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RESUMO 

Danos infligidos na medula espinal podem resultar em deficiências irreversíveis e perda total de funções 

motoras, sensoriais e autonómicas. Os fármacos riluzole e magnésio têm sido amplamente investigados 

como agentes neuroprotetores em modelos animais de lesão vertebro-medular. Dado que estes fármacos 

protegem a medula lesionada através de mecanismos diferentes, um estudo foi desenvolvido com o 

objetivo de determinar se a sua eficácia neuroprotetora poderia ser cumulativa. Um ensaio in vivo foi 

definido utilizando ratos fêmeas Wistar Han submetidos a uma contusão torácica da medula espinal (T8). 

Uma hora após a lesão, os animais foram distribuídos aleatoriamente para receber: 1) solução salina, 2) 

riluzole (2,50 mg / kg), 3) cloreto de magnésio (24,18 mg / kg) numa formulação de polietilenoglicol, 

ou 4) um tratamento combinado (riluzole e magnésio). Os tratamentos subsequentes foram dados em 

quatro injeções intraperitoneais (com espaçamento de 12 horas). Foram utilizados a escala de 

classificação locomotora Basso, Beattie e Bresnahan, um teste de campo aberto (open-field) e um teste 

de natação, para avaliar a recuperação comportamental/motora dos animais durante um período de 

quatro semanas. Foi também realizada uma análise histológica das medulas espinais de forma a medir 

a extensão do volume da lesão, preservação das fibras axonais, serotonérgicas e glutamatérgicas, 

sobrevivência de neurónios motores e inflamação. Os resultados mostraram que apenas o tratamento 

com riluzole melhorou significativamente a recuperação funcional, preservou tecidos e 

concomitantemente obteve volumes de lesão reduzidos, assim como aumentou a preservação das fibras 

serotonérgicas e axonais na parte caudal da medula espinal. O tratamento combinado, embora visando 

simultaneamente dois mecanismos relacionados com desequilíbrios iónicos e excitotoxicidade, não 

resultou em melhorias funcionais e histológicas, quando comparado com a administração isolada de 

riluzole. 

 

 

Palavras-Chave: Lesões vertebro-medulares, citotoxicidade, neuroproteção, riluzole, magnésio 
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ABSTRACT 

Damage to the spinal cord can result in irreversible impairments and complete loss of motor, sensory 

and autonomic functions. Riluzole and magnesium have been widely investigated as neuroprotective 

agents in animal models of spinal cord injury.  As these drugs protect the injured spinal cord through 

different mechanisms we aimed to investigate if their neuroprotective efficacy could be cumulative. An in 

vivo experiment was set using female Wistar Han rats that underwent a thoracic spinal cord contusion 

(T8) using a weight drop method. An hour after injury, animals were randomly distributed to receive: 1) 

saline, 2) riluzole (2.50 mg/kg), 3) magnesium chloride (24.18 mg/kg) in a polyethylene glycol 

formulation, or 4) a combined treatment (riluzole and magnesium). Subsequent treatments were given 

in four intraperitoneal injections (spaced 12 h apart). The Basso, Beattie, and Bresnahan locomotor rating 

scale, an activity box test, and a swimming test were used to evaluate behavioral recovery for periods up 

to four weeks. Histological analysis of the spinal cords was performed to measure the extent and volume 

of the lesion, axonal preservation, serotonergic and glutamatergic fiber sparing, motor neuron survival, 

and inflammation. The results demonstrated that only the riluzole treatment significantly improved 

behavioral recovery, promoted tissue sparing, reduced lesion volume, while increasing serotonergic fiber 

sparing and axonal preservation in the caudal portion of the spinal cord. The combined treatment, 

although simultaneously targeting ionic and excitotoxic-related mechanisms, did not further improve 

behavioral and histological outcome, when compared with riluzole given alone. 

 

Keywords: Spinal cord injury, cytotoxicity, neuroprotection, riluzole, magnesium 
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1. INTRODUCTION 

 Trauma to the spinal cord can cause severe damage to nervous tissue leading to temporary or 

permanent changes in the spinal cords normal motor, sensory, or autonomic function (Hagen, 2015). 

Spinal cord injury (SCI) patients usually suffer permanent neurologic deficits and disability that heavily 

impact their physiological, psychological, and social behavior (Craig et al., 2009; 2012; Krueger et al., 

2013).  

 In developing countries, the annual incidence of SCI was estimated in 25.5 cases per million 

(Rahimi-Movaghar et al., 2013). In 2012, the estimated annual incidence of SCI in the United States of 

America (USA) was 54 cases per million, while in Portugal, the only epidemiological study was performed 

by Martins et al. and set the annual incidence rate at 57.8 new cases per million inhabitants (Jain et al., 

2015; Martins et al., 1998). Although SCI incidence rates are not very high, it certainly places substantial 

financial burden on health care systems mainly due to the long-term effects of disability and handicap 

that persist throughout the patient’s life. In 2006, costs related to SCI patients healthcare were estimated 

at 9.7 billion dollars per year in the USA alone (Thompson et al., 2015). 

Injury to the spinal cord can result from traumatic events like contusion, compression and/or 

laceration, while non-traumatic injuries usually results from tumors, spinal stenosis and vascular events 

(New & Marshall, 2014; Thuret et al., 2006).  Leading causes of injury include automobile crashes, falls, 

as well as sport related injuries, affecting mainly young  adult males (Chen et al., 2013; Jain et al., 2015). 

The neurological impairment of SCI is commonly classified in different grades of severity according 

to the American Spinal Injury Association (ASIA) Impairment Scale (Table I). Grading relies on sensory 

and motor evaluation of the SCI patient at the S4-S5 sacral segment, at 72 hours (h) post-injury, allowing 

to determine whether the injury is complete (AIS A: no sensation or motor function at S4-S5), or 

incomplete (AIS B to D: motor and/or sensory function is partially preserved at S4-S5) (Kirshblum et al., 

2011; Scivoletto et al., 2014). Furthermore, the level of injury is an important factor concerning survival, 

with a more cephalad level associated with higher rates of mortality (Wilson et al., 2012). Respiratory 

failure and cardiovascular dysfunction are the main cause of early mortality in complete, high-cervical 

(C1-C4) injuries of SCI (Shao et al., 2011).  

 Methylprednisolone has been widely used as the only standard therapeutic agent for SCI 

treatment. However, its clinical utility and role in SCI recovery remains controversial (Bydon et al., 2014). 

In light of this, a recent survey revealed a significant decrease in the number of surgeons using high-dose 
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steroids in 2014 as compared with 2006, clearly revealing an urgent need to develop alternative 

therapeutic strategies (Schroeder et al., 2014).  

 
Table I. Classification of spinal cord injury severity using the American Spinal Injury Association 
Impairment Scale. 
Adapted from Thuret et al., 2006. 

 

 

Pathologic events following SCI can be divided into two distinct but highly interconnected phases. 

First, a primary injury resulting from the initial mechanical damage leads to the disruption of neural and 

vascular structures at the impact site.  The secondary injury response follows the initial trauma and further 

compromises neurologic function. Several events take place during this secondary stage, ranging from 

ionic imbalances, free radical production, inflammation, to excitotoxic events (Oyinbo, 2011). Ultimately, 

these events lead to the formation of an astroglial scar that creates a physical barrier, as well as an 

inhibitory environment, leading to unsuccessful axonal regeneration at the lesion site (Cregg et al., 2014). 

 Collectively, these secondary events result in severe neuronal damage. However, they also pose 

as an opportunity for therapeutic intervention that promotes neuroprotection. Ionic imbalances and 

glutamate excitotoxicity noticeably exacerbate the functional problems encountered after SCI and are, 

therefore, targets of current SCI therapeutic strategies (Park et al., 2004). 

Riluzole and magnesium have been extensively investigated as neuroprotective agents in animal 

models of SCI mainly because of their ability to modulate ionic imbalances and excitotoxic events that 

follow SCI. Furthermore, combining drugs may lead to improved efficacy over single drug treatments as 

A (complete) 
No motor or sensory function is preserved in the sacral 

segments S4–S5. 

 

B (incomplete) 
Sensory but not motor function is preserved below the 

neurological level and includes the sacral segments S4–S5. 

C (incomplete) 

Motor function is preserved below the neurological level, and 

more than a half of key muscles below the neurological level 

have a muscle grade of <3. 

D (incomplete) 

Motor function is preserved below the neurological level, and 

at least a half of key muscles below the neurological level have 

a muscle grade of 3. 

E (normal) Motor and sensory functions are normal. 
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drug interactions may occur contributing to an additive or synergistic effect that further promotes 

neuroprotection. Having this in mind, we aimed to investigate the therapeutic efficacy of both individual 

and combined administration of riluzole and magnesium chloride in SCI. 

1.1 Spinal cord: basic anatomy and physiology 

Anatomically speaking, the nervous system is divided in two distinct, but highly interconnected 

parts: the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS is the 

processing/control center that correlates and integrates nervous information. It receives information from 

and sends information to the PNS enabling the connection between the CNS and the rest of the body. 

The CNS is composed by the brain and the spinal cord, and while the brain controls most functions of 

the body, this is only possible due to the existence of the spinal cord, a major information conduit (Watson 

et al., 2009). However, its purpose far exceeds the simple relay of information as the spinal cord is able 

to integrate and modify both afferent and efferent signals allowing for the precise control of sensory, 

autonomic and motor functions (Nielsen, 2004). 

 A major difference between the CNS and the PNS lies in their different capacity to regenerate 

after injury. Unlike the PNS, the CNS has an extremely limited capacity to regenerate when damaged 

(Illis, 2012). Failure of CNS neurons to regenerate is a consequence of a surrounding inhibitory 

environment in combination with low intrinsic growth properties of CNS axons (Horner & Gaje, 2012). 

The spinal cord, which is usually 40 to 50 centimeters (cm) long, extends from the foramen 

magnum, continuing with the medulla oblongata to the level of the first or second lumbar vertebrae. It 

comprises 31 pairs of spinal nerves composed of both motor and sensory fibers, each pair connecting a 

different part of the body. There are 8 cervical (C) nerves, associated with the muscles of the neck, 

shoulders, arms, hands, and diaphragm; 12 thoracic (T) nerves, associated with the chest and abdominal 

walls; 5 lumbar (L) nerves, associated with the hip, leg, and foot; and 5 sacral (S) nerves, associated with 

the genitals and lower digestive tract. Each spinal nerve is attached to the spinal cord by a dorsal (sensory) 

and a ventral (motor) root (Silva et al., 2014).  

 Protection to the spinal cord is provided by the vertebral column, the protective tissue of the 

meninges (dura, arachnoid and pia mater), and the cerebrospinal fluid. 

The spinal cord, similarly to the brain, is composed of gray and white matter. The grey matter, 

which is centrally located and shaped like a ‘butterfly’, consists mainly in neuronal cell bodies, glial cells, 

and unmyelinated axons (Thuret et al., 2006). 
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 Grey matter is divided into four main columns: the dorsal horn, the intermediate column, the 

lateral horn and the ventral horn column. The neuronal bodies in the grey matter are organized in ten 

successive layers - laminae I-X from dorsal to ventral - depending on their cellular structure (Figure 1). 

Laminae I to VI are located in the dorsal horns and are involved in sensory input. Laminae VII to IX are 

found in the lateral and ventral grey matter and are related to autonomic and motor functions. Lamina X 

is located in the center, surrounding the central canal (Watson et al., 2009).  

 

 

 

 

 

 

 

 

 

 

Figure 1. Organization of laminae in the spinal cord. 
Obtained from: http://medicine.academic.ru/134796/Rexed_laminae 

 

Surrounding grey matter we find white matter which consists mainly of longitudinally running 

myelinated axons as well as glial cells, the most abundant  being oligodendrocytes. When a group of 

nerve fibers have the same origin and function, they are referred to as ‘tract’, while a group of tracts with 

a related function is referred to as ‘pathway’. The course of spinal tracts and pathways can be either 

ascending (sensorial) or descending (motor) allowing for the adequate communication between the 

central and the peripheral nervous systems.  

It is important to notice that differences in tract organization can be found in different species, 

such as rodents, cats, primates, and humans (Figure 2). This is particularly significant in spinal cord 

injury research because it relies on different animal models. For example rodents cortical spinal tract 

(associated with voluntary movement) is located dorsally, while in humans it can be found both lateral 

and ventrally  (Watson et al., 2009).   
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   RAT        HUMAN 

 

 

 

 

 

 

 

 

 

 

Figure 2. Location of the ascending and descending tracts of the spinal cord. 
Differences in ascending sensory (S) and descending motor (M) tracts in rats and humans. Adapted from 
Watson et al., 2009. 

 

At a cellular level the nervous tissue of the spinal cord is mainly comprised of neuronal and glial 

cells (Purves et al., 2001). It was in the late nineteenth century that Ramon y Cajal first proposed that 

neurons were the basic structural and functional units of the nervous system, thus paving the way for 

modern neuroscience (De Carlos & Borrell, 2007). 

Although there are many classes of neurons, their basic structure remains the same: a cell body 

(soma) and two types of cell processes, axons and dendrites. The cell body contains the nucleus and is 

the processing center of the neuron. Dendrites receive information from other cells while the axon is the 

neuronal structure that allows communication between neurons. Neurons ability to generate and transmit 

electrochemical signals is essential for this communication to occur. The electrical signal, generated by 

an action potential (i.e. a transient alteration of the membrane voltage), is sent through the axon of a 

presynaptic neuron. Long axons, also known as nerve fibers, are insulated by fatty myelin sheets that act 

as electrical insulators, speeding nerve impulses. 

Neurons communicate at structures called synapses. When an action potential reaches the 

synaptic button (the terminal end of an axon) it triggers calcium-regulated fusion of neurotransmitter-filled 

synaptic vesicles with the presynaptic cell membrane, ultimately releasing neurotransmitters in the 

synaptic cleft (Augustine, 2001). This release of neurotransmitters can result in inhibitory or excitatory 

signals that are conveyed to the postsynaptic neuron. Neurons, ultimately, are the tool by which the 

central nervous system communicates and processes information.  
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However, the tasks performed by neurons would not be possible without the support of glial cells 

(Figure 3). These cells differ both morphologically (lack of axons and dendrites) and functionally from 

neurons, and include astrocytes, microglia, and oligodendrocytes (Kriegstein & Alvarez-buylla, 2011). 

Astrocytes provide trophic and metabolic support for neurons, control of extracellular osmotic 

pressure, local cerebral blood flow, and extracellular neurotransmitter concentration. They can be further 

divided in two types: protoplasmic astrocytes that can be found in the grey matter where their endfoot 

processes contact with blood capillaries and synapses, and fibrillary astrocytes that can be found in the 

white matter where their endfeet contact with blood capillaries and nodes of Ranvier (myelin sheath gaps) 

(Jukkola et al., 2013). 

Although astrocytes are considered non-excitable cells, they are able to communicate with each 

other and interact with neurons through changes in intracellular calcium (Ca2+) concentration (Navarrete 

et al., 2013). Typically ascribed supportive roles for proper neuronal function there is now numerous 

evidence that these cells play an important part in regulating synaptic transmission and plasticity, and 

thus are being interpreted as possible integral components of the neuronal networks and not mere 

bystanders (Araque & Navarrete, 2010).  

It was Pío del Río Hortega in 1919, which first introduced the concept of microglia and 

oligodendrocytes as glial cells, a vision not shared by his mentor and employer Ramon y Cajal, that 

ultimately lead to his dismissal as a consequence for publishing his findings (McGeer & McGeer, 2011). 

Microglia serve as the CNS resident immune competent cells, and are mobilized to present 

antigens and become phagocytes during injury, infection, or degenerative diseases (Ousman & Kubes, 

2012). These cells usually display a ‘resting’ phenotype. However, upon sensing changes in the CNS 

microenvironment they become ‘activated’ and undergo morphological and functional changes. Activation 

of these cells can range from “classical” activation, characterized by a highly pro-inflammatory profile, to 

“alternative” activation, associated with a less inflammatory, neuroprotective profile (Derecki et al., 2013; 

Giunti et al., 2014).  

Oligodendrocytes are the myelin-forming cells of the CNS, providing electrical insulation of axons 

and consequently accelerating action potential propagation by saltatory conduction from one node of 

Ranvier to the next, setting the speed up to 430 km/h instead of approximately 3.6 km/h for an 

unmyelinated axon (Káradóttir & Attwell, 2007). Other functions performed by these cells are associated 

to maintenance of axonal health and provision of trophic neuronal support (Czopka et al., 2013). Loss of 

myelin characterizes many CNS disorders such as multiple sclerosis, Traumatic Brain Injury (TBI), and 
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SCI, and determines the disruption of neuronal signaling and axonal integrity. Thus, preventing myelin 

loss may be an important target for therapeutic interventions. 

Ependymal cells can also be considered a specialized form of glial cells. They are responsible for 

the ventricular lining of the brain and spinal cord and help move cerebrospinal fluid through the ventricular 

system cells. Research is now focusing on their neural stem cell potential following injury to the spinal 

cord (Lacroix et al., 2014). 

 

 

Figure 3. Glial-neuron interaction. 
Neurons are responsible for the conduction of electrical currents and information relay. However, their 
function is highly dependent on glial cells. Oligodendrocytes myelinate CNS axons increasing the efficiency 
and velocity of nerve impulse conduction. Besides providing structural and chemical support neurons, 
astrocytes can also modulate neuronal dynamics. Microglia are the resident phagocytic cells in the brain. 
Reproduced from Allen & Barres, 2009. 
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1.2 The pathophysiology of spinal cord injury 

As previously referred, injury to spinal cord can be caused by traumatic and non-traumatic events. 

For the purpose of this thesis we will focus on traumatic SCI as this is the most common cause for SCI 

and the most studied one. 

Its pathophysiology follows a specific temporal pattern through different stages that are 

characterized by several specific biological and molecular events. The primary injury corresponds to the 

physical and mechanical trauma that occurs to the spinal cord, which is followed by a cascade of 

downstream events, termed secondary injury, that includes a sub-acute phase ranging from minutes to 

weeks, and a chronic phase, ranging from months to years after injury (Oyinbo, 2011). Furthermore, this 

secondary injury is not restricted to the initial lesion site and in fact it extends both radial and rostro-

caudally, contributing to increased neurological dysfunction (Ek et al., 2010). 

1.2.1 Primary injury 

The primary injury is characterized by a mechanical insult, usually compressive, contusive and/or 

lacerative, that often causes vertebra fracture or disc displacement. Neuronal and endothelial cell 

membrane shearing occurs as a consequence of the mechanical insult, leading to tissue and blood-spinal 

cord barrier (BSCB) disruption, as well as vasospasm and edema (Tator & Fehlings, 1991). Hemorrhagic 

events immediately follow, first in the highly vascularized grey matter causing necrotic neuronal death 

and later expanding into the peripheral white matter (Profyris et al., 2004; Simon et al., 2009; Thuret et 

al., 2006).  

Primary injury mechanisms that fully disrupt the anatomical continuity of the cord hardly ever 

occur and most often thinly myelinated or unmyelinated axons are spared and can be found in a subpial 

rim. However, axonal conduction of these spared axons is highly compromised (Nashmi & Fehlings, 2001; 

Radojicic et al., 2005).  

This initial injury does not stand as promising therapeutic target as it is often uncontrollable and 

unpredictable. Nevertheless, primary injury highly determines the patient's neurologic grade on admission 

and is therefore a strong prognostic indicator (Dumont et al., 2001). 

1.2.2 Secondary injury 

Secondary pathophysiological cellular and molecular events that occur after the initial injury further 

magnify the damage to the spinal cord leading to extensive tissue loss around the injury site and in a 
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rostro-caudal manner. Secondary injury was first described in 1911 by Allen, when he observed 

improvement of neurological function after fluid removal from the lesion site (Allen, 1911). 

Throughout this phase increase of the hemorrhagic area occurs. This expansion is characterized 

by the increase of petechial hemorrhages which progressively coalesce causing tissue ischemia and 

hypoxia. This leads to a disturbed supply of oxygen and nutrients to the damaged area and its 

surroundings resulting in immediate cellular death by necrosis and later on by apoptosis (Tator & 

Fehlings, 1991). Furthermore, the release of hemoglobin is highly toxic to CNS cells, catalyzing hydroxyl 

radicals production and lipid peroxidation (oxidative degradation of lipids), causing further injury to neural 

tissue (Gerzanich et al., 2009).  

During ischemia, reactive oxygen species (ROS) including superoxide, hydroxyl radicals, and nitric 

oxide (NO) are generated via multiple cellular pathways including, but to limited to nitric oxide synthases, 

Ca2+-mediated activation of phospholipases, and inflammatory cells (Bao et al., 2005; Jia et al., 2012). 

The CNS has limited antioxidant defense mechanisms as the brain and spinal cord exhibit low levels of 

catalase activity and only moderate levels of superoxide dismutase and glutathione peroxidase, Therefore, 

when oxidative stress exceeds the protective cellular antioxidant capacity, it causes oxidative damage to 

lipids, proteins, and nucleic acids ultimately resulting in cellular death (Christie et al., 2008; Mautes et 

al., 2000; Xu et al., 2005).   

In turn, hypoxia and consequential oxygen deprivation hampers the cellular energy metabolism 

leading to adenosine triphosphate (ATP) depletion which in turn compromises cellular structural and 

functional integrity, triggering multiple necrotic mechanisms including loss of cell membrane permeability, 

release of lysosomal contents, and activation of a variety of Ca2+-activated proteases including 

phospholipases, adenosine 5'-triphosphatases (ATPases), and endonucleases (Hagg & Oudega, 2006; 

Oudega, 2012). Furthermore, cells are driven towards anaerobic glycolysis, leading to lactic acidosis and 

consequential hindering of enzymatic function and deoxyribonucleic acid (DNA) damage.  

Moreover, the relative immune privileged status of the spinal cord is also compromised due to 

BSCB disruption, as a consequence of direct mechanical disruption of the vasculature, and increased 

vascular permeability of endothelial cells caused by inflammatory mediators tumor necrosis factor-α (TNF-

α) and interleukin-1β (IL-1β), allowing the infiltration of inflammatory cells. Permeability of the BSCB is 

further maintained up to two weeks post-injury by a number of vasoactive substances, such as ROS, NO, 

elastase, and histamines, that are released by glia and leukocytes (Donnelly & Popovich, 2008; Figley et 

al., 2014)  
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The immune response that follows SCI aims to remove damaged tissues and promote the healing 

responses of astrocytes through the release of pro-inflammatory cytokines, and is primarily mediated by 

resident microglia. Trauma to the spinal cord leads to sustained elevations of signaling molecules such 

as ATP, DNA, glutamate, growth factors and cytokines, that are released by injured neurons and glial 

cells, resulting in the activation of microglia and consequent release of signaling molecules such as TNF-

α, IL-1β, and IL-6, which act to recruit circulating leukocytes to the injury site (Donnelly & Popovich, 2008; 

Loane & Byrnes, 2010; Pineau & Lacroix, 2007; Zhou et al., 2014).While the number of microglial cells 

remains relatively stable soon after the injury until several weeks later, neutrophils accumulate until they 

reach a peak at 24 h post-injury and then decline, while the number of T-lymphocytes and macrophages 

increases, peaking at 7 days (d) post-injury (Neirinckx et al., 2014; Rowland et al., 2008; Zhang et al., 

2012).  

Neutrophils have been described to promote neurotoxicity due to the activity of matrix 

metalloproteinase-9, generation of ROS, and secretion of TNF-α (Nguyen et al., 2007). However, their 

exclusively deleterious role in SCI role as been questioned by recent studies (Ghasemlou et al., 2010; 

Kurimoto et al., 2013; Stirling et al., 2009). 

Neutrophil recruitment declines by 48 h and monocytes start to accumulate at the site of injury 

where they differentiate into macrophages. Several macrophage subsets have been identified, namely 

"classically activated" pro-inflammatory (M1) or "alternatively activated" anti-inflammatory (M2) 

macrophages (Kigerl et al., 2009). M1 macrophages produce pro-inflammatory cytokines such as TNF-

α, IL-1, and IL-6, as well as ROS, contributing to tissue inflammation and damage. Additionally, NO 

generated by NO synthase activity of macrophages induces neuronal apoptosis (Satake et al., 2000; 

Tzekou & Fehlings, 2014). Alternatively, M2 macrophages produce anti-inflammatory factors (IL-10, 

transforming growth factor-β; TGF-β) contributing to wound healing and tissue-remodeling (Kigerl et al., 

2009; Ren & Young, 2013). 

There is still much debate on whether T-lymphocytes promote injury or recovery after SCI. While 

Popovich et al. have shown that myelin-reactive T-lymphocytes are activated by SCI and contribute to 

neurodegeneration, reports by Kipnis et al. and more recently Raposo et al. have proposed that  these 

cells are able to mediate neuroprotection (Kipnis et al., 2002; Popovich & Jones, 2003; Raposo et al., 

2014). 

Overall, the inflammatory response following SCI paradoxically presents both detrimental and 

beneficial roles leading to the current view of inflammation as a "double-edged sword", where  
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inflammation may lead to enhanced damage and impaired regeneration, but also stands as a key 

regulator of tissue repair after injury (Cherry et al., 2014; Neirinckx et al., 2014). 

Secondary injury is also characterized by extensive cellular death occurring as a consequence of 

ionic imbalances and glutamate excitotoxicity. Due to the relevant role of these mechanisms in the present 

thesis, they are further detailed in section 1.5. 

1.2.3 From secondary injury to chronic phase 

The loss of neurons and glial cells, as well as the clearance of debris by microglia and 

macrophages, results in the formation of a cystic cavity in the spinal cord. 

Furthermore, cytokines and growth factors such as IL-1, TGF-β, neurotransmitters such as 

glutamate, and proteins such as fibrinogen activate astrocytes leading to changes in their morphology 

and molecular expression, which culminates with the formation of a glial scar (Cregg et al., 2014). Besides 

representing a physical barrier, the glial scar is responsible for the development of an inhibitory 

environment at the lesion site caused mainly by the production of molecules, including tenascin, 

semaphorin 3A, ephrins, and chondroitin sulphate proteoglycans, which inhibit axonal growth (Kawano 

et al., 2012; Rolls et al., 2009; Yiu & He, 2006). 

Nevertheless, the glial scar is also known to aid SCI repair. In fact, studies where astrogliosis was 

ablated lead to increased lesion volume and inflammation, as well as impaired functional recovery, and 

did not further promote axonal regeneration (Faulkner et al., 2004; Herrmann et al., 2008; Okada et al., 

2006). Reactive astrocytes can in fact promote glutamate uptake, free radical scavenging, promote  BSCB 

repair, limit the infiltration of inflammatory cells in healthy tissue, as well as release growth factors, 

therefore protecting the spinal cord from deleterious secondary events (Kawano et al., 2012).  

Additionally, the chronic phase is also characterized by anterograde axonal degeneration, a 

process known as Wallerian degeneration, and progressive loss of myelin sheaths, occurring up to 

extended periods of time (Hagg & Oudega, 2006). Keeping in mind that spared axons that cross the injury 

site are the only connection left between the brain and caudal spinal neurons, inefficient and 

compromised communication through these axons is a significant clinical issue (Oyinbo, 2011). 

Presently, several mechanisms involved in SCI pathophysiology have been identified and 

extensively studied (Figure 4). Despite this increasing knowledge the fact that these injury mechanisms 

are intrinsically intertwined and often have both beneficial and detrimental roles may be the reason why 
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there is still no effective treatment for SCI. Nevertheless, they also present an opportunity for injury 

modulation and therapeutic intervention.  

 

Figure 4. Schematic representation of the injured spinal cord. 
The major degenerative processes that occur following an injury are indicated. Reproduced from Hagg & 
Oudega, 2006. 

1.3 Management of spinal cord injury: current standard practice 

The twentieth century came to revolutionize the standard medical care provided to SCI patients, 

namely with the implantation of SCI units and increasing focus on the importance of rehabilitation 

(Donovan, 2007). Currently, medical approaches to SCI aim to at minimize the progression of the initial 

injury and prevent secondary injury.  

Patients that have suffered trauma to the spinal cord are usually immobilized during the pre-

hospital setting generally resorting to a cervical collar, head immobilization, and a spinal board. On the 

clinical onset, imaging techniques, such as X-rays, computed tomography (CT) scans, and magnetic 

resonance imaging (MRI), allow for a more accurate diagnosis (Stroman et al., 2014). Peri- and 

postoperative airway management, namely following cervical injury, as well as hemodynamics and 

cardiovascular control are essential to avoid neurological compromise, morbidity, and death following SCI 

and are presently standard care procedures (Furlan & Fehlings, 2008; Martin et al., 2015).  

Furthermore, spine stabilization and surgical decompression are performed. Decompression is 

associated with improved neurological outcomes when performed early (less than 24 h after injury), as 

supported by a recently conducted randomized multicenter trial, the Surgical Treatment of Acute Spinal 

Cord Injury Study. This study showed that  decompressive surgery within the first 24 h confers a 2.83 
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times higher chance of a 2-grade AIS improvement when compared to surgery performed after 24 h. 

Additionally, differences in complication rates were not detected (Fehlings et al., 2012). 

A limited number of pharmacological agents have been applied to human SCI patients including 

two corticosteroids (methylprednisolone and tirilazad mesylate), an opiate receptor antagonist (naloxone), 

and GM-1 ganglioside, However, and despite the fact that no clinical evidence exists to definitively 

recommend the use of any neuroprotective pharmacologic agents, methylprednisolone (MP) is still the 

most widely used drug therapy for acute SCI (Sharma, 2012).  

The benefits of MP in SCI treatment are mainly attributed to the inhibition of lipid peroxidation, 

through neutralization of free-radicals, maintenance of the BSCB, and immune-modulation (Yılmaz & 

Kaptanoğlu, 2015). The immunomodulatory role of MP is linked to its ability to reduce 

microglia/macrophage activation, as well as a reduction in pro-inflammatory cytokine (TNFα, IL-6, 

interferon-γ) release, and increased anti-inflammatory cytokine (IL-10) secretion (Bowes & Yip, 2014). 

Furthermore, patients receiving high-dose MP (bolus 30 mg/kg and 5.4 mg/kg per hour over 24 h, 

initiated within 8 h of injury), showed decreased intramedullary spinal cord hemorrhage (Leypold et al., 

2007). 

The use of MP as a therapeutic strategy for SCI followed the reports of Bracken et al. in the National 

Acute Spinal Cord Injury Study (NASCIS) I and II. The latter revealed that a high dose administration (30 

mg/kg), at time of admission and a 5.4 mg/kg/h infusion for the following 23 h, and within an 8 h range, 

lead to neurological improvements (light touch, pinprick sensation, and muscle strength) (Bracken et al., 

1984; 1990). NASCIS III in turn, revealed that patients treated with a MP bolus administration of 30 

mg/kg, followed by a 5.4 mg/kg/h infusion for a 48 h period showed improved motor recovery, namely 

when the first administration occurred between 3 and 8 h after SCI. However, increased adverse effects 

were also reported in this group, namely increased risk of severe sepsis, pneumonia and urinary tract 

infections (Bracken et al., 1997). The validity of these reports has been widely disputed, as well as the 

beneficial role of MP administration following SCI (Bydon et al., 2014; Markandaya et al., 2012; Miller, 

2008).  

In 2013 the American Association of Neurological Surgeons/Congress of Neurological Surgeons 

Guidelines for the Management of Acute Cervical Spine and Spinal Cord Injury issued a level 1 

recommendation that MP not be used due to its side effects (Hurlbert et al., 2013). Nevertheless, there 

are also contradictory voices that state the need to carefully evaluate the administration of MP, as recent 

studies showed for example synergistic effects of early decompression and MP administration in patients 

undergoing surgical decompression after cervical SCI  (Fehlings et al., 2014). 
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The systemic or local application of hypothermia has demonstrated to be neuroprotective after SCI, 

in both experimental and human studies, as it is able to mitigate several harmful effects caused by 

secondary injury (Cappuccino et al., 2010; Wang & Pearse, 2015). Therapeutic hypothermia drew 

significant clinical and general public notoriety as a treatment for SCI, following the recent report of an 

acute cervical spinal cord injury in a professional football player, Kevin Everett, who sustained a complete 

cervical SCI (AIS A) and received moderate systemic hypothermia for 36 h along with surgical 

decompression and MP administration, achieving rapid neurologic improvement that later translated into 

a neurological evaluation of AIS D (incomplete) (Cappuccino et al., 2010). 

Rehabilitation therapies have also shown to improve recovery of locomotor function both in animal 

models as well as in human studies, most likely due to the reorganization of neuronal circuits that have 

been spared by the lesion (Edgerton et al., 2006; Engesser-Cesar et al., 2005). In an effort to maximize 

functional recovery after SCI, several rehabilitation strategies have been developed in order to elicit 

residual function bellow injury, such as over-ground training, body weight supported treadmill training, 

robotic-assisted step training, and functional electrical stimulation, and they are now being assessed for 

their efficacy in promoting functional ambulation following SCI (Lam et al., 2007).  

SCI also increases the incidence of specific medical disorders such as neurogenic bladder, 

neuropathic pain, spasticity, and sexual dysfunction. However, progressively, this problems have been 

tackled and current therapies represent a huge increment in SCI patients’ lives (Cardenas et al., 2013; 

Nomura et al., 2002; Schmid et al., 2000; Taricco et al., 2006). 

1.4 Emerging therapeutic strategies for spinal cord injury  

Although SCI medical care as greatly evolved over the last few years, largely improving the chances 

of patients’ recovery, there is still no definitive therapeutic strategy to recover neurologic function.  

Treatment strategies for SCI are mainly focused on events that follow the initial trauma, either by 

promoting neuroprotection or enabling neuroregeneration. The first essentially aims to prevent cellular 

dysfunction and death caused by secondary injury decreasing the progressive extension of the lesion and 

damage to the spinal cord, while the latter mainly aims to promote axonal growth and plasticity. 

Several lines of strategies have been devised as possible therapies for SCI, ranging from cell 

transplantation, to pharmacological and combinatorial therapies, many of which showing valid potential 

in supporting spinal cord repair and thus standing as possible treatment strategies for SCI. 
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Several stem cells, such as neural stem cells, mesenchymal stem cells, embryonic stem cells, and 

induced pluripotent stem cells have been studied as possible therapeutic strategies in SCI. These cells 

are mainly characterized by self-renewal and the ability to differentiate in cells from different tissues. This 

last feature stands as an attractive feature in SCI as these cells can potentially be directed to differentiate 

into neurons or glia, replacing neural cells that are lost after injury, therefore supporting anatomical and 

functional recovery (Tewarie et al., 2009). Neuroprotective and axon regeneration-promoting effects have 

also been credited to transplanted stem cells through the secretion of growth factors and modulation of 

the inflammatory response (Baraniak & McDevitt, 2010). 

A landmark stem cell clinical trial, the first in the USA involving human embryonic-derived 

oligodendrocyte progenitor cells, began in 2010 and was carried by the Geron Corporation. The 

companies’ managing director, Thomas Okarma, enthusiastically stated that the trial represented “the 

dawn of a new era in medical therapeutics”. However, the Geron Corporation abruptly discontinued the 

study in November 2011 for financial reasons, largely disappointing the scientific community (Scott & 

Magnus, 2014). Recently however, their embryonic stem cells technology was acquired by Asterias 

Biotherapeutics. After a Phase I trial (source: clinicaltrial.gov; clinical trial identifier NCT01217008) met 

its primary endpoints of safety and feasibility, a Phase I/IIA clinical trial (NCT02302157) has been cleared 

by the Food and Drug Administration (FDA), holding promise for stem cell therapies in SCI recovery.  

Other cell types, such as olfactory ensheathing cells (OECs) and Schwann cells have also attracted 

the attention of investigators in the field. As the name suggests, OECs are glial cells that ensheath non-

myelinated olfactory axons and are responsible for growth and regeneration of olfactory axons throughout 

the life of adult mammals. They have received the attention of the media and general population after 

reports of a patient that suffered a traumatic transection of the spinal cord improved from ASIA A to ASIA 

C, following OECs transplantation (Tabakow et al., 2014).  

Schwann cells are also glial cells that are known for their roles in supporting nerve regeneration in 

the peripheral nervous system (Oudega & Xu, 2006). These cells are particularly interesting in SCI 

because of their ability to migrate to the injury site, express growth promoting factors, and myelinate 

regenerating axons. However, their ability to overcome the glial scar is limited revealing the need to 

develop combinatorial strategies, for example with biomaterials in order to maximize their regenerative 

potential (Assunção-Silva et al., 2015; Pêgo et al., 2012). In line with this thought, an interesting strategy 

is being developed by the company InVivo Therapeutics using both biomaterial scaffolds and neural stem 

cells with promising results obtained using a non-human primate model (Pritchard et al., 2010). The FDA 

has already approved a pilot study of clinical safety and feasibility of the scaffold (NCT02138110) and in 
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future trials the company plans to load the scaffold with neural stem cells in order to functionally bridge 

the injury site. 

A number of promising molecular and pharmacological therapies are currently under investigation 

for neuroprotective and neuroregenerative abilities in animal models of SCI. Furthermore, several of these 

therapeutic agents are already in, or close to, clinical trials.  

Pharmacological agents that aim to prevent secondary injury include, but are not limited to steroids 

(methylprednisolone, tirilazad mesylate), opiate blockers (naloxone), anti-inflammatory agents 

(indomethacin, ibuprofen), glutamate receptor antagonists (magnesium, MK-801), ion channel blockers 

(riluzole), apoptosis inhibitors (minocycline), cytokines (erythropoietin, granulocyte colony-stimulating 

factor), antioxidants/free radical scavengers (tirilazad mesylate, quercetin), and immune blockers 

(cyclosporine-A) (Kwon et al., 2011; Nagoshi & Fehlings, 2015; Priestley et al., 2012).  

Furthermore, several agents have also been studied in order to promote axonal regeneration which 

is necessary for re-establishing connectivity across the injury site, either by targeting myelin-associated 

inhibitory molecules (anti-Nogo antibody), by blockade of the Rho pathway (cethrin), stimulation of axonal 

growth (neurotrophic factors), or by degradation of chondroitin sulfate proteoglycan inhibitory molecules 

(chondroitinase ABC) (Silva et al., 2014). 

Albeit all the promising results of some of these therapies, when translated to a clinical context 

most of them have failed to prove their efficacy. Examples such as methylprednisolone and GM-1 

ganglioside, are a reminder that although some of these therapies may in fact have inadequate potency 

there is a growing need to improve the rigor and conduct of human trials to ensure that the true effects 

of treatment, positive and negative, are accurately detected and reported (Lammertse, 2013). 

Despite the increasing knowledge of important mechanisms regarding neuronal protection and 

regeneration, alongside the innumerous studies that have been, and are being performed, no gold 

standard therapy for SCI has yet been established and therefore identification of effective therapeutic 

interventions are urgently needed.  

1.5 Targeting excitotoxicity and ionic imbalances to protect the spinal cord 

Understanding the pathophysiology of SCI is the basis for the development of treatments for spinal 

cord repair. Excitotoxicity and ionic dysregulation are closely related processes that immediately follow 

SCI contributing to extensive neuronal damage and loss. Pharmacological protection of the spinal cord 

against these deleterious events is the main focus of this thesis, and therefore this section will center on 
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these mechanisms and how they individually and collectively contribute to SCI providing the rational for 

the use of riluzole and magnesium as therapeutic strategies. 

The term ‘excitotoxicity’ was coined by Olney in 1969,  when he observed that subcutaneous 

injection of monosodium glutamate lead to neuronal death, and refers to postsynaptic neuronal death 

produced by over-activation of glutamate receptors (Olney, 1969). Physiologically, the concentration of 

glutamate in the synaptic cleft is tightly regulated.  Removal of glutamate mainly occurs by sodium (Na+) 

dependent excitatory amino acid (EAA) transporters (EAAT), present in both neurons and glial cells, which 

maintain the extracellular concentration below toxic levels. In the spinal cord, the astrocyte glutamate 

transporter EAAT2 (glutamate transporter GLT-1 in rodents), is responsible for a significant percentage 

of extracellular glutamate functional uptake (Lepore et al., 2011; Shigeri et al., 2004). 

Glutamate acts on specific postsynaptic receptors including ionotropic N-methyl-D-aspartate 

(NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, as well as 

metabotropic glutamate receptors. Ionotropic receptors act as ion channels (permeable to Na+, 

potassium; K+, and varying permeability to Ca2+), while metabotropic receptors are G protein-coupled and 

act through signal transduction cascades (Stys & Lipton, 2007). Ionotropic receptors are further divided 

in NMDA and non NMDA-receptors, such as AMPA and kainate receptors, according to their affinity to 

the synthetic glutamic acid analogue N-methyl-D-aspartic acid. Non-NMDA receptors are not voltage 

dependent and are highly permeable to Na+ (Shigeri et al., 2004). NMDA receptors (NMDARs), which are 

characterized by their voltage dependence and high permeability to Ca2+, have gained particular interest 

in SCI pathology, due to their preponderant role in Ca2+-mediated excitotoxicity  (Park et al., 2004).  

NMDARs form a heterotetramer assembled by combination of two GluN1 subunits with two 

GluN2A-D or GluN3A-B subunits. These receptors require dual agonists, glutamate and glycine, for 

activation, and are blocked by physiological levels of magnesium (Mg2+) in a voltage dependent manner. 

The sensitivity to the Mg2+ block as well as Ca2+ permeability depends on the subunit constitution, with 

subunit GluN2A and GluN2B, mainly present in neurons being highly sensitive to magnesium block and 

Ca2+ permeability, while the subunits GluN2C, GluN2D and GluN3, mainly present in oligodendrocytes and 

astrocytes having lower sensitivity to the magnesium block and Ca2+ permeability (Paoletti et al., 2013). 

Subunit diversity also provides distinct pharmacological properties to NMDARs, enabling the development 

of specific antagonists and selective modulation of these receptors. Toxic levels of glutamate are reached 

within 15 min after SCI in rats at local and regional tissue surrounding the injury epicenter (McAdoo et 

al., 1999). The disruption of cellular membranes following SCI causes an acute burst of EAA, namely 

glutamate, the main excitatory neurotransmitter of the CNS (Liu et al., 1991; McAdoo et al., 1999) 
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Glutamate accumulation also occurs due to the reversal of Na+-dependent glutamate transporters leading 

to synaptic glutamate release (Li et al., 1999; Li & Stys, 2001) Oxidative stress is also known to impair 

glutamate uptake contributing also to extracellular glutamate accumulation (Barger et al., 2007). 

Furthermore, activated microglial cells are also known to release glutamate. In neurons, Ca2+-dependent 

postsynaptic exocytosis also leads to release of glutamate. All of these mechanisms serve as self-

amplifying glutamatergic loops. Excessive activation of NMDARs due to increased extracellular glutamate 

accumulation plays a significant role in Ca2+-mediated excitotoxicity (Cao & Dong, 2013; Matute et al., 

2007). Pathological increases in intracellular Na+ and Ca2+ concentrations lead to excitotoxic cellular death, 

via the activation of protein kinases, phospholipases, proteases, mitochondrial dysfunction, production of 

ROS, intracellular acidosis, edema, and cell lyses (Dong et al., 2009; Dumont et al., 2001; Matute et al., 

2006; Oyinbo, 2011). Additionally, the recent studies by Salter and Micu et al. reported that NMDAR are 

expressed in developing oligodendrocytes processes as well as in myelin sheaths, providing compelling 

evidence for the involvement of these receptors in white matter injury (Micu et al., 2006; Salter & Fern, 

2005).  

 However, it is now known that NMDARs may also play an important role in supporting neuronal 

survival. Furthermore, this protective role of NMDAR activity has been proposed as a reason for the failure 

of several clinical trials which evaluated NMDAR antagonists as potential neuroprotective drugs. NMDAR 

location (synaptic or extrasynaptic) and subtype composition have been suggested as two factors that 

may indicate its pro-survival or pro-excitotoxic profile (Besancon et al., 2008; Hetman & Kharebava, 

2006).  

Tightly related to excitotoxic events, severe ionic imbalances also occur after SCI. Intracellular 

concentrations of Na+, Ca2+ increase, while K+ and Mg2+ levels severely decrease (LoPachin et al., 1999). 

Ionic imbalances mainly occur due to widespread shearing and destruction of cellular membranes 

occurring at the injury site, alongside energetic depletion and consequential energy-dependent electrolytic 

transport failure. The outcome of this deregulation is dysfunction and inappropriate propagation of action 

potentials along damaged axons. In particular, intracellular accumulation of Na+ has several deleterious 

effects, in which voltage-gated Na+ channels (VGSC) play a pivotal role. The characteristics and function 

of these channels were unraveled by work developed by Hodgkin and Huxley (Hodgkin & Huxley, 1952). 

Physiologically, VGSC mediate membrane depolarization and are responsible for propagating action 

potentials along the axonal membrane. These channels are heteromeric assemblies of one α subunit 

(Nav1.1 through Nav1.9) and one or more β subunits. Only five of these isoforms are expressed in the 

CNS, namely Nav1.1, Nav1.2, Nav1.3, and Nav1.6. While expression of the α subunit alone is sufficient to 
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produce a functional channel, β subunits are responsible for most channel functions such as voltage 

sensing, gating, ion permeation, and inactivation (Theile & Cummins, 2011). Additionally, the α subunit 

expresses six distinct neurotoxin-binding sites that when activated can lead to either pore occlusion and 

concomitant inhibition of Na+ conductance, or modification of gating leading to altered gating kinetics and 

voltage-dependence of these channels (Caldwell et al., 2000; Stevens et al., 2011).  

Following trauma, such as SCI, persistent activation of VGSC occurs due to neuronal membrane 

dysfunction, resulting in an increase of intracellular Na+ concentration ([Na+]i) (Stirling & Stys, 2010). 

Alongside, the activity of Na+/K+ pumps is compromised due to energetic deficits, leading to a cutback in 

Na+ efflux. Several pathological effects occur as a consequence of pathological [Na+]i, such as cytotoxic 

edema and increased acidosis (via the Na+/H+ exchanger). Furthermore, increased [Na+]i is known to 

promote Ca2+-mediated cellular death. This occurs mainly due to the reverse operation of Na+/Ca2+ 

exchangers, causing Ca2+ to be pumped in and Na+ extruded, as well as activation of voltage-dependent 

Ca2+ channels (Agrawal & Fehlings, 1996; Ates et al., 2007; Hains et al., 2004; Rosenberg et al., 1999; 

Schwartz & Fehlings, 2001). Calcium overload in turn leads to mitochondrial damage, activation of Ca2+-

dependent cell death proteases (such as caspases), as well as formation of free radicals, resulting in 

apoptotic cell death of neurons. Additionally, membrane depolarization leads to glutamate release, 

through the reversal of Na+-dependent glutamate transporters and vesicular glutamate release and further 

contributes to excitotoxicity (Li & Stys, 2001; Stys, 2005). In white matter, high intracellular Ca2+ levels 

result in the activation of ubiquitous proteases, specifically calpains, which contribute to 

neurodegeneration and compromised axonal integrity through cytoskeletal degradation of neurofilaments, 

as well as microtubule associated protein 2 (MAP2).   

Experimental evidences concerning the role of Na+ channels in secondary injury arose mainly 

from studies in which the use of Na+ channel blockers, such as tetrodotoxin (TTX), a potent neurotoxin, 

lead to reduced apoptotic neuronal death, while the application of veratridine, a voltage gated Na+ channel 

activator, induced neuronal apoptosis and caspase-3 activation (Banasiak et al., 2004; Stys et al., 1992). 

Furthermore, recent studies have found that voltage-gated Na+ channels are also present on 

immune cells and that these channels contribute to the activation and phagocytic function of microglia 

and macrophages raising the possibility that Na+ channel blockade may attenuate the inflammatory 

response (Jung et al., 2013; Pappalardo et al., 2014). 

In SCI both ionic imbalances and glutamate excitotoxicity significantly contribute to the secondary 

injury (Figure 5). However, pharmacological treatments, if applied early, may interrupt or modulate this 

injurious cascade of events and consequentially improve tissue preservation and neurological outcome 
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following SCI. In this thesis we will focus on two promising neuroprotective agents that can attenuate 

secondary pathophysiology and reduce functional deficits, namely, the Na+ channel blocker riluzole, as 

well as the NMDA receptor antagonist magnesium. 

 

 
 
 

 

 

 

 

 

 

 

Figure 5. Representation of neuronal injury following ionic imbalances and excitotoxicity. 
Neuronal ionic balance is disrupted following the primary injury and the intracellular Na+ concentration 
increases as a result of trauma-induced activation of voltage-sensitive Na+ channels promoting 
concomitant influx of Ca2+ ions. The excessive influx of Na+ and Ca2+ triggers pathologic extracellular release 
of excitatory neurotransmitter glutamate. In the postsynaptic neuron, sodium and calcium influx through 
NMDAR leads to cellular death and axonal edema. Adapted from (Fehlings et al., 2015). 

1.5.1 Riluzole 

Riluzole (2-amino-6-trifluoromethoxybenzothiazole) is a Na+ channel blocker agent approved in 

1995 by the FDA for the treatment of Amyotrophic Lateral Sclerosis (ALS), a progressive 

neurodegenerative disorder characterized by motor neuron and corticospinal tract degeneration (Miller et 

al., 2012). The analysis of four placebo-controlled, randomized trials, has concluded that the 

administration of 100 mg daily is safe and improves overall survival of ALS patients in two or three months 

(Miller et al., 2012). Because neurological dysfunction due to loss of spinal motor neurons and axonal 

degeneration are also common in SCI, numerous preclinical studies used riluzole to demonstrate that its 

administration following injury improved both functional and histological outcomes in injured animals.   

As previously stated, neuronal ionic balance is disrupted after SCI giving rise to an increase in 

intracellular Na+ concentration, resulting from constitutively activation of VGSC. This accumulation is 

further amplified due to dysfunction of membrane-bound Na+/K+ pump. Downstream effects of Na+ 
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deregulation include cytotoxic edema, acidosis, and Ca2+-dependent cellular death. Riluzole exerts 

neuroprotection in SCI via blocking of persistent Na+ currents, as it specifically blocks inactivated Na+ 

channels thus preventing the above stated pathological processes (Table II). Furthermore, the Na+ channel 

blockade may also reduce energetic demands, for example through the reduction of Na+/K+ pump, 

resulting in an improved resistance of cells (Theiss et al., 2007; Urbani & Belluzzi, 2000; Wahl & 

Stutzmann, 1999). Riluzole has also an important role as an anti-glutamatergic agent, through inhibition 

Ca2+-dependent release of glutamate from presynaptic terminals as well as promotion of glutamate 

reuptake (Fumagalli et al., 2008; Wang et al., 2004). Additionally, riluzole is thought to preserve spinal 

cord white matter by preventing the disruption of the axonal Na+/H+ exchanger system (Nagoshi & 

Fehlings, 2015). 

 

Table II. Mechanism of action for riluzole in preventing secondary injury following SCI. 
Adapted from Wilson & Fehlings, 2014. 

 

PRIMARY MECHANISM SECONDARY EVENTS END RESULT 

Blockade of continuous 
posttraumatic 

activation of neuronal voltage 
gated 

Na+ channels 

Prevents increase in neuronal 
cytosolic Na+ concentrations Prevents development of 

neuronal acidosis and 
swelling Prevents excessive neuronal entry 

of H+ through Na+/H+ exchanger 

Prevents excessive neuronal entry 
of Ca2+ through Na+/Ca2+ 

exchanger 

Prevents Ca2+-induced release 
of glutamate and excitotoxicity 

 

Neuroprotection is also thought to be exerted by riluzole resulting from its ability to stimulate 

astrocyte expression of several neurotrophic factors, such as nerve growth factor (NGF), brain-

derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) (Mizuta et al., 2001). 

Additionally, increased levels of BDNF and TGF-1β have also been detected in the serum of Huntington’s 

patients treated with riluzole (Squitieri et al., 2009). 

 When reviewing the preclinical evidence published using riluzole in traumatic models of SCI 

(Table III), we find that although all eleven studies were performed using rats as animal models, several 

strains were used (Wistar, Long-Evans, and Sprague-Dawley) in a variety of thoracic and cervical injuries, 

including weight drop, clip compression, and balloon compression. Riluzole was most commonly 

administered intraperitoneally in doses ranging from 5 to 8 mg/kg, with higher doses associated with 

lethargy and locomotor ataxia as side effects. Therapeutic neuroprotective efficacy was achieved up to a 
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clinical relevant time of 4 h post-injury. Behavioral outcomes included improved Basso, Beattie and 

Bresnahan (BBB) locomotor scores, greater inclined plane angles, as well as beam balance and rotarod 

scores, while non-behavioral outcomes included increased tissue sparing, reduced MAP2 loss, decreased 

lipid peroxidation, capillary fragmentation, apoptosis, and inflammation, as well as improved 

electrophysiological recordings. 

 Only the study performed by Mu et al. (2000b) reported the absence of improved behavioral and 

non-behavioral outcomes when riluzole was administered alone. However, when combined with 

methylprednisolone, both motor and histological outcome was improved. 

The study of Kitzman et al. employed a transection model and riluzole administration was 

performed 4 weeks post-injury (chronic phase). However, this was to examine the effect on established 

tail spasticity and not acute local tissue protection or locomotor behavior.  

Based on these preclinical evidences the administration of riluzole following SCI naturally 

progressed on to clinical trials. A Phase I safety trial of riluzole in acute cervical SCI, Riluzole in Spinal 

Cord Injury Study, in which thirty-six patients with ASIA grades A-C were enrolled (28 cervical and 8 

thoracic), has already established the absence of serious adverse effects and that the administration of 

riluzole (within 12 h of injury, 50 mg every 12 h for 28 doses) may have a beneficial effect in motor 

outcome, particularly for cervical SCI patients (NCT00876889) (Grossman et al., 2014). Furthermore, 

clinical pharmacokinetics of riluzole in patients with SCI was also studied revealing that the peak 

concentration (Cmax) and the 12-h area under the plasma concentration curve (AUC)(0–12h) achieved in SCI 

patients were lower than those in ALS patients (on the same dose basis) due to a higher clearance and 

larger volume of distribution in SCI patients. Furthermore, SCI patients presented large interpatient 

variability in plasma concentration and an increase in the clearance and distribution of riluzole between 

the 3rd and 14th day after SCI, with a lower plasma concentration of riluzole on the 14th day, stressing 

the importance of monitoring changes in drug metabolism after SCI (Chow et al., 2012). 

On the basis of these results, a multi-center, randomized, placebo controlled, double-blinded, 

Phase IIB/III trial of efficacy and safety of riluzole is currently recruiting (NCT01597518) (Fehlings et al., 

2015). 

 

 

 

 



 

25 

 

Table III. Summary of in vivo studies performed in animal models of traumatic SCI using systemically 
administered riluzole. 
 
 

PUBLICATION ANIMAL & INJURY 
MODEL 

DOSE, ROUTE & 
FREQUENCY 

MAIN OUTCOMES 

Stutzmann Neuroreport, 
1996(Stutzmann et al., 
1996) 

 

Male Wistar rats 

T10-T12 
compression 
(Fogarty catheter) 

2 mg/kg IV, 30 min PI 
and then twice daily for 
10 d 

Non-behavioral: Decreased damage to grey and white 
matter recovery of SSEPs (amplitude, duration and 
latency 

Behavioral: Animals were able to use their paws to sit 
upright 

Springer J Neurochem, 
1997(Springer et al., 
1997) 

Rats (sex and 
strain not 
specified) 

T10 impactor 

8 mg/kg IP, 15 min 
prior  to injury and 2 h 
PI 

Non-behavioral: Reduced loss of MAP2 

Behavioral: Not reported 

Mu J Neurotrauma, 
2000(Mu et al., 2000a) 

Female Long-
Evans rats 

T10 impactor 

8 mg/kg IP, 2 and 4 h 
PI and then daily for 7 
d 

Non-behavioral: riluzole alone did not improve spinal 
cord cavitation. Improvement was only achieved in 
combination with MP (30 mg/kg) 

Behavioral: Only the combination of riluzole and MP 
resulted in improved locomotor scores (BBB scale)  

Mu Brain Res, 2000(Mu et 
al., 2000b) 

Female Long-
Evans rats 

T10 impactor 

8 mg/kg IP, 15 min 
and 2 h PI 

Non-behavioral: Five measures of oxidative stress 
were used (mitochondrial function; ROS levels; 
thiobarbituric acid reactive product levels; glutamate 
and glucose levels). Riluzole improved mitochondrial 
function and enhanced glucose uptake. Riluzole and 
MP (30 mg/kg) combined treatment improved all five 
measures of oxidative stress 

Behavioral: not reported 

Schwartz J Neurosurg, 
2001(Schwartz & 
Fehlings, 2001) 

Female Wistar rats 

C7-T1 clip 
compression 

5 mg/kg IP,  0 h PI* Non-behavioral: Counts of red nuclei neurons were 
significantly increased in the riluzole-treated group as 
well as reduced cavitation 

Behavioral: Improved BBB scores and inclined plane 
testing (greater inclined plane angles)  

McAddo Brain Res, 
2005(McAdoo et al., 
2005) 

Male Sprague-
Dawley rats 

T9-T10 impactor 

2 mM via microdialysis 
fiber, 0 h PI* 

Non-behavioral: Riluzole did not decrease trauma-
induced glutamate release following SCI 

Behavioral: Not reported 

Ates J Clin Neurosci, 
2007(Ates et al., 2007) 

Male Wistar albino 
rats 

T7-T10 weight 
drop contusion 

8 mg/kg IP, 0 h PI* Non-behavioral: Increased white and gray matter 
sparing as well as smaller lesion areas. Lower MDA 
levels and spinal cord edema were also reported 

Behavioral: Improved motor function scores and 
higher inclined plane angles were achieved 
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Kitzman Neurosci Lett, 
2009(Kitzman, 2009) 

Female Sprague-
Dawley rats 

S2 transection 

8 mg/kg IP, 4 w PI and 
then daily for 3 d; 

10 mg/kg IP, 4 w PI 
and then daily for 3 d 

Non-behavioral: Not reported 

Behavioral: 8 mg/kg administration resulted in 
diminished tail spasticity (1 and 3 h post-
administration). 10 mg/kg administration also 
resulted in diminished tail spasticity but also resulted 
in lethargy and locomotor ataxia in two of three 
animals 

Simard Exp Neurol, 
2012(Simard et al., 2012) 

Female Long-
Evans rats 

C7 weight drop 
hemicontusion 

2.5 mg/kg IP, 2 min 
PI; 

2.5 mg/kg IP, 3 h PI 
and then twice daily for 
7 d* 

Non-behavioral: Riluzole (2.5 mg/kg, 2 min PI) 
reduced capillary fragmentation, neuronal death and 
progressive haemorrhagic necrosis 

Behavioral: BBB scores revealed that riluzole 
treatment improved motor function   

Wu J Neurotrauma, 
2013(Wu et al., 2013) 

Female Wistar rats 

C7-T1 clip 
compression 

8 mg/kg IP, 1 h PI and 
then 6mg/kg every 12 
h for 7 d; 

8 mg/kg IP, 3 h PI and 
then 6 mg/kg every 12 
h for 7 d 

Non-behavioral: Delayed administration of riluzole (1 
and 3 h PI) preserved axonal integrity and function, 
lead to tissue preservation, reduced inflammation 
and apoptosis 

Behavioral: Riluzole administration improved 
locomotor and sensory-motor function. Mechanical 
allodynia was not increased 

Hosier J. Neurotrauma, 
2014(Hosier et al., 2015) 

Female Long-

Evans rats 

C7 weight drop 
hemicontusion 

5 mg/kg IP, 4 h PI and 
then twice daily for 7 
d*  

Non-behavioral: Riluzole treatment lead to decreased 
lesion volumes and concomitantly increased spared 
tissue. 
 
Behavioral: Overall motor function was increased by 
riluzole treatment as assessed by improved BBB 
scores, as well as beam balance and rotarod scores 

T = thoracic vertebra; C = cervical vertebra; S = sacral vertebra; mg= milligram; g = gram; kg = kilogram; 
mm = millimeter; mM = millimolar;  min = minute; h = hour; d = day; w = week; IV = intravenous; IP = 
intraperitoneal; PI = post-injury; SSEPs = somatosensory evoked potentials; MAP2 = microtubule 
associated protein 2; MP = methylprednisolone; ROS = reactive oxygen species;  BBB = Basso, Beattie 
and Bresnahan locomotor test; MDA = malondialdehyde  

* Authors compare other neuroprotective agents (see reference for details) 

1.5.2 Magnesium chloride 

Intravenously administered Mg2+ has been extensively investigated as a neuroprotective agent 

namely in preclinical studies of TBI and stroke. Furthermore, it has already been evaluated in clinical 

trials revealing no significant adverse events, although no consistent beneficial effects have been reported 

(Saver et al., 2015; Temkin et al., 2007).   

Excessive release of glutamate occurs following SCI causing overstimulation of the postsynaptic 

NMDA receptors and resulting in excitotoxic neuronal death. During normal physiological processes, Mg2+ 

is a noncompetitive inhibitor of the NMDA receptors. However, following SCI Mg2+ depletion occurs (Lemke 

et al., 1987; Vink et al., 1989). Moreover, the decrease in  Mg2+ is correlated with increased neurologic 
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deficits (Stippler et al., 2007). Magnesium administration therefore allows for replacement of depleted 

levels occurring after injury.  

The systematic review of Mg2+ in acute traumatic models of SCI resulted in thirteen studies (table 

IV). While most studies employed Wistar and Sprague-Dawley rats as animal models, Ozdemir et al. used 

a rabbit model. Almost all studies used a thoracic injury model with the exception of Lee et al. in which a 

cervical model was used. Cord injury was generally achieved with weight drop or clip compression. 

Systemic administration of magnesium was most commonly administered intraperitoneally and 

intravenously in doses ranging from 100 to 600 mg/kg. However, these dosages exceed human 

tolerability (300-600 mg/kg). Ditor, as well as Kwon et al. were able to surpass this limitation by 

combining magnesium in a polyethylene glycol (PEG) formulation, a widely used excipient that has also 

shown some degree of neuroprotection in experimental SCI models.  

Therapeutic neuroprotective efficacy of both behavioral and non-behavioral outcomes was 

achieved up to a clinical relevant time of 8 h post-injury. A delay of 24 h, and to a lesser extent 48 h, 

achieved non-behavioral improvement, which was not translated to functional recovery.  

Behavioral outcomes revealed improvements on incline plane testing, as well as increased Tarlov 

and BBB scores, and reduced mechanical allodynia. However, the studies performed by Lee and Muradov 

et al. reported no relevant functional recovery after Mg2+ treatment, only ascribing histological sparing to 

the treatment.  

Non-behavioral outcomes included increased protection of vascular function, improved tissue 

sparing and electrophysiological recordings, reduced apoptosis, lipid peroxidation and neutrophil 

infiltration, and restoration of BSCB integrity. 

Once again, and similarly to riluzole, the strong preclinical evidence towards increased functional 

and histological recovery lead this treatment to clinical trials in SCI. Currently,  a proprietary form of Mg2+ 

with PEG (AC105) has been approved for a Phase II double-blinded, randomized, placebo-controlled 

clinical trial (NCT01750684), to determine the safety, tolerability, and pharmacokinetics of the drug in 

patients that have sustained SCI (Nagoshi & Fehlings, 2015). 
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Table IV. Summary of in vivo studies performed in animal models of traumatic SCI using systemically 
administered magnesium. 

 

PUBLICATION ANIMAL & 
INJURY MODEL 

DOSE, ROUTE & 
FREQUENCY 

MAIN OUTCOMES 

Suzer Spinal Cord, 1999(Suzer 
et al., 1999) 

 

Male albino rats 

T9 aneurysm 
clip compression 

(50 g x 30 s) 

300 mg/kg MgSO4 

SC, 1 h PI; 

600 mg/kg MgSO4 
SC, 1 h PI 

Non-behavioral: High-dose magnesium improved the 
amplitudes of SSEPs and decreased MDA levels 

Behavioral: Not reported 

Kaptanoglu J Clin Neurosci, 
2003(Kaptanoglu, Beskonakli, 
Okutan, et al., 2003) 

Female Sprague-
Dawley rats 

T7-T8 weight 
drop contusion 
(50 g x cm) 

100 mg/kg MgSO4 

IP, 0 h PI; 

600 mg/kg MgSO4 

IP, 0 h PI 

Non-behavioral: High-dose magnesium preserved 
spinal cord ultrastructure (electron microscopic 
evaluation of edema, nucleus damage, axonal and 
vascular changes) 

Behavioral: Better results in inclined plane, Tarlov and 
BBB tests were achieved by the high-dose treated 
group 

Kaptanoglu Neurosurg Rev, 
2003(Kaptanoglu, Beskonakli, 
Solaroglu, et al., 2003) 

Female Sprague-
Dawley rats 

T8 weight drop 
contusion 

(50 g x cm) 

600 mg/kg MgSO4 

IP, 0 h PI 
Non-behavioral: MgSO4 protected the blood-spinal cord 
barrier at 2 and 24 h after SCI 

Behavioral: Locomotor function improved according to 
inclined plane testing, BBB and Tarlov scale scores 

Ozdemir Magnes Res, 
2005(Ozdemir et al., 2005) 

New Zealand 
rabbits 

Injury model not 
reported 

100 mg/kg MgSO4 
IV, 5 min PI 

Non-behavioral: Treatment normalized lactate levels 
and  significantly decreased MDA levels 

Behavioral: Not reported 

Solaroglu Surg Neurol, 
2005(Solaroglu et al., 2005) 

Female Wistar 
rats 

T8 weight drop 
contusion 

(40 g x cm) 

600 mg/kg MgSO4 

IP, 0 h PI* 
Non-behavioral: MgSO4 treatment decreased caspase-3 
activity 

Behavioral: Not reported 

Gok Chin J Physiol, 2007(Gok et 
al., 2007) 

Female Wistar 
rats 

T7-T9 weight 
drop contusion 
(40 g x cm) 

600 mg/kg MgSO4 
IP, 0 h PI* 

Non-behavioral: MgSO4 treatment decreased neutrophil 
infiltration 

Behavioral: Improvement of early functional scores of 
inclined plane testing 
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Ditor J Neurosci Res, 2007(Ditor 
et al., 2007) 

Male Wistar rats 

T4 clip 
compression 

(50 g x 1 min ) 

 

300 mg/kg MgSO4 
IV, 15 min PI  and 
then 6 h PI; 

300 mg/kg MgSO4 

in PEG IV, 15 min 
PI  and then 6 h PI* 

 

Non-behavioral: The combination of PEG and MgSO4 
resulted in a significant reduction in lesion volume. 
Dorsal compact myelin sparing was also improved 
with MgSO4 in PEG and MgSO4 alone 

Behavioral: MgSO4 and the combination of MgSO4 in 
PEG reduced mechanical allodynia and provided 
significantly better locomotor recovery, although the 
latter added no benefit when compared with MgSO4 

administration alone. None of the treatments 
improved autonomic dysreflexia 

Wiseman J Neurosurg Spine, 
2009(Wiseman et al., 2009) 

Female Sprague-
Dawley rats 

T9-T10 NYU 
impactor (10 g x 
25 mm: severe) 

(10 g x 12.5 
mm: moderate) 

 

600 mg/kg MgSO4 

IP, 10 min PI or 8, 
12, 24 h PI* 

Non-behavioral: Histological analysis of animals that 
suffered severe injury  indicated that MgSO4 increased 
white matter sparing 

Behavioral: For the severe injury the mean scores of 
BBB were significantly better for the MgSO4-treated 

group. Severe autophagy was reported in 15% of 
MgSO4-treated animals. For the moderate injury the 
BBB scores were significantly improved at 8, but not 
12 or 24 h PI 

Kwon J Neurotrauma, 
2009(Kwon et al., 2009) 

Female Sprague-
Dawley rats 

T10 IH impactor 

(150 kdyn) 

60 mg/kg MgSO4 or 
60 mg/kg MgSO4 in 
PEG IV, 15 min and 
6 h PI; 

127 µmol/kg  or 
254 µmol/kg MgCl2 
in PEG  IV, 2 h PI 
and then 1,3, or 5 
infusions 6 or 8 h 
apart; 

190 µmol/kg MgCl2 
in PEG IV, 15 min, 
2, 4, or 8 h PI  and 
then 4 infusions 8 h 
apart* 

Non-behavioral: 60 mg/kg MgSO4 in PEG significantly 
decreased lesion volumes. Different magnesium salts 
(MgSO4 vs. MgCl2) provided similar neuroprotective 
effects. 254 µmol/kg MgCl2 in PEG conferred 
increased neuroprotection when compared to 127 
µmol/kg. Animals treated with 3 and 5 infusions 127 
µmol/kg MgCl2 presented reduced lesion volume. Both 
6 and 8 h interval between infusions significantly 
reduced lesion volumes. 190 µmol/kg MgCl2 in PEG 
decreased lesion volumes with 5 infusions (with a 
delay up to 8 h PI) 

Behavioral: 60 mg/kg MgSO4 in PEG improved 
locomotor scores (BBB scale with 12-point Fergusson 
transformation). When comparing different 
magnesium salts MgCl2 provided earlier locomotor 
recovery. 254 µmol/kg MgCl2 in PEG conferred 
significantly increased locomotor recovery when 
compared to 127 µmol/kg. Animals treated with 3 
and 5 infusions 127 µmol/kg MgCl2 had better motor 
recovery. Shorter time infusions (6 h) provided 
significantly improved locomotor recovery. 190 
µmol/kg MgCl2 in PEG significantly improved 
locomotor scores with 5 infusions (with a delay up to 
4 h PI) 

Lee Spine, 2010(Lee et al., 
2010) 

Male Sprague-
Dawley rats 

C4-C5 OSU 
impactor 
hemicontusion 

(200 kdyn) 

190 µmol/kg MgCl2 
in PEG IV, 2 h PI 
and 5 subsequent 
infusions 6 h apart 

Non-behavioral: Treatment provided significantly 
higher cumulative white matter sparing. Grey matter 
sparing was also increased 

Behavioral: The horizontal ladder test revealed that 
MgCl2 in PEG-treatment was associated with 
significantly less forelimb errors. Cylinder Rearing Test 
and Catwalk Gait Analysis revealed no significant 
difference between the treated animals. There were 
also no significant differences in the force or latency 
to forepaw withdrawal (sensory testing) 
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Muradov J 
Neurotrauma,2013(Muradov & 
Hagg, 2013) 

Female Sprague-
Dawley rats 

T9 IH impactor 

(150 kdyn) 

760 µmol/kg/day 
MgCl2 continuous IV, 
0 h PI  and for 24, 
48 h and 7 d 

Non-behavioral: 24 and 48 h MgCl2 treatment 
increased microvascular perfusion without increasing 
hemorrhage following SCI, although the effect is lesser 
at 48 h. White matter sparing, oligodendrocyte 
survival and microvessel quantity is not affected by 
the 7 d treatment 

Behavioral: No improvement in locomotor function 
was verified when assessed with the BBB locomotor 
scale and gridwalk test.  

Sencer T J Neurotrauma, 
2013(Sencer et al., 2013) 

Male Sprague-
Dawley rats 

T9 clip 
compression 

(110 g x 30 s) 

100 mg/kg MgSO4 
IP, 0 h PI and then 
daily for 5 d* 

Non-behavioral: MgSO4 treatment reduced the number 
of inflammatory cells, necrosis and apoptosis 

Behavioral: Inclined plane testing revealed increased 
functional recovery. However, Tarlov motor grading 
scale revealed no differences in locomotor recovery 

Farsi Acta Medica Iranica, 
2014(Farsi et al., 2015) 

Male rats 

T9 clip 

compression 

(60 s) 

600 mg/kg MgSO4 
IP, 30  min PI*  

Non-behavioral: Not reported 

Behavioral: Improvement of locomotor function 
(increased BBB scores) was achieved with 
magnesium treatment alone and in combination with 
MP (30 mg/kg), as well as decreased thermal 
hyperalgesia and cold allodynia 

MgSO4 = magnesium sulfate; MgCl2 = magnesium chloride; PEG = polyethylene glycol; T = thoracic 
vertebra; C = cervical vertebra; IV = intravenous; µmol = micromole; mg= milligram; g = gram; kg = 
kilogram; mm = millimeter; cm = centimeter; s = second; min = minute; h = hour; d = day; w = week;  
IP = intraperitoneal; SC = subcutaneous; PI = post-injury; kdyn = kilodyne; SSEPs = somatosensory 
evoked potentials; MDA = malondialdehyde; MP = Methylprednisolone; BBB = Basso, Beattie and 
Bresnahan locomotor test 

* Authors compare other neuroprotective agents (see reference for details). 
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2. AIMS  

Trauma to the spinal cord is a major cause of disability worldwide. In a clinical context, stabilization 

and decompressing surgical procedures combined with the administration of pharmacological agents 

such as methylprednisolone are currently the main therapeutic approaches to SCI. However, the clinical 

outcomes upon methylprednisolone therapy are low and shaded by the controversial side effects.  

The use of pharmacological drugs to modulate secondary events in SCI such as ionic imbalances 

and excitotoxicity play an essential role in promoting neuroprotection. For instance, riluzole promotes 

neuroprotection by inhibition of Na+ voltage-sensitive channels and regulation of glutamate release and 

uptake. Magnesium in turn protects against excitotoxic cell death, through inhibition of NMDA receptors. 

Furthermore, both drugs have been extensively studied and shown efficacy in preclinical SCI studies and 

are consequently being analyzed in human clinical trials. 

Because riluzole and magnesium have independent mechanisms of action and target distinct 

aspects of secondary injury, it is reasonable to assume that when simultaneously administered these 

drugs may increase neuroprotection and promote increased neurological outcome (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Ionic imbalance and glutamate excitotoxicity following SCI lead to neuronal and 
glial death, further aggravating the initial damage. 
The neuroprotective effects of riluzole results mainly from the blockade of Na+ channels while magnesium 
blocks NMDA receptors.  
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Therefore, with this study we aimed to investigate the efficacy of both individual and combined 

systemic administration of riluzole and magnesium chloride using an experimental animal model of 

thoracic spinal cord contusion that closely mimics the pathophysiology of human SCI. 

In order to determine if neurological recovery was achieved we used several behavioral tests to 

assess functional recovery (BBB locomotor rating scale, activity box test, and swimming test), as well as 

a detailed histological evaluation comprising inflammation, axonal preservation, motor neuron survival, 

lesion volumes, neurogenesis/neural progenitor cells and serotonergic and glutamatergic fiber sparing. 
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___________________________________________________________________________ 

Chapters 3, 4 and 5 are based on the following publication:  

Vasconcelos NL, Gomes ED, Oliveira EP, Silva CJ, Lima R, Sousa, N, Salgado AJ and Silva NA, “Combing 

neuroprotective agents: effect of riluzole and magnesium in a rat model of thoracic spinal cord injury”, 

Submitted. 
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3. METHODS 

3.1 Spinal cord injury model 

 All procedures were carried out in accordance to EU directive 2010/63/EU and Portuguese 

national authority for animal experimentation, Direção Geral de Veterinária (ID: DGV9457), guidelines on 

animal care and experimentation. 

Nineteen, in-house bred, Wistar Han female rats (14 weeks old, weighing 210-260 g) were used 

for the study. Animals were kept under standard laboratory conditions (12 h light: 12 h dark cycles, 22°C, 

relative humidity of 55%, ad libitum access to standard food and water), and pair housed. Animal handling 

was carried out three days prior to surgery.  

 General anesthesia was induced by an intraperitoneal injection of a ketamine (100 mg/ml, 

Imalgene/Merial, Georgia, USA) and medetomidine hydrochloride (1 mg/ml, Dormitor/Pfizer, New York, 

USA) mixture, at a volume ratio of 1:1. Once anesthetized, animals received subcutaneous injections of 

the analgesic butorphanol (10 mg/ml, Butomidor/Richter Pharma AG, Wels, Austria), and the antibiotic 

enrofloxacin (5 mg/ml, Baytril/Bayer, Leverkusen, Germany). The fur was shaved from the surgical site 

and the skin disinfected with chlorhexidine. Surgical procedures were performed under sterile conditions. 

The animals were placed in a prone position and a dorsal midline incision was made at the level 

of thoracic spine (T5-T12). The paravertebral muscles were retracted and the spinous processes and 

laminar arc of T8 was removed, and the spinal cord exposed. The dura was left intact. A weight drop 

trauma model was used, that consisted in dropping a 10 g weight rod from a 20 cm height on to the 

exposed spinal cord (Allen, 1911). The rod was guided through a stabilized tube that was positioned 

perpendicularly to the center of the spinal cord. After the trauma, the muscles were sutured with Vicryl 

suture (Johnson and Johnson, New Jersey, USA) and the incision closed with surgical staples (Fine 

Science Tools, Heidelberg, Germany). Anesthesia was reversed using atipamezole (5mg/ml, 

Antisedan/Pfizer). Rats received subcutaneous injections of vitamins (Duphalyte/Pfizer) and 0.9% NaCl, 

and were kept under heat lamps until recovery.  

Post-operative care included butorphanol administration twice a day, for a five day period as well 

as vitamins, saline, and enrofloxacin, twice a day for a seven day period. Manual expression of bladders 

was performed twice a day until animals recovered spontaneous voiding. Body weight was monitored 

weekly as a parameter of general health of the animals. If a weight loss over 10% of body weight was 
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detected, a high-calorie oral supplement (Nutri-Cal®) was administered daily. If needed, rats were 

individually housed to avoid removal of surgical staples by their cage-mates. 

3.2 Drug preparation 

Drug concentrations were chosen based on previous studies reporting the neuroprotective 

properties of systemically administered riluzole (Sigma, Missouri, USA) and magnesium in a PEG 1000 

formulation (Sigma), when individually administered.  

 Riluzole was solubilized in DMSO at high concentration and then diluted in saline and administered 

at a dose of 2.50 mg/kg, pH8. MgCl2 was prepared in a PEG formulation (1 g/kg; 30% w/w in sterile 

saline) and administered at a dose of 24.18 mg/kg, pH8. All solutions were filtered through a 0.45 µm 

filter.  

3.3 Experimental groups 

One hour after induced SCI, rats we randomly assigned to receive one of four different treatments: 

1) saline (n=5), 2) riluzole (n=4), 3) magnesium chloride in a PEG formulation (n=5), or 4) a combined 

treatment (n=5). Treatment regimen consisted of five intraperitoneal injections, 1 h post-injury and the 

following 12 h apart (Figure 7).  

An animal from group 3 died nineteen days post-injury. Two animals from group 1 died, thirteen 

and eighteen days post-injury. This was probably due to urinary complications as the animals continuously 

presented an enlarged bladder and difficulty in bladder expression. 
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Figure 7. Schematic representation of the approach used to explore the therapeutic 
efficacy of both individual and combined administration of riluzole and MgCl2. 
BBB= Basso, Beattie and Bresnahan test; ABT= activity box test; ST= swimming test; dpi= days post-
injury; wpi= weeks post-injury.  

3.4 Behavioral assessment 

The BBB locomotor rating scale, the activity box test, and a swimming test were used to evaluate 

functional recovery. The BBB test was performed three days post-injury and thereafter weekly for a 4 

week period. The activity box test was performed on day 29 and the swimming test on day 31 post-injury. 

All behavioral tests were performed blindly to the treatment groups. 

3.4.1 BBB locomotor rating scale 

Locomotive recovery was evaluated using an open-field test based on grading hindlimb locomotion 

in rats. Briefly, two examiners independently registered movements in hindlimb joints, paw placement 

during stepping, weight support, and forelimb-hindlimb coordination performed by animals, on an open 

field arena over the course of 4 minutes, and assessed motor function based on a 21 point scoring 

system (Table V) (Basso et al., 1995). The left and right hindlimb scores were averaged to obtain a single 

value. A BBB score of 0 indicates no hindlimb movement. A BBB score of 1 through 8 indicates joint 

movement, but no weight support. A BBB score of 9 through 20 indicates an ability to support weight 

and use the limb for locomotion but with some degree of abnormality. A BBB score of 21 corresponds to 

the locomotion of a normal rat.  
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Table V. Basso, Beattie, Bresnahan Locomotor Rating Scale. 
Adapted from Basso et al., 1995. 
 

0  No observable hindlimb movement (HL) 
1  Slight movement of one or two joints, usually the hip and/or knee  
2  Extensive movement of one joint or extensive movement of one joint and slight movement of one other 

joint  
3  Extensive movement of two joints  
4  Slight movement of all three joints of the HL  
5  Slight movement of two joints and extensive movement of the third  
6  Extensive movement of two joints and slight movement of the third  
7  Extensive movement of all three joints of the HL  
8  Sweeping with no weight support or plantar placement of the paw with no weight support  
9  Plantar placement of the paw with weight support in stance only (i.e. when stationary) or occasional, 

frequent or consistent weight-supported dorsal stepping and no plantar stepping  
10  Occasional weight-supported plantar steps; no forelimb (FL)/HL coordination  
11  Frequent to consistent weight-supported plantar steps and no FL/HL coordination  
12  Frequent to consistent weight-supported plantar steps and occasional FL/HL coordination  
13  Frequent to consistent weight-supported plantar steps and frequent FL/HL coordination  
14  Consistent weight-supported plantar steps; consistent FL/HL coordination, and predominant paw 

position during locomotion is rotated (internally or externally) when it makes initial contact with the 
surface as well as just before it is lifted off at the end of stance; or frequent plantar stepping, consistent 
FL/HL coordination, and occasional dorsal stepping  

15  Consistent plantar stepping and consistent FL/HL coordination and no toe clearance or occasional toe 
clearance during forward limb advancement; predominant paw position is parallel to the body at initial 
contact  

16  Consistent plantar stepping and consistent FL/HL coordination during gait and toe clearance occurs 
frequently during forward limb advancement; predominant paw position is parallel at initial contact and 
rotated at lift-off  

17  Consistent plantar stepping and consistent FL/HL coordination during gait and toe clearance occurs 
frequently during forward limb advancement; predominant paw position is parallel at initial contact and 
lift-off  

18  Consistent plantar stepping and consistent FL/HL coordination during gait and toe clearance occurs 
consistently during forward limb advancement; predominant paw position is parallel at initial contact and 
rotated at lift-off  

19  Consistent plantar stepping and consistent FL/HL coordination during gait, toe clearance occurs 
consistently during forward limb advancement, predominant paw position is parallel at initial contact and 
lift-off, and tail is down part or all of the time  

20  Consistent plantar stepping and consistent coordinated gait, consistent toe clearance, predominant paw 
position is parallel at initial contact and lift-off, and trunk instability; tail consistently up  

21  Consistent plantar stepping and consistent gait, consistent toe clearance, predominant paw position is 
parallel throughout stance, and consistent trunk stability; tail consistently up  

3.4.2 Activity box   

The activity box test allows the assessment of gross motor behavior by measuring the total distance 

travelled by the animals (Sousa et al., 2006). The test was performed in an open arena (43.2 cm × 43.2 

cm) with transparent acrylic walls (MedAssociates Inc., Vermont, USA). Animals started the test at the 

arena’s center and were given 5 minutes to explore it. Data were collected using the activity monitor 

software. Distance travelled was used as a measure of locomotor activity. 
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3.4.3 Swimming test 

This test provides a major advantage as animals constantly need to locomote in order to stay afloat. 

The swimming test allows for an overall assessment of locomotor behavior by measuring swimming 

velocity.  Animals were allowed to swim freely in a circular pool with a diameter of 170 cm and a depth of 

50 cm for 2 minutes (water temperature 24 - 25 ºC). Each animal performed three trials. Data was 

collected by a fixed camera placed in the ceiling and connected to a video-tracking system (Viewpoint).  

3.5 Histological assessment 

Five weeks after injury animals were deeply anesthetized by an intraperitoneal injection of sodium 

pentobarbital (200 mg/ml, Eutasil/Ceva Sante Animale, Libourne, France) and transcardially perfused 

with 100 ml of cold 0.9% saline followed by 300 ml of 4% paraformaldehyde (PFA) in 1X phosphate-

buffered saline (PBS). A rough dissection of the spine and spinal cord was performed and tissues were 

fixed in a solution of 4% PFA for 24 h (4 ºC). The spinal cord was then dissected from the vertebral column 

and immersed in a 30% sucrose solution serving as a cryoprotectant until they equilibrated (48 h at 4 

ºC). Afterwards, 2 cm length of spinal cord tissues, centered on the lesion, were submerged in optimal 

cutting temperature (OCT) embedding medium, frozen on dry ice, and stored at -20 ºC. Cross-sections 

of 20 μm thickness were performed using a cryostat (Leica CM1900, LeicaBiosystems, Nussloch, 

Germany) and thaw-mounted onto charged microscope slides (Superfrost Plus, Thermo Scientific, 

Massachusetts, USA). 

All histological procedures and evaluation were performed blindly to the treatment groups. 

3.5.1 Hematoxylin-Eosin staining (H & E) 

For histochemical analysis, H & E staining of spinal cord cross-sections was performed using an 

automatic processor (Leica TP1020-1). Basically, the slides were immersed in hematoxylin and eosin 

solutions and then washed in distilled water, dehydrated in increasing concentrations of ethanol and 

finally cleared in xylene substitute. In the end, slides were mounted using Microscopy Entellan® (Merk & 

Co., Inc., New Jersey, USA).  

Images were then captured with a stereology microscope (Zeiss Axioplan 2 Imaging, Jena, 

Germany) with a 2.5x objective. Damaged tissue evaluation (lesion) was performed on transverse sections 

(200 µm apart).  The areas were manually traced and then quantified using Image J (NIH) software.  
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The extent of the lesion was assessed along the rostrocaudal lesion. The injured area was manually 

traced and then quantified (% injured tissue = injured area/total cross-sectional area × 100 %). The 

epicenter was defined as the cross-section with the highest amount of damaged tissue. The lesion volume 

was obtained by the sum of total lesion area multiplied by distance between the sections. 

3.5.2 Immunofluorescence 

For immunofluorescence staining slices were washed with PBS, permeabilized with 0,2% Triton X-

100  for 10 min and blocked with 5% fetal calf serum in 0.2% Triton X-100 for 30 min. Afterwards, the 

following primary antibodies were incubated overnight at room temperature (RT): mouse anti-neuronal 

nuclei for neuronal cells (NeuN; 1:200; Millipore, Darmstadt, Germany); mouse anti-CD11b/c for 

microglia and macrophages  (1:100; Pharmingen, California, USA); mouse anti-neurofilament for axons 

(NF; 1:200; Millipore); rabbit anti-5-hydroxytryptamine for serotonergic axons (5-HT;1:2000; Millipore);  

rabbit anti-vesicular glutamate transporter 2 for glutamatergic neurons (VGLUT2; 1:200; Millipore); 

mouse anti-nestin for progenitor cells (nestin; 1:200; Millipore); and rabbit anti-doublecortin for neuronal 

precursor cells and immature neurons (DCX; 1:500; Millipore). 

 The following day primary antibodies were then probed (2 h incubation) with the appropriate Alexa 

594- or Alexa 488-conjugated secondary antibodies (1:1000; Invitrogen, Paisley, UK). Sections were 

counterstained with DAPI for 30 min (1:1000; Sigma) and mounted with Immu-Mount® (Thermo 

Scientific). Between steps, 5 washes with PBS (1x) were performed. 

For all immunofluorescence procedures, the appropriate controls were obtained by omission of the 

relevant primary antibody. 

For the assessment of motor neuron survival, coronal sections ranging from rostral to caudal 

segments (centered at the injury site) were sequentially chosen from each animal for quantification. Large 

neurons with a clearly identifiable nucleus and a cell soma were then counted in both ventral horns, 

namely in lamina VIII and IX, for an estimation of NeuN+ cells. 

For the assessment of inflammation (CD11b/c), axonal preservation (NF), serotonergic and 

glutamatergic fiber sparing (5-HT/VGLUT2), coronal sections ranging from rostral to caudal segments 

(centered at the injury site) were sequentially chosen from each animal for quantification. Images were 

acquired using a fluorescence microscope (Olympus BX61, Hamburg, Germany), except for VGLUT2 

images which were acquired by confocal microscopy using a confocal point-scanning microscope 

(Olympus FV1200), and then opened using Image J (NIH) software. The images were then converted to 
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8-bit black and white pictures. Regions of meninges and roots were excluded for quantification. 

Inflammation was assessed as the area occupied by CD11b/c+ cells in each coronal section.  

To analyze axonal preservation, a region of interest was selected (dorsal corticospinal tract) which 

was then normalized in all sections analyzed. Serotonergic fiber sparing analysis was performed in a pre-

determined area (39474 µm2), adjacent to the ventral horns. Glutamatergic fiber sparing was analyzed 

as the density of fibers exiting the ventral horn. In order to do that, the area occupied by the ventral horn 

was subtracted to the total image area and the area occupied by VGLUT+ fibers was analyzed and 

normalized in all sections.       

3.6 Statistical analysis 

Statistical analysis was performed using GraphPad Prism 6.00 software for Windows. Data from 

SCI volume was analysed using Student’s t-test. Data from the activity box, swimming test, SCI volume, 

and immunofluorescence analysis of nestin+ and DCX+ cells were assessed by one-way analysis of variance 

(ANOVA). Differences between groups were compared with the post hoc Bonferroni test. Data from the 

BBB test, lesion percentage and immunofluorescence analysis were assessed by a two-way ANOVA test. 

Differences between groups were compared with the post hoc Bonferroni test. Statistical significance was 

defined for p<0.05 (95% confidence level). Data are shown as mean + standard error of the mean (SEM). 
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4. RESULTS 

4.1 Behavioral assessment 

4.1.1 BBB locomotor rating scale 

Motor evaluation using the BBB scale began 3 days after surgery and was subsequently performed 

weekly during a four week period to generate a trend of functional recovery over time (Figure 8). Three 

days after a severe contusive injury, all animals’ demonstrated decreased levels of locomotor function 

(group mean = 1.3±0.9), meaning that animals’ hindlimbs movements were severely impaired as only 

slight to moderate movement of one or two joints, or extensive movement of one joint was achieved.  

The saline-treated group demonstrated spontaneous recovery over time, however the BBB scores 

apparently stabilized at week 3 post-injury reaching a score of 6.2±3.2. In the group treated with riluzole, 

BBB scores reached 9.1±2.4 at week 4 post-injury. Moreover, there was a significant difference between 

this group and control animals (saline-treated group) at weeks 1 and 2. Further statistical analysis of the 

riluzole treatment at these specific time points, using Cohen’s d effect size (week 1: t (7) = 2.666; p = 

0.0322; d = 1.79; week 2: t (6) = 1.922; p =0.1030; d = 1.36), revealing a strong effect size caused by 

riluzole treatment at early time points when compared to saline controls. Additionally, the riluzole-treated 

group achieved weight-supported stepping from week 2 up to week 4 post-injury, a functional difference 

with clinical relevance (Kwon et al., 2011).  

In the magnesium-treated group, BBB scores reached 6.9±2.4 at week 4 post-injury. At the same 

time point, the group treated with the combination of riluzole and magnesium scored 5.7±4.8.  
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Figure 8. Functional hind limb recovery determined by the BBB test in rats that received 
either riluzole, magnesium, a combination of either drugs, or saline. 
At week 1 and 2 post-injury, BBB score of riluzole-treated group is significantly higher when compared to 
saline-treated group. Only the riluzole-treated group achieved plantar weight support (BBB=9), from week 
3 post-injury. Values shown as mean + SEM; * P<0.05. 

4.1.2 Activity box 

General motor behavior was assessed on day 29 (week 4) post-injury. Animals were placed on an 

open arena (43.2 cm × 43.2 cm) with transparent walls and allowed to explore it for 5 minutes.  

Results showed an overall significant increase in total distance travelled of riluzole-treated when 

compared to the saline-treated group (2023±11 vs. 1450±22 cm). Both the magnesium-treated group 

(1909±40 cm), and to the combination-treated group (1873±55 cm) presented values similar to the 

riluzole-treated group, however without significant differences when compared to controls, revealing just 

a trend for an increase in the distance travelled (Figure 9A). 

4.1.3 Swimming test 

Swimming velocity was assessed on day 31 (week 4) post-injury. Animals were allowed to swim 

freely in a circular pool with a diameter of 170 cm and a depth of 50 cm for 2 minutes. Velocity was 

recorded using a video-tracking system.  

Animals from the combination-treated group (25.7±5.7 cm/s) presented higher swimming velocity 

when compared to animals that received magnesium (23.1±2.6 cm/s), riluzole (21.6±2.6 cm/s) or 

saline (24.0±1.8 cm/s). However, no significant differences were detected between the groups (Figure 

9B). 
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Figure 9. Measurement of general motor behavior using: A) an activity box test (time=5min) 
and B) a swimming test (time=2min). 
The swimming test revealed no difference between treated groups and control (saline), while the activity 
box test showed an overall increase in total distance travelled of riluzole-treated group when compared to 
the saline group. Values shown as mean + SEM; * P<0.05.  

4.2 Histological assessment 

4.2.1 Percentage of injured tissue and lesion volume 

Measurements of the injured tissue revealed decreased loss of tissue, namely in the caudal region 

of the spinal cord, in the riluzole-treated group (Figure 10A). The differences achieved were significant 

from 200 to 600 µm caudally to the lesion epicenter (p<0.05). 

Total lesion volume estimation revealed no significant differences between groups when a one-way 

ANOVA test was performed, however a t-test analysis further revealed that the riluzole-treated group 

presented a significantly smaller lesion volume (3.23±0.52 mm3) when compared to the saline-treated 

group (4.74±1.39 mm3). The volumes of the riluzole-treated group, the magnesium-treated group 

(4.37±0.87 mm3), and the combination-treatment group (4.45±1.23 mm3) represent a 32%, 8% and 6% 

reduction in lesion size, respectively, when compared to saline-controls (Figure 10B). 
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Figure 10. Histological recovery evaluation. 
Hematoxylin-Eosin staining revealed: A) a decreased loss of tissue, namely in the caudal areas of injury 
(200 to 600 µm), in the riluzole-treated group. B)  The riluzole-treated group (3.23±0.52 mm3) presents 
a smaller lesion volume when compared to the saline-treated group (4.74±1.39 mm3). Values shown as 
mean + SEM; * P<0.05.  

4.2.2 Axonal preservation 

Neurofilament immunoreactivity was used to determine axonal preservation in the corticospinal 

tract (CST). The results indicate that the riluzole treatment induced significant caudal axonal preservation 

of the CST when compared to saline controls at 1600 µm (0.4±0.5 % vs. 1.1±0.4 %, p<0.01) and 2000 

µm (0.0±0.0 % vs. 1.5±0.5 %, p<0.001) distance from the epicenter (Figure 11A). However, this effect 

is not present in the rostral portion of the spinal cord. 

The combined treatment group also presented an effect at 2000 µm distance from epicenter when 

compared to saline-controls (0.8±1.1 % vs. 0.0±0.0 %, p<0.05). 

4.2.3 Serotonergic and glutamatergic fiber sparing 

Only the riluzole treatment led to a higher plasticity/spared serotonergic fibers when compared to 

saline-controls (Figure 11B), which was translated in an increased area of serotonergic fibers. However, 

this effect is only present in the caudal portion of the spinal cord, and is lost after 1600 µm (p<0.01) 

from the epicenter. Concerning glutamatergic fiber sparing, a similar trend for increased percentage of 

fiber sparing in the riluzole-treated group was seen, once again in the caudal portion of the spinal cord 

(Figure 11C). At 1200 µm this difference is significantly different when comparing riluzole to the 

magnesium-treated group (p<0.05).  Oppositely, the combinatorial treatment seems to promote fiber 

sparing in the rostral portion of the spinal cord. 
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Figure 11. Axonal preservation analysis. 
A) Neurofilament immunofluorescence labeling revealed increased axonal preservation in the riluzole-
treated group, namely in the caudal portion of the spinal cord (1600 to 2000 µm). Quantification was 
performed in the corticospinal tract area. B) 5-HT immunofluorescence labeling revealed that riluzole 
treatment increased serotonergic fiber sparing in the caudal portion of the spinal cord (800 to 1600 µm). 
C) VGLUT2 immunofluorescence labeling revealed a tendency for increased glutamatergic fiber sparing 
in the caudal portion of the spinal cord. At 1200 µm this difference is significantly different when 
compared to the magnesium-treated group. D) Schematic representation of the regions of interest were 
immunofluorescence was analyzed. E); F) and G) are representative micrographs. Values shown as mean 
+ SEM; * P<0.05; **P0.01; ***P0.001.  

4.2.4 Motor neuron survival 

Motor neuronal death is characteristic of SCI and further contributes to permanent functional 

deficits (Xu et al., 2005). Apparently, neither treatment appeared to influence motor neuron survival 

(motor interneurons and alpha motor neurons located in lamina VIII and IX), both rostral and caudally, 

as the number of NeuN+ cells spared following SCI was not affected by either treatment when compared 

to saline-controls (Figure 12). 
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Figure 12. Motor neuron survival. 
A) NeuN immunofluorescence labeling of surviving motor neurons (NeuN+ cells) in the ventral horns 
revealed that there were no significant differences in motor neuronal loss between the groups. B) 
Representative micrograph. Values shown as mean + SEM. 

4.2.5 Inflammation 

 

SCI is followed by a severe inflammatory reaction that translates in activation of microglia, the 

resident central nervous system immune cells, and macrophage infiltration (Donnelly & Popovich, 2008). 

When compared to the saline-treated group, a significant decrease in the area occupied by 

CD11b/c+ immune cells was only observed in the combination-treated group (Figure 13). This effect 

seems circumscribed to areas close to the lesion epicenter (400 µm both rostral and caudally; p<0.05) 

and the epicenter itself (p<0.01). The magnesium-treated group also significantly decreased the area 

occupied by CD11b/c+ immune cells, when compared to saline-controls, but only at the epicenter of the 

lesion (p<0.05).  
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Figure 13. Inflammation assessment. 
A) The combined treatment and the magnesium treatment to a lesser extent, significantly decreased 
inflammatory response after SCI, namely around the epicenter, as revealed by CD11b/c 
immunofluorescence analysis. B) Representative micrograph. Values shown as mean + SEM; * P<0.05; 
**P0.001.  

4.2.6 Progenitor cells and immature neurons 

The presence of progenitor neural stem cells (nestin+ cells) and immature neurons (DCX+ cells) was 

investigated in the ependymal lining of the central canal in the lumbar region. Using 

immunohistochemistry it was possible to verify the presence of both progenitor cells and immature 

neurons in the central canal (Figure 14C). Statistical analysis did not reveal significant differences in the 

number of nestin+ (Figure 14A) and DCX+ (Figure 14B) cells present in the central canal of the different 

treated groups. In the thoracic region of the spinal cord (injury zone) it was possible to detect a substantial 

positive staining for both progenitor cells and immature neurons (Figure 14D).  DCX+ cells were not 

detected inside the cavity formed by the injury, stopping its migration at the glial scar. Contrarily, nestin+ 

cells were able to bypass the glial scar and were found both inside and outside the cavity. 
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Figure 14. A) Nestin and B) doublecortin immunofluorescence labeling of neural stem cells 
and immature neurons in the central canal of the spinal cord revealed that there are no 
differences in the number of cells between groups. 
C) Representative micrographs of neural stem cells in the different groups. Values shown as mean + 
SEM. D) DCX+ cells were not detected inside the cavity formed by the injury, stopping their migration on 
the glial scar (blue arrow). Contrarily, nestin+ cells were able to bypass the scar (white arrow) and were 
found both inside and outside the cavity. 
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5. DISCUSSION 

Electrolytic imbalance and glutamate toxicity occur early after SCI and stand as neuroprotective 

targets following the injury itself. In this study we determined the effects of single and combined drug 

treatments in a rat model of thoracic SCI, using the neuroprotective agents’ riluzole and magnesium 

chloride.  

A 2.50 mg dose of riluzole was chosen as previous reports found that doses ranging from 5 to 8 

mg/kg, repeated twice daily intraperitoneally (IP), left the animals in a comatose or moribund state 

(Kitzman, 2009; Mantz et al., 1992; Wu et al., 2013). Contrarily, a dose of 2.5 mg/kg IP every 12 h was 

found to be beneficial in terms of outcome after SCI (Simard et al., 2012; Wahl & Stutzmann, 1999).  

Clinically relevant motor recovery was only achieved with the riluzole treatment. This was translated 

into weight supporting ability in injured rats, occurring as early as two weeks after injury. Additionally, 

despite the low number of animals, we found that riluzole treatment had a strong effect size (Week 1: d 

= 1.79; week 2: d = 1.36), during the acute phase of treatment (week 1 and 2). The statistical strength 

of riluzole treatment was calculated using the Cohen’s d equation. Jacob Cohen demonstrated that the 

difference between two means with a “d value” smaller than 0.2 represent a small effect size of the 

intervention tested, while around 0.5 represent a medium effect size and higher than 0.8 is a large effect 

size (Cohen, 1977).   

Furthermore, general locomotor behavior was also significantly improved in the riluzole-treated 

group, as observed in the activity box test. These results are in line with the BBB test. Riluzole-treated 

rats presented higher motor abilities compared to the other rats (weight support), and so they were able 

to travel an increased distance in the activity box test. However, in the swimming test we were unable to 

detect any significant difference between groups. This is probably related to the fact that water provides 

buoyancy, which allows rats to perform locomotor movements without having to support their own body 

weight (Smith et al., 2010).    

Riluzole treatment also improved histological recovery, as shown by a decreased percentage of 

injured area, namely in the caudal portion of the spinal cord, and a decreased lesion volume. Additionally, 

riluzole also promoted significant axonal preservation in the corticospinal tract, a major descending 

pathway contributing to the initiation and control of voluntary movement in mammals (Carmel & Martin, 

2014). Sparing of serotonergic and glutamatergic fibers was also increased with riluzole treatment, which 

was also detected in the caudal portion of the spinal cord. Descending serotonergic pathways (raphespinal 

tract) are highly important for posture maintenance, initiation of locomotion, and modulation of neuronal 
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circuits within the spinal cord (central pattern generators)(Ciranna, 2006; Jordan et al., 2008). Tracts 

that use fast glutamatergic synaptic transmission (corticospinal and reticulospinal tracts) are mainly 

responsible for voluntary initiation of movement (Rekling et al., 2000). The effect observed is most 

probably related to an increase in tissue preservation promoted by riluzole treatment. However, riluzole 

may also have enhanced fiber regeneration, fiber sparing, and/or fiber sprouting, resulting in improved 

functional recovery. 

Regarding the fact that riluzole mainly caused histological improvements in the caudal portion of 

the spinal cord, this can be attributed to the fact that there appears to be a rostro-caudal asymmetry in 

SCI as described by some studies employing non-invasive imaging techniques (Deo et al., 2006; 

Narayana et al., 2004). These studies have reported an increase in white matter and grey matter sparing 

in the caudal sections of the spinal cord. Therefore, it is possible that the riluzole treatment further 

amplified this effect. Narayana et al. attribute the improvement of grey matter to increased caudal 

angiogenesis (Narayana et al., 2004). Supporting this idea is the fact that an asymmetric increase in 

expression of an angiogenic gene, osteopontin, was also shown in the caudal portion of the spinal cord, 

at 24 hours and 35 days post-injury (Aimone et al., 2004). Localized revascularization events following 

SCI can therefore be responsible for an increased delivery of riluzole in the caudal portion of the spinal 

cord and the resulting increase in histological recovery. 

Contrary to other study reports, we did not establish a significant anti-inflammatory effect of riluzole 

treatment (Wu et al., 2013). However, a trend to decreased inflammation was observed. Furthermore, 

riluzole treatment did not confer increased motoneuron protection, an effect that has also been previously 

reported (Lang-Lazdunski et al., 1999; Nogradi et al., 2007).   

Magnesium’s neuroprotective effect has been extensively studied in animal models of stroke and 

TBI (Ginsberg, 2008; Temkin et al., 2007). Current clinical applications include preeclampsia and acute 

myocardial infarction (Shechter, 2010; Stocks, 2014). Furthermore, PEG is known to repair membrane 

damage, restore normal ion permeability, and allow the use of a decreased dosage of magnesium, which 

is adequate for human clinical applications. Unexpectedly though, we were not able to detect an overall 

significant effect of magnesium chloride treatment after SCI, both histologically and behaviorally, contrary 

to previous reports by Kwon and Lee et al. (Kwon et al., 2009; Lee et al., 2010). This decreased 

neuroprotective effect can be attributed to the use of a different SCI model. While both authors used a 

contusive injury model, Kwon et al. used an Infinite Horizon Impactor (150 kdyn) to establish a thoracic 

(T10) model of SCI, while Lee et al. established a cervical (C4-C5) hemicontusive model using the Ohio 

State University Impactor (200 kdyn), we use a weight drop model to establish a T8 contusive injury. 
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Furthermore, it has been reported that there are considerable differences in SCI outcome when using 

different rat strains (Mestre et al., 2015; Mills et al., 2001). Thus, it is important to note that both authors 

used Sprague-Dawley strain while we used Wistar Han rats as animal models which can also account for 

the different outcomes. 

We further designed a combination treatment that simultaneously engaged two molecular targets 

in order to achieve a higher neuroprotective effect against excitotoxicity. However, the combination of 

riluzole and magnesium did not achieve superior effects when compared to the individual target-specific 

treatment, for both behavioral and histological outcomes. The only exception was the positive effect on 

inflammation. Indeed, the combined treatment and to a lesser extent the magnesium treatment, lead to 

significant decrease of the area occupied by microglia.  Previous studies have found that NMDA receptor 

antagonists agents such as memantine and MK-801 are able to decrease microglial activation (Wu et al., 

2009; Thomas & Kuhn, 2005). Thus, it possible that the NMDA blocking effect of the magnesium 

treatment may be responsible for the decrease in the inflammatory profile. Furthermore, voltage-gated 

sodium channel currents also elicit microglial activation (Jung et al., 2013). Consequently, we can deem 

that the blocking of these channels by riluzole treatment also plays a role in neuroinflammatory 

modulation and that the combination of both these drugs may have had a potentially additive effect.  

Nevertheless, taking into account the poor overall effects of the co-administration of these two 

drugs, we can admit that there is the possibility of altered pharmacokinetics (drugs distribution, 

metabolism, and excretion). Furthermore, the co-treatment may be interfering with physiological functions 

due to the exacerbated disruption of ionic intracellular and extracellular levels, which is possibly amplified 

by the blocking of sodium channels and the rapid increase of magnesium levels.  

Combinatorial strategies have been employed in multiple SCI studies with contrasting results. 

Positive outcomes in using combined treatments have been  reported, namely using neutrophins and 

cyclic adenosine monophosphate as well as combined strategies with cell transplantation (Kubasak et 

al., 2008; Lu et al., 2004; Pearse et al., 2007). However, lack of additive or synergistic results have also 

been reported (Maier et al., 2009; Mountney et al., 2013; Streijger et al., 2014). Interestingly enough, 

concerning the combined administration of riluzole and magnesium to our knowledge, there was only one 

study performed. Lang-Lazdunski et al. used a rabbit model of spinal cord ischemia, and also found that 

there were no additive neuroprotective effects when these two drugs were combined, while their individual 

administration afforded significant spinal cord protection in a setting of severe ischemia (Lang-Lazdunski 

et al., 1999). 
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Although the present report does not favor the use of neuroprotective drugs riluzole and 

magnesium in combination (at this drug ratio), we believe that the complex nature of the injury will most 

likely be tackled by integration of multiple therapies in order to provide enhanced functional recovery. 
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6. CONCLUSION AND FUTURE PERSPECTIVES 

 

The aim of this thesis was to investigate the use of a combined pharmacological approach using 

the clinical available drugs magnesium and riluzole to target excitotoxic events that follow the initial injury. 

Both drugs have been extensively studied in preclinical models of SCI, accomplishing promising results 

that are translated in both behavioral and histological recovery.  

We demonstrate that only the riluzole treatment significantly improved behavioral recovery (both 

on BBB scale and activity box test). The combined treatment, although simultaneously targeting two 

excitotoxic-related mechanisms, did not improve locomotion.  

A detailed histological evaluation comprising inflammation, axonal preservation, motor neuron 

survival, lesion volumes, neurogenesis/neural progenitor cells and serotonergic and glutamatergic fiber 

sparing was then performed. Overall, riluzole-treated rats presented once more improved outcomes. 

Collectively, these results provide further evidence for the neuroprotective effect of riluzole.  

Moreover, although our findings do not favor the use of a combined treatment, we believe that 

reporting this data will surely add to the field of spinal cord injury research. However, it is important to 

keep in mind that beneficial/detrimental effects of specific pharmacological agents are not always 

consistently reproduced in preclinical SCI research. Aspects ranging from animal strain, sex, routes of 

drug administration, type of injury to severity of injury may result in altered neurological outcomes.  

Lastly, we believe that due to the complex nature of SCI successful functional recovery will be 

achieved using a combined therapeutic approach that targets both the acute and chronic injury, proving 

the necessary environment for axonal regeneration and ultimately promoting functional recovery. 

Nevertheless, additional studies are warranted to find an optimal therapeutic regimen. 
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