is related with )(s  by Equation 2.2. The )(g  is 

the anisotropy factor that takes into account the angular dependence of the scattering 

events [1, 3, 4]. 

))(1()()('  gss   

Equation 2.2 

The parameter )(g  is usually used to indicate how strongly forward directed the 

scattering is [8]. For 0)( g , there is an isotropic scattering; and for 1)( g , there is a 

complete forward scattering of the incident light. Biological tissues are systems where strongly 

forward scattering occurs and the anisotropy factor varies approximately between 0.69 and 

0.99 [3]. 

Thus, when a light beam reaches a biological tissue, it interacts with the biomolecules 

existent in the tissue through absorption and scattering events, before returning to the tissue 

surface. As a consequence, the diffuse reflectance signal carries information about the absorption 

and scattering properties of the tissue, i. e. carries morphological and biochemical information 

which can characterize the state of the tissue: normal or with some degree of 
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malignancy [2, 9, 10]. Accordingly, a decrease of the scattering component and, consequently, a 

reduction on the diffuse reflectance signal intensity can be associated with the presence of GI 

dysplasia, since the quantity of light that reaches the collagen fibers from the connective tissues is 

reduced with cancer progression (due to an increase of the epithelium tissue thickness [1]). 

Moreover, an increase of hemoglobin concentration (associated with the angiogenesis [growth of 

new blood vessels] during dysplasia progression [4, 11]) may also result in a reduction of the 

diffuse reflectance signal intensity, due to a higher absorption of the light beam that reaches the 

tissue [12]. 

 

2.2 Fluorescence spectroscopy: basic theory 

The fluorescence emission is a physical phenomenon that occurs after a molecule has 

absorbed energy, when illuminated by a light beam with a specific  wavelength (named excitation 

wavelength - excitation ) in the UV/visible spectral region. In that case, the molecule absorbs the light 

energy and is activated from the electronic ground state to reach an electronic excited state. 

However, since the electronic excited states are unstable, the molecule tends to emit the excess 

energy and return to its initial state, the ground state. The process is usually accompanied by 

photons emission [2, 3, 13]. 

The fluorescence of a molecule (also named fluorophore) is characterized by the excited-

state lifetime (τF) and the fluorescence quantum yield (ΦF). The lifetime is the average time the 

molecule spends in the excited state. The quantum yield measures the fraction of absorbed energy 

that is converted into fluorescence [3]. 

The shape and intensity of a fluorescence spectrum is related with the fluorophores 

concentrations in the target tissue and their fluorescence properties, such as the molecules 

absorption power at the excitation wavelength, their quantum yield and the fraction of light emitted 

at the emission wavelength [2, 3]. Moreover, it is important to note that during the electronic 

excitation of the molecules or fluorophores, the excess absorbed energy is spent by collisions 

between the molecules that form the target tissue, a process known as vibrational relaxation (Figure 

2.3). It is an efficient process that occurs after the electronic excitation during some picoseconds. 

As a consequence of this efficiency, the fluorescence emission is shifted to a higher wavelength 

(lower energy) when compared to the absorption spectrum – Stokes deviation (Figure 2.4) [13]. 



2 Optical Spectroscopy Techniques 
_____________________________________________________________________________ 

_____________________________________________________________________________ 

31 

 

Figure 2.3 Diagram of the fluorescence emission phenomenon, including the vibrational relaxation (adapted from [14]). 

 

Figure 2.4 Relative positions of absorption and fluorescence (the curves shape and intensity is merely representative), 

(adapted from [13] with permission from Wiley). 

 

It is also important to note that, in the fluorescence process, an emitted photon can be 

scattered before returning to the tissue surface (Figure 2.5), or even absorbed. Thus, the 

fluorescence spectrum of a tissue suffers some distortions introduced by absorption and scattering 

events on the tissue. As a result, nowadays there are several models/methods capable of removing 

such distortions, improving the quantification and identification of the tissue fluorophores and their 

excitation and emission properties. The fluorescence spectrum without distortion of absorption and 

scattering events is known as intrinsic fluorescence spectrum [1, 2, 15]. 
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Figure 2.5 Schematic overview of the FS (fluorescence spectroscopy) technique with distortions introduced by a 

scattering event (adapted from [2] with permission from Future Medicine Ltd). 

 

There are several endogenous tissue fluorophores with different excitation and emission 

characteristics that are involved in the transformations occurring in the neoplastic process and 

carry different information about tissue biochemical composition. For example, fluorescence from 

NADH is a sensitive indicator of tissue metabolic activity, with excitation/emission maxima at 

340/450 nm approximately. Moreover, fluorescence from collagen can be an indicator of 

structural integrity, with excitation/emission maxima at 330/390 nm approximately [1, 2, 4]. Thus, 

a decrease in collagen (as a result of the cellular integrity loss) and an increase in NADH (associated 

with an increase in the metabolic cellular activity), both related with dysplasia progression [1, 16], 

leads to a change in the shape and intensity of the fluorescence spectrum of a tissue [12]. 

 

2.3 Diffuse reflectance signal study: temperature dependence and 

typical spectra intensity and shape  

The study of the dependence with temperature of the diffuse reflectance signal is essential 

to confirm if some changes in the signal can be related with the tissue temperature and not with 

the dysplasia progression. 
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In order to evaluate the temperature dependence of the diffuse reflectance signal, 

experimental measurements were performed with a set of phantoms, representative of the 

absorption and scattering phenomena that affects the diffuse reflectance signal. The prepared 

phantoms were mixtures of hemoglobin, intralipid (a scatterer representative of the collagen fibers) 

with variable concentrations and water. The used hemoglobin is water soluble and was obtained 

from Sigma-Aldrich (H0267). The used intralipid is a 20% emulsion and was also obtained from 

Sigma Aldrich (I141). With these phantoms, the absorption and scattering properties of the GI 

tissues are represented. 

The diffuse reflectance spectra at different temperatures, Tr (room temperature, 22ºC), T1 

(37 ºC), T2 (40 ºC) and T3 (42 ºC) approximately, were measured between 350 nm and 750 nm 

using a UV-Vis-NIR spectrophotometer (Shimadzu UV-3101PC) equipped with an integrating 

sphere. It was used a standard BaSO4 (barium sulfate) as reference for the 100% of diffuse 

reflectance. Moreover, the diffuse reflectance of a quartz cuvette with water was subtracted from 

the total diffuse reflectance in order to remove its effect from the diffuse reflectance signal. 

Table 2.1 shows three phantoms prepared with a variable concentration of hemoglobin 

and intralipid. Figure 2.6 shows the diffuse reflectance spectra for phantom (b) of Table 2.1 at the 

four temperatures tested (Tr, T1, T2 and T3). 

 

Table 2.1 Phantoms prepared for temperature tests of the diffuse reflectance signal. 

Phantoms 
Hemoglobin 

concentration (mg/mL) 
Intralipid mass concentration (%) 

(a) 0.25 2.00 

(b) 0.50 1.00 

(c) 1.00 0.50 
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Figure 2.6 Diffuse reflectance spectra for phantom (b) of Table 2.1 at four temperatures. 

 

As it can be seen, the diffuse reflectance signal is similar for all the temperatures tested. 

For the remaining phantoms similar results were obtained. However, for precisely checking the 

relation between temperature and diffuse reflectance signal intensity, the results obtained with the 

three phantoms were analyzed in SPSS software, through a partial correlation, controlling for 

wavelength and consequently for components concentration. The partial correlation coefficients 

were used in this statistical analysis and a p-value < 0.05 was considered statistically significant. 

The SPSS output is shown on Figure 2.7. The results allow concluding that the temperature does 

not have a statistically significant affectation (r4809 = −0.001, p > 0.05) in the diffuse reflectance 

spectra, in the range of tested temperatures (22 ºC to 42 ºC, approximately). 

 

Figure 2.7 SPSS output for the partial correlation performed with the three phantoms of Table 2.1 at the four 

temperatures (DR – Diffuse reflectance). 
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Figure 2.8 shows the diffuse reflectance spectra of phantoms (a), (b) and (c) of Table 2.1 

at room temperature. Concerning the spectral intensity, it is in agreement with the expected, which 

is a decrease of the diffuse reflectance signal intensity (from (a) to (c)) with the increase of 

hemoglobin concentration (due to a higher absorption of the light beam, especially in the 

hemoglobin absorption peaks: 417, 547 and 575 nm [17]) and the decrease of intralipid 

concentration (less scattering of the light beam). 

 

Figure 2.8 Diffuse reflectance spectra of phantoms (a), (b) and (c) of Table 2.1, at room temperature. 

 

2.4 Fluorescence signal study 

2.4.1 Temperature dependence and typical spectra intensity and shape  

As previously performed for diffuse reflectance signal, the temperature dependence of the 

fluorescence signal was also investigated, in order to conclude if some changes in the fluorescence 

signal can be related with the tissue temperature and not with dysplasia progression. As a result, 

a more representative set of phantoms was considered, since it is necessary to represent their 

fluorescence properties, in addition to the absorption and scattering properties of the GI tissues. 

A set of liquid homogeneous phantoms were prepared, with variable concentrations of an 

absorber (hemoglobin, H0267 from Sigma-Aldrich), a scatterer (1 µm diameter polystyrene 

microspheres, 07310 from Polysciences) and two fluorophores – NADH (N6005 from Sigma-

Aldrich) and Carbostyril 124 (7-amino-4-methyl-2(1H)-quinolinone, 363308 from Sigma-Aldrich), a 

hydroxyquinoline derivative that represents the emission from collagen. The structures of both 

fluorophores are shown in Figure 2.9. The fluorophores NADH and Carbostyril 124 are soluble in 
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a 0.01 M NaOH solution (35262 from Fluka) and in absolute ethanol (spectroscopic grade, from 

Merck Millipore), respectively. 

 

Figure 2.9 Structures of the fluorophores (A) Carbostyril 124 (reprinted from [18]) and (B) NADH (reprinted from [19]). 

 

In this phase, it was decided to use a different scatterer, the polystyrene microspheres (to 

represent the collagen fibers of GI tissues), since it was observed (in the experimental tests 

performed) that intralipid exhibits fluorescence emission when excited with UV or blue wavelength 

visible light, which will hamper the interpretation of fluorescence spectra. 

Table 2.2 presents the three phantoms prepared for the tests of the temperature 

dependence. For each phantom, the fluorescence signal, between 380 nm and 600 nm, was 

obtained at four temperatures – Tr (room temperature, 22 ºC), T1 (37 ºC), T2 (40 ºC) and T3 

(42 ºC), approximately. It was used an excitation wavelength of 350 nm and a commercial 

spectrofluorometer (SPEX® FluoroLog® 2) [20]. The spectrofluorometer uses as reference a 

solution of Rhodamine B in ethylene glycol (8 g/L), avoiding fluctuations in the light source and 

detector systems. 
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Table 2.2 Phantoms prepared for temperature tests of the fluorescence signal. 

Phantom 

Hemoglobin 

concentration 

(mg/mL) 

Polystyrene mass 

concentration (%) 

NADH 

concentration 

(µg/mL) 

Carbostyril 

concentration 

(µg/mL) 

(a) 0.25 0.50 0.50 1.50 

(b) 0.50 0.25 1.00 1.00 

(c) 1.00 0.15 1.50 0.50 

 

Figure 2.10 shows the fluorescence spectra for phantom (b) of Table 2.2 at the four 

temperatures tested (Tr, T1, T2 and T3). It is important to note that the fluorescence signal is only 

represented between 380 and 600 nm, since that range is representative of the fluorescence 

emission properties of the fluorophores NADH and Carbostyril 124 [21-23]. 

  

Figure 2.10 Fluorescence spectra ( 350excitation nm) for phantom (b) of Table 2.2 at four temperatures. 

 

As it can be observed, there are slight differences between the fluorescence signals at 

different temperatures, which are in accordance with the expected. Generally, an increase in 

temperature results in a decrease in the fluorescence quantum yield and excited-state lifetime, 

because the non-radiative processes related with thermal agitation (collisions with solvent 

molecules, intramolecular vibrations and rotations, etc.) are more efficient at higher temperatures, 

leading to a decrease in the fluorescence intensity [13]. Similar results were obtained for the 

remaining phantoms [20]. 
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The obtained results were also analyzed with the SPSS software, through a partial 

correlation, for checking the relation between temperature and fluorescence signal intensity, 

controlling for wavelength and, consequently, for components concentration. The partial correlation 

coefficients were used in this statistical analysis and a p-value < 0.05 was considered statistically 

significant. Figure 2.11 shows the SPSS output. As it can be seen, the results allow concluding that 

despite the slight differences between the fluorescence signal intensities at different temperatures 

(negative correlation coefficient), they are not statistically significant (r3009 = -0.007, p > 0.05), in 

the temperature range tested (22 ºC to 42 ºC, approximately) [20]. 

 

 

Figure 2.11 SPSS output for the partial correlation performed with the three phantoms of Table 2.2 at the four 

temperatures (F - Fluorescence). 

 

The fluorescence signal of a tissue (named bulk fluorescence) is affected by absorption 

and scattering events, which introduces distortions in the fluorescence spectra, hampering the 

identification and quantification of tissue fluorophores [1, 15]. 

The fluorophore NADH has a maximum fluorescence emission around 450-460 nm with 

a quantum efficiency of approximately 2% [21, 23, 24]. The fluorophore Carbostyril 124 has a 

maximum fluorescence emission at 417 nm with a quantum efficiency of 97% [22]. Moreover, as 

the Carbostyril concentration increases, a second fluorescence emission peak arises close to 440 

nm, probably due to the formation of Carbostyril aggregates (see Figure 2.12B). Finally, both 

fluorophores can be excited at 350 nm. 

Figure 2.12 shows a comparison between the spectrum of each fluorophore in a diluted 

solution and in a phantom (containing hemoglobin and polystyrene microspheres), obtained 

experimentally. It can be noted that, despite the same fluorophore concentration, the spectra in 
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phantoms (turbid media) are very different from the ones in homogeneous dilute solution, as the 

fluorescence emitted from the surface of a turbid medium may change from isotropic to anisotropic 

[25]. In addition to the differences in intensity, due to the absorption and scattering effects in 

phantoms, the spectral shape is also affected, especially in the case of Carbostyril 124. Moreover, 

it is also important to note that the spectrum in phantom (B) is very similar to the one reported for 

an arterial tissue sample [25], evidencing that the tissues fluorescence is dominated by collagen, 

due to the low quantum efficiency of NADH (only 2%). The valley near 420 nm corresponds to the 

main absorption band of hemoglobin (the Soret band) [25]. 

 

Figure 2.12 Fluorescence emission spectra ( 350excitation nm) of NADH 1.5 µg/mL (A) and Carbostyril 124 1.5 

µg/mL (B) in a diluted solution and in a phantom (with 1 mg/mL of hemoglobin and 0.15% of polystyrene 

microspheres). 

 

Figure 2.13 shows the bulk fluorescence spectra of each phantom ((a), (b) and (c)) 

presented in Table 2.2, at room temperature. It can be observed that, as the NADH concentration 

increases and the Carbostyril 124 decreases (from (a) to (c) on Table 2.2), the global fluorescence 

intensity decreases (especially the first peak close to 400 nm) due to a lower Carbostyril 124 

concentration, which is the fluorophore with a higher contribution to the fluorescence intensity, due 

to the high quantum efficiency (97%). In addition, the second fluorescence peak becomes larger 

and with a slight shift to higher wavelengths, which is the typical NADH affectation in the 

fluorescence spectra [26]. Moreover, the three fluorescence spectra are similar (in shape) to the 

phantom spectrum of Figure 2.12B, as expected. However, the ration between the two emission 

peaks (near 450 nm and 400 nm) is higher, due to the presence of the fluorophore NADH. 

Considering the three phantoms of Table 2.2, the ratio between the two emission peaks is 3.02, 

4.08 and 5.64 (from (a) to (c) on Table 2.2, respectively), due to an increase in the NADH 
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concentration along these phantoms. However, the increase in the ratio between the two bands is 

not proportional to the NADH concentration, since the fluorescence intensity and, consequently, 

the ratio values are affected by absorption and scattering events, which will be discussed in the 

next section – section 2.4.2. 

 

Figure 2.13 Bulk fluorescence spectra ( 350excitation nm) for phantoms (a) to (c) of Table 2.2 at room temperature. 

 

Finally, Figure 2.14 shows the diffuse reflectance spectra of the three phantoms presented 

on Table 2.2 (phantoms with all the components representing the absorption, scattering and 

fluorescence properties of the GI tissues, which were not considered previously on Figure 2.8), 

measured between 350 nm and 750 nm using an UV-Vis-NIR spectrophotometer (Shimadzu UV-

3101PC) equipped with an integrating sphere. It was used a standard BaSO4 as reference for the 

100% of diffuse reflectance. As before, the diffuse reflectance of a quartz cuvette with water was 

subtracted from the total diffuse reflectance, in order to remove its effect from the diffuse 

reflectance signal. As expected, the diffuse reflectance signal intensity decreases (from (a) to (c)) 

with the increase of hemoglobin concentration (due to a higher absorption of the light beam, 

especially in the hemoglobin absorption peaks) and the decrease of polystyrene spheres 

concentration (less scattering of the light beam). 
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Figure 2.14 Diffuse reflectance spectra of phantoms (a), (b) and (c) of Table 2.2, at room temperature. 

 

2.4.2 Absorption and scattering distortions in the fluorescence spectra 

The fluorescence signal of a tissue is affected by absorption and scattering events, which 

introduce distortions in the fluorescence spectrum of a tissue. 

In order to observe those distortions, based on phantom (b) of Table 2.2, two more 

phantoms were prepared, with the same fluorophores concentrations, but with different 

hemoglobin and polystyrene microspheres concentrations – Table 2.3. The Figure 2.15 shows 

their fluorescence spectra at room temperature. 

 

Table 2.3 Phantoms prepared to better observe the absorption and scattering distortions on the fluorescence 
spectra. 

Phantom 

Hemoglobin 

concentration 

(mg/mL) 

Polystyrene mass 

concentration (%) 

NADH 

concentration 

(µg/mL) 

Carbostyril 

concentration 

(µg/mL) 

(b) 0.50 0.25 1.00 1.00 

(d) 0.50 0.50 1.00 1.00 

(e) 1.00 0.25 1.00 1.00 
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Figure 2.15 Bulk fluorescence spectra ( 350excitation nm) for phantoms (b), (d) and (e) of Table 2.3 at room 

temperature. 

 

Comparing the fluorescence spectra of phantoms (b), (d) and (e) of Table 2.3, in spite of 

having the same fluorophores concentration, they have distinct spectra. As expected, the 

fluorescence intensity decreases as the hemoglobin concentration increases (phantoms (b) and (e) 

of Table 2.3), due to an increase in absorption. The same happens when the concentration of 

polystyrene beads is increased, due to the enhancement of scattering (Phantoms (b) and (d) of 

Table 2.3). 

Those results show that it is important the implementation of a model to extract the intrinsic 

fluorescence (fluorescence without absorption and/or scattering distortions, only due to tissue 

fluorophores) from the bulk fluorescence (measured in a turbid media such as a phantom), in order 

to identify and quantify the tissue fluorophores and their concentration changes that may occur 

during GI cancer progression. 

Figure 2.16 shows the experimental intrinsic fluorescence for the three phantoms (b), (d) 

and (e) of Table 2.3 and for the phantoms (a) and (c) of Table 2.2.  The experimental intrinsic 

fluorescence was obtained using a sample with only Carbostyril 124 and NADH (in the same 

concentration of the respective phantom). Analyzing the experimental spectra, the intrinsic 

fluorescence spectrum of phantom (c) presents only one emission peak (near to 420 nm), since 

the fluorescence is dominated by Carbostyril 124 (representative of collagen), which has high 

quantum efficiency. However, the presence of a higher NADH concentration (comparing with the 

other phantoms) is also responsible for the occurrence of a larger peak, which is an effect already 
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reported and attributed to the influence of NADH [26]. Concerning the experimental spectra for the 

other phantoms, they have two emission peaks. As NADH presents a low fluorescence quantum 

yield, the second peak (at higher wavelength) may by influence by some aggregation of the 

Carbostyril 124 or by FRET (fluorescence resonance energy transfer) from Carbostyril 124 to NADH 

(with a rise in emission of the latter) [13]. As the Carbostyril 124 concentration is higher, the 

spectral intensity is also higher (especially the first peak, which is close to the emission 

fluorescence peak of Carbostyril 124), but not proportional to its concentration. 

 

Figure 2.16 Experimental intrinsic fluorescence ( 350excitation nm) for all the phantoms of Table 2.2 and Table 2.3. 

 

2.5 Spectroscopy models for signals analysis 

The GI cancer progression involves several morphological and biochemical changes on the 

tissues (as previously explained), which leads to a change in the way the light interacts with the 

tissues, i. e. changing the shape and intensity of the diffuse reflectance and fluorescence signals. 

As a result, the signals extraction is fundamental for providing a complete information about the 

status of the analyzed tissue: normal or with a probability of malignancy presence. However, the 

signals analysis is also important to extract valuable information for tissue characterization. Thus, 

in this section a brief discussion about the signals analysis will be presented, referring some work 

already performed by the research group. 

As an example, a direct comparison (trough statistical tests) between signals from normal 

tissues and an unknown tissue (to be analyzed in a moment) can anticipate, based on differences 

in intensity and shape of the signals, a possible malignancy presence in the analyzed tissue and 

mark it as a biopsy site, with which the presence or absence of malignancy will be confirmed. This 
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can work as an auxiliary to the pathologist during the typical endoscopy and colonoscopy 

techniques, avoiding the blind biopsies. 

Moreover, several authors analyze the spectroscopic extracted signals (diffuse reflectance 

and fluorescence) with mathematical models in order to extract quantitative information that could 

improve the detection of changes of tissues properties during cancer progression. The diffuse 

reflectance signal can be used to extract the absorption and reduced scattering coefficients ( )(a

and )(' s ) of a tissue. The fluorescence signal can be used to extract the intrinsic fluorescence, 

allowing the identification of the tissue fluorophores and their relative contributions for the overall 

tissue fluorescence. 

Previous work developed by the research team [27, 28] used an approximation of the 

transport diffuse equation, developed by Zonios et al. [29], for the extraction of absorption and 

reduced scattering coefficients. For the intrinsic fluorescence signal extraction (from the bulk 

fluorescence spectra in combination with the diffuse reflectance spectra), the research team used 

a photon migration model developed by Wu et al. [30]. Finally, the intrinsic fluorescence spectra 

were fitted using a linear combination of the tissue fluorophores basis spectra. 

The main goal of this thesis is to develop a miniaturized spectroscopy system. In the 

conventional spectroscopy setups, the signals extraction and its discrimination over a wavelength 

range is achieved in steps of 1 nm and using a spectrograph, which is not suitable in a miniaturized 

system. The discrimination of the signals will be achieved using a narrow-band optical filtering 

system (that will be described in detail in chapter 3). Thus, a study previously conducted by the 

research team showed the viability of using only 16 wavelengths for signals extraction and 

quantification of tissue information [27, 28]. 

In that study, it was used an existing spectroscopy data set with fluorescence and diffuse 

reflectance signals from esophageal tissues (non-dysplastic and dysplastic). The Figure 2.17 shows 

representative diffuse reflectance and intrinsic fluorescence spectra for normal and dysplastic 

tissues [27, 28]. 
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Figure 2.17 Representative diffuse reflectance (A) and intrinsic fluorescence (B) spectra for normal (upper lines) and 

dysplastic tissue (bottom lines) (adapted from [28]). 

 

The research team implemented the diffuse reflectance and fluorescence algorithms in 

Matlab software for quantification of tissue information (extraction of tissue optical properties) and 

compared the results obtained with the full spectra (between 350 nm and 750 nm, in steps of 

1 nm) and with the spectra reconstructed from the 16 spectral bands (achieved by linear 

interpolation): 350, 370, 380, 400, 420, 450, 480, 510, 540, 560, 580, 600, 620, 650, 700, 

and 750 nm. Figure 2.18 shows and example of reconstructed  spectra  (using  the  16  spectral  

bands)  of  the  same  samples  represented  on Figure 2.17 [27, 28]. 

 

Figure 2.18 Reconstructed diffuse reflectance (A) and intrinsic fluorescence (B) spectra for normal (upper lines) and 

dysplastic tissue (bottom lines) (adapted from [28]). 
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Different combinations of 16 wavelengths were simulated. All of them used 6 fixed points: 

350 and 750 nm, the first and the last in the analysis; 420, 540 and 580 nm, close to the 

hemoglobin absorption peaks; and 700 nm, a reference wavelength.  The other wavelengths were 

selected within the full visible range. The wavelength selection took into account the accuracy of 

the extraction of tissue optical properties but also the constraints inherent to the optical filter 

fabrication process, for example the filters FWHM (full width half maximum) since the filters 

transmittance spectra should not overlap [27, 28]. 

A more reduced number of spectral bands can be useful to reduce the complexity and the 

size of the final microsystem. However, a compromise between an accurate extraction of the tissue 

optical properties and the number of wavelengths must be considered. Therefore, 16 wavelengths 

were considered that compromise. As an example, the research group performed a study for 

extraction of the optical tissue properties using only 10 spectral bands. They verified low 

correlations between the parameters extracted with the reconstructed spectra and with the full 

spectra, especially in the extraction of the reduced scattering coefficient [27, 28]. 

Thus, the 16 selected wavelengths (between 350 and 750 nm) provided good results for 

tissues characterization, which made possible the optical filters design and fabrication. 

 

2.6 Conclusion 

In this chapter the main characteristics of the diffuse reflectance and fluorescence 

spectroscopy techniques were described. The typical spectra intensity and shape of the signals 

were study as well as their dependence with the temperature, performing some measurements 

with phantoms with different biochemical components concentrations. The obtained results 

allowed to conclude that the temperature has not a significant effect on the diffuse reflectance and 

fluorescence spectra. It was also concluded that the diffuse reflectance spectra shape and intensity 

is affected by the absorption and scattering components of the phantoms with a reduction of the 

signal intensity as the absorption increases and the scattering decreases. The fluorescence signal 

shape and intensity is affected by the fluorophores (especially by the one with higher quantum 

efficiency) presented in the phantoms and suffers from distortions introduced by absorption and 

scattering events. In addition, it was discussed the implementation of some models for 

spectroscopic signal analysis, featuring the extraction of quantitative information related with the 

morphology and biochemistry of a tissue. Finally, the reconstruction of the signals with a discrete 
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number of wavelengths was discussed, taking into account previous work performed by the 

research team. It was concluded that 16 wavelengths are enough for the signals extraction and 

quantification of tissue information. That way, the implementation of the final microsystem is 

achieved with optical filters design and fabrication centered at the 16 selected wavelengths. 
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3 Thin-film optical filters 

The final microsystem integrates narrow bandpass optical filters based on thin-films, for 

diffuse reflectance and fluorescence signals selection and detection, in specific spectral bands, 

previously considered significant for signals extraction featuring GI tissue characterization [1, 2]. 

The optical filters for selecting the relevant spectral bands avoid the use of heavy and complex 

equipment, such as monochromators, that are used in the majority of spectroscopy prototypes for 

several clinical applications. 

This chapter describes the design, optimization, fabrication and characterization of 16 

MgO/TiO2 and SiO2/TiO2 based high selective narrow bandpass optical filters used in the final 

microsystem. 

 

3.1 Thin-films properties: basic theory 

A thin-film is defined as a specific layer of material with a thickness up to 1 µm, deposited 

on a substrate – Figure 3.1. The refractive index, n , is defined by the ratio between the speed of 

light in vacuum and the speed of light in the medium. Generally, the thin-films do not absorb any 

energy. In this case, the filter characteristic in reflection is the complement of that in transmission. 

Thus, taking into account the incident light on the film, part of that is reflected and the other is 

transmitted to the substrate [3]. 

 

Figure 3.1 Representation of a single thin-film (adapted from [4] by permission of Taylor and Francis Group, and [3]). 

 



3 Thin-film optical filters 
_____________________________________________________________________________ 

_____________________________________________________________________________ 

52 

In order to understand, qualitatively, the performance of the optical filters based on thin-

films, it is necessary to accept three statements [4]: 

(1) The amplitude of the reflected light at any boundary between two media is given 

by Equation 3.1[4]. 

r

r









1

1
 

Equation 3.1 

where r  is the amplitude reflection coefficient, which is the ratio of the optical 

admittances at the boundary or the ratio of the refractive indices ( n ). The reflectance is defined 

as the square of this amplitude. 

(2) There is a phase shift of 180º when the reflectance occurs in a medium that has 

a lower refractive index when compared with its adjacent medium; and a phase shift of 0º when 

the reflectance occurs in a medium that has a higher refractive index when compared with its 

adjacent medium [4]. 

(3) If the light beam is split in two components by reflection at the top and the bottom 

of a thin-film, these two light beams will recombine such that the amplitude of the resultant beam 

is the difference between the amplitudes of the two components, when there is a phase shift of 

180º (destructive interference); or is the sum of the amplitudes of the two components, when there 

is a phase shift of 0º (constructive interference) [4]. 

The implementation of a thin-film multilayer (deposition of a stack of alternate high and 

low refractive index films) can be useful to obtain a structure with a constructive interference of the 

reflected light beams - Figure 3.2. Thus, the effective reflectance of the structure is controlled by 

the number of layers and can be made very high, increasing the number of layers. This is the 

elementary form of the high-reflectance coatings [4]. 

However, when this type of structure is constructed, its reflectance remains high only within 

a limited range of wavelengths. Outside that range, the reflectance drops to a low value. Therefore, 

this structure has a reflectance spectrum with maxima and minima at specific wavelengths. As a 

result, the thin-film multilayers can be used as a basic block for many types of thin-film filters. The 
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filter characteristic in reflection is the complement of that in transmission if no energy is absorbed 

by the filter [4]. 

  

Figure 3.2 Representation of a thin-film multilayer (adapted from [4] by permission of Taylor and Francis Group). 

 

Then, some theoretical concepts will be presented to understand the performance of a 

multilayer thin-film filter and make the required calculations for its design. 

 

Maxwell’s equations and electromagnetic waves 

Light is an electromagnetic wave. Thus, its characteristics can be described by the Maxwell 

equations, which are presented as follows (considering isotropic and uniform media) [4, 5]: 

D.  

Equation 3.2 
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Equation 3.3 
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where D  is the electric displacement vector, B  is the magnetic induction vector, E  is the 

electric field vector, H  is the magnetic field vector,   is the electric charge density and J  is the 

electric current density vector. 

The electric current density and the electric displacement can be related with the electric 

field using the following equations [4, 5]: 

EJ   

Equation 3.6 

ED   

Equation 3.7 

where  is the electric conductivity and   is the permittivity of the medium. 

Moreover, the magnetic induction can be related with the magnetic field using the following 

equation [4, 5]: 

HB   

Equation 3.8 

where   is the magnetic permeability of the medium. 

In free space,   and   have the following values [5]: 

17
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where 0  and 0 are the permeability and the permittivity of the free space, respectively. 

Moreover, the permittivity of the free space can be expressed using the following 

equation [4]: 
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where c  is the speed of light in free space or in vacuum ( 1810997925.2  msc ). 

The following analysis is based on the literature [1, 3-5]. The electric and magnetic fields 

can be considered two aspects of a unique physical phenomenon: the electromagnetic field. Once 

there is an electromagnetic variation, it spreads away independently of the source that generated 

it. The electric and magnetic fields forms a unique entity and regenerate each other continually. In 

the following analysis, it will be considered a medium free of sources, this is, 0J  and 0 . 

Taking into account Equation 3.4 and solving using Equation 3.2, Equation 3.5, Equation 3.7 and 

Equation 3.8, it is obtained the following expression: 
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Equation 3.10 

Using a similar process and for the magnetic induction, it is possible to obtain the following 

expression: 
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Equation 3.11 

Equation 3.10 and Equation 3.11 are wave equations. In this case, the velocity of light 

propagation in a medium,v , is related with the product   by the following expression: 



1
v  

Equation 3.12 

The ratio between the velocity of light in vacuum, c , and the velocity of light in a medium, 

v , defines the refractive index (n ) of the medium: 

00




v

c
n  

Equation 3.13 

Generally, the magnetic properties of a medium have an insignificant effect on the velocity 

of light propagation. So it can be considered that 0  . As a result, the refractive index of a 
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medium is determined by its permittivity, which depends on the frequency of the incident 

electromagnetic wave. 

For plane waves (waves whose surfaces of constant phase [wavefronts] are parallel planes 

normal to the direction of propagation [6]), Equation 3.10 and Equation 3.11 have the following 

solutions: 

 ).(
0Re  


rktieEE  

Equation 3.14 
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Equation 3.15 

where Re  indicates the real part, 0E and 0B are vectors that represent the amplitudes of the 

oscillations,  is the angular frequency,  r is the position vector,  is the phase of the wave and 

k is the wave vector. 

The frequency, f , and the wavelength,  , of the electromagnetic wave are given by: 





2
f  

Equation 3.16 
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Equation 3.17 

Finally, the optical admittance of a medium (that measures how easily the light can pass 

along it) is numerically equal to its refractive index (n ) and connects the magnetic and electric 

fields, H and E , respectively: 

EnH   

Equation 3.18 
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The reflectance of a thin-film 

A thin-film is represented in Figure 3.3. At this point, it is desirable to define a new notation: 

waves in the direction of incidence with the symbol “+” (positive-going) and waves in the opposite 

direction with the symbol “–” (negative-going) [1, 4]. 

 

Figure 3.3 Plane wave incident on a thin-film (adapted from [4] by permission of Taylor and Francis Group). 

 

Considering the interface between the film and the substrate (boundary b in Figure 3.3), 

there is no negative-going wave in the substrate. In the film, there is one resultant positive-going 

wave and one resultant negative-going wave. As a result, at this interface the tangential components 

of electric and magnetic fields (E  and H , respectively) are [1, 4]: 

  bbb EEE 11  

Equation 3.19 
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Equation 3.21 
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Equation 3.22 
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Equation 3.24 

At the other interface (boundary a in Figure 3.3), at the same instant and at a point with 

similar x and y coordinates, the electric and magnetic fields can be determined by altering the 

phase factors of the waves allowing a shift in the z coordinate from 0 to -d. Thus, the phase factor 

of the positive-going wave will be multiplied by ie  and  the  phase  factor  of  the  negative-going 

wave will be multiplied by ie  , where [1, 4]: 






cos2 1dn
  

Equation 3.25 

where d is the physical thickness of the thin-film,   is the light incidence angle and 1n  is the 

refractive index of the thin-film.   is defined as the phase thickness that represents the phase shift 

experienced by the wave when it crosses a distance d, normal to the boundary. The optical path 

length (OPL ) is defined as the light distance traveled in a thin-film and can be obtained by the 

following equation [1]: 

cos1dnOPL   

Equation 3.26 

Moreover, if absorption is included (usually, this is not the case for thin-films, which 

normally are completely transparent [3]), the refractive index  (n ) will be writing as [7]: 

iknn   

Equation 3.27 

where k  is the extinction coefficient. 
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Thus, for the interface a (Figure 3.3), the tangential components of E and H are [1, 4]: 
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Equation 3.28 
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Equation 3.29 
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Equation 3.31 

Consequently, 
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Equation 3.33 

Equation 3.32 and Equation 3.33 can be written in matrix notation [1, 4]: 
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Equation 3.34 

Equation 3.34 relates the tangential components of E and H at the incident interface 

(interface a of Figure 3.3) with the tangential components of E and H that are transmitted 

through the interface b (Figure 3.3). The matrix 22  is defined as the characteristic matrix of a 

thin-film [1, 4]. 
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The input optical admittance of the assembly can be defined by [1, 4]: 

a

a

E

H
Y   

Equation 3.35 

The reflectance of an interface between an incident medium of admittance 0n and a 

medium of admittance Y  is obtained with the following equation [1, 4]: 
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Equation 3.36 

Finally, dividing Equation 3.34 by bE  it can be obtained [1, 4]: 
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Equation 3.37 

where B  and C are the normalized electric and magnetic fields at the front interface and are 

the quantities that will be used to extract the properties of the thin-film system. 








C

B
 is defined as 

the characteristic matrix of the assembly. Taking into account Equation 3.35 and Equation 3.37, it 

is also possible to write the following expression: 
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Equation 3.38 

 

The reflectance of an assembly of thin-films 

Figure 3.4 shows another thin-film that was added  to  the  single  film  presented  on 

Figure 3.3. Thus, the final interface is designated by c.  
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Figure 3.4 Representation of two thin-films on a surface (adapted from [4] by permission of Taylor and Francis Group). 

 

The characteristic matrix of the thin-film more close to the substrate is [1, 4]: 
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Equation 3.39 

Applying Equation 3.34, it is possible to obtain the parameters at the interface a [1, 4]: 
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Equation 3.40 

The characteristic matrix of the assembly is expressed by [1, 4]: 
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Equation 3.41 

Equation 3.41 can be extended to the case of an assembly of q layers. In this case, the 

characteristic matrix of the assembly is the product of the individual matrices, done in the correct 

order [1, 4]: 
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Equation 3.42 
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where m represents the substrate and r can be obtained using the following expression: 




 rrr

r

dn cos2
  

Equation 3.43 

where r can be determined from Snell’s law, if  ( the light incidence angle) is given: 

mmrr nnn  sinsinsin0   

Equation 3.44 

Taking into account Equation 3.36 and Equation 3.38, the reflectance of the thin-films 

assembly is [1, 4]: 
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Optical filters with dielectric thin-films: quarter- and half-wave optical thicknesses 

The characteristic matrix of a dielectric thin-film (a thin-film with a very little radiation 

absorption [8]), for a normal light incidence, is simplified if the optical thickness is an integer 

number of quarter- or half-wave thicknesses [1, 4]. 

If   , then 1coscos    and 0sinsin   . Thus, the layer is an integer 

number of half-wavelengths thick ( 2\ ) and the characteristic matrix is [1, 4]: 
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This is the unity matrix and in this particular case the thin-film has no effect on the 

reflectance of an assembly [1, 4]. 
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In this particular case, the reflectance of an assembly will have its minimum or maximum 

peak, depending on the fact that the n  of the added thin-film is lower or higher than the n  of the 

substrate, respectively [1]. 

Since the properties of the assemblies involving quarter- and half-waves optical thicknesses 

are simple to calculate, the design of optical filters will be based on quarter- and half-waves layers 

at a reference wavelength. For example, in the case of using two dielectric materials for filters 

design, the quarter-wave thicknesses are generally represented by H or L, depending if the material 

has the highest or the lowest refractive index, respectively. The half-wave thicknesses layers are 

represented by HH or LL [1, 4]. 

Taking into account a multilayer structure with half-wave and quarter-wave thickness 

layers, H L H L H LL H L H L H, with an incident medium of air (refractive index equal to 1) and a 

substrate of glass (refractive index equal to 1.52), it is possible to write  

Equation 3.46 (considering 1n  the highest refractive index and 2n the lowest refractive index): 

 

Equation 3.46 

Thus, the characteristic matrix of the assembly can be written as: 
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Equation 3.47 

 Using Equation 3.45, it is possible to obtain the reflectance ( R ) and the  transmittance  

(T ) of the structure, being 0426.0R  and 9574.01  RT . 
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3.2 Optical filters design based on thin-films 

3.2.1 Optical filters structure 

In the present work, narrow bandpass optical filters were implemented, taking advantage 

of the constructive/destructive combination of a thin-film multilayer that produces simultaneously 

pass and rejection bands. The implemented optical filters are based on a Fabry-Perot 

interferometer structure. 

The Fabry-Perot interferometer consists of two flat parallel mirrors (high-reflectance 

coatings) separated by a layer with a pre-defined thickness sd , called resonance 

cavity [1, 4, 9, 10] - Figure 3.5. 

 

Figure 3.5 Fabry-Perot interferometer structure. 

 

The parallel mirrors (or reflectors) of the Fabry-Perot interferometer can be implemented 

with metallic or dielectric films. In this work, dielectric materials were used (Figure 3.6), since they 

have some important advantages comparing with metallic ones. The most important is related with 

the high energy absorption rates of the metallic films, leading to a lower optical transmittance, 

especially if a narrow bandpass filter is desired. Dielectric films, contrarily, have low energy 

absorption rates, making its reflecting capacity just complementary to its transmitting capacity, and 

leading to the implementation of narrow bandpass optical filters with high transmittance at specific 

wavelengths [4, 9, 10]. 
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Figure 3.6 Fabry-Perot interferometer with dielectric layers (adapted from [4] by permission of Taylor and Francis 

Group). 

In the resonance cavity there is a multiple-beam interference that causes the transmission 

of the filter to be very high at a narrow band of wavelengths around a wavelength for which the 

cavity is a multiple of one half wavelength thick. In a Fabry-Perot interferometer, when a light beam 

reaches the first surface of the resonance cavity (Figure 3.7) it is divided in two waves: one reflected 

(R1) and other transmitted into the resonance cavity. This last one will reach the second surface 

of the resonance cavity and again it will be divided in two light beams: one transmitted (T1) and 

the other reflected in the direction of the first surface of resonance cavity (R2). This process of 

successive reflections and transmissions will continue and will be repeated along the resonance 

cavity. The total transmitted light is the sum of all transmitted beams (T1, T2, T3 and T4) and the 

total reflected light is the sum of all reflected beams (R1, R2, R3 and R4) [1, 4]. 

 

Figure 3.7 Fabry-Perot interferometer showing multiple reflections in the resonance layer (adapted from [4] by 

permission of Taylor and Francis Group, and [1]). 
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When the filter bandwidth is very narrow (i. e., the reflectance of the mirrors of Fabry-Perot 

interferometer is very high), a specific light beam is transmitted only if the thickness ( sd ), the 

refractive index of the resonance cavity ( sn ), the light incidence angle ( ) and the light wavelength 

( ) satisfy the relation presented in Equation 3.48 [1]: 





 q

dn ss 
cos2

 

Equation 3.48 

where q  is the filter interference order. Thus, the thickness of the resonance cavity determines 

the tuned wavelength [1, 9]. 

Considering a simple approach for the filters design, i. e., an interference order of 1 and a 

light incidence angle of 0º (normal light incidence), the separation between the mirrors (thickness 

of the resonance cavity of the Fabry-Perot interferometer  - sd ),  can  be  calculated  using  

Equation 3.49 [1]: 

s

s n
d

2


  

Equation 3.49 

where   is the wavelength that is transmitted by the structure. 

The thickness of the quarter-wave layers of the Fabry-Perot interferometer - td - (for 

transmission of the same wavelength) can be obtained using Equation 3.50 [1]: 

t

t n
d

4


   

Equation 3.50 

where tn is the refractive index of the quarter-wave layer. 

Another important parameter that characterizes the selectivity of a filter is the value of  

FWHM, which is the bandwidth at half of the filter peak transmission [1]. 

Thus, in a Fabry–Perot interferometer the thickness of the resonance cavity determines 

the tuned wavelength, for the same mirrors films. Taking advantage of that, 16 optical filters, 
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designated simply by “Fabry-Perot optical filters”, centered at specific spectral bands (ranging from 

350-750 nm) previously considered relevant to extract the spectroscopic signals to GI tissue 

characterization [1, 2], were computationally designed using the software TFCalc 3.5 supplied by 

Software Spectra Inc. During this step, the transmittance peak and the FWHM of the filters were 

analyzed. For the reported application, the intensity of the transmitted peak should be high, with 

at least twice the intensity of any noise peak that might appear in the considered spectral range. 

Concerning the FWHM, a value around 10 nm is enough, once the 16 required spectral bands are 

centered at 350, 370, 380, 400, 420, 450, 480, 510, 540, 560, 580, 600, 620, 650, 700 and 

750 nm [11, 12]. 

The reported features give rise to divide the optical filters in three spectral regions: UV/Vis 

(350 nm – 450 nm), Vis (480 nm – 600 nm) and Vis/IR (620 nm – 750 nm). Within the same 

spectral region, the optical filters were centered at different spectral bands by adjusting only the 

thickness of the resonance cavity, keeping the same thicknesses of the mirrors films. This 

procedure minimizes the deposition time required for the optical filters fabrication. Therefore, the 

optical filter multilayer structure is composed by 11 thin-films with high and low refractive index 

materials, alternatively. The number of layers was chosen taking into account the optical filters 

performance during their design on TFCalc 3.5, concerning the FWHM and the transmittance 

peak [11, 12]. 

3.2.2 Optical filters materials 

In an initial stage, TiO2 and SiO2 films were used as high and low refractive index 

materials [1], respectively, once they are compatible with CMOS fabrication, their refractive indices 

are almost wavelength independent in the visible range of the spectrum and they are commonly 

deposited by IBD (ion beam deposition), the process used for optical filters fabrication. However, 

it was checked (during the simulations on TFCalc 3.5) that this combination results in a poor optical 

filter performance below 420 nm, especially due to their low transmittance. As a result, other 

materials combinations (compatible with the IBD process) were considered, in order to improve 

the transmittance peak, keeping the selectivity of the filters. After several simulations, using 

different materials (such as MgO, Al2O3 and Ta2O5), but compatible with the IBD process, the 

combination MgO/TiO2 was the best option for the UV/Vis range up to 400 nm, leading to an 

increase of the transmittance peak, keeping low values for the filters FWHM [11, 12]. 
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The resonance cavity thickness and the thicknesses of the mirrors films, for each filter, are 

presented on Table 3.1 for the combinations of MgO/TiO2 and of SiO2/TiO2. The thicknesses of the 

mirrors films ( td ) were calculated using as reference a central wavelength, in each specific group 

or region (400 nm for UV/Vis, 550 nm for Vis and 680 nm for Vis/IR), and Equation 3.50. The 

resonance cavity thicknesses ( sd ) were obtained using Equation 3.49 or adjusted on the 

TFCalc 3.5 software [11, 12]. 

 

Table 3.1 Optical filters in the UV/Vis, Vis and Vis/IR regions and respective layer thicknesses, with the combinations 

MgO/TiO2 and SiO2/TiO2 (RC: Resonance Cavity), (reprinted from [11] with permission from OSA). 

 

Maximum transmittance peak wavelength (nm) 

350 370 380 400 

 

420 450 480 510 540 560 580 600 620 650 700 750 

Layer Thickness (nm) Layer Thickness (nm) 

TiO2 30 

57 

30 

57 

30 

TiO2 30 

68 

30 

68 

30 

45 

95 

45 

95 

45 

60 

117 

60 

117 

60 

MgO SiO2 

TiO2 TiO2 

MgO SiO2 

TiO2 TiO2 

MgO 

(RC) 
-- 88 98 114 

SiO2 

(RC) 
153 174 140 163 184 199 214 229 189 211 248 285 

TiO2 30 

57 

30 

57 

30 

TiO2 30 

68 

30 

68 

30 

45 

95 

45 

95 

45 

60 

117 

60 

117 

60 

MgO SiO2 

TiO2 TiO2 

MgO SiO2 

TiO2 TiO2 

 

3.2.3 Optical filters simulations 

The simulation results (from TFCalc 3.5) for the approach on Table 3.1 (using the 

theoretical refractive indices available at Sopra database and [13]) are presented in Figure 3.8. At 

this phase, it was not possible to present the transmittance of the 350 nm optical filter, using the 

materials and thicknesses indicated in Table 3.1, since the transmittance obtained for this filter in 

the simulations was too small. This can be explained by the theoretical properties of the materials 

being used, namely their refractive indices [11, 12]. 
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The simulation results of Figure 3.8 show that the chosen multilayer stack (five layers) of 

MgO/TiO2 or SiO2/TiO2 thin-films for each dielectric mirrors and a MgO or SiO2 layer for the 

resonance cavity (see Table 3.1), is the best option for the optical filters in terms of optical 

characteristics, feasibility and fabrication process. Moreover, those simulations allowed concluding 

that: (1) each spectral band has a high transmittance, close to 90%, except for the optical filter 

centered at 370 nm, explained by the theoretical refractive indices; (2) the FWHM average is 

around 6 nm; and (3) the interference of each neighbor peak is less than 10%. The performance 

of the optical filters could be improved by increasing the layers number of the dielectric mirrors, 

but the complexity of the fabrication process would also increase [11, 12]. 
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Figure 3.8 Transmittance spectra for the UV/Vis optical filters (A), Vis optical filters (B) and Vis/IR optical filters (C), 

obtained with the TFCalc 3.5 simulations and using the theoretical refractive indices (TP: filter maximum transmittance 

peak wavelength), (adapted from [11] with permission from OSA). 

 

3.3 Thin-films deposition process 

The Fabry-Perot optical filters were deposited (at INESC-MN, Lisbon) by IBD in a 

Nordiko 3000 tool equipped with a deposition and assist guns, in a broad beam 

architecture [14, 15] compatible with 150 mm diameter wafer deposition. Figure 3.9 illustrates 

the equipment geometry for a standard film deposition. The Xe ions created inside the deposition 

gun (by a RF [radio frequency] coil) were accelerated through a grid assembly into the target, at a 

pressure of 0.4 mTorr [11, 12]. 

 

Figure 3.9 Geometry of the automated deposition system (Nordiko 3000) with a 6 target configuration, in order to 

allow sequential deposition of the films. The film thickness uniformity is ± 2% over 150 mm diameter area (reprinted 

from [11] with permission from OSA). 
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The SiO2 and MgO films were prepared from ceramic targets. The Xe beam distortion 

caused by charging at the target surface was avoided with a neutralizer (e-beam), which is truly 

important for the SiO2 and MgO deposition control, since it assures minimum beam deflection upon 

target surface charging and, therefore, a stable deposition rate along several hours of deposition. 

A deficient neutralization causes different SiO2 and MgO films thicknesses across the multilayer, 

i.e., the bottom layers near the substrate have different thickness comparing with the top 

layers [11, 12]. 

The TiO2 films were prepared from a metallic target, using a Xe  beam and an assisted ion 

beam (Ar+-O+), extracted from the assist gun through a grid assembly, increasing the deposition 

pressure to 1.4 mTorr. The assist beam current was maintained low in order to minimize the 

material etching while depositing. Again, a neutralizer beam was used to avoid the assisted beam 

distortion [11, 12]. 

First, SiO2, TiO2 and MgO films were deposited on silicon substrates in order to calibrate 

the individual deposition rate and refractive index. Then, several SiO2, TiO2 and MgO thin-films with 

different thicknesses, close to the simulated ones (see Table 3.1), were deposited on the top of 

silicon wafers, in order to further measure the experimental refractive indices dependence on the 

wavelength and films thickness. These dependencies are crucial to the optical filter performance 

and cannot be disregarded, as they impact the maximum transmittance peak wavelength and the 

FWHM. The knowledge of the real optical properties of the films allows the adjustment of the 

previous simulations upon fabricating each optical filter in the specific spectral band. Therefore, 

the test samples have a range of thicknesses as close as possible to the ones previously simulated 

(see Table 3.1) [11, 12]. 

The variation of the refractive index with wavelength in the range of 350 nm to 750 nm 

was obtained by spectroscopic ellipsometry using a nanofilm EP3-SE ellipsometer from Accurion 

GmbH (at INL, Braga). Figure 3.10 shows the measured refractive index as a function of 

wavelength, for the different thicknesses, of the SiO2, TiO2 and MgO films, respectively. Moreover, 

the obtained thicknesses for each film were confirmed by profilometry, using a Veeco Dektak 150 

profilometer [11, 12]. 
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Figure 3.10 Comparison between the theoretical refractive indices and the ones obtained experimentally, for different 

thicknesses (d) of SiO2 (A), TiO2 (B) and MgO (C). The thicknesses are measured by profilometry (adapted from [11] 

with permission from OSA). 
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The measurements shown in Figure 3.10 allow concluding that there are significant 

differences between the refractive indices obtained experimentally and the theoretical ones used 

on the simulations. Moreover, the refractive index is dependent on the wavelength and also on the 

film thickness. The last variation is especially significant for the MgO and SiO2 films. Notice that the 

theoretical refractive indices do not have either the thickness, or the deposition parameters 

dependences. The latter will extremely influence the optical characteristics of the films and, thus, 

must be obtained carefully. For the TiO2 film for example, the differences between the experimental 

refractive indices and the theoretical ones are not unexpected, because assisted deposition allows 

tuning the oxygen content in the films, and creates amorphous films (while databases use their 

crystalline phase). As a consequence, the layers thicknesses to be used in the multilayer (Fabry-

Perot structure) must be adjusted for maintaining the desired optical properties of the fabricated 

filters [11, 12]. That kind of adjustments will be explained on the next section (section 3.4). 

 

3.4 Optical filters design adjustment 

After the theoretical optical filters design using the theoretical refractive indices (section 

3.2), the experimental refractive indices of SiO2, TiO2 and MgO (presented in Figure 3.10), were 

used in the TFCalc 3.5 design software to adjust the layers thicknesses, in order to obtain the 

optical filters centered at the required 16 spectral bands (otherwise, it will be deviated). For a better 

observation of the refractive indices variation effect in the filters maximum transmittance peak and 

in the FWHM, Figure 3.11 compares the simulations for a filter (initially designed for 510 nm peak, 

see Table 3.1) with the same layers thicknesses and materials, but with different refractive indices 

– theoretical refractive indices and experimental refractive indices. As it can be observed, the use 

of the same materials and thicknesses, but with different refractive indices, causes a peak deviation 

of 15 nm and a larger FWHM [11, 12].  

Thus, for each optical filter, the resonance cavity and the mirrors films thicknesses were 

adjusted according to the new refractive indices, measured experimentally (Figure 3.10) at different 

thicknesses. Table 3.2 presents this optimization and Figure 3.12 shows their simulation results. 

This time, it was also possible to present the transmittance of the 350 nm optical filter, using the 

experimental refractive indices of the MgO and TiO2 materials, mainly due to the more constant 

experimental TiO2 refractive index value in the UV/Vis region, when compared with the theoretical 

one [11, 12]. 
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Figure 3.11 Transmittance spectra for an optical filter (simulated on the TFCalc 3.5) initially designed for 510 nm 

maximum transmittance peak. The two curves are obtained using the theoretical refractive indices (theoretical n) and 

the experimental refractive indices (Experimental n), maintaining the layers structure thicknesses and materials 

(adapted from [11] with permission from OSA). 

 

The use of the experimental refractive indices allows achieving each spectral band with 

higher transmittance, close to 90%, even for the optical filter centered at 350 nm. However, the 

FWHM increased slightly (average around 13 nm), as might be expected since the experimental n 

value for TiO2 is lower, being the mirror less metallic and more dielectric. Nevertheless, this FWHM 

increase is not critical for the described application. As it can be seen in Figure 3.12, the 

transmittance background noise is around 20%, except for the optical filter centered at 350 nm; 

and the interference of each neighbor peak is around 25%, except for the two filters centered at 

370 nm and 380 nm, which is close to 40%. Therefore, despite the filters performance in terms of 

a narrow spectral bandpass is not as expected with the first theoretical simulations, they are still 

suitable for the application. The optical filters performance could be improved increasing the 

number of dielectric layers of the mirrors. However, the fabrication process complexity will also 

increase. Thus, it is important to ensure a compromise between the filters performance and the 

complexity inherent to the filters fabrication process [11, 12]. 
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Table 3.2  Optical filters in the UV/Vis, Vis and Vis/IR regions and respective layer thicknesses, with the combinations 

MgO/TiO2 and SiO2/TiO2, after the design adjustment (RC: Resonance Cavity), (reprinted from [11] with permission 

from OSA). 

 

Maximum transmittance peak wavelength (nm) 

350 370 380 400 
 

420 450 480 510 540 560 580 600 620 650 700 750 

Layer Thickness (nm) Layer Thickness (nm) 

TiO2 37 

57 

37 

57 

37 

TiO2 37 

67 

37 

67 

37 

55 

92 

55 

92 

55 

70 

114 

70 

114 

70 

MgO SiO2 

TiO2 TiO2 

MgO SiO2 

TiO2 TiO2 

MgO 

(RC) 
70 92 101 118 

SiO2 

(RC) 
149 177 122 149 175 192 209 227 175 202 243 287 

TiO2 37 

57 

37 

57 

37 

TiO2 37 

67 

37 

67 

37 

55 

92 

55 

92 

55 

70 

114 

70 

114 

70 

MgO SiO2 

TiO2 TiO2 

MgO SiO2 

TiO2 TiO2 
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Figure 3.12 Simulated transmittance spectra for the UV/Vis optical filters (A), Vis optical filters (B) and Vis/IR optical 

filters (C) after the design adjustment, i. e., obtained with the TFCalc 3.5 simulations and using the experimental 

refractive indices (TP: filter maximum transmittance peak wavelength), (adapted from [11] with permission from OSA). 

 

3.5 Optical filters fabrication and characterization 

After the layer thicknesses adjustment, the 16 optical filters were deposited, as described 

in section 3.3, on a borosilicate glass substrate with 0.7 mm thickness and 25 × 25 mm2 area, 

adjusting the deposition time to obtain the thicknesses presented on Table 3.2. The optical 

transmittance of the borosilicate glass is higher than 90% in the required spectral band, 350 nm 

to 750 nm (Figure 3.13), making this substrate suitable for the optical filters fabrication and future 

characterization. Before the deposition, the substrate was ultrasonically cleaned with Alconox 

solution for 30 minutes, followed by another cleaning with deionized water and blown dry with 

compressed air gun [11, 12]. 
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Figure 3.13 Experimental transmission curve of the borosilicate glass substrate measured using a commercial UV-Vis-

NIR spectrophotometer (Shimadzu UV-3101PC). 

 

The deposition of the 16 filters was performed using a combined process, where the first 

several multilayers are deposited without vacuum break for substrates with the same composition 

set (first mirror). Then, the samples are split (with vacuum break) for individual resonance cavity 

layer deposition. Finally, the top multilayers are again deposited upon combining several samples 

from the same set (second mirror) [11, 12]. 

Figure 3.14 shows the measured transmittance of the fabricated optical filters, using a 

commercial UV-Vis-NIR spectrophotometer (Shimadzu UV-3101PC). It can be observed that the 

optical transmittance is close to 80%, except for the filters initially designed for 350 nm and 

370 nm [11, 12]. 
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Figure 3.14 Transmittance spectra obtained experimentally for the UV/Vis fabricated optical filters (A), Vis fabricated 

optical filters (B) and Vis/IR fabricated optical filters (C), (TP: filter maximum transmittance peak wavelength), (adapted 

from [11] with permission from OSA). 

 

Table 3.3 shows a comparison between the simulated and the fabricated optical filters, 

highlighting the maximum transmittance peak to better observe the deviations. Concerning the 

filters FWHM, its average is around 11 nm for the UV/Vis optical filters, 13 nm for the Vis optical 

filters and 20 nm for the Vis/IR optical filters. The transmittance background noise is around 20%, 

except for the filter centered at 582 nm, which is close to 40%; and the interference of each 

neighbor peak is around 25%, except for the two filters centered at 387 nm and 397 nm, which is 

close to 40%. The maximum peak deviation was 13 nm for the filter initially programmed for 

620 nm [11, 12]. 
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Table 3.3 Comparison between the simulated maximum transmittance peak and the one obtained experimentally for 

the fabricated optical filters (reprinted from [11] with permission from OSA). 

Optical Filter 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Maximum 

transmittance 

peak simulated 

(nm) 

350 370 380 400 420 450 480 510 540 560 580 600 620 650 700 750 

Maximum 

transmittance 

peak measured 

(nm) 

354 368 387 397 419 458 485 516 548 561 582 603 607 649 701 746 

Peak Deviation 4 -2 7 -3 -1 8 5 6 8 1 2 3 -13 -1 1 -4 

 

Figure 3.15 shows photographs of some of the fabricated optical filters. It is important to 

refer that the photographs were obtained using a Olympus CKX41 microscope (10×) with a 

Olympus i-speed LT camera and commercial optical wide bandpass filters (information in appendix 

I), in order to eliminate the second order effects of the fabricated optical filters far outside their 

main spectral region. 

 

 

Figure 3.15 Photographs of some of the fabricated optical filters. 

 

The optical filters FWHM could be improved increasing the number of the dielectric layers 

that form the mirrors. However, the complexity of the fabrication process in terms of deposition 

time and cost will also increase. An increase in the TiO2 refractive index (n about 3.2) will also 

improve the FWHM (around 5 nm). The TiO2 films deposited by IBD (and, in general, in all large 

area industrial deposition tools) are amorphous, which results in a refractive index lower than that 

of the crystalline phase. Therefore, increasing the TiO2 refractive index would be possible upon 

crystallization of these materials using high temperature annealing, under high pressure of oxygen. 

Yet, not only this is incompatible with many wafer production lines, but also adds extra complexity 



3 Thin-film optical filters 
_____________________________________________________________________________ 

_____________________________________________________________________________ 

80 

to the microfabrication process and increases the final cost. Thus, taking all these aspects into 

account, it is important to ensure a compromise between the desired filters performance and the 

complexity inherent to the filters fabrication process [11, 12]. 

In order to present a comparison between the fabricated filters and the available 

commercial ones, Appendix II presents some features of the commercial optical filters, i. e., optical 

properties under the 350-750 nm range (FWHM, transmittance), integration capability (thickness 

and area) and approximate cost (per area). Briefly, although bandpass optical filters are 

commercially available, their integration with the microfabricated chip is very limited, due to their 

large dimensions: diameter and thickness that round 12.5 mm (minimum) and 5 mm (minimum), 

respectively [16]. Thin-film deposition is an ultra-compact method to reduce the filter size to 

dimensions as low as hundreds of microns (0.1 × 0.1 mm2). The same happens with the cost. It 

is expected that the proposed optical filters deposited on top of the photodiodes will cost about 

0.07 €/mm2 (against the commercial ones, which cost rounds between 0.1 €/mm2 to 

1 €/mm2 [16]), particularly upon optimization was done, and a large number of wafers can be 

produced in a batch. Therefore, the possibility to integrate thin-film bandpass filters in a large scale 

production will have higher impact to reduce the final cost, size and performance, when comparing 

with mounting discrete filters externally on the chip [11, 12]. 

Additionally, some of the fabricated filters were characterized by SEM (scanning electron 

microscopy), using a NanoSEM – Fei Nova 200 equipment (at SEMAT, University of Minho). Figure 

3.16 displays SEM images showing the cross-section of the filters number 6  and number  8 

presented on Table 3.3 (maximum transmittance peak wavelength at 458 nm and at 516 nm, 

respectively), with the layer thicknesses values measured by SEM. As it can be observed, there is 

a clear separation between the SiO2 and TiO2 thin-films. Moreover, there is a good film flatness 

along the entire analyzed area, ensuring the parallelism between the mirrors and the resonance 

cavity, which is crucial for the feasibility of the optical measurements [11, 12]. 

The total thickness of the same optical filters was also measured using the Veeco Dektak 

150 profilometer. Table 3.4 shows the obtained differences between the theoretical, the 

profilometry and the SEM measurements. As expected, the thicknesses obtained with profilometry 

are close to the ones obtained with SEM, but both are slightly deviated from the simulated ones. 

These deviations explain the maximum peak transmittance wavelength deviations that were 

obtained in the optical measurements (see Table 3.3) [11, 12]. 
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Figure 3.16 SEM image showing the cross-section of the 458 nm Fabry-Perot optical filter (A) and the 516 nm 

Fabry-Perot optical filter (B); magnification 200 000 × (RC: resonance cavity), (adapted from [11] with permission from 

OSA). 

 

Table 3.4 Comparison between the optical filters theoretical thickness with the experimental one obtained by 

profilometry and by SEM (adapted from [11] with permission from OSA). 

 Theoretical Profilometry SEM 

Total thickness of 
filter number 6 

667.00 nm 684.75 nm 688.00 nm 

Total thickness of 
filter number 8 

847.00 nm 869.57 nm 877.32 nm 

 

Finally, in order to study the surface roughness of the IBD process, Figure 3.17 shows the 

surface 3-D map obtained by profilometry (in the Dektak 150 Vision software) of a thin-film of TiO2. 

The thin-film is smooth (roughness average 2.27 nm), leading to conclude, once again, that the 
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thin-films have good flatness, ensuring the parallelism between the mirrors and the resonance 

cavity in the fabrication of the optical filters based on thin-films. 

 

Figure 3.17 Surface 3-D map of a TiO2 thin-film. 

 

3.6 Conclusion 

Along this chapter, the design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 

based narrow bandpass optical filters were presented. Moreover, they were characterized through 

optical transmittance, selectivity capacity (FWHM), SEM and profilometry. The characterization 

results can explain (in part) the peak deviations, from the simulated ones, of the optical filters, 

since the results obtained with SEM are in accordance with the optical measurements. However, 

it is also important to note that, as previously emphasized, the materials refractive indices are 

affected by their thickness, introducing an additional constraint in programming the fabrication of 

optical filters centered at a desired spectral band. A more complete characterization of the 

refractive indices will be time consuming and cannot be performed for all the desired thicknesses. 

In fact, the design and fabrication of the optical filters is a challenging process, since there are 

several variables that need a precise control and constant adjustment, according to the 

measurements [11, 12].  
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Therefore, there must be a compromise between the filters performance needed for the 

described application, and the complexity inherent to the filters fabrication process. As a result, 

although the filters transmittance and performance in terms of a narrow transmission are slightly 

deviated from the simulated, the most important is to evaluate the filters performance and their 

viability to correctly extract the spectroscopic signals, specifically diffuse reflectance and 

fluorescence signals, performing spectroscopic measurements with phantoms representative of GI 

tissues with different compositions [11, 12]. This evaluation is presented on chapter 5. 
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4 Microsystem design and implementation on CMOS 

technology 

This chapter describes the design and implementation of the on-chip CMOS microsystem 

that incorporates: a silicon photodiodes matrix (4×4), in order to extract the spectroscopic signals 

in the relevant spectral bands selected by the optical filters; and the readout electronics, based on 

LF converters, for converting the photocurrent generated by the photodiodes in a digital signal for 

further processing. The photodiodes matrix and all the readout electronics was fabricated in a 

standard n-well 0.7 µm CMOS process using AMIS Technology from Europractice. The chapter 

also presents the performance of the photodiodes and of the LF converters. 

 

4.1 Photodiodes matrix 

A photodiode is an optical sensor that converts the light intensity (in this case, the light 

that is transmitted through the optical filter) into a photocurrent. A CMOS silicon photodiode allows 

the integration of its readout electronics and the respective optical filter, on a single chip and in a 

small silicon area. That way, the manufacturing costs are reduced and the use of conventional 

complex equipment, such as spectrograph and CCD detectors, which are used in the majority of 

the spectroscopy prototypes, is avoided. Moreover, CMOS technology allows low power 

consumption, which is a very important requirement for the reported application [1-3]. 

Therefore, the implemented photodetectors are CMOS silicon photodiodes. The CMOS 

technology allows the implementation of three vertical junction photodiodes: n-well/p-epilayer, 

p+/n-well and n+/p-epilayer - Figure 4.1. These photodiodes have the same operation principle 

but they differ in the pn junction depth, varying their quantum efficiency (how well it collects the 

incident light) as a function of the wavelength [4, 5]. 

The operation principle of a photodiode is based on the photoelectric effect, i. e., photons 

conversion in electron-hole pairs. When a high energy photon reaches the semiconductor, the 

photon can be absorbed by the electrons in the valence band, which can get sufficient energy to 

reach the conduction band. This happens when the photon energy exceeds the bandgap of the 

material between the valence and conduction bands (1.14 eV in the case of silicon). This process 

creates free electrons (negative carriers) in the conduction band and holes (positive carriers) in the 
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valence band. However, only a small part of the generated carriers contribute to the photocurrent, 

since the majority of the electrons generated in the conduction band recombine with the holes 

generated in the valence band. This phenomenon originates a region deprived of mobile carriers, 

a neutral region – depletion region – which opposes the movement of additional charges. As a 

result, when the high energy photons are absorbed near or into the depletion region, the generated 

electrons are brought back to the n type junction zone and the holes to the p type junction zone, 

before they can recombine. Thus, a photocurrent is generated, that is directly proportional to the 

intensity of the incident light [5]. 

 

Figure 4.1 Cross section of the vertical photodiodes implemented by the CMOS technology: (A) n-well/p-epilayer; (B) 

p+/n-well; (C) n+/p-epilayer (adapted from [4] with permission from IEEE). 

 

Photodiodes are characterized  by  two  parameters:  quantum efficiency ( )  and  

responsivity  ( PhR ). The first is defined as the percentage of the incident photons that contribute 

to the photocurrent. The second one is the ratio between the generated photocurrent and the 

incident optical power. These two parameters can be related by Equation 4.1 [5, 6]. 




e

Ph

q

hcR
)(  

Equation 4.1 

where h  is the Planck constant, c  is the light velocity in vacuum, eq  is the electron charge and 

  is the incident light wavelength. 

The quantum efficiency of a photodiode is a function of the light wavelength ( )( ). The 

absorption of light in silicon in the visible range of the spectrum is wavelength dependent, since 

the radiation with short wavelengths is absorbed in the silicon surface, and the radiation with long 

wavelengths is absorbed in the deeper part. This effect is caused by the wavelength dependency 
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of the silicon absorption coefficient ( silicon ) (Figure 4.2), and gives rise to the fact that the 

penetration depth of light in silicon ( silicond ) is also wavelength dependent – Equation 4.2.  Thus, a 

photodetector could be programmed to have a better efficiency in different wavelengths, changing 

the junction depth. However, in a standard CMOS process and using pn junction photodiodes, the 

pn junction depth is fixed and cannot be altered. As a result, considering the visible spectrum, the 

blue light is more efficiently collected by a shallower junction (p+/n-well or n+/p-epilayer) and the 

red light by a deeper junction (n-well/p-epilayer). Figure 4.3 shows the typical spectral response 

(deduced by Moini [7]) of each type of vertical photodiode implemented by the CMOS 

technology [4, 5]. 

 

Figure 4.2 Absorption coefficient and penetration depth of light in silicon (adapted from [5]). 

 

)(

1
)(




silicon

silicond   

Equation 4.2 

 

Figure 4.3 Quantum efficiency of the three types of vertical photodiodes implemented by the standard CMOS 

technology: (A) n-well/p-epilayer; (B) p+/n-well; (C) n+/p-epilayer (adapted from [5]). 
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Since the main objective of this thesis is the extraction of signals between 350 nm and 

750 nm, the chosen photodiodes for the matrix will be based on n+/p-epilayer type, due to their 

wider spectral response, as it can be seen on Figure 4.3. 

Figure 4.4 presents the layout of the photodiodes matrix extract from the L-Edit software 

from Tanner EDA. Each photodiode has as active area of 100 × 100 µm2. Figure 4.5 shows the 

cross-section of each n+/p-epilayer photodiode implemented on the 4×4 matrix. The photodiodes 

matrix were implemented through a double-metal, single-polysilicon, 0.7 μm n-well CMOS process 

using AMIS Technology from Europractice.  

The photodiodes junction depth cannot be altered, but their quantum efficiency can be 

improved by an appropriate arrangement of the three dielectric layers on top of each photodiode 

surface (first oxide, second oxide and overlayer) that act as a thin-film interference filter. Fulfilling 

the technology rules from the CMOS process, the design is restricted to the combinations of those 

three dielectric layers. However, fulfilling also the AMIS Technology rules, the first and second oxide 

must be kept, as  presented  in  Figure 4.5. In this technology, the thickness of the first oxide above 

the photodiode is 660 nm, the second oxide 600 nm and the overlayer used for scratch protection 

is 1000 nm thick, approximately [8]. 

 

Figure 4.4 Layout of the 4×4 photodiodes matrix of the implemented chip. 
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Figure 4.5 Cross-section of each fabricated n+/p-epilayer photodiode (not scaled). In the AMIS Technology (from 

Europractice) layout, the p+ implant mask is designed, while the n+ implant mask is not designed once the process 

knows that where it is an active mask without p+ implant, it will be an n+ implant (adapted from [8]). 

 

Figure 4.6 shows a SEM image of the implemented 4×4 photodiodes matrix, obtained used 

a JEOL JSM-6010LV SEM instrument (at 3B’s Research Group, University of Minho). 

 

Figure 4.6 SEM image of the 4×4 photodiodes matrix (45º tilt). 

 

Two of the photodiodes in the matrix are assessable at the implemented chip pinout, which 

makes possible their spectral characterization, using as reference a commercial photodiode 

(Hamamatsu S1336-5BQ). For the spectral characterization an optical setup was used (Figure 4.7) 
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comprising a quartz tungsten halogen lamp at 200 W, a picoammeter to measure the photodiodes 

current (Keithley 487), a monochromator (Newport 74125), an optical fiber to direct the light to 

the photodiodes (Newport 77563) and, finally, the implemented chip that contains the photodiodes 

or the commercial photodiode used as reference (not presented on Figure 4.7). In the 

characterization, this commercial photodiode has a pinhole on its top with approximately 100 µm 

diameter. The use of the pinhole on the commercial photodiode is essential to ensure that the 

optical power is the same for all the photodiodes, ensuring the accuracy of the obtained results. 

 

Figure 4.7 Optical setup used for the photodiodes spectral characterization. 

 

Figure 4.8 shows the currents obtained for the two n+/p-epilayer photodiodes and for the 

commercial photodiode with the pinhole.  

 

Figure 4.8 Photodiode currents obtained with the fabricated photodiodes of the matrix (Phd 1 and Phd 2) and the 

commercial photodiode used as reference (Commercial). 
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Since the responsivity of the commercial photodiode is known (data in appendix III), is 

possible to obtain the optical power incident in each photodiode (Figure 4.9). With the optical power 

(OP ), it is possible to obtain the responsivity ( PhR ) of each fabricated photodiode (Figure 4.10), 

using the following expression: 

OP

I
RPh   

Equation 4.3 

where I  is the measured current for each photodiode, presented at Figure 4.8. 

 

Figure 4.9 Optical power incident in each fabricated photodiode. 

 

 

Figure 4.10 Responsivity of the fabricated photodiodes. 

 

The quantum efficiency of each photodiode can be obtained by Equation 4.1 – Figure 4.11. 
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Figure 4.11 Quantum efficiency of the fabricated photodiodes. 

 

Concerning the shape of the responsivity and quantum efficiency curves, they are affected 

by the two dielectric layers of SiO2 above the photodiode (first and second oxides). The two dielectric 

layers above the photodiode introduce a wavelength dependence (fluctuations), when compared 

with the transmittance without the dielectric layers, as shown in [4] and on Figure 4.12, which 

shows a simulation (on the software TFCalc 3.5) of the optical effect of those two dielectric layers 

above a photodiode. However, in the same CMOS run, these dielectric layers have the same 

properties, such as thickness and oxide concentration. Moreover, for this application, these 

wavelength dependences will not affect the spectroscopic measurements (diffuse reflectance and 

fluorescence), because the diffuse reflectance measurements are relative (consider a reference for 

100% reflectance) and the fluorescence spectral shape is not affected by these fluctuations, as 

shown in chapter 5 [8, 9]. 

 

Figure 4.12  Optical transmittance simulation showing the effect of the two dielectric layers above a photodiode, using 

the software TFCalc 3.5. 
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The behavior of one of the photodiodes (Phd1) at several temperatures was also studied, 

measuring its current as a function of wavelength, at a medium (incubator) with four different 

temperatures: 22 ºC, 37 ºC, 40 ºC and 42 ºC, approximately, and using the equipment describe 

on Figure 4.7. Figure 4.13 shows the measured currents at these four temperatures. 

As it can be seen, a rise of temperature increases the photodiode current, as expected, 

once the responsivity of a silicon photodiode is temperature dependent [10]. This variation can be 

avoided in the final microsystem using a temperature calibration circuit. 

 

Figure 4.13 Photodiode current as a function of wavelength for four different temperatures of the medium (22 ºC, 

37 ºC, 40 ºC and 42 ºC). 

 

4.2 Readout electronics 

4.2.1 Light-to-frequency converter 

Using a LF converter, it is possible to convert a photocurrent in a digital signal proportional 

to the light intensity that reaches a photodiode. Each photodiode of the matrix must have its LF 

converter integrated in the same die, ensuring the signals acquisition with the same illumination 

conditions. 

Figure 4.14 shows a representative scheme of one photodiode and its respective LF 

converter. Since the LF converters for all photodiodes are equal, a general explanation will be 

presented. The LF converter was developed by a group colleague, R. G. Correia [8, 11]. 

 



4 Microsystem design and implementation on CMOS technology 
_____________________________________________________________________________ 

_____________________________________________________________________________ 

94 

 

Figure 4.14 Representative scheme of one photodiode and its respective readout electronic circuit (adapted from [8]). 

 

The total capacitance (photodiode capacitance ( sC ), parasitic capacitance (
pC ) and 

design capacitance ( MOSC )) is used as storage element. The capacitors charging and discharging 

are controlled by a St (schmitt trigger). When the capacitors terminals voltage is higher than 2.4 V, 

the St output (Out) is at a high logic level, leading to the capacitors discharging, through M1, until 

the capacitors terminals voltage reaches 1.0 V, which causes St output to switch to a low logic 

level, charging again the capacitors and repeating the cycle. The main advantage of using a St, 

instead of a standard comparator, is its noise immunity, which improves the switch between high 

and low levels. The resistor 
1pR  represents the photodiode resistance and 

2pR  represents the wire 

resistance from the photodiode to the St connection [8]. 

Figure 4.15 shows the schematic circuit of the implemented LF converter. The photodiode 

current (Input in Figure 4.15) charges the capacitor ( MOSC  in Figure 4.14), which is implemented 

by the drain to source connection of the PMOS transistor, M2 in Figure 4.15. When the capacitor 

terminals voltage exceeds 2.4 V (e.g., when Vcap in Figure 4.15 and Figure 4.16 reaches 1.1 V), 

the St (transistors M3 to M8) generates a low level pulse signal (TriggerDischarge in Figure 4.15 

and Figure 4.16), leading to the capacitor discharging, through M1, operate it, and putting a voltage 

of 2.5 V in the M2 gate (Vcap), charging again the capacitor and repeating the cycle.  Moreover,  

the  pulse  TriggerDischarge  (see  Figure 4.15) operates in the clock signal of a Flip Flop D (FFD 

in Figure 4.15). FFD is responsible to ensure a duty cycle of 50% in the LF output signal (Output in 

Figure 4.15 and Figure 4.16).  Figure 4.17 highlights the capacitor discharging [8]. 
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Figure 4.15 Schematic circuit of the implemented LF converter. Its power supply (VDD) is 3.5 V. The Schmitt trigger 

comparator reference values are 2.5 V and 1.1 V, approximately, in the Vcap terminal (adapted from [8]). 

 

Figure 4.16 Simulated signals (from software S-Edit from Tanner EDA) of the LF converter with an input current (Input  

in Figure 4.15) of 100 nA: Vcap signal is the M2 gate voltage; TriggerDischarge signal is the St output signal responsible 

to discharge the M2 capacitor; Output signal is the LF output signal with a duty-cycle of 50% and a frequency 

proportional to the photodiode current (adapted from [8]). 

 

Figure 4.17 Detailed region of Figure 4.16, highlighting the capacitor discharging (adapted from [8]). 
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The transmission gates presented in Figure 4.15 (G1 to G3) are responsible for connecting 

and disconnecting the circuit. When the LF converter is turned off, G1 is on, connecting M1 gate 

to Ground and leading all M2 terminals to VDD. This ensures that the capacitor (M2) remains 

discharged, ensuring also that when it (M2) starts a new conversion it is started in a known state. 

G2 ensures the functionality of the general circuit, avoiding short-circuit between the Schmitt trigger 

output and the Ground imposed by G1. G3 is needed in order to disconnect the photodiode from 

the converter input, when none conversion is needed [8]. 

The M2 capacitance is 0.2 pF, which is calculated using Equation 4.4 [8, 12]: 

LWCC xMOS  0  

Equation 4.4 

where W  and L are the gate width (10 µm) and length (10 µm), respectively; and xC0 is the 

PMOS gate capacitance per square meter, which can be calculated using Equation 4.5 [8, 12]: 

x

x
x t

C
0

0
0


  

Equation 4.5 

where x0  is the permittivity of the silicon dioxide (3.45 × 10−11  F/m [13]); and xt 0  is the thickness 

of the gate oxide layer (17 nm). 

The capacitor M2 charging time ( MOSt ) can be obtained using Equation 4.6 [8, 14, 15]: 




MOSt

MOSps

MOS dI
CCC

V
0

)(
)(

1
  

Equation 4.6 

where MOSV   is the difference between the highest and lowest potential in the M2 capacitor, which 

is 1.4 V (see Figure 4.16, Vcap signal); and I  is the current  supplied  by  the  photodiode.  Solving  

Equation 4.6, it is possible to obtain Equation 4.7 [8]: 

)
)//(

)(
(

)(

21 pp

MOS

MOSpsMOS
MOS

RR

tV
I

CCCV
t




  

Equation 4.7 
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where )( MOStV  is the voltage in the M2 gate, which is 1.1 V (allowing M2 charging). The  total  

capacitance  (
MOSps CCC  ) and 

21 // pp RR  could be obtained experimentally, with the LF 

converter and considering a system of equations based on Equation 4.7 [8].  

Finally, the energy stored ( EC ) in the capacitor M2, responsible for generate each 

TriggerDischarge signal (Figure 4.16) is calculated using [8, 16]: 

2
)(

2

1
MOSMOSps VCCCEC   

Equation 4.8 

The main advantage of using this topology, when compared with some LF converters 

implemented in literature [4, 17], is its noise immunity, good repeatability and robustness, once it 

is based mainly in digital electronics. Moreover, for the required application, where a converter per 

photodiode is required at a small area, this topology is the best choice [8]. 

Figure 4.18 presents the layout of a LF converter extract from the L-Edit software (from 

Tanner EDA). Each LF has an area of 250 × 70 µm2, approximately [8]. The LF converters were 

implemented through a double-metal, single polysilicon, 0.7 μm n-well CMOS process using AMIS 

Technology from Europractice. 

 

Figure 4.18 Layout of the LF converter of the implemented chip. 

 

Figure 4.19 shows a SEM image of the 16 implemented LF converters (one for each 

photodiode), obtained used a JEOL JSM-6010LV SEM instrument (at 3B’s Research Group, 

University of Minho). 
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Figure 4.19 SEM image (x55) of the LF converters implemented on the chip (45º tilt). 

 

4.2.2 Light-to-frequency converter: experimental tests 

Taking into account one of the photodiodes previously characterized (Phd 1) and its 

respective LF converter, experimental tests were performed using a light source directly incident at 

the photodiode and measuring the output frequency.  

The optical setup was based on the use of a quartz tungsten halogen lamp at different 

powers (200 W, 160 W, 120 W, 80 W and 40 W), a monochromator (Newport 74125), an optical 

fiber to direct the light to the photodiode (Newport 77563), a picoammeter to measure the 

photodiode current (Keithley 487), a DC power supply (Mastech HY3005D-3) at 3.5 V and a 

microcontroller to acquire the output frequency of the LF converter (stm32vl discovery). 

Figure 4.20 shows the photodiode current at different light source powers, measured 

between 350 nm and 750 nm in steps of 10 nm. Figure 4.21 shows the respective output 

frequency for the same photodiode currents. As it can be seen, the shape of the curves are similar, 

as expected, since the higher is the photodiode current, the higher is the output frequency. 

 

Figure 4.20 Photodiode currents for different light source powers. 
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Figure 4.21 Output frequencies for different light source powers. 

 

In order to evaluate the LF converter linearity, Figure 4.22 presents the frequency as a 

function of photodiode current for three fixed wavelengths (450 nm, 550 nm, and 700 nm), 

covering all the desired spectral range, blue zone (450 nm), a central wavelength (550 nm) and 

the wavelength at which the used equipment has its maximum efficiency (700 nm). The different 

photodiode currents were obtained directing a variable intensity monochromatic light, as previously 

presented in Figure 4.20 and Figure 4.21. 

 

 

Figure 4.22 Frequency as a function of photodiode current for three fixed wavelengths: 450 nm (A), 550 nm (B) and 

700 nm (C). 
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The results show that the output frequencies are proportional to the light intensity that 

reaches the photodiode, showing a good linearity, since the values of R2 are higher than 0.99. It is 

also important to note that the measured values in absence of light were approximately 0.6 Hz for 

a current of 23.4 pA. 

The total capacitance (
MOSps CCC  ) and the 

21 // pp RR  were obtained experimentally 

(at 700 nm) based on two photodiode currents and the respective output frequencies, i. e., using 

a system of equations based on Equation 4.7. As a result, the obtained values are 29.55 pF and 

2.94 GΩ, for the used photodiode. It is important to refer that the photodiode capacitance is 

wavelength dependent. It was chosen the wavelength of 700 nm, once it is the value at which the 

used equipment has its maximum efficiency, as it can be seen on Figure 4.20 and Figure 4.21. 

Finally, the energy stored ( EC ) in the capacitor M2 is 28.90 pJ (using Equation 4.8).  

4.2.3 Current-to-frequency (IF) features 

The IF converter performance was also studied, using a current source at its input (between 

60 pA and 300 µA, approximately). The setup used for the experimental tests were based on a 

picoammeter to measure the input current (Keithley 487), a voltage source with a resistance to 

produce the input current (Keithley 6487), a DC power supply (Mastech HY3005D-3) at 3.5 V, a 

microcontroller to acquire the output frequency of the IF converter (stm32vl discovery) for low 

frequencies (less than 70 KHz) or a oscilloscope (LeCroy 9310) to measure the output frequency 

of the IF converter for high frequencies (higher than 300 KHz). 

Figure 4.23 shows the output frequencies of the IF converter for different input currents. 

Experimentally, its maximum conversion limit is close to 9 MHz, which is defined by M2 discharging 

time and by the input maximum current, once this input current is always active even in the 

discharge. This maximum current is close to 300 μA. Figure 4.24 shows a zoom of Figure 4.23, 

showing that the IF converter has a linear behavior for input currents up to 600 nA approximately, 

which is more than suitable for this application, where the photodiode currents do not exceed that 

range (verified during the experimental tests presented on chapter 5, where the measured currents 

do not exceed 50 nA). Therefore, Figure 4.25 shows a more detailed zoom of Figure 4.23 for input 

currents up to 63 nA approximately. 

Finally, taking into account Figure 4.25 and the respective equation, and considering an 

input current of 10 nA, a frequency of approximately 600 Hz is obtained, which is different from 
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the one obtained in Figure 4.22C, which is approximately 250 Hz. This is due to the photodiode 

total capacitance, which is not considered in this case, since none photodiode is used and the 

input current was directly injected in the IF input. 

 

Figure 4.23 Measured frequency of the IF converter as a function of the input current. 

 

 

Figure 4.24 Zoom of Figure 4.23, showing the output frequency of the IF converter as a function of input currents up 

to 600 nA. 
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Figure 4.25 Zoom of Figure 4.23, showing the output frequency of the IF converter as a function of input currents up 

to 63 nA. 

 

The IF converter power consumption was measured as 1 mW approximately, when 3.5 V 

is applied as supply [8]. Some important IF converter features were also studied, performing some 

simulations in the software S-Edit from Tanner EDA – Table 4.1 and Table 4.2. For all the 

simulations, different input currents were injected to study the IF behavior. 

Table 4.1 shows the IF response (for an input current of 1 nA) at different doping 

concentrations during the mosfets fabrication (Low, Typical and Fast) at 22 ºC and 3.5 V power 

supply. As expected, the output frequency increases with the doping concentration. The doping 

concentration cannot be controlled, but since the measurements are performed with the same 

CMOS die, this variation is not important for the application presented in this work. 

 

Table 4.1 IF response considering different doping levels (simulation). 

Input current (nA) 
Output Frequency (Hz) 

Model Low Model Typical Model Fast 

1 57.34 61.86 67.83 

 

The IF response at different temperatures was also simulated considering a typical doping 

concentration, the same input current (1 nA) and 3.5 V power supply – Table 4.2. As it can be 

seen, the output frequency slight increases with the temperature increase, as expected, once the 
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electronics is silicon based. This variation can be compensated in the final microsystem using a 

temperature calibration circuit. 

 

Table 4.2 IF response considering different temperatures (simulation). 

Input current 

(nA) 

Output Frequency (Hz) 

22 ºC 37 ºC 40 ºC 42 ºC 

1 61.86 63.80 64.67 64.91 

 

 

4.3 Conclusion 

Along this chapter, the design and implementation of the on-chip CMOS microsystem were 

described, including the photodiodes matrix (4×4) and the respective readout electronics. Two of 

the photodiodes of the matrix were characterized in terms of the responsivity and the quantum 

efficiency in the desired spectral band to extract the spectroscopic signals – 350 nm and 750 nm. 

In spite of some fluctuations in the responsivity and quantum efficiency curves, this will not affect 

the extraction of the spectroscopic signals. The behavior of one of the photodiodes with temperature 

was also studied, allowing to conclude the importance of a temperature calibration circuit in the 

final microsystem. The performance of the readout electronics was also tested. The obtained 

results allow to conclude that the LF converter has a linear response with output frequencies 

proportional to the light intensity that reaches the photodiode. Moreover, the output frequencies 

are dependent of the photodiode capacitance, since the behavior of the IF was also studied when 

an external current source was directly injected in its input. With the study of the IF behavior, it was 

also possible to know the maximum input current at its input, approximately 300 µA, and the limits 

of linearity. Finally, the IF response at different conditions (doping concentration and temperature) 

was simulated, allowing concluding that the final microsystem must have a temperature calibration 

circuit. 
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5 Experimental results 

This chapter presents the on-chip experimental measurements performed on tissue 

phantoms, for the validation of the optical filters and the implemented CMOS microsystem. 

Moreover, a discussion of the several results is presented as well as the several challenges during 

the measurements performance. Finally, the integration of the optical filters on the top of the 

photodetection system (silicon photodiodes) is discussed. 

 

5.1 Optical filters performance: diffuse reflectance and 

fluorescence signals measurements on tissue phantoms 

The performance of the fabricated optical filters to extract the spectroscopic signals was 

carried out by a set of experimental measurements of diffuse reflectance and fluorescence signals. 

For that purpose, several phantoms, with different compositions, were used and the fabricated 

optical filters were placed in front of a UV-Vis-NIR spectrophotometer (Shimadzu UV-3101PC) or a 

spectrofluorometer (SPEX® FluoroLog® 2) detector. This procedure allows determining the 

accuracy of the filters to extract the signals at all the relevant spectral bands (350 nm to 750 nm), 

even with the obtained deviations concerning the filters performance in terms of maximum 

transmission peak and FWHM (previously discussed in chapter 3) [1, 2]. 

The phantoms used in these experiments consisted of a liquid homogeneous mixture of 

hemoglobin (H0267 from Sigma-Aldrich), 1 µm polystyrene beads (07310 from Polysciences), the 

fluorophores NADH (N6005 from Sigma-Aldrich) and Carbostyril 124 (363308 from Sigma-

Aldrich), and water (see Table 5.1). In these phantoms, the main absorbing, scattering and 

fluorescence properties of GI tissues are represented [1, 2]. 

First, the spectra of the phantoms were measured without using the fabricated optical 

filters. After that, the same measurements using each fabricated optical filter in front of the 

respective detection system were performed, exactly for the same phantoms. The final signals 

measured with the optical filters were corrected in order to take into account the affectation of the 

respective filter optical transmittance in each measurement [1, 2]. 
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Table 5.1 Phantoms used for the spectroscopic measurements with the fabricated optical filters. 

Phantoms 

Hemoglobin 

concentration 

(mg/mL) 

Polystyrene beads 

concentration (%) 

NADH 

concentration 

(µg/mL) 

Carbostyril 124 

concentration 

(µg/mL) 

(a) 0.50 0.50 1.00 1.00 

(b) 1.00 0.25 1.00 1.00 

(c), (f) 1.00 0.15 1.50 0.50 

(d) 0.25 0.5 0.50 1.50 

(e) 0.50 0.25 1.00 1.00 

 

Figure 5.1 shows the experimental diffuse reflectance spectra measured with the UV-Vis-

NIR spectrophotometer (solid lines) and the reconstructed spectra obtained using the fabricated 

optical filters (dashed lines), for three phantoms presented on Table 5.1. Figure 5.2 displays the 

experimental fluorescence spectra measured with the spectrofluorometer (solid lines) and the 

reconstructed spectra obtained using the fabricated optical filters (dashed lines), also for three 

phantoms of Table 5.1. The reconstructed spectra were obtained by the application of a spline 

Matlab function and based only in the 16 values extracted using the fabricated optical filters in the 

measurements (discrete intensity values on Figure 5.1 and Figure 5.2). Moreover, it is also 

important to note that the fluorescence signal is only represented between 365 and 610 nm 

approximately, since that range covers the fluorescence emission properties of the fluorophores 

NADH and Carbostyril 124 [3-5]. As a result, only 12 optical filters were used, filters 2 to 13 (see 

Table 3.3 on chapter 3), to extract the fluorescence signal. However, as the ultimate goal is to 

implement a microsystem to extract simultaneously both signals – diffuse reflectance and 

fluorescence – the importance of the 16 optical filters must be maintained due to the diffuse 

reflectance not lose its good performance [1, 2]. 

Figure 5.1 and Figure 5.2 show that the intensity values obtained with the fabricated filters 

were similar to the experimental values obtained using only the commercial equipment, over the 

full wavelength range. To evaluate precisely the performance of the fabricated optical filters to 

extract the spectroscopic signals, a Spearman’s rank correlation between the experimental and 

reconstructed spectra was performed in the SPSS software, for each phantom and for each type 

of spectroscopic signal – diffuse reflectance and fluorescence. Spearman’s rank correlation is a 

non-parametric test (suitable for a small number of samples) that measures the degree of 
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association between two variables, which not considers any assumptions about the distribution of 

the data. For the diffuse reflectance and fluorescence signals, the results obtained for the 

Spearman’s correlation coefficient (ρs) are presented on Table 5.2. Moreover, all the correlations 

were considered significant at the 0.01 level ( 01.0 ) [1, 2]. 

 

Figure 5.1  Experimental diffuse reflectance spectra of phantoms (a), (b) and (c) of Table 5.1, measured with 

commercial equipment (solid lines) and reconstructed spectra (dashed lines) obtained using the discrete intensity 

values extracted with the fabricated optical filters (discrete points), (adapted from [1] with permission from OSA). 

 

 

Figure 5.2 Experimental fluorescence spectra of phantoms (d), (e) and (f) of Table 5.1, measured with commercial 

equipment (solid lines) and reconstructed spectra (dashed lines) obtained using the discrete intensity values extracted 

with the fabricated optical filters (discrete points), (adapted from [1] with permission from OSA). 
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Table 5.2  Spearman’s correlation coefficients (ρs) for each of the test phantom. 

Phantoms 
Spearman’s coefficient 

(ρs) 

(a) 0.985 

(b) 0.971 

(c) 0.981 

(d) 0.987 

(e) 0.990 

(f) 0.988 

 

With these results (high values for the Spearman’s correlation coefficients), it is confirmed 

the feasibility of using the fabricated 16 thin-film narrow bandpass optical filters to correctly extract 

the diffuse reflectance and fluorescence signals [1, 2]. 

 

5.2 Microsystem performance: on-chip diffuse reflectance signal 

extraction on tissue phantoms 

The diffuse reflectance experimental tests were carried out using the implemented 

microsystem (specifically one of the matrix photodiode with the active area of 100 × 100 µm2), the 

fabricated optical filters and one light source (intensity curve in Appendix IV). Figure 5.3 shows the 

optical setup implemented for the spectrophotometric measurements. It comprises: an optical fiber 

(Newport 77577), to direct the light from the light source to the sample; a picoammeter (Keithley 

487), to measure the on-chip photodiode current for each optical filter placed between the sample 

and the on-chip microsystem; and each fabricated optical filter with the respective commercial 

optical filter/s (as explained on Appendix I), to eliminate the second order effects. All the 

components in the optical light path were positioned as close as possible in order to minimize the 

light loss and air layers interference and to maximize the system measurements sensitivity.  

Table 5.3 shows the created phantoms to perform the experimental measurements. Again, 

the used phantoms consist of a liquid homogeneous mixture of hemoglobin (H0267 from 
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Sigma-Aldrich), 1 µm polystyrene beads (07310 from Polysciences), the fluorophores NADH 

(N6005 from Sigma-Aldrich) and Carbostyril 124 (363308 from Sigma-Aldrich), and water. 

 

Figure 5.3 Optical setup for the on-chip diffuse reflectance measurements. 

 

Table 5.3 Created phantoms for the experimental diffuse reflectance measurements with the on-chip microsystem and 

the fabricated optical filters. 

Phantoms 

Hemoglobin 

concentration 

(mg/mL) 

Polystyrene beads 

concentration (%) 

NADH 

concentration 

(µg/mL) 

Carbostyril 124 
concentration 

(µg/mL) 

(a) 0.25 0.50 0.50 1.50 

(b) 0.50 0.25 1.00 1.00 

(c) 1.00 0.15 1.50 0.50 

(d) 1.20 0.08 1.50 0.50 

 

Figure 5.4 shows the extracted signals, for the phantoms presented on Table 5.3 with the 

on-chip photodiode and with one commercial photodiode for comparison (S2386-5K Hamamatsu). 

It is important to mention that it was used BaSO4 (in a quartz cuvette) as reference for the 100% of 

diffuse reflectance. Moreover, the diffuse reflectance of a quartz cuvette with water was subtracted 

from the total diffuse reflectance of each phantom, in order to remove its effect from the diffuse 

reflectance signal. 
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As it can be observed on Figure 5.4, with the use of the optical  setup  presented  on  

Figure 5.3 it is possible to extract the diffuse reflectance signals of the phantoms presented on 

Table 5.3 with very small differences when compared to the same signals acquisition with a 

commercial photodiode, proving the viability of the on-chip measurements. Moreover, the signals 

behavior is in accordance with the expected, with a decrease of the diffuse reflectance signal as 

the hemoglobin concentration increases and the polystyrene beads concentration decrease (from 

(a) to (d)), i. e., the main contributors to the diffuse reflectance signal behavior. It is also important 

to refer that phantoms with higher hemoglobin concentration and lower polystyrene beads 

concentration were not considered since the diffuse reflectance of the phantoms will be too low, 

being close to the diffuse reflectance of a quartz cuvette with water (blank). 

 

Figure 5.4 Diffuse reflectance spectra measured with one of the photodiodes of the microsystem (on-chip photodiode) 

and with the S2386-5K Hamamatsu photodiode (commercial photodiode). The phantoms (a) to (d) are represented 

on Table 5.3. 

 

Concerning the spectra intensity and shape, for the different phantoms in Figure 5.4, and 

comparing with the results obtained in chapter 2 for a similar group of phantoms (Figure 2.14), 

slight differences are noted, especially below 600 nm. In Figure 5.4, the spectra intensity values 

are higher and the second hemoglobin peaks (in the region 520-590 nm) are not well 

defined/clarified. This may be due to some lack of sensitivity of the implemented optical setup to 

measure the diffuse reflectance signal. As a result, the effect of hemoglobin in the diffuse 

reflectance signal is less noted (especially where it must be detected, below 600 nm, because its 

molar extinction coefficient is higher [see Figure 2.2]). However, the typical affectation of 
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hemoglobin in the diffuse reflectance signal is noted in its main absorption peaks (in the spectral 

range 350-450 nm and 520-590 nm). 

This lack of sensitivity of the optical setup implemented was also observed in the 

fluorescence signal extraction (that will be discussed in the next section – section 5.3) and may be 

due to the distances between the optical elements, as it can be seen on Figure 5.3. The distance 

between the elements can be reduced in the future with the use of LEDs, for illumination of the 

sample, and mainly with the use of miniaturized optical filters integrated on the top of the 

photodiodes. This question will be discussed on section 5.4. 

 

5.3 Microsystem performance: on-chip fluorescence signal 

extraction on tissue phantoms 

The on-chip fluorescence experimental tests were performed with an optical setup similar 

to the one presented on Figure 5.3, but with the light source fixed at 350 nm (for the fluorophores 

excitation) – Figure 5.5. Again, all the components in the optical light path were positioned as close 

as possible in order to minimize the light loss and air layers interference, maximizing the system 

measurements sensitivity. 

 

Figure 5.5 Optical setup for the on-chip fluorescence measurements. 
 

In a first step, the same phantoms presented on Table 5.3 were considered, which are in 

accordance with the ones considered along the thesis. However, it was checked that the 

implemented optical setup has lack of sensitivity to determine the fluorescence signal emitted by 
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these phantoms (the obtained signals were too small, lower that 0.01 nA). Since the optical setup 

cannot be improved because of the optical elements used, phantoms with higher fluorophores 

concentration were considered. 

Table 5.4 presents some of the phantoms experimentally tested. Again, the used phantoms 

consist of a liquid homogeneous mixture of hemoglobin (H0267 from Sigma-Aldrich), 1 µm 

polystyrene beads (07310 from Polysciences), the fluorophores NADH (N6005 from Sigma-Aldrich) 

and Carbostyril 124 (363308 from Sigma-Aldrich), and water. Figure 5.6 shows the fluorescence 

signals obtained for the phantoms presented on Table 5.4, using only 12 optical filters, filters 2 to 

13 (see Table 3.3 on chapter 3). It is important to note that the obtained currents below 0.023 nA 

were considered as 0 nA, since this is the limit of the set photodiode + readout electronics (as 

shown in chapter 4). 

 

Table 5.4 Created phantoms for the experimental fluorescence measurements with the on-chip microsystem and the 

fabricated optical filters. 

Phantoms 

Hemoglobin 

concentration 

(mg/mL) 

Polystyrene beads 

concentration (%) 

NADH 

concentration 

(µg/mL) 

Carbostyril 124 
concentration 

(µg/mL) 

(a) 0.25 0.50 25 75 

(b) 0.25 0.50 50 150 

(c) 0.25 0.50 75 225 

(d) 0.25 0.50 100 300 
 

 

Figure 5.6 Fluorescence signals ( 350excitation nm) for phantoms (a), (b), (c) and (d) of Table 5.4 obtained with the 

optical setup of Figure 5.5. 
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For the reflectance measurements, it was used BaSO4 as a reference for the 100% of 

diffuse reflectance, which is very useful because that way the diffuse reflectance measurements 

are relative and they are not affected by the optical filters transmittance and by the on-chip 

photodiodes efficiency, in each measurement. For the fluorescence measurements, there is not a 

reference. That way, it must be ensured that the obtained signals are not affected by the optical 

filters transmittance and photodiodes efficiency. As a result, instead of comparing the obtained 

results with the ones measured with a commercial photodiode, the same phantoms were measured 

in a commercial spectrofluorometer (SPEX® FluoroLog® 2) with a set of conditions that aims to 

reproduce the optical setup of Figure 5.5. Thus, it was used a front face geometry (selected on the 

spectrofluorometer), where it is detected the fluorescence emitted from the same surface of  

excitation  light  incidence,  and  triangular  cuvettes  (shown  on  Figure 5.7), since on the optical 

setup of Figure 5.5 the angle between illumination and detection is approximately 45º. The 

equipment excitation and emission slits were opened and the tension of the photomultiplier was 

lowered, in order to avoid saturation. 

 

Figure 5.7 Triangular quartz cuvette used for the fluorescence measurements on the spectrofluorometer 

(SPEX® FluoroLog® 2). 

 

Figure 5.8 shows the fluorescence spectra obtained in the commercial spectrofluorometer 

for the phantoms of Table 5.4.  
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Figure 5.8 Fluorescence signals ( 350excitation nm) for phantoms (a), (b), (c) and (d) of Table 5.4 obtained with the 

commercial spectrofluorometer. 

 

Comparing the obtained results (Figure 5.6 and Figure 5.8), it can be observed that the 

shape of the spectroscopic signals is similar, with the fluorescence peak close to 419 nm. However, 

a lack of sensitivity can be noted on the optical setup of Figure 5.5, since the fluorescence signals 

of phantoms (b) and (c) were not distinguished, as expected and noted on Figure 5.8. Yet, it can 

be concluded that the shape of the fluorescence signals extracted with  the  optical  setup  of  

Figure 5.5 are in accordance with the expected with a fluorescence peak in the right wavelength 

(close to 419 nm) and with the highest intensity in the phantom with the highest fluorophores 

concentration, phantom (d). 

Again, the lack of sensitivity may be due to the distances between the optical elements, as 

it can be seen on Figure 5.5. In the future, it is crucial to reduce the distance between the elements, 

as reported at the end of the previous section. 

 

5.4 Integration of the optical filters on the top of the silicon 

photodiodes 

5.4.1 CMOS die patterning and optical filters deposition 

All the steps described in this section were processed at INESC-MN, Lisbon. The most 

important step of this approach, for trying to integrate optical filters on top of the silicon photodiodes 



5 Experimental results 
_____________________________________________________________________________ 

_____________________________________________________________________________ 

117 

(direct deposition of an optical filter in a photodiode), was the pattern of a CMOS die (processed 

previously using AMIS Technology from Europractice, as explained in chapter 4) with a specific 

mask. A photolithography process was used to pattern the desired mask into a photosensitive 

material, a PR (photoresist). The mask was previously drawn in AutoCAD software [6]. 

Considering a cavity/hole etched (with deep reactive ion etching, at INL - Braga) on a 

silicon piece of 25.4 × 25.4 mm2 (Figure 5.9), the CMOS die (area of 5 mm2, Figure 5.10) was 

manually glued on that hole using Ablebond 2025D and cured for one hour in an oven at 150 ºC. 

That way, it is possible the sample (CMOS die glued on a silicon holder – Figure 5.11) handling 

and loading into the processing machines [6]. 

 

Figure 5.9 Silicon holder with the cavity/hole for the CMOS die (not scaled). 

 

 

Figure 5.10 SEM image (45º tilt) of the implemented CMOS die (acquired with a JEOL JSM-6010LV SEM instrument 

[at 3B’s Research Group, University of Minho]). Each photodiode of the 4×4 matrix has an active area of 100 × 

100 µm2 and each photodiode of the 2×2 matrix has an active area of 250 × 250 µm2 (an extra matrix added on the 

on chip microsystem that could be useful for spectroscopic tests). 
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Figure 5.11 Photograph of the CMOS die glued on the silicon holder (the dimensions of the silicon holder are specified 

of Figure 5.9). 

 

Before starting the photolithography process, the sample was cleaned with acetone in an 

ultra sound bath during 30 minutes, followed by another cleaning with acetone, IPA (isopropyl 

alcohol), deionized water and blown dry with compressed air gun. Moreover, as a preparation for 

the photolithography, the sample was treated with HMDS (hexamethyldisilazane) in a vapor prime 

system, during 30 minutes, in order to increase the adhesion of the photoresist to the sample. The 

vapor prime system (YES [yield engineering]) applies a gaseous concentration of HDMS, at 130 ºC, 

to the surface of the sample [6]. 

As a first step of the photolithography process, the sample was coated with 1.5 µm thick 

PR (PFR7790G27cP, JSR Electronics) using a coating and development system. Figure 5.12 shows 

the coating (track 1) and development (track 2) system, where it is used a spinning during 

30 seconds, for the coating process, following by a 85 ºC soft bake during one minute to evaporate 

solvents and to get an uniform layer of PR [6]. 

 

Figure 5.12 Coating (track 1) and development (track 2) system (SVG [silicon valley group]). 
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After the PR coating, two rectangular regions were defined in the sample, using a DWL 

(direct write laser) system, setting where the optical filter will be deposited. In this case, it were 

considered two rectangular regions that correspond to two photodiodes, one with an area of 100 

× 100 µm2 (in the photodiodes matrix [4×4]) and another with an area of 250 × 250 µm2 (in the 

extra matrix [2×2]). The DWL system (Heidelberg DWL 2.0) uses a diode laser (440 nm) to write 

the desired mask in the sample PR. The process has a maximum resolution of 0.8 µm and an 

alignment precision of 0.1 µm. In this case, it was used positive PR, so that, the exposed areas to 

the laser become soluble and will be removed during the development step. Contrarily, the not 

exposed areas will be kept. That way, the mask patterning is defined. The used mask was non-

inverted, since it was desired to expose inside the two rectangular regions [6]. 

The final step of the photolithography process on the sample, before the direct optical 

filters deposition on photodiodes, was the development step. This was performed in the system 

presented on Figure 5.12, track 2. In this track, the sample is baked at 110 ºC for one minute 

followed by a cool down of one minute. After that, the sample is poured with a developer (TMA 238 

WA), that will dissolve and remove the PR exposed areas. Finally, the sample is cleaned with 

deionized water [6]. 

After the CMOS die patterning using the photolithographic process, the next step was the 

deposition of an optical filter on the sample. The deposition of the optical filters was based on the 

same process described on section 3.3 (chapter 3), the IBD process. The only difference is that 

the TiO2 films were prepared from a ceramic target. Again, the Xe beam distortion caused by 

charging at the target surface was avoided with a neutralizer (e-beam), ensuring a stable deposition 

rate along several hours of deposition. Since a new target was used, the experimental refractive 

indices as a function of wavelength, of a thin-film of TiO2, were measured (at INL-Braga), for a new 

optical filter programming.  At that moment, it was deposited an optical filter programmed for the 

wavelength of 540 nm (using the materials combination SiO2/TiO2), for trying to prove the concept 

of the direct deposition of an optical filter on a photodiode. 

5.4.2 Integrated optical filters characterization 

After the optical filter deposition on the sample it is necessary to remove the PR layer, 

which results in a sample with the optical filter deposited only on the top of the required 

photodiodes (where the PR is not presented). The PR layer was removed in an ultra sound bath 
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with Microstrip 3001, followed by a cleaning with IPA, deionized water and blown dry with 

compressed air gun. 

Figure 5.13 shows a microscope image of a CMOS die with the 540 nm optical filter 

deposited on the top of two photodiodes. As it can be observed, the optical filter seems to be right 

deposited on the desired photodiodes. 

 

Figure 5.13 Microscope (Olympus BH2-UMA) image (10×) of a CMOS die with the 540 nm optical filter deposited on 

two photodiodes (indicated with arrows). 

 

During the optical filter deposition on the sample (containing the CMOS die) the optical 

filter was also deposited on a borosilicate glass for optical transmittance characterization. Figure 

5.14 shows the optical transmittance of the optical filter programmed for 540 nm. As it can be 

seen, the obtained result is unexpected since the transmittance peak is too small (approximately 

2% at 530 nm). This result could be due to the change in the refractive indices of one of the 

materials being used (SiO2), since a long period of time has passed between this new approach 

and the materials characterization performed on chapter 3. 
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Figure 5.14 Optical transmittance for the optical filter programmed for the 540 nm. 

 

Moreover, the CMOS die was extracted from the silicon holder, for further package and 

wirebonding. As a result, the dicing of the sample was performed in an automatic dicing saw (DAD 

321). After the package and wirebonding the characterization of the set of photodiodes and optical 

filter was performed, measuring the photodiodes curve. It was verified that the presence of the 

optical filter on top of the photodiodes does not have a significant effect on the photodiodes curves, 

which is unexpected since the optical filter transmittance (Figure 5.14) is too low.  

As a result, it was necessary to perform SEM measurements at CMOS die regions 

containing the photodiodes with the optical filter deposited, in order to investigate if the optical filter 

was adequately deposited on the photodiodes. Figure 5.15  exhibits the SEM images showing the 

cross section of the filters in the 250 × 250 µm2 photodiode (A) and in the 100 × 100 µm2 

photodiode (B). 
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Figure 5.15 SEM images (obtained using a AURIGA Compact FIB-SEM instrument at 3B’s Research Group, University 

of Minho),  showing the cross-section of the optical filter deposited on the 250 × 250 µm2 photodiode (A) and in the 

100 × 100 µm2 photodiode (B).  

 

As it can be observed on Figure 5.15 the optical filter is deposited on the photodiodes 

surface, which was also confirmed by profilometry, where a total optical filter thickness of 

approximately 900 nm was obtained (the optical filter total thickness was programed to be 

889 nm). However, it can also be detected that the first layers of the optical filter (close to the 

photodiodes surface) are not as uniform as the others, being irregular along the cross-section. 

These irregularities may affect the optical filter performance on the top of the photodiodes, and are 

unexpected, since the photodiodes surface is the second oxide of SiO2 (information given by the 

AMIS Technology from Europractice) and a correct adherence of the filter must happen. So, in 

future, it is necessary to evaluate the surface of the photodiodes and verify if there are some 

materials compositions on that surface that may affect the uniformity of the thin-film deposition on 

its top. The EDS (energy-dispersive x-ray spectroscopy) technique can be used to evaluate the 

materials compositions on the photodiodes surface. Moreover, the several steps (described on 

section 5.4.1) performed on the CMOS die before the optical filter deposition must be revised, to 

ensure that they do not affect the uniformity of the first layers deposited on the photodiodes surface.  

5.4.3 Full integration of the optical filters on the photodetection system 

The full integration of the 16 optical filters on the top of the silicon photodiodes (one optical 

filter for each photodiode) will be possible, considering several levels of patterning/masks of PR, 
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one mask for each optical filter, and after solving all the issues related with this approach 

(previously described). 

Moreover, the optical filters to remove the second order effects of the main optical filters 

can also be integrated on the chip, through their direct deposition on the top of the main optical 

filters. As an example, a wide band pass filter between 350 and 500 nm, approximately, can be 

implemented considering 9 alternate layers of SiO2 and TiO2, each one with 71 nm, and a tenth 

layer of Ag (silver) with 15 nm. Figure 5.16 shows the filter optical transmittance simulated on 

TFCalc 3.5 software and considering the experimental refractive indices of the SiO2 and TiO2 

materials, previously measured and presented at chapter 3. 

 

Figure 5.16 Band pass filter between 350 and 500 nm, to eliminate the second order effects of the UV/Vis region 

optical filters. 

 

5.5 Conclusion 

In this chapter, experimental tests were performed for the validation of the implemented 

optical filters and the CMOS microsystem. In a first step, the viability of the fabricated optical filters 

to correctly extract spectroscopic signals was proven through tests with a commercial 

spectrophotometer and spectrofluorometer and considering a group of phantoms. After that, on-

chip measurements carried out with tissue phantoms were performed, using not only the fabricated 

optical filters but also the CMOS microsystem. The obtained results allow to conclude the viability 

of extracting diffuse reflectance and fluorescence signals with low differences when compared to 

those obtained with commercial equipment. Some issues were noted, specifically, a lack of 

sensitivity on the optical setups implemented for the on-chip measurements, which may be avoided 
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in future with a distance reducing between the optical elements on the setups. Finally, the 

integration of the optical filters on the photodetection system, i. e., the direct deposition, by IBD, 

of each optical filter on top of the respective photodiode, was discussed and a new approach was 

tested. 
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6 Conclusions and future work 

In this chapter, the main conclusions and final considerations of the performed work are 

described. Moreover, some important future work is also proposed. 

 

6.1 Conclusions 

The main goal of this thesis was to perform important advances towards the 

implementation of an on-chip microsystem to extract two different spectroscopic signals, 

specifically diffuse reflectance and fluorescence, for being applicable as a portable system in a 

surgery room, for inspecting total removing of the GI cancerous tissue during surgery; or integrated 

with the conventional endoscopic and colonoscopic equipment and be used as an auxiliary in early 

GI cancer detection. 

The proposed microsystem was based on an optical filtering system, low-cost silicon 

photodiodes and their readout electronics, for the spectroscopic signals selection and detection in 

specific spectral bands. 

First, the study of the spectroscopic signals was performed using phantoms with different 

biochemical compositions (containing hemoglobin, polystyrene microspheres to represent collagen 

fibers, and the fluorophores NADH and Carbostyril 124, the latter representing collagen). The 

typical intensity and shape of the spectral signals were studied, as well as their temperature 

dependence. It was verified that the diffuse reflectance signal is affected by absorption and 

scattering components on the phantoms. Moreover, the phantom temperature does not have any 

effect on the shape and intensity of diffuse reflectance signal. Concerning the fluorescence, it was 

observed that the fluorescence signal is affected by the fluorophores existing on the phantoms and 

also by absorption and scattering events. The temperature of the sample influences the 

fluorescence signal, but the affectation is not statistically significant. The analysis of the 

spectroscopic signals can be performed with different models/methods to extract quantitative 

information that could improve the detection of GI cancer. The reconstruction of the signals based 

in their extraction in a few spectral bands is also practicable, considering 16 wavelengths between 

350 and 750 nm, validating the implementation of an optical filter system in the final microsystem. 
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The design, optimization and fabrication of 16 MgO/TiO2 and SiO2/TiO2 thin-film optical 

filters (centered at the 16 spectral bands required for signals reconstruction) were performed. After 

that, the optical filters were characterized through optical transmittance, selectivity, SEM and 

profilometry. The optical filters results showed transmittances ranging from 50% to 90% 

approximately, and FWHM averaging from 11 nm to 20 nm.  However, the fabricated optical filters 

exhibited some deviations from their simulated characteristics, which can be explained by the 

complexity of the optical filters design, for example, the materials refractive index dependence with 

wavelength and thickness of the thin-film. A more detailed characterization of the refractive indices 

will be time consuming and cannot be performed for all the desired thin-film thicknesses. 

The design and implementation of an on-chip CMOS microsystem were performed, 

including a photodiodes matrix (4×4) and their respective readout electronics, based on LF 

converters. This CMOS microsystem was fabricated using the standard n-well 0.7 µm CMOS 

process from AMIS Technology available at Europractice.  Two of the photodiodes were 

characterized, measuring their responsivity and quantum efficiency between 350 and 750 nm. The 

photodiodes responsivity was 200 mA/W at 550 nm, approximately. Some fluctuations on the 

obtained responsivity and quantum efficiency curves were noted, which do not affect the extraction 

of the spectroscopic signals. The current of one of the photodiodes was also study at different 

temperatures, which led to conclude the importance of a temperature calibration circuit in the final 

microsystem. The measurements using a photodiode and its respective LF converter allows 

concluding that the latter has a linear response (R2>0.99), with a sensitivity of 25 Hz/nA at 550 nm, 

approximately, and with output frequencies proportional to the photodiode current (or to the light 

intensity that reaches it). Moreover, the output frequencies depend on the photodiode capacitance, 

which is wavelength dependent. The IF behavior was also studied when injected directly a current 

at its input, allowing to determine the maximum input current, which is 300 µA, its power 

consumption of 1 mW and the limits of linearity, confirming its linearity in the range of currents 

produced in this application. The IF behavior at different conditions, such as doping concentration 

and temperature, was simulated. The obtained results allow to conclude once more the importance 

of a temperature calibration circuit in the final microsystem. 

Finally, experimental measurements with phantoms (also containing hemoglobin, 

polystyrene microspheres, NADH and Carbostyril 124) were performed for validation of the 

implemented optical filters and the CMOS microsystem. First, the use of the fabricated optical 
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filters to correctly extract spectroscopic signals was proven through tests with a commercial 

spectrophotometer and spectrofluorometer. Second, on-chip experimental measurements were 

carried out, using the fabricated optical filters and the CMOS microsystem. The results allowed 

concluding the viability of the optical filter system and the CMOS microsystem for extracting diffuse 

reflectance and fluorescence signals, with small differences when compared to those obtained with 

commercial equipment. However, a lack of sensitivity on the optical setups implemented for the 

on-chip measurements was noted. This may be avoided, in future, with a reduction of the distance 

between the optical elements on the setups, using LEDs and integrated optical filters on the CMOS 

microsystem. The direct integration of the optical filters on top of the photodiodes was discussed 

and a new approach was tested based on the CMOS die patterning with PR. 

 

6.2 Future Work 

Taking into account the results obtained in chapter 5, with the tests performed using the 

optical filters and the CMOS microsystem, the next step must be the implementation of the final 

microsystem with miniaturized LEDs included. That way, the system sensitivity will be higher, since 

the optical elements are closer. A study of the microsystem geometry must be performed to decide 

the better location of LEDs, in order to improve the system efficiency in the collection of 

spectroscopic signals. Moreover, since one of the microsystem applications could be its use to 

detect early stages of GI cancer, it is important to ensure that the LEDs intensity does not exceed 

the maximum permissible for human cells, especially in the case of fluorescence where UV LEDs 

can be used. 

In addition, the future microsystem must have all the optical filters integrated on the silicon 

photodiodes. That way, further work is ongoing to solve the issues related with the direct deposition 

of optical filters on the top of the photodiodes (discussed on chapter 5) and to repeat the process 

described on chapter 3, with a detailed characterization of the materials refractive indices 

dependence with wavelength and thickness. Only after those tasks, it will be possible to obtain 

good results in the fabrication of the optical filters, since several variables (associated with the IBD 

process) can contribute to the changes in the refractive indices. 

Another important aspect to be focused in future work is the exploration of analysis 

methods to obtain quantitative information from the extracted signals, in order to improve the GI 

cancer detection. A lot of work was already developed by several research groups, including 
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previous work performed by the research team (in collaboration with MIT). However, the 

implementation of fast and effective methods for signals analysis is essential, in collaboration with 

doctors and using real human GI tissue samples. Only with real tissue samples it is possible to 

evaluate the final microsystem performance in distinguishing signals extracted from normal, 

dysplastic and cancerous tissues. Moreover, only with the study of signals from real GI tissue 

samples is possible to interpret the real absorption, scattering and fluorescence properties of 

tissues that affect the signals in different parts of the GI tract. A particular aspect to be addressed 

is to confirm if there are additional endogenous fluorophores (besides collagen and NADH) that 

could play an important role in the transformations occurring in dysplastic process. 

Finally, as an example, it is presented an improved final microsystem, where in addition to 

the LF converters other electronic components were considered towards a stand-alone 

microsystem for further connection to a microcontroller. Figure 6.1 shows its schematic. Eight bits 

synchronous counters can be used to measure the output frequency of the LF converters. One 

counter for each LF converter is necessary in order to ensure that all the measurements (in each 

wavelength selected by an optical filter) are performed in similar illumination conditions. After that, 

an eight bits shift register can be used to read each counter output. The use of a demultiplexer 

(1:16) and sixteen three-state invertors allows to control which counter output is read in each 

moment. Figure 6.2 illustrates the layout of the complete microsystem with all the components 

represented on Figure 6.1. The total area of the layout is approximately 10 mm2. 

 

Figure 6.1 Schematic of the final microsystem (some input variables can be controlled using a microcontroller). 
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Figure 6.2 Layout of the final microsystem, extracted from the L-Edit,  with  all  the components  represented  on  

Figure 6.1. 
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Appendices 

Appendix I – Commercial optical filters used 

The use of the fabricated optical filters requires some commercial wide band-pass optical 

filters on their top to avoid the second order effects of the fabricated filters. 

For the fabricated optical filters in the UV/Vis region it is necessary to use two commercial 

optical filters (Commercial 1 [from Edmund Optics] and Commercial 2 [FSQ-KG5 from Newport]), 

as shown in Figure I.1. 

 

Figure I.1 Transmittance spectra of the fabricated optical filters in the UV/Vis region and commercial optical filters 

used to eliminate the second order effects. The transmittance curves were obtained using a UV-Vis-NIR 

spectrophotometer (Shimadzu UV-3101PC), (TP: filter maximum transmittance peak wavelength). 

 

For the fabricated optical filters in the Vis region, it is also necessary to use two commercial 

optical filters (Commercial 2 [FSQ-KG5 from Newport] and Commercial 3 [from Edmund Optics]), 

as shown in Figure I.2. 
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Figure I.2 Transmittance spectra of the fabricated optical filters in the Vis region and commercial optical filters used to 

eliminate the second order effects. The transmittance curves were obtained using a UV-Vis-NIR spectrophotometer 

(Shimadzu UV-3101PC), (TP: filter maximum transmittance peak wavelength). 

 

Finally, for the optical filters in the Vis/IR region, it is necessary to consider a commercial 

optical filter (Commercial 4 [FEL0600 from Thorlabs]), as shown in Figure I.3. 

 

Figure I.3  Transmittance spectra of the fabricated optical filters in the Vis/IR region and commercial optical filter used 

to eliminate the second order effects. The transmittance curves were obtained using a UV-Vis-NIR spectrophotometer 

(Shimadzu UV-3101PC), (TP: filter maximum transmittance peak wavelength). 
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Appendix II – Commercial optical filters available 

For a comparison between the fabricated filters and the available commercial ones, the 

Tables below present the main features of the commercial bandpass optical filters, according to 

several established suppliers. The information is presented as it is available in the websites. 

 As it can be observed, in terms of fabrication flexibility, no commercial products can be 

integrated in microchips, due to the large size (area and thickness). The bandpass filters 

commercially available are already fabricated and could not be changed. 

In terms of features, observing Table II.1, Table II. 2 and Table II. 3, the commercial optical 

filters available have FWHM and transmittances suitable for the application under this thesis (near 

10 nm and about 85%, respectively), especially the ones from Edmund Optics (Table II.1). However, 

for the UV/Vis spectral bands, they do not have bandpass filters centered at 350 nm, 370 nm and 

380 nm. Probably, the ones they have (the first three of Table II.1) would fit to reconstruct the 

signals, but it cannot be guaranteed without testing. The other suppliers do not have commercially 

available bandpass optical filters with these requirements of low FWHM and high transmittance. 

Regarding the cost, the optical filter costs are much smaller for the thin-films, particularly 

upon optimization was done and a large number of wafers can be produced in a batch with the 

optimized film thicknesses, for each filter.  Notice that, in this work, it were used the same materials 

and thicknesses for several optical filters (the filters were divided in four groups and, in each group, 

the filters mirrors have the same layers material and thicknesses), the machine deposition time 

and materials (due to performing the mirrors at the same time in each group) is significantly 

reduced, when compared to the fabrication of one at a time. 

Moreover, some suppliers allow ordering a specific optical filter giving them the 

transmittance value and required FWHM, but, of course, this will be much more expensive, once 

suppliers also need to optimize the process. This was asked to Thorlabs and they answered with a 

price of about $10000 to fabricate an optical filter with transmission peak at 400 nm with a 

transmittance close to 85% and FWHM close to 10 nm.  
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Table II.1 Commercial bandpass optical filters from Edmund Optics. 

Edmund Optics 
reference 

Transmittance 
peak (nm) 

FWHM (nm) Transmittance Cost 
Size / 

Thickness 
(mm) 

340nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

340 ± 2 10 ± 2 ± 85% 118.75€ 
12.5 

diameter/ 5 

365nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

365 ± 2 10 ± 2 ± 85% 118.75€ 
12.5 

diameter/ 5 

375nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

375 ± 2 10 ± 2 ± 85% 118.75€ 
12.5 

diameter/ 5 

394nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

394 ± 2 10 ± 2 ± 85% 118.75€ 
12.5 

diameter/ 5 

400nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

400 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

420nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

420 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

450nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

450 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

480nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

480 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

510nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

510 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

540nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

540 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

 
 

560nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 
 
 

560 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 
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Edmund Optics 
reference 

Transmittance 
peak (nm) 

FWHM (nm) Transmittance Cost 
Size / 

Thickness 
(mm) 

580nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

580 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

600nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

600 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

620nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

620 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

650nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

650 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

700nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

700 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

750nm CWL, 
12.5mm Dia., Hard 
Coated OD 4 10nm 

Bandpass Filter 

750 ± 2 10 ± 2 ± 85% 104.5€ 
12.5 

diameter/ 5 

Information available at (access date – April, 2015): 

http://www.edmundoptics.eu/optics/optical-filters/bandpass-filters/hard-coated-od4-10nm-

bandpass-

filters/3159/?site=WE&countryid=177&_ga=1.134612337.1066078829.1432649204 

 

Table II. 2 Commercial bandpass optical filters from Thorlabs. 

Thorlabs 
reference 

Transmittance peak 
(nm) 

FWHM 
(nm) 

Transmittance Cost 
Size / Thickness 

(mm) 

FB350-10 350 ± 2 10 ± 2 
25%(min) – 35% 

(max) 
118.80€ 

25.4 diameter/ 
6.3 

FB370-10 370 ± 2 10 ± 2 ±25% 118.80€ 
25.4 diameter/ 

6.3 

FB380-10 380 ± 2 10 ± 2 
25% (min) – 30% 

(max) 
118.80€ 

25.4 diameter/ 
6.3 

FB400-10 400 ± 2 10 ± 2 ± 37% 109.80€ 
25.4 diameter/ 

6.3 

FB400-40 400 ± 8 40 ± 8 ± 45% 99€ 
25.4 diameter/ 

6.3 
FBH400-

40 
400 40 90% 144€ 25 diameter/ 3.5 

http://www.edmundoptics.eu/optics/optical-filters/bandpass-filters/hard-coated-od4-10nm-bandpass-filters/3159/?site=WE&countryid=177&_ga=1.134612337.1066078829.1432649204
http://www.edmundoptics.eu/optics/optical-filters/bandpass-filters/hard-coated-od4-10nm-bandpass-filters/3159/?site=WE&countryid=177&_ga=1.134612337.1066078829.1432649204
http://www.edmundoptics.eu/optics/optical-filters/bandpass-filters/hard-coated-od4-10nm-bandpass-filters/3159/?site=WE&countryid=177&_ga=1.134612337.1066078829.1432649204
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Thorlabs 
reference 

Transmittance peak 
(nm) 

FWHM 
(nm) 

Transmittance Cost 
Size / Thickness 

(mm) 

FB420-10 420 ± 2 10 ± 2 ± 45% 88.20€ 
25.4 diameter/ 

6.3 

FB450-10 450 ± 2 10 ± 2 
45% (min) – 50% 

(max) 
87.30€ 

25.4 diameter/ 
6.3 

FB450-40 450 ± 8 40 ± 8 
45% (min) – 70% 

(max) 
84.60 € 

25.4 diameter/ 
6.3 

FB480-10 480 ± 2 10 ± 2 
45% (min) – 55% 

(max) 
82.80€ 

25.4 diameter/ 
6.3 

FB510-10 510 ± 2 10 ± 2 
50% (min) – 60% 

(max) 
78.06€ 

25.4 diameter/ 
6.3 

FB540-10 540 ± 2 10 ± 2 ± 50% 76.20€ 
25.4 diameter/ 

6.3 

FB560-10 560 ± 2 10 ± 2 ± 50% 76.20€ 
25.4 diameter/ 

6.3 

FB580-10 580 ± 2 10 ± 2 ± 50% 76.20€ 
25.4 diameter/ 

6.3 

FB600-10 600 ± 2 10 ± 2 ± 50% 76.20€ 
25.4 diameter/ 

6.3 

FB600-40 600 ± 8 40 ± 8 ± 70% 88.71€ 
25.4 diameter/ 

6.3 

FB620-10 620 ± 2 10 ± 2 ± 50% 76.20€ 
25.4 diameter/ 

6.3 

FB650-10 650 ± 2 10 ± 2 ± 50% 76.20€ 
25.4 diameter/ 

6.3 

FB650-40 650 ± 8 40 ± 8 ± 70% 88.71€ 
25.4 diameter/ 

6.3 

FBH650-
40 

650 40 90% 144€ 25 diameter/ 3.5 

FB700-10 700 ± 2 10 ± 2 ± 65% 83.88€ 
25.4 diameter/ 

6.3 

FB700-40 700 ± 8 40 ± 8 ± 75% 86.72€ 
25.4 diameter/ 

6.3 

FB750-10 750 ± 2 10 ± 2 ± 60% 83.88€ 
25.4 diameter/ 

6.3 

FB750-40 750 ± 8 40 ± 8 ± 80% (max) 86.72€ 
25.4 diameter/ 

6.3 

Information available at (access date – April, 2015): 

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1001&pn=FB350-10#5410 

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1860&pn=FBH405-10 

 

Table II. 3 Commercial bandpass optical filters from Newport. 

Newport 
reference 

Transmittance peak 
(nm) 

FWHM 
(nm) 

Transmittance Cost 
Size / Thickness 

(mm) 
10BPF10-

350 
350 ± 2 11 ± 2 ± 30% 343€ 25.4 diameter/ 7.62 

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1001&pn=FB350-10#5410
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=1860&pn=FBH405-10
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Newport 
reference 

Transmittance peak 
(nm) 

FWHM 
(nm) 

Transmittance Cost 
Size / Thickness 

(mm) 
10BPF10-

370 
370 ± 2 12 ± 2 ± 30% 343€ 25.4 diameter/ 7.62 

10BPF10-
380 

380 ± 2 12 ± 2 ± 30% 333€ 25.4 diameter/ 8.89 

10BPF10-
400 

400 ± 2 10 ± 2 ± 30% 129€ 25.4 diameter/ 7.59 

10BPF25-
400 

400 ± 3.5 25 ± 3.5 ± 35% 161€ 25.4 diameter/ 6.35 

10BPF70-
400 

400 ± 10 70 ± 30 ± 60% 109€ 25.4 diameter/ 7.59 

10BPF10-
420 

420 ± 2 10 ± 2 ± 45% 148€ 25.4 diameter/ 6.35 

10BPF10-
450 

450 ± 2 10 ± 2 ± 45% 129€ 25.4 diameter/ 6.35 

10BPF25-
450 

450 ± 3.5 25 ± 3.5 ± 45% 161€ 25.4 diameter/ 6.35 

10BPF70-
450 

450 ± 10 70 ± 30 ± 60% 109€ 25.4 diameter/ 6.35 

10BPF10-
480 

480 ± 2 10 ± 2 ± 50% 113€ 25.4 diameter/ 6.35 

10BPF10-
510 

510 ± 2 10 ± 2 ± 50% 109€ 25.4 diameter/ 6.35 

10BPF10-
540 

540 ± 2 10 ± 2 ± 50% 109€ 25.4 diameter/ 6.35 

10BPF10-
560 

560 ± 2 10 ± 2 ± 50% 109€ 25.4 diameter/ 6.35 

10BPF10-
580 

580 ± 2 10 ± 2 ± 50% 109€ 25.4 diameter/ 6.35 

10BPF10-
600 

600 ± 2 10 ± 2 ± 50% 109€ 25.4 diameter/ 6.35 

10BPF25-
600 

600 ± 3.5 25 ± 3.5 ± 50% 141€ 25.4 diameter/ 6.35 

10BPF70-
600 

600 ± 10 70 ± 30 ± 60% 109€ 25.4 diameter/ 6.35 

10BPF10-
620 

620 ± 2 10 ± 2 ± 50% 109€ 25.4 diameter/ 6.35 

10BPF10-
650 

650 ± 2 10 ± 2 ± 50% 109€ 25.4 diameter/ 6.35 

10BPF25-
650 

650 ± 3.5 25 ± 3.5 ± 50% 141€ 25.4 diameter/ 6.35 

10BPF70-
650 

650 ± 10 70 ± 30 ± 60% 109€ 25.4 diameter/ 6.35 

10BPF10-
700 

700 ± 2 12 ± 2 ± 50% 120€ 25.4 diameter/ 6.35 

10BPF25-
700 

700 ± 3.5 25 ± 3.5 ± 50% 141€ 25.4 diameter/ 6.35 

10BPF70-
700 

700 ± 10 70 ± 30 ± 60% 109€ 25.4 diameter/ 5.08 

10BPF10-
750 

750 ± 2 13 ± 2 ± 50% 120€ 25.4 diameter/ 6.35 
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Newport 
reference 

Transmittance peak 
(nm) 

FWHM 
(nm) 

Transmittance Cost 
Size / Thickness 

(mm) 
10BPF25-

750 
750 ± 3.5 25 ± 3.5 ± 50% 123€ 25.4 diameter/ 6.35 

10BPF70-
750 

750 ± 10 70 ± 30 ± 60% 113€ 25.4 diameter/ 6.35 

Information available at (access date – April, 2015): 

http://search.newport.com/i/1/q1/products/q2/Optical+Filters/x1/pageType/x2/section/q3/

Bandpass+Filters/x2/section/x3/chapter/nav/1/ 

  

http://search.newport.com/i/1/q1/products/q2/Optical+Filters/x1/pageType/x2/section/q3/Bandpass+Filters/x2/section/x3/chapter/nav/1/
http://search.newport.com/i/1/q1/products/q2/Optical+Filters/x1/pageType/x2/section/q3/Bandpass+Filters/x2/section/x3/chapter/nav/1/
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Appendix III – Commercial photodiode used for the 

characterization of the CMOS photodiodes 

Hamamatsu S1336-5BQ responsivity: 

 

Figure III.1 Responsivity of the commercial photodiode Hamamatsu S1336-5BQ (data fitting at Excel using the spectral 

response curve presented at: www.hamamatsu.com/eu/en/product/category/3100/4001/4103/S1336-

5BQ/index.html). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.hamamatsu.com/eu/en/product/category/3100/4001/4103/S1336-5BQ/index.html
http://www.hamamatsu.com/eu/en/product/category/3100/4001/4103/S1336-5BQ/index.html
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Appendix IV - Intensity curve of the light source used for the on-

chip measurements 

Normalized intensity curve: 

 

Figure IV.1 Normalized intensity curve of the light source used for the on-chip measurements. 

 

 

 

 

 

 

 

 

 


	Página 1
	Página 2
	Página 3
	Página 4



