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ESTIMATING THE EXTREMAL INDEX THROUGH THE3 TAIL DEPENDENCE CONCEPT4 Marta Ferreira5 Center of Mathematis6 University of Minho, Portugal7 e-mail: msferreira�math.uminho.pt8 Abstrat9 The extremal index θ is an important parameter in extreme value anal-10 ysis when extending results from independent and identially distributed11 sequenes to stationary ones. A onnetion between the extremal index and12 the tail dependene oe�ient allows the introdution of new estimators.13 The proposed ones are easy to ompute and we analyze their performane14 through a simulation study. Comparisons with other existing methods are15 also presented. Case studies within environment are onsidered in the end.16 Keywords: Extreme value theory, extremal index, tail dependene oe�-17 ient.18 2010 Mathematis Subjet Classi�ation: 62G32.19 1. Introdution20 The entral result in lassial Extreme Value Theory states that, for an i.i.d. se-quene, {Xn}n≥1, having ommon distribution funtion (d.f.) F , if there areonstants an > 0 and bn ∈ R suh that,

P (max(X1, . . . ,Xn) ≤ anx+ bn) −→
n→∞

G(x) , (1)for some non degenerate funtion G, then it must be the Generalized ExtremeValue funtion (GEV ),
G(x) = exp(−(1 + γx)−1/γ), 1 + γx > 0, γ ∈ R,(G(x) = exp(−e−x) for γ = 0) and we say that F belongs to the max-domain of21 attration of G, in short, F ∈ D(G). The parameter γ, known as the tail index,22



2 M. Ferreirais a shape parameter determining the tail behavior of F : if γ > 0 we are in the23 domain of attration Fréhet orresponding to a heavy tail, γ < 0 indiates the24 Weibull domain of attration of light tails and γ = 0 means a Gumbel domain of25 attration and an exponential tail.26 In a multivariate ontext, it is possible to extend the onvergene given in27 (1), but the lass of models in the limit is muh wider than model GEV. For28 simpliity, we onsider the bivariate ase, but everything an be rewritten for the29 more general d-variate ase, d ≥ 2. More preisely, let {(X(n)
1 ,X

(n)
2 )}n≥1 be a30 sequene of i.i.d. opies of the random pair (X1,X2), with ommon d.f. F, and31 let M (n)

j = max1≤i≤nX
(i)
j , j = 1, 2, be the maximum of eah marginal. If there32 exist sequenes of real onstants a(n)j > 0 and b

(n)
j , for j = 1, 2 and n ≥ 1, and a33 d.f. G with non-degenerate margins, suh that,34
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G(x1, x2) ,for every ontinuity points of G, then this latter is said to be a bivariate extreme35 value distribution (BEV) and is de�ned by expression36
G(x1, x2) = exp[−l{− logG1(x1),− logG2(x2)}], (2)for some bivariate funtion l, where Gj , j = 1, 2, is the marginal d.f. of G. In this37 ase, we have that F belongs to the max-domain of attration of G, in short F ∈38

D(G). The funtion l in (2), usually alled stable tail dependene funtion is on-39 vex and homogeneous of order 1, and we have max(x1, x2) ≤ l(x1, x2) ≤ x1 + x2,40 for all (x1, x2) ∈ [0,∞)2, where the upper limit orresponds to independene and41 the lower one means omplete dependene (see, e.g. Beirlant et al. [2℄, Setion42 8.2.2).4344 The result in (1) may also be extended to study the maximum of a wide45 lass of dependent proesses, a more realisti assumption for several data. Here46 we onentrate on stationary sequenes where the dependene is restrited by47 distributional mixing onditions.48 The ondition D(un) of Leadbetter ([14℄, 1983), providing a short range de-pendene for whih at long lags the extremes are independent, is su�ient toextend the result in (1) to stationary sequenes. More preisely, for a stationarysequene {Xn}n≥1 satisfying D(un) with un = anx+ bn, we have that
P (max(X1, . . . ,Xn) ≤ un) −→

n→∞
Gθ(x) , (3)



Estimating the extremal index through the tail dependene onept3where 0 ≤ θ ≤ 1 is the extremal index. The extremal index is the primary measure49 of extremal dependene in suh proesses, with θ = 1 indiating independene at50 asymptotially high levels.51 There are di�erent interpretations of the extremal index. This onept, orig-inated in papers by Loynes ([15℄, 1965), O'Brien ([17℄, 1974) and developed indetail by Leadbetter ([14℄, 1983), re�ets the e�et of lustering of extreme ob-servations on the limiting distribution of the maximum. O'Brien (1987) provedthat the presene of lustering a�ets the limiting distribution of blok maxima:
P (max(X2, . . . ,Xrn) ≤ un|X1 > un) −→

n→∞
θ , (4)with rn suh that rn → ∞ and rn = o(n). Under a mixing ondition slightlyrestritive than D(un), Hsing et al. ([13℄, 1988) showed that the limiting meannumber of exeedanes of un in an interval of length rn is the inverse of theextremal index:

E
[∑rn

i=1 1{Xj>un}|
∑rn

i=1 1{Xj>un} ≥ 1
]
→ θ−1, (5)with 1(·) the indiator funtion. By stationarity this property is satis�ed for anyblok of rn onseutive elements de�ned in the sequene. By rewriting (3) as

P (max(X1, . . . ,Xn) ≤ un) −→
n→∞

e−θτ(x) , 0 < τ(x) < ∞,Ferro and Segers ([9℄, 2003) found that the proess of inter-exeedane times nor-malized by exeedanes of un follows a mixture of a point mass and an exponentialdistribution Exp(θ−1), i.e.,
P (F (un)T (un) > t) −→

n→∞
θe−θt , t > 0, (6)with T (un) = min{n ≥ 1 : Xn+1 > un|X1 > un}, also under a slightly striter52 mixing ondition than D(un).5354 Inferene about θ has been extensively studied, with the most popular es-timators being the runs method obtained from equation (4), the bloks methodderived from (5) and the intervals method developed from (6). More preisely,the runs estimator is given by

θ̂(R) = (N)−1
n−1∑

i=1

1{Xi>u}1{Xi+1≤u} . . .1{Xi+r≤u},where N is the total number of exeedanes of a high threshold u. The bloksestimator for a sample divided into b bloks of length r (so n ≈ br), an be statedas
θ̂(B) =

log(1− Cn(u)/b)

r log(1−N/n)



4 M. Ferreirawhere Cn(u) is the number of bloks in whih at least one exeedane of u ours.After some onsiderations, the result in (6) yields the intervals estimator
θ̂(I) =
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, if max{Ti : 1 ≤ i ≤ N − 1} > 2,with Ti denoting the ith inter-exeedane time, i = 1, . . . , N − 1. For a survey,55 see for instane, Anona-Navarrete and Tawn ([1℄, 2000) and Beirlant et al. ([2℄,56 2004).5758 Imposing some onvenient loal dependene ondition may eliminate the needfor a luster identi�ation sheme as in the ase of the bloks or the runs estima-tors. An example of suh ondition is the loal dependene ondition D(2)(un) ofChernik et al. (1991), whih holds whenever

nP (Xj > un,Xj+1 ≤ un,Mj+2,rn > un) → 0, n → ∞,with Mi,j = max{Xi, . . . ,Xj}, for i ≤ j (Mi,j = −∞ if i > j), the blok sizes59 sequene {rn} is suh that n/rn → ∞ and ondition D(un) is simultaneously60 satis�ed. Condition D(2)(un) restrits the ourrene of an observation again ex-61 eeding the high threshold un after dropping below it within a luster.6263 Under D(2)(un), and onsidering a log-likelihood based on the limiting d.f. ob-tained in (6), Süveges ([22℄, 2007) presents the maximum likelihood estimator
θ̂(ML) =

∑N−1
i=1 qSi +N − 1 +NC −

[(∑N−1
i=1 qSiN − 1 +NC

)2
− 8NC

∑N−1
i=1 qSi

]1/2

2
∑N−1

i=1 qSi

,where q is the estimate of F (u), Si = Ti − 1 and NC =
∑N−1

i=1 1{Si 6=0}.6465 Considering a lightly stronger ondition D′′(un) that restrits the ourrene oftwo or more uprossings by imposing that n
∑rn−1

j=2 P (X1 > un,Xj ≤ un <
Xj+1) → 0, as n → ∞, Nandagopalan ([16℄, 1990) derives the estimator

θ̂(N) =

∑n−1
j=1 1{Xj≤u<Xj+1}∑n

j=1 1{Xj>u}
,for a suitable high threshold u. This is a speial ase of the runs estimator when66

r = 1.6768



Estimating the extremal index through the tail dependene onept5A reent result in Ferreira and Ferreira ([7℄, 2012a), allow us to state θ = 1−λ69 under ondition D(2)(un), where λ is the tail dependene oe�ient introdued70 by Sibuya ([21℄, 1960). Here we shall analyze the estimation of θ based on some λ71 estimation methodologies of the literature. This will be done through a simulation72 study. The performane of our approah will be also assessed by omparing with73 the simulation results obtained for the above exposed existing estimators of the74 extremal index. At the end, we illustrate with appliations to real environmental75 data.76 2. Tail dependene77 The tail-dependene oe�ient (TDC), usually denoted λ and �rst introdued in78 Sibuya ([21℄, 1960), measures the probability of ourring extreme values for one79 random variable (r.v.) given that another assumes an extreme value too, i.e.,80
λ = lim

t→∞
P (F1(X1) > 1− 1/t|F2(X2) > 1− 1/t), (7)where F1 and F2 are the distribution funtions (d.f.'s) of r.v.'s X1 and X2, re-81 spetively. It haraterizes the dependene in the tail of a random pair (X1,X2),82 in the sense that, λ > 0 orresponds to tail dependene whereas λ = 0 means tail83 independene.8485 The relation θ = 1 − λ stated in Proposition 4 of Ferreira and Ferreira ([7℄,86 2012a) under the loal dependene ondition D(2), lead to new estimators for87

θ through the TDC. A wide study onerning TDC estimation is presented in88 Frahm et al. (2005). Parametri estimators are more aurate but may have89 disastrous performanes under wrong model assumptions. Here we will fous on90 nonparametri approah.9192 Shmidt and Stadtmüller ([19℄, 2006) onsidered the estimator based on (7)93 by plugging-in the respetive empirial ounterparts,94
λ̂(SS) ≡ λ̂(SS)(kn) =

1

kn

n∑

i=1

1
{F̂1(X1)>1− kn

n
,F̂2(X2)>1− kn

n
}
, (8)where F̂j is the empirial d.f. of Fj , j = 1, 2, and {kn} is an intermediate sequene,i.e., kn → ∞ and kn/n → 0, as n → ∞. Conerning estimation auray, somemodi�ations of this latter may be used, like replaing the denominator n by n+1,i.e., onsidering

F̂j(u) =
1

n+ 1

n∑
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1
{X

(k)
j ≤u}



6 M. Ferreira(for a disussion on this topi see, for instane, Beirlant et al. 2004). The hoie95 of the value k in the sequene {kn} that allows the better trade-o� between bias96 and variane is of major di�ulty, sine small values of k ome along with a large97 variane whenever an inreasing k results in a strong bias. The true value is98 usually loated at a stable region of the plot (k, λ̂(SS)(k)), for 1 ≤ k < n.99 In order to avoid the variane-bias problem, we will use an heuristi proedure100 presented in Frahm et al. ([10℄, 2005), onsisting on a �plateau �nding algorithm"101 applied to a smoothed version of (k, λ̂(SS)(k)), 1 ≤ k < n.102103 Based on the approah onsidered in Capéraà et al. ([3℄, 1997), whih assumes104 that the underlying distribution approximates a BEV model given in (2), Frahm105 et al. ([10℄, 2005) have proposed the following estimator:106
λ̂(CFG) = 2− 2 exp

{
1
n

∑n
i=1 log

(√
log F̂1(X1) log F̂2(X2)

log(F̂1(X1)∨F̂2(X2))−2

)}
, (9)where x ∨ y = max(x, y). Another estimator developed in Ferreira and Ferreira107 ([8℄, 2012b) under the same assumption but with a simpler form, is given by108

λ̂(FF ) = 3− (1− F̂1(X1) ∨ F̂2(X2))
−1,where F̂1(X1) ∨ F̂2(X2) is the sample mean of F̂1(X1) ∨ F̂2(X2), i.e.,109

F̂1(X1) ∨ F̂2(X2) =
1

n

n∑

i=1

[
F̂1(X

(i)
1 ) ∨ F̂2(X

(i)
2 )

]
.For a disussion about the asymptoti properties of these estimators see, respe-110 tively, Genest and Segers ([11℄, 2009) and Ferreira ([6℄, 2013).111112 From now on, we will use notation θ̂(SS), θ̂(CFG) and θ̂(FF ), whenever we refer113 to estimators λ̂(SS), λ̂(CFG) and λ̂(FF ), that is,114

θ̂(SS) = 1− λ̂(SS), θ̂(CFG) = 1− λ̂(CFG) and θ̂(FF ) = 1− λ̂(FF ).3. Simulation study115 We are going to analyze the performane of the estimators desribed above,116 through a simulation study based on the following models:117
• Independent sequene whih have θ = 1 (with unit Fréhet margins).118
• Markov Gaussian dependene proess, Zj = αZj−1 + ǫj , where the ǫj are119 i.i.d. N(0, 1−α2) r.v.'s, for j ≥ 2 and Z1 is N(0, 1) distributed. This proess120 has θ = 1 and shall be denoted AR.121



Estimating the extremal index through the tail dependene onept7
• Bivariate extreme value Markov proess with logisti dependene funtion,i.e.,

P (Xj ≤ x,Xj+1 ≤ y) = exp(−(x1/α + y1/α)α).As in Anona-Navarrete and Tawn ([1℄, 2000), we onsider the dependene122 parameter α = 0.5 whih gives θ = 0.328, and denote the proess BEV.123
• Autoregressive maximum proess, Xi = αXi−1 ∨ ǫi, where 0 < α < 1 and124

{ǫi} are i.i.d. r.v.'s with d.f. Fǫ(x) = exp(−(1− α)/x), x > 0. This proess125 has θ = 1 − α. We onsider α = 0.5 and hene θ = 0.5, and denote the126 proess MAR.127
• Moving maxima proess, Xi =

∨
j=0,...,m αjǫi−j , with ∑m

j=0 αj = 1 and128
αj ≥ 0, {ǫi} are i.i.d. unit Féhet r.v.'s. This proess has θ = ∨j=0,...,mαj .129 We onsider m = 3, α1 = α2 = 0.2, α0 = α3 = 0.3 and so θ = 0.3, and130 denote the proess MM.131 We onsider samples of size n = 10000 and ompare the estimators using132 the absolute mean bias and the root mean square error (rmse) riteria, obtained133 using 200 independent repliations of the estimation proedures. The results134 of the proposed estimators, θ̂(FF ), θ̂(CFG) and θ̂(SS), are presented in Table 1.135 For omparison, we also inlude the simulation results obtained from estimators136

θ̂(ML) and θ̂(N) derived under similar loal dependene onditions, i.e., D(2) and137 D′′, respetively (see Table 2). The estimates derived from the runs, the bloks138 and the intervals methods were also omputed and an be found in Table 3. We139 remark that the values onsidered for the number of bloks/runs were derived140 through additional simulation studies onduted in Anona-Navarrete and Tawn,141 ([1℄, 2000).142 Observe that the worst performane of the estimators oinides with the AR143 proess. In this ase, estimator θ̂(SS) followed by θ̂(ML), θ̂(N), θ̂(B) and θ̂(I)144 for u = q0.99 exeed the remaining. In partiular, the bad performane of the145 proposed estimators θ̂(FF ) and θ̂(CFG) is due to the bad behavior of the respetive146 tail dependene oe�ient estimators λ̂(FF ) in (8) and λ̂(CFG) in (9) under tail147 independent non-BEV models, i.e., models for whih λ = 0 and whose dependene148 struture for onseutive pairs an not be formulated as in (2), suh as the ase of149 AR (see Ferreira, [6℄ 2013). Indeed, estimators θ̂(FF ) and θ̂(CFG) are not robust.150 They present the worst performanes also within the BEV and MM proesses,151 missing the D(2) ondition. Therefore, onerning robustness, the best of the152 three here proposed estimators is θ̂(SS), whih only demands the D(2) ondition153 and behaves better whenever this latter is violated (see the results for BEV and154 AR in Table 1). All the estimators behave quite well in the MAR proess, with155 the best performanes ourring for our proposals θ̂(FF ) and θ̂(CFG), as well as,156 for θ̂(ML) and θ̂(N) with u = q0.99. We remark that this proess satis�es ondition157



8 M. FerreiraD(2) as well as the BEV dependene assumption (see, e.g., Ferreira and Ferreira158 [7℄ 2012a and Anona-Navarrete and Tawn [1℄ 2000). Regarding the MM ase,159 the best performane lies with the runs, bloks and intervals estimators, whih is160 not surprising sine it is easy to identify independent lusters in this proess.161 Table 1. Sample absolute mean bias and rmse (in brakets) of estimators θ̂(FF ), θ̂(CFG)and θ̂(SS).
θ̂(FF ) θ̂(CFG) θ̂(SS)Indep. 0.00 (0.010) 0.00 (0.010) 0.05 (0.050)AR 0.40 (0.403) 0.36 (0.364) 0.12 (0.131)BEV 0.09 (0.088) 0.09 (0.089) 0.06 (0.063)MAR 0.00 (0.010) 0.00 (0.010) 0.03 (0.041)MM 0.10 (0.100) 0.10 (0.101) 0.07 (0.073)

Table 2. Sample absolute mean bias and rmse (in brakets) of estimators θ̂(ML) ≡ θ̂
(ML)
uand θ̂(N) ≡ θ̂

(N)
u , by onsidering thresholds u = q0.95, q0.99, respetively, the empirialquantiles 0.95 and 0.99.
θ̂
(ML)
q0.95 θ̂

(ML)
q0.99 θ̂

(N)
q0.95 θ̂

(N)
q0.99Indep. 0.05 (0.045) 0.01 (0.000) 0.05 (0.055) 0.01 (0.000)AR 0.24 (0.237) 0.13 (0.130) 0.24 (0.245) 0.13 (0.134)BEV 0.08 (0.089) 0.10 (0.114) 0.08 (0.077) 0.09 (0.114)MAR 0.01 (0.032) 0.00 (0.045) 0.02 (0.032) 0.00 (0.045)MM 0.10 (0.095) 0.11 (0.118) 0.09 (0.089) 0.11 (0.114)3.1. Case studies162 3.1.1. Wooster temperatures163 We onsider the daily minimum temperatures (in degrees Fahrenheit) at164 Wooster (Ohio), from 1983 to 1988, more preisely, the period of November-165 February winter months in order to ahieve some stationarity (see Figure 1).166 This series was analyzed in Coles ([5℄, 2001) and bloks estimates were omputed167



Estimating the extremal index through the tail dependene onept9Table 3. Sample absolute mean bias and rmse (in brakets) of runs estimator θ̂(R) ≡ θ̂
(R)
u ,bloks estimator θ̂(B) ≡ θ̂

(B)
u and intervals estimator θ̂(I) ≡ θ̂

(I)
u by onsidering thresholds

u = q0.95, q0.99, respetively, the empirial quantiles 0.95 and 0.99. In the bloks and runsestimators it was used the suggested number of runs/bloks in Anona-Navarrete andTawn ([1℄, 2000).
θ̂
(R)
q0.95 θ̂

(R)
q0.99 θ̂

(B)
q0.95 θ̂

(B)
q0.99 θ̂

(I)
q0.95 θ̂

(I)
q0.99Indep. 0.05 (0.055) 0.01 (0.000) 0.00 (0.008) 0.01 (0.014) 0.01 (0.000) 0.03 (0.055)AR 0.37 (0.370) 0.19 (0.183) 0.24 (0.241) 0.13 (0.135) 0.22 (0.224) 0.13 (0.155)BEV 0.03 (0.028) 0.04 (0.063) 0.07 (0.064) 0.03 (0.090) 0.04 (0.055) 0.03 (0.084)MAR 0.02 (0.032) 0.00 (0.045) 0.03 (0.044) 0.02 (0.034) 0.03 (0.045) 0.03 (0.084)MM 0.03 (0.027) 0.00 (0.031) 0.02 (0.030) 0.03 (0.041) 0.03 (0.045) 0.02 (0.055)for the extremal index. In partiular, it was onsidered the threshold u = −10168 with number of bloks b = 20, 31 leading to, respetively, θ̂(B) = 0.27, 0.42.169 Sine we have a sample of minimum values we assume that an approximation170 to a BEV model dependene struture between onseutive pairs is plausible. In171 order to hek ondition D(2), we use the empirial methodology of Süveges ([22℄,172 2007) by alulating the proportion of anti-D(2) events among the exeedanes for173 a range of blok sizes and thresholds:174

p(u, r) =

∑n
j=1 1{Xj>u,Xj+1≤u,Mj+2,r>u}∑n

j=1 1{Xj>u}
.Observe in Figure 2 that p(u, r) ≈ 0 as u and r inrease, whih leads to an informal175 validation of D(2). Thus we assume the validity of estimators θ̂(ML) and θ̂(N), as176 well as the here presented θ̂(FF ), θ̂(CFG) and θ̂(SS).177 In Figure 3 are plotted, for several thresholds, the obtained estimates from178

θ̂(B) (for b = 20, 31), θ̂(R) (for r = 2, 4) and θ̂(I) (left), and from θ̂(ML) and179
θ̂(N) (right). Considering again u = −10, we have θ̂(R) = 0.35, 0.23, for r =180
2, 4, respetively, θ̂(I) = 0.26, θ̂(ML) = 0.43 and θ̂(N) = 0.4. By applying our181 estimators, we have θ̂(FF ) = 0.36, θ̂(CFG) = 0.38 and θ̂(SS) = 0.38, more loser to182 the ones obtained for θ̂(ML), θ̂(N), θ̂(B) with b = 31 and θ̂(R) with r = 2.183 3.1.2. Ozone pollution184 We now onsider n = 120 weekly maxima of hourly averages of ozone onen-185 trations measured in parts per million, in the San Franiso bay area, San Jose,186 available in the pakage Xtremes (Reiss and Thomas, [18℄ 2007). These data have187
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Figure 1. Negated Wooster daily minimum temperatures (in degrees Fahrenheit) on theleft, and onsidering winters only on the right.
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Figure 2. The observed proportion of anti D(2)(un) ondition for winters negated Woosterdaily minimum temperatures (in degrees Fahrenheit).been analyzed in Gomes et al. ([12℄, 2008) and Sebastião et al. ([20℄, 2013). We as-188 sume stationarity as in the latter referene (see also Figure 4). Gomes et al. ([12℄,189 2008) argued the plausibility of ondition D(2) to hold, based on the fat that190 these type of meteorologial data is usually modeled by proesses that satisfy this191 latter. See also Figure 5 and the onlusions in Sebastião et al. ([20℄, 2013) whih192 orroborates this assumption. A sample of maxima makes us omfortable with193 the hypothesis of an underlying model approximately BEV for onseutive pairs194 of observations. The extremal index was evaluated in 0.7 in Gomes et al. ([12℄,195 2008). In what onerns estimators θ̂(FF ), θ̂(CFG) and θ̂(SS), we have obtained,196



Estimating the extremal index through the tail dependene onept11

−10 −5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

threshold

E
xt

re
m

al
 in

de
x

blocks (b=20)
blocks (b=31)
runs (r=4)
runs (r=2)
intervals

−10 −5 0 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

threshold

E
xt

re
m

al
 in

de
x

Max.likelihood
Nandagopalan

Figure 3. The bloks, runs and intervals estimators (left) and the maximum likelihoodand Nandagopalan estimators (right), against threshold, for winters negated Woosterdaily minimum temperatures (in degrees Fahrenheit).
respetively, 0.74, 0.74 and 0.75. In analyzing Figure 6, the value 0.7 is a possible197 estimate, exept in the ase of the bloks estimator.198
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Figure 4. Weekly maxima of hourly averages of ozone onentrations (in parts per mil-lion), in the San Franiso bay area, San Jose.
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Figure 6. The bloks, runs and intervals estimators against threshold for weekly maximaof hourly averages of ozone onentrations (in parts per million), in the San Franisobay area, San Jose. 4. Conluding remarks199 Here we have onsidered new estimators for the extremal index based on the200 tail dependene oe�ient estimation, under the validity of ondition D(2)(un) of201 Chernik et al. ([4℄, 1991). Estimators θ̂(FF ) and θ̂(CFG) also require that the un-202



Estimating the extremal index through the tail dependene onept13derlying distribution of onseutive random pairs an be approximated by a BEV203 model dependene struture. These latter are not robust whenever one of the two204 assumptions is breahed. On the other hand, estimator θ̂(SS) presents ompara-205 ble biases and rmse's to estimators θ̂(ML) and θ̂(N) whih were also derived under206 ondition D(2)(un), in some ases, even outperforming these two latter. Estimator207
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