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Abstract. This paper addresses an ongoing research, aiming at the development of smart 
textiles that transform the incident light that passes through them – light transmittance – to 
design dynamic light without acting upon the light source. A colour and shape change 
prototype was developed with the objective of studying textile changes in time; to explore 
temperature as a dynamic variable through electrical activation of the smart materials and 
conductive threads integrated in the textile substrate; and to analyse the relation between textile 
chromic and morphologic behaviour in interaction with light. Based on the experiments 
conducted, results have highlighted some considerations of the dynamic parameters involved in 
the behaviour of thermo-responsive textiles and demonstrated design possibilities to create 
interactive lighting scenarios. 

 
1. Introduction 
The emergence of smart textiles presents the potential to enhance and involve physical and immaterial 
dimensions, promoting added functionality and interaction between individuals and their environment. 
Within an interdisciplinary context, the development of reactive and adaptive textile systems requires 
knowledge and competences in diverse domains that entail new perspectives and challenges for design 
practice [1, 2]. 

This paper addresses an ongoing research, aiming at the development of smart textiles that 
transform the incident light that passes through them – light transmittance [3] – to design dynamic 
light without acting upon the light source. Interaction of textiles and light were explored through 
colour and shape change behaviour. 

Thermochromic (TC) leuco dyes are a class of colour change materials that through a thermal 
stimulus change their optical characteristics reversibly [4]. As dark colours absorb a greater intensity 
of the visible light spectrum than lighter colours [3], TC textiles affect the light that passes through 
them, when they are below or above their activation temperature. 

Furthermore, different amounts of textile layers also interfere in light transmittance, depending on 
the light absorbed. With shape memory materials, defined by their ability to change from a temporary 
to a memorized shape [5], it is possible to develop textiles that perform morphological variations with 
variable number of layers. Nitinol was the shape memory alloy selected. 

A previous materials’ research was conducted with the objective of developing processes to 
integrate the selected smart materials in textile substrates. The results attained have outlined two 



	  
	  
	  
	  
	  
	  

process proposals to elaborate paste recipes of TC and conventional pigments in order to screen-print 
textiles with defined colour ratios: from similar to different colours with the temperature increase and 
the inverse  [6, 7]; and a workflow setup to design and manufacture woven substrates that perform 
shape change based on predefined geometric morphologies [8, 9]. Additionally, conductive materials 
were studied to activate the two thermo-responsive materials through resistive heating.  

Aiming to explore colour and shape dynamic behaviour in interaction with light, this paper 
discusses a design research conducted by implementing the results previously attained and exploring 
dynamic variables through a smart textile prototype. 

 
2. Research prototype dynamic behaviour 
Narratives of Winter Daylight is a research prototype inspired by the dynamic qualities of natural 
light. Day and night commonly present different rates and changing patterns of light intensities, 
colours tones and direction, depending on the geographic location, season and weather conditions. For 
this study, one winter daylight was observed and photos were recorded each hour from 6 a.m. to 6 
p.m. Figure 1 presents the photo record conducted on 31.12.2015 in latitude: 41.178084, longitude: -
8.66061, with equal camera settings for a comparison between luminosities. 
 

Figure 1. Photos record from 6 a.m. to 6 p.m. 
 

Patterns and expressions of light change were analysed with perceived luminosities and tones, 
which set up a basis to define the prototype colour change palette and shape changing geometries in 
order to study the textile behaviour in interaction with light. 

The prototype morphology presents two pilled up textile layers. The front layer combines six 
folded units aligned horizontally and each unit consists of a mirrored sequence of two vertical pleat 
folds. Attached to a plain textile layer (back layer), the folded geometry creates areas with a variation 
of textile layer number and distance, through the fold up and fold down movements of the pleats.  

Width proportion and colour change of each pleat unit was defined in regards to the luminosity and 
colour similarities during the time period of the winter daylight observed. With increasing 
temperature, the prototype changes from a dark blue colour to different colours. 

Designing with temporal forms – colour and shape as textile temporal forms – extrapolates the 
definition of the physical medium to embrace the dynamic variables of the textile behaviour, as they 
play crucial roles in the expressions and/or functionality of the design outcomes [2, 10]. 

Perception of natural light variations involve a relation between the luminosities observed with 
established expectations and rates of change [11]. Commonly, subtle light changes are expected during 
the day, while more obvious changes are prevalent in early morning and late afternoon. Rhythms of 
light variation can allow an experience of the passing of time, perceived not only by the changes of the 
light parameters that vary but also in respect to the duration of the events in time [12]. 

In this research, the duration of changes depend on the heat stimulus that activates the textile colour 
and shape variation and cooling conditions, as the materials applied present gradual transformations 
during a temperature interval. Thus, temperature was studied as a dynamic design variable to explore 
possibilities in colour, form and light performances.  

6 a.m.

12 a.m.

7 a.m.

1 p.m.

8 a.m.

2 p.m.

9 a.m.

3 p.m.

10 a.m.

4 p.m.

11 a.m.

5 p.m. 6 p.m.



	  
	  
	  
	  
	  
	  

3. Materials and Methods 
The smart materials handled in this research were: body temperature Nitinol alloy (Austenite start 
30ºC and Austenite finish 45ºC) with 0,3 mm diameter and TC pigments of 27°C activation 
temperature in magenta, blue and black colours. 

3.1. Textile prototype development 
Defined to change from similar to different colours and to vary the textile layer number and distance, 
the textile prototype development has involved: 

a) Definition of textile shapes and respective weaving plan for Nitinol wires integration; definition 
of Nitinol geometries encompassing two sets of Nitinol wires (one group to perform fold up and 
another for fold down); drawing and production of dies; optimization of the annealing parameters 
followed by Nitinol heat treatment; and sandblasting of Nitinol wires’ ends [8]. 

b) Weaving of the textile substrate in a plain weave structure with cotton yarns in the warp and 
polyester yarns in the weft, where conductive threads were woven at every 1,0 cm and the Nitinol 
alloys were integrated at every 2,0 cm, with 0,5 cm distance of the conductive threads. 

c) Formulation of screen-printing paste recipes given a pattern colour, through a database created 
with colourimetric properties of the TC and conventional pigments handled [6]; elaboration of the 
pastes; screen-printing of the textile substrate; and thermo-fixing. 

d) Connection of the conductive materials with four circuits for each pleat unit – two series circuits 
of connected conductive threads, one for colour change in the front layer and another for the back, and 
two series circuits of Nitinol segments linked according to fold up and fold down groups;  

e) Application of an electrical insulating agent; folding of the prototype and setting up in a light 
box, built with two strips of warm white LEDS (2700K) in the box inner top and bottom; 

f) Definition and manufacturing of the electrical circuit; activation sequences plan and 
programming. 

3.2. Study of textile and light behaviour 
Light transmittance variation and textile behaviour were studied, in regards to the prototype chromic 
and morphologic definitions as well as changes attained with temperature increase through resistive 
heating and decrease by interruption of power supplied. All experiments were conducted at an ambient 
temperature below the smart materials’ activation temperatures. 

The electrical current required to attain the temperature increase of the conductive threads for 
colour change and Nitinol activation for shape change was studied through voltage variation applied 
with a variable power supply. Duration and expression of changes were analysed for each circuit and 
by simultaneous or sequential activation of circuits. An infrared camera was used to measure the 
temperature attained and to avoid overheating. 

4. Results and discussion  
Figure 2 presents the prototype in fold down and fold up activation states, the front view in the two 
images on the left and one pleat unit in perspective in the right images. Differences of light 
transmittance are observed through the overall change of luminosity, in the textile and by the light 
falling on the wall. 

With the fold down activation, textile layers are near and light transmittance is low in comparison 
to the morphologies attained with fold up activation, where the pleats unfold and create ‘open pockets’ 
that increase light transmittance. Pleat units with larger width (1st and 4th pleat units in images on the 
left) attain a larger distance between layers, achieving higher luminosity variation than units with 
lower widths. 

 



	  
	  
	  
	  
	  
	  

Figure 2. Prototype fold down and fold up activation. 
 

Fold up and fold down behaviour were tested with an electrical current variation from 0,6 to 0,9 A, 
to analyse the time required to heat up the Nitinol alloys above their activation temperature and 
consequently change shape. Tests were conducted at an ambient temperature of approximately 20°C 
and mean values attained for each circuit were 14 seconds with 0,6 A, 10 seconds with 0,7 A, 7 
seconds with 0,8 A and 5 seconds with 0,9 A. Movements performed appeared organic and subtle. 

Through the shape change analysis conducted during activation, it was observed that folded states 
attained lower angles than the memorized geometries of the Nitinol alloys. Textile substrate and 
morphology have constrained the Shape Memory Effect (SME), in particular with the lower width 
pleat, where movements were barely perceived although the Nitinol wires were above their activation 
temperature, as confirmed with a thermal camera.  

 Furthermore, if fold down is activated immediately after the fold up, or the inverse, Nitinol alloys 
are in the process of recovering the pre-memorized shape, when the other Nitinol group is still above 
the temperature that can be deformed. There is a time duration increase to attain the complete shape 
change, in regards to the time required for the actuator group previously heated up to cool below 30°C. 
If the power supply encompasses a pause in between fold up and fold down activations, a slight shape 
change can be observed when the actuator group previously heated up, cools down.  

Time for the Nitinol alloys to cool down depends on the temperature previously attained with the 
electrical current supplied, ambient temperature and textile substrate characteristics. Furthermore, 
thermal images have also demonstrated that wire temperature is not homogeneous. Therefore, the 
definition of time to cool down the Nitinol below its activation temperature requires experimentation. 
With the prototype circuits and ambient temperature of 20°C, values varied between 5 and 20 seconds. 

Prototype colours change from similar dark blues to different colours with temperature increase: 
dark blue tone, grey, white, light blue, blue and violet dark blue, from left to right (figure 3). 

 

Figure 3. Prototype fold up without and with colour activation (left and middle); and colour 
samples in natural light, below and above 27°C (left). 

 
Colour tones perceived by direct observation and with the textile placed in a light box have 

differed. Colour measurements conducted below 27°C in a reflectance spectrophotometer have 
confirmed colour similarities. CIELAB differences attained values between 0,8 to 1,3 dE*, which can 
be considered reasonable for colour matching. In the light box, samples screen-printed with pastes that 
combined TC pigment blue (2nd , 3rd  and 4th  pleat units in figure 3 left) instead of conventional 

< 27˚C 

> 27˚C 



	  
	  
	  
	  
	  
	  

pigment blue, presented a violet nuance. Paste recipe adjustments were conducted, although a subtle 
violet tone remained. 

Light transmittance variation with the colour change effect, created a hierarchy of luminosity 
differences, as targeted: an increase from the first to the third pleat (6 to 12 a.m.); similarities in third 
and fourth pleat (12 to 2 p.m.); followed a decrease until the sixth pleat (3 to 6 p.m.). Light 
measurements with one layer of each colour sample confirmed the observations, percentual luminosity 
differences varied from 13% to 76, 93, 88, 58 and 30%, in respect to the above-mentioned sequence. 

 Colour change activation was produced through the flow of electrical current on the conductive 
threads integrated in the woven substrate at every 1,0 cm and thermal expansion in the textile areas in 
between. Time required to attain full colour change and full colour return were tested at an ambient 
temperature of 20°C, with an electrical current variation from 1,0 to 1,4 A. Figure 4 presents the fourth 
pleat in a sequence of colour change activation from the first to the third image and on cooling from 
the third to the sixth image. During heating, colour changes from a striped pattern to a complete area. 
On cooling, nuances of colour return display less visual relevance of the conductive thread lines. Table 
1 presents the mean values attained during electrical current supply in the front layer of the fourth 
pleat unit, for duration of change and maximum temperatures, measured with an infrared camera. 

 

 
Full colour change was not attained with 1,0 A, the temperature on the conductive threads changed 

the textile colour but was not sufficient to completely heat up the textile areas in between them. With 
1,2 and 1,4 A, full colour change was observed with higher time duration on heating with 1,2 A and 
the reverse on cooling. To study the possibility to maintain the textile in full colour change, an 
additional test was conducted with electrical current of 1,2 A, supplied during 5 minutes. Maximum 
temperature on the conductive threads was 41,9°C after 1’, 43,0°C after 2’30’’ and 45,1°C after 5’, 
acknowledging the possibility to perform colour change for the time defined, without overheating. 

During the tests conducted, it was also observed that duration of colour change was faster when 
both front and back layers were activated at the same time. The temperature inside the folded layers 
increased, enhancing the textile thermal expansion and, due to the vertical positioning of the 
prototype, the upper area of the pleat units also heated up faster than in the bottom. 

Ambient temperature significantly affects the duration of change and the ability to perform full 
colour change. Tests repeated with 1,2 A at an ambient temperature of 17°C, did not attain full colour 
change and with 1,4 A required 4 minutes on heating and 1 minute on cooling. 

Combination of shape and colour activation was also analysed. In the prototype developed, it was 
defined that Nitinol activation does not change colour, and the screen-printing paste applied for the 
alloys areas only combine conventional pigments. During colour change, the temperature increase in 
between the textile layers can induce changes in fold down and fold up groups, assuming a 
morphology between states. Electrical activation of colour and shape change, can create different 
variations of light transmittance intensity and expression. For example, total colour change in a fold 
down state is observed almost exclusively through the textile light transmittance, while when folds up, 
light transmittance increases and is more obviously perceived with light falling on the wall. Within 

Figure 4. Colour change activation from 1st to 3rd image 
and on cooling from 3rd to 6th image.	  

Table 1. Mean values of colour change 
duration and maximum temperatures.	  

1,0 (5') 36,8 50'' 25,2

1,2 2' 30'' 43,3 1'' 25,9

1,4 1' 40'' 50,9 1' 20'' 25,0

I (A)

heating cooling

time
max. 
temp. 
(ºC)

time
max. 
temp. 
(ºC)



	  
	  
	  
	  
	  
	  

different possibilities of activation sequences, rhythms of continuous change of light transmittance can 
be created. Based on the variation paces of daylight observed, mostly slow and subtle and less evident 
changes, textile and light sequences were defined and programed, through an electrical circuit 
controlled by a microcontroller board. 

The prototype was presented in a spatial context where spectators also took an active part on the 
interaction, since they were the ones who triggered the sequence selection and activation, depending 
on its location in the space. The sensors used detected the presence of spectators, communicated via 
wireless with the microcontroller and activated visual sequences of Narratives of Winter Daylight. 

5. Conclusions 
This study implements the results attained in a previous materials’ research and explores dynamic 
colour and form with a smart textile prototype in interaction with light. Experiments conducted 
through electrical activation of the textile behaviour have highlighted the importance of temperature 
and time of activation in the performance and expression of changes, illustrating some considerations 
that can be applied when working with thermo-responsive textiles. 

Light transmittance variation created through rhythms in the textile colours and shapes, can be 
defined with sequential and/or simultaneous activations during time. Activation of different 
configurations enable the creation of interactive lighting scenarios, where dynamic qualities can be 
perceived as obvious or subtle, according to how textile behaviour and light are designed. 
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