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Abstract 
 

In the last decades, Value-at-Risk has become one of the most popular risk measurements 

techniques in the financial world. However, VaR models are only useful if they predict risk 

accurately. In order to evaluate the quality of the VaR estimates, it is necessary to perform 

appropriate and diverse backtesting methodologies. 

In this study I test VaR estimates obtained from an unconditional parametric models (student-t 

generalized error, skewed student-t, pareto, and Weibull distributions) for four stock market 

indexes (DJIA, SP-500, Nikkei 225 and Dax 30) considering several different confidence levels. 

A rolling function procedure is applied to estimate the models parameters through maximum 

likelihood. 

The performance of the VaR models is measured by applying several different tests of 

Unconditional Coverage, Independence and Conditional Coverage. 

The results of the backtests provide some indication of the possible problems of the models, 

being the main one the independence property, leading us to conclude that they do not react 

well under high turbulent times, and consequently exceptions are auto correlated and come in 

clusters. 
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Resumo 

Durante as ultimas décadas, Value-at-Risk tornou-se uma das medidas de risco mais populares na 

industria financeira. Todavia, os modelos VaR só são úteis se conseguirem fazer uma previsão 

acertada do risco. De forma a avaliar a qualidade e precisão das estimativas de um modelo VaR, 

é necessário utilizar uma metodologia apropriada de avaliação. 

A principal contribuição desta dissertação consiste em estudos empíricos, onde diversos modelos 

VaR paramétricos não condicionais são estimados para os quarto índices selecionados assumindo, 

para cada um, utilizando um leque de cinco distribuições: Student t, Generalized Error, Skewed 

Student t, Pareto e Weibull. Os parâmetros dos modelos são estimados por máxima verosimilhança 

através de uma janela rolante. 

A performance das estimativas VaR é medida aplicando testes de cobertura incondicional, 

independência e cobertura condicional. 

Os resultados da avaliação aos modelos mostrou alguns problemas, sendo o mais grave a falta de 

independência entre as excepções, levando-nos a concluir que os modelos não reagem bem 

durante períodos turbulentos, e consequentemente as excepções surge em grupos e estão 

bastante correlacionadas. 

 

Palavras-chave: Value-at-Risk, risco financeiro, backtesting. 
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1. Introduction 

 

1.1 Background 

During the last two decades, Value-at-Risk (also known as VaR) became one of the most popular 

risk measurement techniques in finance. VaR is a method that aims to capture the downside risk 

of a single asset or a portfolio of assets. By definition, VaR measures the maximum loss in value 

of an asset/portfolio over a predetermined time for a given confidence interval.  

Despite the common acceptance and use of VaR as a risk management tool, it has frequently been 

criticized for being incapable to produce reliable risk estimates. When implementing VaR systems, 

there will always be numerous simplifications and assumptions involved. Moreover, every VaR 

model, attempts to forecast future asset prices using historical market data, which won’t 

necessarily reflect the future market environment. 

Thus VaR models are useful only if they accurately predict future risk. In order to verify that the 

results acquired from VaR calculations are a consistent and reliable forecast, the models should 

always be submitted to backtest procedures with appropriate statistical methods. Backtesting is a 

procedure where actual profits and losses are compared to projected VaR estimates. Jorion (2005) 

refers to these tests as “reality checks”. If the estimates of the VaR model are not accurate, the 

model should be re-examined for incorrect assumptions, inaccurate modelling or wrong 

parameters. 

A series of different testing methods have been proposed for backtesting purposes. The first, and 

most basic test, such as Kupiec’s (1995) point-of-proof (POF-test), focuses in examining the 

frequency of losses in excess of VaR. This called failure rate should be in line with the selected 

confidence level. For instance, if daily VaR estimates are computed at 95% confidence level for one 

year (with generally has 250 trading days), we would expect, on average, 12.5 VaR violations, or 

exceptions, to occur during this period, not more, not less. In the POF-test we would then examine 

whether the actual failure rate is reasonable when compared to the predicted amount.  

In addition to the acceptable proportion of exceptions, another equally important aspect is to make 

sure that the observations exceeding VaR levels are independent and evenly spread over time. A 

good VaR model is one that is capable of avoiding exceptions clustering by reacting quickly to 

changes in financial assets volatilities and correlations. These types of tests, that take into account 
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the independence of exceptions were first suggested by Christoffersen (1998) and later by Hass 

(2001). These tests come as a complementary measure to the regulatory backtesting framework 

proposed by the Basel Committee (1996). 

Backtesting is, or at least should be an integral part of VaR reporting in current risk management 

practices. Without a proper model validation process, one can never be sure that the VaR system 

yields accurate risk estimates. This subject is especially important in the current market 

environment where volatile market prices tend to make investors more interested in portfolio risk 

figures as losses accumulate. Although the common widespread and acceptance of VaR, it is 

known to have severe problems in estimating losses at times of turbulent markets. As a matter of 

fact, by definition, VaR measures the expected loss only under normal market conditions as said 

by Jorion (2005). This limitation is one of the major disadvantages of VaR and it makes model 

forecast and backtesting procedures very challenging and interesting as will be shown latter in this 

dissertation. 

 

1.2 Objective 

The main objective of this dissertation consists in performing an empirical study. However, in order 

to provide an exhaustive description about the modelling and the backtesting processes in the 

empirical part, I will first discuss VaR in general and the theory of the main models and backtesting 

methods currently available. In the literature review we aim to provide the reader with some of the 

most common procedures used to calculate VaR and to backtest it. 

The objective of the empirical study here performed, is to uncurtain which of the tested distributions 

yield the best VaR estimates under an unconditional parametric approach, for each of the indexes 

here considered. 

Methodological issues will not be covered in great detail, meaning that the reader is assumed to 

be familiar with statistical decision theory and related mathematics to some extent. 

 

1.3 Structure 

The thesis consists of seven chapters, of which the first one is the introduction. The second chapter 

starts with describing the basic idea behind VaR and gives some background and history on the 
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subject, also including some of the general advantages and shortcomings reported in the literature. 

The second chapter, also presents the forecasting procedures. Several methods are presented, 

and the advantages and disadvantages throughout the literature are shown. The aim of the 

discussion is to focus on the most common VaR estimation methods, and especially on those that 

will be applied latter on. The last subsection of the second chapter focus on the backtesting 

methods. Some of the backtests available are presented in detail, but the discussion is by no 

means exhaustive, since it is impossible in this context to go through the panoply of different 

methods and their applications. I will discuss more in concert the methods applied later on, which 

are the ones mostly used in the literature. 

The fourth chapter presents the detailed methodology behind the methods used in this dissertation, 

providing the formulas and procedures in detail. In fifth chapter data is presented, along with some 

descriptive statistics. 

The sixth chapter forms the empirical part of the dissertation, and as such, can be considered the 

core of the study. Some of the methods presented in the preceding chapters, are applied to actual 

VaR calculations, and thereafter to their backtesting. The results are discussed in detail and the 

factors affecting the outcome are analysed thoroughly. 

The seventh and last chapter is the conclusion. The most significant results are explained, 

discussed and compared to the existing literature. 

  



4 
 

2. Literature Review 

2.1 History of VaR 

In the past decades, risk management has evolved to a point where it is considered to be a distinct 

sub-field in the theory of finance. The growth of the risk management industry traces its roots back 

to the increased volatility of financial markets in 1970’s. The breakdown of Bretton Woods system 

of fixed exchange rates and the fast pace on the development of new theories, such as adoption of 

Black-Scholes model, were among the important events that contributed to the revolution in risk 

management as stated by Dowd (1998). Another factor that is pointed by Dowd (1998) is simply 

the increase of the trading activity. For example, the average number of shares traded per day grew 

from 3.5 million in 1970 to 40 million in 1990. Equally impressive is the growth of the dollar value 

of outstanding derivatives positions, that went from $1.1 trillion in 1986 to $72 trillion in 1999 as 

presented by Jorion (2005). These factors combined with the unpredictable events of the 1990s, 

such as the financial disasters in Metallgesellschaft, Barings Bank, Orange County, Daiwa, “dot 

com bubble” and the “currency crisis” highlighted the danger allocated to financial positions and 

stimulated the need of improved internal risk management tools (Jorion 2005). 

The mathematical roots of VaR calculation were developed already in the context of portfolio theory 

by Harry Markowitz and others in the 1950s. Financial institutions began to construct their own 

risk management models in the 1970s and 1980s, but it was not until the ground-breaking work 

from J. P. Morgan through the RiskMetrics model in 1994 that made VaR the industry-wide 

standard. (Dowd 1998). During this process, also regulators became interested in VaR. The Basel 

Accord of 1996 came as an important mark as it allowed banks to use their own internal VaR 

models to compute their regulatory capital requirement (Linsmeier & Pearson, 1996). Since then, 

VaR has grown to become the dominant measure of market risk and it is likely to gain even more 

acceptance in the near future as the methods are improved further, with new approaches being 

able to better estimate VaR.  

 

2.2 Defining VaR 

Companies face many different kinds of risks, such as market risk, liquidity risk, credit risk, 

counterparty risk, model risk, and estimation risk. VaR was original developed to measure market 

risk, which is caused by movements in the level or volatility of asset prices, but it was soon realized 
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that VaR methodology could also be applied to measure other types of risks, like liquidity risk and 

credit risk as stated by Jorion (2005). According to Dowd (1998) the market risk can be subdivided 

into four classes: interest rate risk, equity price risk, exchange risk and commodity price risk.  

Philippe Jorion (2005) states that “VaR measures the worst expected loss over a given horizon 

under normal market conditions at a given level of confidence. For example, a bank might say that 

the daily VaR of its trading conditions, only one percent of the time, the daily loss will exceed $1 

million.” 

The basic idea behind VaR is very straightforward since it gives a simple quantitative measure of 

portfolio’s downside risk. VaR has two important and appealing characteristics. The first one is that 

it provides a common consistent measure of risk for different positions and instrument types. 

Second, it takes into account the correlation between different risk factors. This property is 

absolutely essential whenever computing risk figures for a portfolio of more than one instrument 

Dowd (1998). 

Assuming that asset returns are normally distributed, VaR may be illustrated graphically as in Figure 

1. In mathematical terms, VaR is calculated as follows: 

 𝑉𝑎𝑅𝛼 = 𝛼 ∗  𝜎 ∗ 𝑊 (1) 

 

The α indicates the selected confidence level, σ the standard deviation of the portfolio returns and 

W  the initial portfolio value. An example seen in Jorion (2005), considers the situation where initial 

portfolio value is €100 million and the portfolio returns have an annual volatility of 20%. Calculating 

the 10 day VaR at a confidence level of 99% gives us the following result: 

 

𝑉𝑎𝑅99% = −2.33 ∗ √(
10

250
) ∗ €100𝑀 ≈  −€9.3𝑀 

(2) 

 

Where the square root in this function represents the 10-day time horizon assuming there are 250 

trading days. As can be seen above, VaR computation can be very straightforward if normality is 

assumed to prevail. The simplicity of this assumption comes with some severe drawbacks which 

will be discussed shortly. 
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Figure 1: VaR for Normal distribution. The graph illustrates the VaR for two confidence levels when portfolio returns are normally 
distributed. The values of μ can be read from the standard normal distribution tables. 

 

When interpreting VaR figures, it is essential to keep in mind the time horizon and the confidence 

level, since without them, it is not possible to interpret VaR numbers. The investors that have 

actively traded portfolios such as financial firms, typically use 1-day time horizon, whereas 

institutional investors and non-financial firms, typically use longer horizons. Linsmeier & Pearson 

(1996) suggest that firms should select the holding period according to the length of time it takes 

to liquidate the portfolio. On the other hand, they must also take into account the properties of the 

calculation method. If methods based on the approximations are used, then a relatively short time 

horizon should be applied. 

As for the choice of confidence level depends on the purpose of the model. If the objective is as in 

this case, a dissertation, to test different approaches to VaR, one should choose a high confidence 

level, but not a very high one, in order to be able to capture enough VaR violations. When assessing 

capital requirements, the confidence level depends on the risk aversion of senior management, 

were risk averse managers usually choose higher confidence levels. One additional aspect is to 

consider the possibility of comparing different VaR confidence levels with estimates from other 

sources, as Dowd (1998) suggests. 
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2.3 Different Approaches to estimate VaR 

VaR calculation methods are usually divided into parametric and non-parametric models. 

Parametric models assume that returns follow a known probability distribution, whereas non-

parametric models do not (Ammann & Reich 2001). 

In this section I briefly present the basics of the most common VaR calculation methods. The 

following discussion is meant to be mainly descriptive as the focus is on the strengths and 

weaknesses of each method. Thorough mathematical presentations are beyond the scope of this 

short review and will only be presented for the methods that I will use. 

One of the simplest forms of VaR is the Unconditional Parametric estimation. It specifies a 

parametric model for the unconditional distribution of returns and derives VaR from the quantile of 

this distribution. Its parameters can be estimated using Maximum likelihood and different 

parametric distributions can be used. 

Initially most of the classical financial models, namely the Markowitz’s Portefolio Therory, the 

Capital Asset Pricing Model (CAPM) of Sharpe, Lintner and Mossin and the Black-Scholes’ formula 

required the assumption of normality and finite variance of financial asset returns. The Gaussinan 

hypothesis was not seriously questioned until the seminal papers of Mandelbrot (1963) and Fama 

(1965) which ignited numerous studies that latter found the empirical unconditional distribution of 

returns on financial data assets exhibit fatter tails and are more peaked around the center than 

would be predicted by a Gaussian distribution, i.e., the presence of leptokurtosis in the empirical 

distributions seems indisputable (Fama, 1965), and the variability of returns seems to be 

nonstationary. As a result, alternative distributions having such characteristics have been proposed 

as models for asset returns. Blattberg and Gonedes (1974) proposed Student t distribution, Box 

and Tiao (1962) and latter Nelson (1991) found evidence supporting the Generalized Error 

distribution, Wand et al. (2001) the exponential generalized beta distribution, Mittnik and Rachev 

(1993) the Weibull and double Weibull distribution, Fama (1965) Fama and Roll (1968) and So 

(1987) the Paretian distribution, Venkataraman (1997)  the mixture of normal distributions as well 

as others. 

Unconditional parametric is the natural analogue to historical simulation, which is using an 

empirical CDF to compute VaR instead of a model-estimated one. In particular, if the parametric 

model was unconditionally true, then it would be a better estimator than HS since it would have 

less uncertainty about the quantile than the non-parametric HS estimator. 
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The advantages and criticisms are identical to the parametric conditional VaR. The models are 

parsimonious and the parameters estimates are precise, yet finding a specification which 

necessarily includes the true distribution is a hard job as mentioned by Sheppard (2013) advises. 

Also, a distribution that may fit returns in one period, may be unfit in a different period. Finally 

returns may not even follow any known distribution as Bao et al. (2006) indicates. 

J. P. Morgan back in 1992 released one of the VaR models that was most important to the spread 

of VaR usage. Its Riskmetrics realeased in 1992 became the most common and less restrictive 

conditional VaR, relying in a restricted generalized autoregressive conditional heteroscedasticity 

(GARCH) (1,1). This model includes no explicit mean model for returns and is only applicable to 

assets with returns that are close to zero or when the time horizon is short. This group has produced 

a surprisingly simple yet robust method for producing conditional VaR measure, but with some 

disadvantages being that, as Pafka & Kondor (2001) refer, it is based on the unrealistic assumption 

of normally distributed returns and completely ignores the presence of fat tails in the probability 

distribution, a most important feature of financial data. Also, several studies such as Danielsson & 

Vries (1997), Christoffersen (1998), and Engle & Manganelli (2004) have discovered relevant 

possible improvements when deviations from the relatively rigid RiskMetrics frameworks are 

explored, such as other models of the GARCH family. 

Different types of autoregressive conditional heteroscedasticity models (ARCH), first introduced by 

Engle (1982), are commonly used to estimate risk. The ARCH model expanded into the GARCH 

model by Bollerslev (1986). These models capture the fluctuations in variance over time, which 

are present in most financial instruments. Another empirical observation is that the variance is 

usually higher during times of turmoil. Nelson (1991) created the exponential GARCH (EGARCH) 

model to capture this tendency. Nelson (1991) explains that an EGARCH model allows positive and 

negative shocks to have different effects on the estimated variance, he concludes, from empirical 

data, that the market volatility seem to react differently depending on the sign of the shocks, 

negative shocks usually result in periods of higher volatility compared to positive ones, and by his 

introduction of a third parameter the EGARCH allows the model to react differently depending on 

the different type of news.  

The research in this area has been extensive. There is no definitive conclusion on which model in 

the GARCH family is best suited to forecast the volatility for specific types of securities. Most 

research has shown that a leptokurtic conditional distribution is better at describing the VaR 
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(Angelidis et al., 2004; Orchan and Köksal, 2011; Kösal, 2009; Aloui and Mabrouk, 2010). Usulally 

the normal distribution is compared against Student t or the generalized error distribution. A 

majority of research have concluded that models, that take into account information asymmetry, 

outperform symmetric models (Hansen and Lunde, 2005; Aloui and Mabrouk, 2010). When 

compared to other families of volatility models, the GARCH models outperforms others such as 

Black and Sholes models, stochastic volatility models, regime switching models and grey theorem 

(Lehar et al., 2002; Kung and Yu, 2008; Lou et al., 2010; Pederzoli, 2006). 

The limitations that comes with this procedure are that implementations require knowledge of a 

density family, and that all the dynamics of returns can be summarized by a time-varying mean 

and variance, and so higher order moments must be time invariant as referred by Bekiros & 

Georgoutsos (2005) and Sheppard (2013). 

Back in 1937, Cornish and Sir Ronald Fisher introduced the Edgeworth expansion, that in its most-

used inverse form, relates the cumulative distribution function of a normal distribution to some 

distribution of interest. It later served as support to the Cornish-Fisher Approximation, that splits 

the difference between a fully parametric model and a semi-parametric model. It shares the 

strengths of the semi-parametric distribution in that it can be accurate without a parametric 

assumption. Unlike the semi-parametric estimator, the Cornish-Fisher estimators are not 

necessarily consistent which may be a drawback, and also that estimates of higher order moments 

of standardized residuals may be problematic or, in extreme cases the moments may not even 

exist as suggested by Christoffersen (1998). 

As the purest form of a nonparametric estimate of the unconditional VaR comes Historical 

Simulation also known as HS, it is widely used in practice because of its very easy to implement. 

No numerical optimization must be performed because parameters don’t have to be estimated by 

maximum likelihood or any other method. Another advantage is its model free nature, because it 

does not rely on any particular parametric model such as the RiskMetrics model for variance and 

a normal distribution for the standardized returns. Historical Simulation lets the past data points 

speak fully about the distribution of next day’s return without imposing any further assumptions. 

It’s model free approach has the obvious advantage compared with model-based approaches that 

relying on a model can be misleading if the model is poor. Model-free nature also has several 

drawbacks of the method. Christoffersen (2012) describes mainly the that the choice of the data 

sample length is very ad hoc, and this influences the magnitude and dynamics of VaR. Another 
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drawback that comes from its model-free nature is that as this method does not rely on well -

specified dynamic model, there is no theoretical correct way of extrapolation from the 1-day 

distribution to get the 10-day distribution other than finding more past data as Christoffersen (2012) 

points out. Sheppard (2013) and Wiener (1999) consider Historical Simulation of being an 

unreliable method for the same reasons. More recently other variants of the HS have been 

preferred as the Weighted Historical Simulation and the Filtered Historical Simulation. 

In order to overcome some of the disadvantages associated with the Historical Simulation, Barone-

Adesi, F, & Giannopoulos (1998) and Barone-Adesi Giannopoulos, & Vosper (1999) introduce 

Filtered Historical Simulation. The procedure is considered non-parametric apart from assumptions 

used in the estimation of residuals in the GARCH process. It is one of the most highly reputed 

methods nowadays and one of the most used ones that suffered different innovations by several 

authors like Christoffersen, Barone-Adesi and Giannopoulos that with their approaches were able 

to correct several bias and often outperform the first generation VaR models. The clear advantage 

over their fully parametric ARCH cousins, is that the quantile, and hence the VaR, will be consistent 

under weaker conditions since the density of the standardized residuals does not have to be 

assumed. According to Hartz, Mittnik, & Paolella (2006) this method is also numerically extremely 

reliable. Pritsker (2001) and Kuester, Mittinik, & Paolella (2005) demonstrate de superiority of the 

FHS method in VaR estimation. Also Adcock, Areal, & Oliveira, (2011) concluded that the FHS is 

an accurate method to in order to forecast VaR in the presence of non-normal returns. However, 

the handicap is that the quantiles may be poorly estimated especially if the confidence interval is 

very small. Another limitation is that their use is only justified if returns are generated by some 

location-scale distribution Sheppard (2013). 

Another conditional VaR measure is the Conditional Autoregressive Value-at-Risk, also known as 

CaViaR, introduced by Engle & Manganelli (2004). They developed an ARCH-like model to directly 

estimate the conditional VaR using quantile regression as in the GARCH model but with a so called 

shock, usually with the HIT form. Engle & Manganelli (2004) point the usefulness of this on the 

fact that it does not specify a distribution of returns at any moment. Its use is justified under much 

weaker assumptions than other VaR estimators, also providing reasonable convergence of the 

unknown parameters, but also having the drawbacks that it may produce out of the order quantiles, 

and the parameters estimation is quite challenging as Sheppard (2013) suggest. Bao et al. (2006) 

showed that this models react well under all market circumstances, and have a good success as 

a VaR measure since this approach only focusses on the left tail. 
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2.4  Backtesting Procedures 

In previews sub-chapter, different VaR methods were presented. The numerous shortcomings of 

these methods and the VaR in general are the most important reasons why the accuracy of the 

risk estimates should be tested. Brown (2008) states that a model is only as good as its backtest, 

so in order to evaluate the quality of the model estimates, it should always be intensively 

backtested. 

Backtesting is a statistical procedure where the actual profits and losses are systematically 

compared to the correspondent VaR estimate given by the model. For example, if we use a 

confidence level of 99% to calculate the daily VaR, we expect an exception to occur once in every 

100 days, on average. In the backtesting process we could statistically examine whether the 

frequency of exceptions over some specified time interval is according to the selected confidence 

level, these types of tests are known as tests of unconditional coverage. These tests are simple to 

implement since they do not take into account when the exceptions occurred. 

It is not only important to know if a certain VaR model produces the correct amount of exceptions, 

but also if they are evenly spread over time i.e. are independent of each other as mentioned by 

Christoffersen (1998). The clustering of VaR exceptions indicates that the model is not good when 

capturing changes in the market volatility and correlations. Therefore, it is also important to 

examine the conditioning, or time variation of the data. For that we have the conditional coverage 

tests. 

In the following sub-chapters I aim to present a short description of the most used VaR methods, 

and later, a more detailed description of the methods that I will be using. 

 

2.4.1 Unconditional Coverage 

Some of the first VaR backtests proposed, focused exclusively on the unconditional coverage 

property. The widely known test for unconditional coverage of Kupiec (1995), also known as the 

POF-tests (proportion of failures), measures whether or not, the number of exceptions is consistent 

with the selected confidence level. Under the null Hypothesis of the model being correctly accurate, 

the number of exceptions follows the binomial distribution. The POF-test of Kupiec has some 

shortcomings. Campbell (2005) points out that the test is statistically weak with sample sizes 

consistent with the current regulatory framework of the Basel Accord (1 year). Kupiec himself 
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recognized this lack of power. Another shortcoming is that it considers only the frequency of losses 

and not the time when they occur, and therefore, as a result it may fail to reject a model that 

produces clustered exceptions, and that’s why backtesting should not rely only on the tests for 

unconditional coverage as stated by Campbell (2005) states. 

 

2.4.2 Independence Test 

As important it may be to have the correct number of exceptions, it is also important to have them 

spread evenly over time. Finger (2005) states that a good VaR model should be capable of reacting 

to changing volatility and correlations in a way that the exceptions occur independently of each 

other, whereas bad models tend to produce a sequence of consecutive exceptions. 

One of the first tests of the independence property of VaR hit series, was the Engle (1982) 

Autoregressive Conditional Heteroskedasticity (ARCH) concerning if one of more data points in a 

series of which the variance of the current error term or innovation is a function of the actual sizes 

of the previous time periods error terms, if the null hypothesis is rejected, then it indicates that 

there are ARCH effect in sample data. 

Christoffersen’s (1998) Markov test, came as a reference for testing the independence property of 

VaR models. It examines whether the likelihood of a VaR violation depended on whether or not a 

VaR violation occurred in the previews day. A more recent approach to the independence testing 

was proposed by Christoffersen and Pelletier (2004). It uses the insight that if a VaR violations are 

completely independent from each other, then the amount of time that elapses between VaR 

violations should be independent of the amount of time that has elapsed since the last violation, 

therefore, VaR violations should not exhibit any kind of duration dependence. Christoffersen and 

Pelletier (2004) provide evidence that this independence test is more powerful than the previews 

Markov test since it is capable of capturing more forms of dependence without requiring additional 

information. 

Campbell (2005) points out, that the independence test must describe the types of anomalies that 

it is going to look for when examining whether or not the independence property is satisfied. This 

is in what the Christoffersen’s Markov test may fail at, because if, for example, a violation may be 

dependent not on yesterday’s violation, but rather on last week’s.  
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2.4.3 Conditional Coverage 

For a VaR model to be considered accurate, according to Campbell (2005) and Jorion (2005), it 

must exhibit both the independence and the unconditional coverage property. Tests that jointly 

examine both, provide an opportunity to detect VaR models with are deficient in one of them. By 

this one could assume that these tests are substitutes of either the unconditional coverage property 

or the independence property alone. While joint tests have the property that they will eventually 

detect a VaR measure which violates either of these properties, this comes with the expense of a 

decreased ability to capture a VaR model which only violates one of the two properties. The joint 

test is hampered by the fact that one of the two violations it is designed to detect, namely violations 

of unconditional coverage, is actually satisfied by the VaR measure. The fact that one of the two 

properties is already satisfied makes it more difficult for the joint test to detect the inadequacy of 

the VaR model Christoffersen (2012). 

 

2.4.4 Multiple VaR levels 

The backtests that were discussed earlier focussed only on determining the adequacy of a VaR 

model at a single confidence level. In general, however, there is no need to restrict attention to a 

single VaR level. The unconditional coverage and independence property of a correct VaR model 

should hold for any confidence level. Several backtests have been proposed to test the entire 

forecast distribution, authors like Crnkovic and Drachman (1997), Diebold, Gunther and Tay 

(1998), as well as Berkowitz (2001). 

The Crnkovic and Drachman (1997) has the insight that if the model is accurate, then the 1% VaR 

should be violated 1% of the time, the 5% VaR should be violated 5% of the time and so on. A VaR 

violation at any confidence level should be independent on violations at any other level. 

The advantage of this test is that it provides additional power in identifying inaccurate models as 

Campbell (2005) refers.  However, this approach needs a wide data series. According to Crnkovic 

and Drachman (1997), their test requires observations of at least four years in order to obtain 

reliable estimates, which can be an obstacle for short sets of data. 
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2.4.5 Loss Function 

Until now, all the backtests presented focused only in whether a hit occurred or not. Despite the 

fact that it plays a prominent role, its information is limited, and one may be more interested, for 

example in the severity of VaR exceptions as referred by Colletaz, Hurlin and Perignon (2013). 

Lopez (1998 and 1999) introduced a method to examine this aspect of VaR estimates. The idea 

behind the test, is to gauge the performance of VaR models by how well they minimize a loss 

function that represents the evaluator’s concerns. Unlike most other backtesting methods, loss 

function approach is not based on the hypothesis-testing framework. Dowd (2006) argues that this 

makes loss functions attractive for backtesting with relatively small amount of observations. 

The advantage of this method is its flexible approach. It can be tailored to address specific concerns 

of the evaluator since the loss function may take different forms. The main downfall is that it relies 

on the correct assumption about returns distribution. In case the distribution is incorrectly defined, 

the backtest results become distorted. Observing a score that exceeds the benchmark value could 

imply either an inaccurate VaR model or wrong assumptions about the stochastic behaviour of 

profits and losses as Campbell (2005) points out. Lopez (1999) recognizes some of the problems 

associated with this backtest based on the loss function and points that this test cannot be used 

to statistically classify a model as accurate or inaccurate, but rather to monitor the relative accuracy 

of the model and to compare different models with each other. It should be used as complement 

of the hit based methods. 

A more recent approach to this method is made by Colletaz, Hurlin and Perignon (2013). Their 

approach is based on their concept of “super exception” which is defined by a much smaller 

coverage probability, e.g., 0.2%, similarly to Lopez (1998 and 1999) tests, this one should also be 

accompanied with hypothesis-testing methods. 
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3. Methodology 

This section starts with the specification of the data used and gives an in-depth description of the 

applied methods for VaR estimation and for the backtesting procedures. The evaluation criteria 

used is comprehensively stated.  

 

3.1 Daily Returns 

The daily returns can be calculated as, 

 
𝑟 =

𝑃𝑡 − 𝑃𝑡−1
𝑃𝑡−1

 
(3) 

were, 

𝑟  = Stock return 

𝑃𝑡 = Price in period 𝑡 

𝑃𝑡−1 = Price in period 𝑡 − 1 

 

3.2 VaR – Unconditional Parametric Estimation 

This form of VaR specifies a parametric model for the unconditional distribution of returns and 

derives the VaR from the α-quantile of the designated distribution. When 𝑟𝑡~𝑁(𝜇, 𝜎
2), the α-

quantile VaR is,  

 𝑉𝑎𝑅 = −𝜇 −  𝜎 𝛷−1(𝛼) (4) 

 

Where 𝛷(.) is the Cumulative Density Function (CDF) of a standard normal (and so 𝛷−1(.) is the 

inverse CDF) 

and the parameters are directly estimated using maximum likelihood with the estimators being, 

 
𝜇̂ = 𝑇−1∑𝑟𝑡

𝑇

𝑡−1

 
 

(5) 
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𝜎̂2 = 𝑇−1∑(𝑟𝑡 − μ̂)

2

𝑇

𝑡=1

 
 

(6) 

 

3.3 Returns Distributions 

3.3.1 Student-t 

The probability density function for student’s t-distribution is defined as, 

 

𝑓(𝑡) =
𝛤 (
𝑣 + 1
2 )

√𝑣𝜋𝛤 (
𝑣
2)
(1 +

𝑡2

𝑣
)

−
1
2
(𝑣+1)

 

 

(7) 

 

With v = n - 1 degrees of freedom and 𝛤 as the gamma function defined by, 

 
𝛤(𝑧) =  ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡

∞

0

 
(8) 

 

3.3.2 Generalized Error 

The Generalized Error Distribution is a symmetrical unimodal member of the exponential family. 

The domain of the p.d.f. is 𝑥 ∈ [−∞,∞] and the distribution is defined by, 

 

𝑓𝑣(𝑥)
𝑣 𝑒𝑥𝑝{−

1
2 |
𝑥
𝜆
|
𝑣

}

𝜆21+
1
𝑣𝛤(

1
𝑣)

, 𝑣 > 0 , 𝑥 ∈ ℝ, 

 

(9) 

 

 

 

Where, 

 

𝜆 = [2−(
2
𝑣
)
𝛤 (
1
𝑣)

𝛤 (
3
𝑣)
]

1
2

 

 

(10) 
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and 𝛤(. ) denotes the Gamma function. 

 

3.3.3 Skewed Student-t 

The probability density function of skewed student distribution is defined as, 

 

𝑓(𝑥|𝜂, 𝜆) =  

{
 
 

 
 
𝑏𝑐 (1 +

1

𝜂 − 2
(
𝑎 + 𝑏𝑥

1 − 𝜆
)
2

)

−(
𝜂+1
2
)

, 𝑥 <  −
𝑎

𝑏
,

𝑏𝑐(1 +
1

𝜂 − 2
(
𝑎 + 𝑏𝑥

(1 + 𝜆)2
) , 𝑥 ≥ −

𝑎

𝑏
,

 

 

(11) 

 

 

Where 2 < η < ∞ is the degrees of freedom, and -1 < λ < 1 is the skewness parameter. The 

constants a, b, and c are given by, 

 
𝑎 = 4𝜆𝑐

𝜂 − 2

𝜂 − 1
 

(12) 

 

 𝑏2 = 1 + 3𝜆2 − 𝑎2 (13) 

 

 

𝑐 =  
𝛤 (
𝑛 + 1
2 )

√𝜋(𝜂 − 2)𝛤 (
𝑛
2)

 

 

(14) 

 

3.3.4 Pareto 

The probability density function of the pareto distribution is defined as, 

 
𝑓(𝑥) = {

𝛼𝑥𝑚
𝛼

𝑥𝛼+1
, 𝑥 ≥ 𝑥𝑚

0, 𝑥 < 𝑥𝑚

 
 

(15) 

 

Where 𝑥𝑚is the (necessarily positive) minimum possible value of x. 
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3.3.5 Weibull 

The probability density function of skewed student distribution is defined as, 

 
𝑓(𝑥) =

𝛽

𝜂
(
𝑥 − 𝛾

𝜂
)
𝛽−1

 𝑒
−(
𝑥−𝛾
𝜂
)
𝛽

 
(16) 

 

where, 

 𝑓(𝑥) ≥ 0, 𝑥 ≥ 0 𝑜𝑟 𝛾, 𝛽 > 0, 𝜂 > 0,−∞ < 𝛾 < ∞ (17) 

 

and, β is the shape parameter / Weibull slope, η is the scale parameter and γ is the location 

parameter. 

 

3.4 Backtests 

Defining the hit sequence: 

A 𝑉𝑎𝑅𝑡+1
𝛼  measure promises that the actual return will only be worse than the 𝑉𝑎𝑅𝑡+1

𝛼  forecast 

α x 100% of the time. When compared a time series of past ex ante VaR forecasts and past ex post 

returns, according to Christoffersen it is possible to define a hit sequence of VaR violations as, 

 
𝐼𝑡+1 = {

1, 𝑖𝑓 𝑟𝑡+1 < −𝑉𝑎𝑅𝑡+1
𝛼

0, 𝑖𝑓 𝑟,𝑡+1 ≥ −𝑉𝑎𝑅𝑡+1
𝛼  

(18) 

 

The hit sequence returns a 1 on day t+1 if the loss on that day was larger than the VaR number 

predicted in advance for that day. If the VaR was not violated, then HIT sequence returns a 0. When 

performing a backtest on the risk model, it is necessary to construct a sequence {𝐼𝑡+1}𝑡=1
𝑇  across 

T days indicating when the past violations occurred. 

Defining the Null Hypothesis: 

The null hypothesis states that if we are using a perfect VaR model, then given all the information 

available to us at the time the VaR forecast is made, we should not be able to predict whether the 
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VaR will be violated. The forecast of the probability VaR violation should simply be α every day. If 

we can predict VaR violations, then that information should be used to construct a better model, 

meaning the hit sequence should be completely unpredictable and therefore distributed 

independently over time as a Bernoulli variable that takes the value of 1 with probability α and the 

value 0 with probability (1-α), being, 

𝐻0: ¥𝑡+1~𝑖. 𝑖. 𝑑. Bernoulli (p) 

The Bernoulli distribution function is written as, 

 𝑓(𝐼𝑡+1; 𝛼) = (1 − 𝛼)1−𝐼𝑡+1𝛼𝐼𝑡+1 (19) 

 

3.4.1 Unconditional Coverage 

As explained above, the unconditional coverage tests account to check if the fraction of violations 

obtained for the estimated model ¥, is significantly different from the promised fraction, α. This is 

the unconditional coverage hypothesis. To perform this test it is necessary to use the likelihood of 

a i.i.d. Bernoulli (¥) hit sequence, 

 
𝐿(¥) =  ∏(1 − ¥)1−𝐼𝑡+1¥𝐼𝑡+1 = (1 − ¥)

𝑡0

𝑇

𝑡=1

 ¥
𝑇1 

 

(20) 

 

Where 𝑇0 and 𝑇1 are the number of zeros and ones in the sample. It is possible to then estimate 

¥ from ¥̂ =
𝑇1

𝑇
  that is the observed fraction of violations in the sequence. Plugging the Maximum 

Likelihood (ML) estimates back into the likelihood function it is possible to obtain the optimized 

likelihood as, 

 
𝐿(¥̂) = (1 −

𝑇1
𝑇
)
𝑇0

(
𝑇1
𝑇
)
𝑇1

 
(21) 

 

It is then possible to check the unconditional coverage of the null hypothesis that ¥=α, where, as 

above, α is the known VaR coverage rate, we get the likelihood as, 

 
𝐿(𝛼) =  ∏(1 − 𝛼)1−𝐼𝑡+1𝑝𝐼𝑡+1 = (1 − 𝛼)𝑇0𝑝𝑇1

𝑇

𝑡=1

 
 

(22) 
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Then it is possible to check the unconditional coverage hypothesis using the likelihood ratio test, 

 
𝐿𝑅𝑢𝑐 = −2 ln [

𝐿(𝛼)

𝐿(¥̂)
] 

(23) 

 

Alternately, it is possible to calculate the p-value associated with the test statistic above. The p-

value is defined as the probability of obtaining a sample that converges even less to the null 

hypothesis that the sample we actually got given that the null hypothesis is true. In that case, the 

P-value is calculated as, 

 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 1 − 𝐹𝑥12(𝐿𝑅𝑢𝑐) (24) 

 

Where 𝐹𝑥12(•) denotes the cumulative density function of a 𝑥2 variable with one degree of 

freedom. If the p-value is below the desired significance level, then we reject the null hypothesis. 

 

3.4.2 Independence test 

As explained above, if VaR violations are clustered, then the investor can essentially predict that if 

today is a violation, then tomorrow is more than α . 100% likely to be a violation as well. An investor 

needs to establish a test that will be able to reject the VaR with clustered violations. To this end is 

necessary to assume the hit sequence is dependent over time and that it can be described as a 

so-called first-order Markov sequence with transition probability matrix of, 

 𝛱1 = [
1 − ¥01 ¥01
1 − ¥11 ¥11

] (25) 

 

The transition probabilities mean that conditional on today being a nonviolation, meaning 𝐼𝑡 = 0, 

then the probability of tomorrow being a violation given today is also a violation defined by, 

 ¥11 = Pr (𝐼𝑡+1 = 1 |𝐼𝑡 = 1) (26) 
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Similarly, the probability of tomorrow being a violation given today is not a violation can be defined 

by, 

 ¥01 = Pr (𝐼𝑡+1 = 1 |𝐼𝑡 = 0) (27) 

 

The first order Markov property refers to the assumption that only today’s outcome matters for 

tomorrow’s outcome being that the exact sequence of past hits does not matter, only the value of 

𝐼𝑡 matters.  

As only two outcomes are possible, the two probabilities ¥01 and ¥11 describe the entire process. 

The probability of a nonviolation following a nonviolation is 1 − ¥01, and the probability of a 

nonviolation following a violation is 1 − ¥11. 

Given a sample of T observations, then the likelihood function of the first-order Markov process as,  

 𝐿(𝛱1) = (1 − ¥01)
𝑇00¥01

𝑇01(1 − ¥11)
𝑇10¥11

𝑇11 (28) 

 

Where 𝑇𝑖𝑗, 𝑖, 𝑗 = 0,1 is the number of observations with a j following an i. Taking first derivatives 

with respect to ¥01 and ¥11 and setting these derivatives to zero, it is possible to solve for the 

maximum likelihood estimates, 

 
¥̂01 =

𝑇01
𝑇00 + 𝑇01

 
(29) 

 

 
¥̂11 =

𝑇11
𝑇10 + 𝑇11

 
(30) 

 

 

Using then the fact that the probabilities have to sum to the one, we have, 

 ¥̂00 = 1 − ¥̂01 

¥̂10 = 1 − ¥̂11 

(31) 
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Which gives the matrix of estimated transition probabilities, 

 

𝛱̂1 = [
¥̂00 ¥̂01
¥̂10 ¥̂11

] = [
1 − ¥̂01 ¥̂01
1 − ¥̂11 ¥̂11

] =

[
 
 
 

𝑇00
𝑇00 + 𝑇01

𝑇01
𝑇00 + 𝑇01

𝑇10
𝑇10 + 𝑇11

𝑇11
𝑇10 + 𝑇11]

 
 
 

 

 

(32) 

 

Allowing for dependence in the hit sequence corresponds to alloying ¥01 to be different from ¥11. 

If, the HIT tests are independent over time, then the probability of a violation tomorrow does not 

depend on today being a violation or not, and is possible to write ¥01 = ¥11 = ¥. Under 

independence, the transaction matrix is, 

 𝛱̂ = [1 − 𝛱̂ 𝛱̂
1 − 𝛱̂ 𝛱̂

] (33) 

 

And is possible to test the independence hypothesis that ¥01 = ¥11 using a likelihood ratio test 

 
𝐿𝑅𝑖𝑛𝑑 = 2 ln [

𝐿(𝛱̂)

𝐿(𝛱̂1)
]~𝑥1

2 
(34) 

 

Where L(𝛱̂) is the likelihood under the alternative hypothesis from the 𝐿𝑅𝑢𝑐 test. 

The test used is the one proposed by Christoffersen and Pelletier (2004). 

 

3.4.3 Conditional coverage 

After testing if the VaR violations are independent and the average number of violations is correct, 

I will perform the Christoffersen et al. (2001) that jointly tests for independence and correct 

coverage using the conditional coverage test as stated, 

 
𝐿𝑅𝑐𝑐 = −2 ln [

𝐿(𝑝)

𝐿(𝛱̂1)
]~𝑥2

2 
(35) 

 

Which corresponds to testing that ¥01 = ¥11 = 𝑝. 
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The 𝐿𝑅𝑐𝑐 tests takes the likelihood from the null hypothesis in the 𝐿𝑅𝑢𝑐 test and combines it with 

the likelihood from the alternative in the 𝐿𝑅𝑖𝑛𝑑 test. Therefore, 

 
𝐿𝑅𝑖𝑛𝑑 = 2 ln [

𝐿(𝛱̂)

𝐿(𝛱̂1)
]~𝑥1

2 
(36) 

 

 
𝐿𝑅𝑐𝑐 = −2 ln [

𝐿(𝑝)

𝐿(𝛱̂1)
] 

= −2 ln [{𝐿(𝑝)𝐿(𝛱̂)} {
𝐿(¥̂)

𝐿(𝛱̂1)
}] 

= −2 ln [
𝐿(𝑝)

𝐿(𝛱̂)
] − 2 ln [

𝐿(𝛱̂)

𝐿(𝛱̂1)
] 

𝐿𝑅𝑐𝑐 = 𝐿𝑅𝑢𝑐 + 𝐿𝑅𝑖𝑛𝑑 

(37) 

 

So that the joint test of conditional coverage can be calculated by simply summing the two 

individual tests for unconditional coverage and independence. 
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4.  Data 

The data used is composed of daily prices of four international stock market indices, from 3 

different continents downloaded from Thomson Reuters Eikon’s Datastream. I needed a time 

period as long as possible, in order to capture a large number of volatile periods. The indices 

selected were the Dow Jones Industrials, S&P 500, Nikkei 225 and Dax 30. The Dax 30 is the 

index with shorter history of values available, starting in 1/1/1964 till 25/11/2016 corresponding 

to almost 52 years. We used the same time period for all other indices. For the purpose of this 

dissertation, I will only work with the daily returns. After the calculation of the returns for each 

index, I ended up with 12581 returns observations for the Dow Jones Industrials, 12599 for S&P 

500, 12254 for Nikkei 225 and 12712 for Dax 30. The difference in the number of observations 

is due to the different number of trading days per market. 

Table 1 provide basic descriptive statistics for the chosen indexes. 

 

Index Dow Jones Ind. S&P 500 Nikkei 225 Dax 30 

Number of observations 12581 12599 12254 12712 

Minimum -0.226105 -0.204669 -0.149009 -0.128116 

Maximum 0.110803 0.1158 0.132359 0.11402 

1st Quantile -0.004732 -0.004522 -0.00546 -0.005968 

3rd Quantile 0.005376 0.005239 0.006294 0.006722 

Mean 0.000282 0.000305 0.000241 0.000256 

Median 0.000361 0.000404 0.00049 0.000452 

Variance 0.000104 0.000105 0.000156 0.000152 

Standard deviation 0.01022 0.010269 0.012489 0.012348 

Skewness -0.757673 -0.641088 -0.352827 -0.123724 

Kurtosis 26.26849 20.89739 8.632922 6.924438 

P-value normality test 2.2 ∗ 10−16 2.2 ∗ 10−16 2.2 ∗ 10−16 2.2 ∗ 10−16 

 

Table 1: Basic stats of the four indexes. 

Kurtosis provide a measure of the thickness of the tails of the distribution, the higher the value, the 

higher the probability of extreme events. The positive kurtosis is according to Lee & Lee & Lee 
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(2000) called leptokurtic and lower kurtosis meaning a negative excess is called platykurtic. The 

skewness in all indices is negative, which indicates that the returns are skewed to the left. This 

means another departure from the assumption of normality. 

A formal normality test for each index is presented using the Jarque-Bera test. As we can observe 

the test rejects the hypothesis of normality for all indices. 

Next we can see the daily returns for each index, and in all indexes it is visible some volatility 

clusters, and some of the large absolute returns are visible in the graph.

 

Figure 2: Dow Jones Industrials daily returns from 1/1/1964 till 25/11/2016. 

 

Figure 3: S&P 500 daily returns from 1/1/1964 till 25/11/2016. 
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Figure 4: Nikkei 225 daily returns from 1/1/1964 till 25/11/2016. 

  

 

Figure 5: Dax 30 daily returns from 1/1/1964 till 25/11/2016. 

  



27 
 

5. Results 

5.1 VaR calculation 

With many different models and approaches possible, the choice that VaR users face is the choice 

of the right one that matches their purpose best. The approaches should make estimates that fit 

best the future distribution of returns. If an overestimation of the VaR measure is made, then 

investors end up with an overestimate of risk and therefore restraining their investments 

opportunities. On the other side, if an underestimation is made, investors may fail to cover incurred 

losses. 

In this dissertation the VaR for the four selected indexes, being them Dow Jones Industrials, S&P 

500, Nikkei 225 and Dax 30 is estimated using the Unconditional Parametric approach. The 

performance of the parametric approaches depends a lot on the distribution assumed for returns, 

so I will test different distributions as Student t, Generalized Error, Skewed Student t, Pareto and 

Weibull and with confidence levels of 95%, 97.5% and 99%.  

The amount of data used and complexity of the calculations involved goes beyond the capabilities 

of more common software like Excel, so the tool that will be used to perform the calculations is the 

R software, through Rstudio interface. 

 

5.1.1 Unconditional Parametric Estimation 

The Unconditional Parametric approach using the maximum likelihood estimation was performed 

through a rolling function procedure also known as rolling window where for the Student t, 

Generalized Error, and Skewed Student t had a rolling window with a width of 2500 observations 

consisting of roughly of 10 years, while the Pareto and Weibull have a smaller one, of 1500 because 

this distribution can only be calculated using the days where the returns were negative. The 

confidence levels used were some of the most commonly used in literature and some of the 

recommended by Christoffersen (2012), that are 95%, 97.5% and 99%.  

The figures bellow illustrate the different Unconditional Parametric VaR estimates of the different 

distributions assumed in comparison with the returns of each index for the several confidence 

levels. It is already possible to see that the Skewed Student t may be doing an underestimation of 

risk and the Pareto and Weibull probably may be doing an overestimation. Just by the graphs it is 

not possible to make further analysis neither be certain of the stated before, so in the next sections 
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empirical backtest studies are presented and will examine the models in detail and show if they 

can be called adequate or not. 

In the next pages, the graphs with the Unconditional Parametric estimation of VaR for each index 

and the tree levels of confidence. 

 

Figure 6: Dow Jones Industrials returns compared to estimated VaR for the Unconditional Parametric approach under Student t 

distribution from 26/06/1975 till 25/11/2016. 

 

Figure 7: S&P 500 returns compared to estimated VaR for the Unconditional Parametric approach under Student t distribution from 

26/06/1975 till 23/11/2016. 
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Figure 8: Nikkei 225 returns compared to estimated VaR for the Unconditional Parametric approach under Student t distribution 

from 28/08/1975 till 23/11/2016. 

 

Figure 9: Dax 30 returns compared to estimated VaR for the Unconditional Parametric approach under Student t distribution from 

18/04/1975 till 23/11/2016. 
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Dow Jones Industrials – Unconditional Parametric Generalized 

Error 

 Figure 10: Dow Jones Industrials returns compared to estimated VaR for the Unconditional Parametric approach under Generalized 

Error distribution from 26/06/1975 till 23/11/2016. 

 

Figure 11: S&P 500 returns compared to estimated VaR for the Unconditional Parametric approach under Generalized Error 

distribution from 26/06/1975 till 23/11/2016. 
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Figure 12: Nikkei 225 returns compared to estimated VaR for the Unconditional Parametric approach under Generalized Error 

distribution from 28/08/1975 till 23/11/2016. 

 

Figure 13: Dax 30 returns compared to estimated VaR for the Unconditional Parametric approach under Generalized Error 

distribution from 18/04/1975 till 23/11/2016. 
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Dow Jones Industrials – Unconditional Parametric – Skewed 

Student t 

 

 Figure 14: Dow Jones Industrials returns compared to estimated VaR for the Unconditional Parametric approach under Skewed 

Student t distribution from 26/06/1975 till 23/11/2016. 

 

Figure 15: S&P 500 returns compared to estimated VaR for the Unconditional Parametric approach under Skewed Student t 

distribution from 26/06/1975 till 23/11/2016. 
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Figure 16: Nikkei 225 returns compared to estimated VaR for the Unconditional Parametric approach under Skewed Student t 

distribution from 28/08/1975 till 23/11/2016. 

 

Figure 17: Dax 30 returns compared to estimated VaR for the Unconditional Parametric approach under Skewed Student t 

distribution from 18/04/1975 till 23/11/2016. 
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Figure 18: Dow Jones Industrials returns compared to estimated VaR for the Unconditional Parametric approach under Pareto 

distribution from 26/06/1975 till 23/11/2016. 

 

Figure 19: S&P 500 returns compared to estimated VaR for the Unconditional Parametric approach under Pareto distribution from 

26/06/1975 till 23/11/2016. 
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Figure 20: S&P 500 returns compared to estimated VaR for the Unconditional Parametric approach under Pareto distribution from 

28/08/1975 till 23/11/2016. 

 

Figure 21: S&P 500 returns compared to estimated VaR for the Unconditional Parametric approach under Pareto distribution from 

18/04/1975 till 23/11/2016. 
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Figure 22: Dow Jones Industrials returns compared to estimated VaR for the Unconditional Parametric approach under Weibull 

distribution from 26/06/1975 till 23/11/2016. 

 

Figure 23: S&P 500 returns compared to estimated VaR for the Unconditional Parametric approach under Weibull distribution from 

26/06/1975 till 23/11/2016. 
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Figure 24: Nikkei 225 returns compared to estimated VaR for the Unconditional Parametric approach under Weibull distribution 

from 28/08/1975 till 23/11/2016. 

 

Figure 25: Dax 30 returns compared to estimated VaR for the Unconditional Parametric approach under Weibull distribution from 

18/04/1975 till 23/11/2016. 
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5.2 Backtests 

5.2.1 Unconditional Coverage Test 

As explained before the unconditional coverage test of Christoffersen (1998) accounts for the 

number of exceptions is more or less than the selected confidence level would indicate. In the next 

two pages, table 3, 4, 5 and 6 present the results of Christoffersen tests of conditional coverage 

for p=0,05, p=0,025 and p=0,01. The tables show the number of expected exceptions and the 

actual one, then the Likelihood Ratio statistic (LR) for the unconditional coverage is presented and 

the decision for H0: Correct number of exceptions.
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 Dow Jones Industrials 

 95% 97.5% 99% 

 Expected Actual LR test P-value Decision Expected Actual LR test P-value Decision Expected Actual LR test P-value Decision 

Student t 
504 535 1.962796 0.1612146 

Fail to 
Reject 

H0 
252 268 1.017837 0.3130327 

Fail to 
Reject 

H0 
100 105 0.1735459 0.6769795 

Fail to 
Reject 

H0 

Generalized 
Error 

504 475 1.795397 0.18027 
Fail to 
Reject 

H0 
252 233 1.510538 0.219057 

Fail to 
Reject 

H0 
100 113 1.432854 0.2312992 

Fail to 
Reject 

H0 

Skewed 
Student t 

504 852 211.3461 0 
Reject 

H0 
252 585 330.6975 0 

Reject 
H0 

100 337 346.6681 0 
Reject 

H0 

Pareto 
479 191 234.4836 0 

Reject 
H0 

239 90 125.5557 0 
Reject 

H0 
95 42 38.76329 4.784411e-10 

Reject 
H0 

Weibull 
479 229 169.4076 0 

Reject 
H0 

239 121 73.54595 0 
Reject 

H0 
95 60 15.66776 7.550038e-05 

Reject 
H0 

 Table 2: Unconditional Coverage Test for the Unconditional Parametric estimation of Dow Jones Industrials.  

 
               

 S&P 500 

 95% 97.5% 99% 

 Expected Actual LR test P-value Decision Expected Actual LR test P-value Decision Expected Actual LR test P-value Decision 

Student t 
504 588 13.68762 0.0002158732 

Reject 
H0 

252 300 8.661897 0.003249328 
Reject 

H0 
100 109 0.6255699 0.6255699 

Fail to 
Reject 

H0 

Generalized 
Error 

504 580 1.31845 0.2508704 
Fail to 
Reject 

H0 
252 302 9.384843 0.002187867 

Reject 
H0 

100 183 54.22861 1.785239e-13 
Reject 

H0 

Skewed 
Student t 

504 905 272.9087 0 
Reject 

H0 
252 626 404.166 0 

Reject 
H0 

100 359 401.3363 0 
Reject 

H0 

Pareto 
480 210 201.236 0 

Reject 
H0 

237 134 54.83506 0 
Reject 

H0 
96 50 27.07672 1.955385e-07 

Reject 
H0 

Weibull 
475 252 132.1334 0 

Reject 
H0 

224 155 24.86887 1.311173e-13 
Reject 

H0 
96 67 9.310428 0.002278533 

Reject 
H0 

 Table 3: Unconditional Coverage Test for the Unconditional Parametric estimation of S&P 500.  
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 Nikkei 225 

 95% 97.5% 99% 

 Expected Actual LR test P-value Decision Expected Actual LR test P-value Decision Expected Actual LR test P-value Decision 

Student t 
487 615 32.42073 1.241552e-08 

Reject 
H0 

243 319 21.68634 3.210692e-06 
Reject 

H0 
97 142 17.94534 2.273408e-05 

Reject 
H0 

Generalized 
Error 

487 528 3.41751 0.06450824 
Fail to 
Reject 

H0 
243 284 6.444848 0.01112746 

Reject 
H0 

97 150 24.47734 7.518908e-07 
Reject 

H0 

Skewed 
Student t 

487 930 337.4565 0 
Reject 

H0 
243 644 467.6133 1.735855e-10 

Reject 
H0 

97 388 499.3622 0 
Reject 

H0 

Pareto 
449 261 97.3629 0 

Reject 
H0 

224 137 40.74344 0 
Reject 

H0 
89 69 5.335423 0.02089627 

Fail to 
Reject 

H0 

Weibull 
449 283 74.34314 0 

Reject 
H0 

242 173 22.89656 6.136537e-07 
Reject 

H0 
89 90 0.0001123171 0.9915442 

Fail to 
Reject 

H0 

 Table 4: Unconditional Coverage Test for the Unconditional Parametric estimation of Nikkei 225.  

 
               

 Dax 30 

 95% 97.5% 99% 

 Expected Actual LR test P-value Decision Expected Actual LR test P-value Decision Expected Actual LR test P-value Decision 

Student t 
510 609 18.85174 1.412824e-05 

Reject 
H0 

255 338 24.97886 5.796251e-07 
Reject 

H0 
102 162 30.10444 2.273408e-05 

Reject 
H0 

Generalized 
Error 

510 561 5.081087 0.02418821 
Reject 

H0 
255 308 10.47827 0.001207866 

Reject 
H0 

102 170 37.97773 5.995204e-15 
Reject 

H0 

Skewed 
Student t 

510 909 268.3366 0 
Reject 

H0 
255 656 453.1092 0 

Reject 
H0 

102 408 527.8461 0 
Reject 

H0 

Pareto 
485 230 174.6743 0 

Reject 
H0 

242 134 59.63802 1.14353e-14 
Reject 

H0 
97 56 20.78305 5.143627e-06 

Reject 
H0 

Weibull 
285 267 123.1213 0 

Reject 
H0 

242 173 22.89656 1.709574e-06 
Reject 

H0 
97 86 1.346912 0 

Fail to 
Reject 

H0 

 Table 5: Unconditional Coverage Test for the Unconditional Parametric estimation of Dax 30.  
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As presented in table 2, the Student t and Generalized Error distribution perform best for Dow 

Jones Industrials, making, in terms of unconditional coverage, a fairly good estimation for all levels 

of confidence having a good prediction of exceptions, suggesting that they fit better the Dow Jones 

returns probability distribution. On the other hand, Skewed Student t made the biggest error, with 

exceptions being very underestimated and is therefore considered inadequate. The Pareto and 

Weibull distributions make similar results both with some overestimation of risk and therefore are 

considered inadequate for all confidence levels. 

In table 3 we can see the S&P 500 results for the unconditional coverage test, and here again 

Student t and Generalized Error distributions performs overall best but the results are not as good 

as for the Dow Jones Industrials, in fact the Student t Unconditional Parametric Model is only valid 

for 99% VaR and for the Generalized Error one, only the 95% VaR, making both this models always 

an underestimation of risk. Again, as in Dow Jones Industrials, it can be seen that Skewed t 

distribution makes a severe underestimation of risk. Pareto and Weibull again make an 

overestimation of risk, and although for the p=0,01 in the Weibull distribution the gap between the 

predicted number of exceptions and the actual is not very big, the model is still considered 

inadequate. 

The table 4 show the results for Nikkei 225 and it is where the Unconditional Parametric model for 

the Weibull distribution gets the overall result for the 99% VaR, only missing by one the exception, 

which, considering that this test accounts only for the unconditional coverage which alone is not 

enough to validate a model, is an excellent result with a Likelihood Ratio test of 0.0001123171. 

As for Student t, Generalized Error and Skewed Student t distributions, they all underestimate the 

risk, and here again the last one having the worst results overall. In Generalized Error distribution 

for a 90% VaR a valid model is obtained as in the previews two indexes. The Pareto and Weibull 

here again overestimate risk, but obtain aceptable results in the higher confidence levels (99%). 

For the Dax 30 index (table 5), the Unconditional Parametric approach performed worst with only 

one model not being rejected. The first tree distributions did as in the other indexes, an 

underestimation of risk with Generalized Error distribution, that although was rejected the null 

hypothesis still produced a Likelihood Ratio of 5.081087, in line with the previews results it is one 

of the best estimations in terms of conditional coverage. The Pareto and Weibull made an 

overestimation of risk as in all indexes, and as for Nikkei 225, the Unconditional Parametric 
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approach through the Weibull distribution provided the best result, with a valid model for the 

p=0,01. 

 

5.2.2 Independence test 

Failure test that examine if the number of exceptions is correct is not enough as explained before. 

It is also important to examine if the exceptions are spread evenly over time, or they occur in 

clusters. To examine this, I conduct the Christoffersen’s (2004) interval forecast test. The Null 

Hypothesis states: duration between exceedances have no memory. The estimated Weibull 

parameter b is presented as well as the result of the Null Hypothesis in the following tables. 
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 Dow Jones Industrials 

 95% 97,50% 99% 

 b P-value Decision b P-value Decision b P-value Decision 

Student t 0.74313 0 Reject H0 0.6309642 0 Reject H0 0.5296511 0 Reject H0 

Generalized 
Error 

0.7294691 0 Reject H0 0.603897 0 Reject H0 0.5447902 0 Reject H0 

Skewed Student 
t 

0.8192536 0 Reject H0 0.7424613 0 Reject H0 0.6696607 0 Reject H0 

Pareto 0.5976097 0 Reject H0 0.5208795 0 Reject H0 0.4173752 0 Reject H0 

Weibull 0.6269891 0 Reject H0 0.5564018 0 Reject H0 0.4620558 0 Reject H0 

 Table 6: Christoffersen’s (2004) Independence Test for the Unconditional Parametric estimation of Dow Jones Industrials. 

 
         

          

 S&P 500 

 95% 97,50% 99% 

 b P-value Decision b P-value Decision b P-value Decision 

Student t 0.7332928 0 Reject H0 0.6203527 0 Reject H0 0.522745 0 Reject H0 

Generalized 
Error 

0.6901373 0 Reject H0 0.6147362 0 Reject H0 0.5732411 0 Reject H0 

Skewed Student 
t 

0.8204729 0 Reject H0 0.7424613 0 Reject H0 0.6439167 0 Reject H0 

Pareto 0.4126516 0 Reject H0 0.5978832 0 Reject H0 0.4126516 0 Reject H0 

Weibull 0.6153383 0 Reject H0 0.5486223 0 Reject H0 0.4752031 0 Reject H0 

 Table 7: Christoffersen’s (2004) Independence Test for the Unconditional Parametric estimation of S&P 500.  
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 Nikkei 225 

 95% 97,50% 99% 

 b P-value Decision b P-value Decision b P-value Decision 

Student t 
0.7541309 0 Reject H0 0.6077712 0 Reject H0 2 1 

Fail to 
Reject H0 

Generalized 
Error 

0.7185645 0 Reject H0 0.5967511 0 Reject H0 2 1 
Fail to 

Reject H0 

Skewed Student 
t 

0.8339562 0 Reject H0 0.7647547 0 Reject H0 0.6530396 0 Reject H0 

Pareto 0.6002065 0 Reject H0 0.5340701 0 Reject H0 0.4927001 0 Reject H0 

Weibull 0.6065283 0 Reject H0 0.5595792 0 Reject H0 0.5078649 0 Reject H0 

 Table 8: Christoffersen’s (2004) Independence Test for the Unconditional Parametric estimation of Nikkei 225.  

 
         

          

 Dax 30 

 95% 97,50% 99% 

 b P-value Decision b   Decision b P-value Decision 

Student t 0.7192889 0 Reject H0 0.639801 0 Reject H0 0.5296694 0 Reject H0 

Generalized 
Error 

0.7027968 0 Reject H0 0.6240941 0 Reject H0 0.5340516 0 Reject H0 

Skewed Student 
t 

0.7742832 0 Reject H0 0.7359569 0 Reject H0 0.6530396 0 Reject H0 

Pareto 0.5816759 0 Reject H0 0.5157459 0 Reject H0 0.4592076 0 Reject H0 

Weibull 0.6083599 0 Reject H0 0.6083599 0 Reject H0 0.5358759 0 Reject H0 

 Table 9: Christoffersen’s (2004) Independence Test for the Unconditional Parametric estimation of Dax 30.  
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As can be seen, the Unconditional Parametric approach results of the independence test show 

poor results, meaning that the losses are clustered, and that today’s exception will probably 

increase the next day’s probability of exception, and therefore the model did not perform well under 

volatility clusters resulting in clusters of exceptions, which is generally a bad thing for investors. 

However, two models, for the 99% confidence level were not rejected, the Generalized Error and 

Student t distributions for the Nikkei 225, all others, for all confidence levels failed the 

independence test. 

 

5.2.3 Conditional Coverage test 

Now that I have conducted the tests for coverage and independence separately, the Christoffersen’s 

independence and unconditional coverage can be combined into a joint test of conditional 

coverage. The following tables, 10, 11, 12 and 13, present the joint test results for each index.
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 Dow Jones Industrials 

 95% 97,50% 99% 

 LR test P-value Decision LR test P-value Decision LR test P-value Decision 

Student t 40.03999 2.02035e-09 Reject H0 27.82078 9.094813e-07 Reject H0 19.14225 6.971274e-05 Reject H0 

Generalized Error 38.30657 4.806557e-09 Reject H0 29.65215 3.640132e-07 Reject H0 18.2869 0.0001069179 Reject H0 

Skewed Student t 255.2239 0 Reject H0 370.2088 0 Reject H0 372.4357 0 Reject H0 

Pareto 251.718 0 Reject H0 135.4233 0 Reject H0 50.27061 1.213041e-11 Reject H0 

Weibull 
186.1339 0 Reject H0 91.49454 0 Reject H0 27.79847 

 9.196838e-
07 

Reject H0 

 Table 10: Christoffersen’s Conditional Coverage Test for the Unconditional Parametric estimation of Dow Jones Industrials.  

 
         

          

 S&P 500 

 95% 97,50% 99% 

 LR test P-value Decision LR test P-value Decision LR test P-value Decision 

Student t 59.95843 9.55902e-14 Reject H0 45.26248 1.483806e-10 Reject H0 22.77189 1.135395e-05 Reject H0 

Generalized Error 56.38015 5.717649e-13 Reject H0 48.16175 3.481848e-11 Reject H0 84.58711 0 Reject H0 

Skewed Student t 319.8513 0 Reject H0 452.7738 0 Reject H0 448.09 0 Reject H0 

Pareto 235.0076 0 Reject H0 126.4315 0 Reject H0 42.03641 7.44577e-10 Reject H0 

Weibull 161.4033 0 Reject H0 88.99553 0 Reject H0 24.4813 4.830066e-06 Reject H0 

 Table 11: Christoffersen’s Conditional Coverage Test for the Unconditional Parametric estimation of S&P500.  
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 Nikkei 225 

 95% 97,50% 99% 

 LR test P-value Decision LR test P-value Decision LR test P-value Decision 

Student t 97.55519 0 Reject H0 121.3522 0 Reject H0 67.7870 1.887379e-15 Reject H0 

Generalized Error 79.04659 0 Reject H0 88.03504 0 Reject H0 75.16795 0 Reject H0 

Skewed Student t 379.4292 0 Reject H0 523.1725 0 Reject H0 581.2755 0 Reject H0 

Pareto 54712.99 0 Reject H0 76.64829 0 Reject H0 35.53361 1.922975e-08 Reject H0 

Weibull 143.2781 0 Reject H0 57.90178 1.311173e-13 Reject H0 31.87125 1.20018e-07 Reject H0 

 Table 12: Christoffersen’s Conditional Coverage Test for the Unconditional Parametric estimation of Nikkei 225.  

 
         

          

 Dax 30 

 95% 97,50% 99% 

 LR test P-value Decision LR test P-value Decision LR test P-value Decision 

Student t 
70.74757 4.440892e-16 Reject H0 58.2526 2.24154e-13 Reject H0 56.39986 

 1.887379e-
15 

Reject H0 

Generalized Error 57.90431 2.667866e-13 Reject H0 42.37714 6.279454e-10 Reject H0 65.50002 7.155668e-10 Reject H0 

Skewed Student t 346.4604 0 Reject H0 507.5747 0 Reject H0 581.2482 0 Reject H0 

Pareto 205.5352 0 Reject H0 85.84239 0 Reject H0 45.70105 1.922975e-08 Reject H0 

Weibull 160.2144 0 Reject H0 48.27265 3.294032e-11 Reject H0 30.98239 0 Reject H0 

 Table 13: Christoffersen’s Conditional Coverage Test for the Unconditional Parametric estimation of Dax 30.  
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The results of the joint test are not surprising given the overall poor performance of the 

Unconditional parametric approach in the Unconditional Coverage test, along with the bad results 

of the Independence test, it was expectable that the joint tests would also reveal a bad performance 

no matter the assumption of the distribution of returns or the confidence level, all models end up 

being considered inadequate. We should keep in mind that as referred previously, the fact that one 

of the two properties is already satisfied makes it more difficult for the joint test to detect the 

inadequacy of the VaR model as pointed by Campbell (2005). 
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6. Conclusions 

“In short, we ought to be able to identify most bad models, but the worrying issue is whether we 

can find any good ones.” Dowd (2006) 

VaR has become one of the most popular methods for measuring financial risk. Every VaR model 

uses historical market data to forecast future portfolio performance. In addition, the models rely 

on approximations and assumptions that do not necessarily hold in every situation. In fact, history 

may not repeat itself. Since the methods are far from perfect, there is a good reason to question 

the accuracy of the estimated VaR models. 

This dissertation examined the one-day predictive power of the Unconditional Parametric VaR 

models assuming different returns distributions such as Student t, Generalized Error, Skewed 

Student t, Pareto and Weibull. The comparison is made on four markets through one of the main 

indexes in each, being: Dow Jones Industrial Average, S&P 500, Nikkei 225 and Dax 30. 

The unconditional coverage approach of the backtest results gave some adequate results, with the 

distributions Student t and Generalized Error having always some underestimation of exceptions, 

but achieving, solely under the unconditional coverage, some models that were considered 

adequate, in fact for the Dow Jones Industrials the models were considered adequate for all 

confidence levels, which is a good indicator that meets what Chu-Hsiung & Shan-Shan (2006) 

stated: “In contrast, the Student-t distribution is a relatively simple distribution that is well suited to 

deal with the fat tailed and leptokurtic features.”  

On the other hand, the models based on the Pareto and Weibull distribution that make only a new 

VaR estimation when the previews day had a negative return, tend to overestimate risk similarly to 

Mittnik and Rachev (1993). In general, these last two distributions had some fair estimations, 

mainly in the Dax 30 and Nikkei 225, with the last one worth mentioning that for the 99% 

confidence level, the model obtained an excellent estimation of VaR exceptions. 

The Skewed Student t distribution obtained the worst results always making a severe 

underestimation of risk showing that this is nowhere near a good fit of returns distribution for any 

of the studied indexes. 

The independence tests revealed the real flaw of the models, where all were rejected. This result 

revealed that the models were incapable of reacting to changing volatility and correlations resulting 

exceptions that do not occur independently of each other. The models produce a sequence of 
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consecutive exceptions, which is a problem for investors because all his losses may occur in 

subsequent periods. Inevitably, turbulent market times, where the volatility is high cause problems 

in estimating parameters that should describe future market movements. Bao et. al (2006) also 

found the unconditional parametric models to work well under tranquil times, but different risk 

models to work better under turbulent times. Since all VaR models rely on historical market data, 

this issue not only concerns the case at hand but VaR models in general. Abnormal market 

behaviour is always a thought task for VaR models in general.  

The contrast from the results of the different backtests performed, comes as an example that a 

weak backtesting methodology can mislead in relation to the actual adequacy of a VaR model. 

Show again that as Brown (2008) refers, the VaR is only as good as its backtests. 

The results for the conditional coverage test that reject all models came as no surprise. To obtain 

any good result here, it would be necessary that at least some models to would be considered 

adequate in the independence test, to be then valid here in the joint test. Other methodologies of 

estimating VaR, like the ones referred in the literature review, may be more suited specially 

predicting volatility clusters, therefore having a better performance in the independence property 

which is essential in any VaR model. 

Whatever the empirical framework for future backtesting will be, the most important lesson to learn 

from this dissertation is to understand the weaknesses of VaR models calculation. As empirical 

research proves, VaR figures should never be considered to be 100% accurate, no matter how 

sophisticated the systems are. However, if the users of VaR know the flaws associated with VaR, 

the method can be a very useful tool in risk management especially because there are no serious 

contenders that could be used as alternatives for VaR. 
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