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ABSTRACT 
 
Supercritical carbon dioxide has been used as a green solvent due to their well-known potential 

in biomaterials impregnation. The versatility of this technique enables the loading of implants 

with Active Pharmaceutical Ingredients which present several benefits when compared with 

traditional techniques to impregnate active compounds. In this review, we have summarized the 

recent progresses achieved in supercritical CO2 assisted impregnation of active compounds and 

therapeutic deep eutectic systems for biomedical applications.  
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INTRODUCTION 

Supercritical CO2 (scCO2) assisted impregnation has been used for loading active 

pharmaceuticals ingredients (APIs) in order to developed drug-eluting devices. 

The preparation of drug-release products using an impregnation process demands the use of a 

mobile phase dissolve and transport the APIs, which at the same time should be able to swell the 

polymeric matrix, allowing the diffusion of the drug into the polymer bulk, increasing the 

impregnation rate (1). Typically, the preparation of drug-release systems requires three steps: 

solubilization of the APIs in an adequate solvent, APIs diffusion through the polymer matrix and 

removal of the residual solvent (2). In Fig.1 the schematic representation of the three phases of 

the impregnation process is presented.  

 

Figure1. Schematic representation of the three phases of the impregnation process. 
 

In this sense, scCO2 assisted impregnation has proven to be feasible when the pharmaceutical 

compound is soluble in carbon dioxide and the polymer can be swollen by the supercritical fluid. 
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Different yields of impregnation can be obtained by scCO2 assisted impregnation. The most 

relevant factors that affect the yield directly are the operating pressure and temperature of the 

system, due to their influence on density and solvent power of CO2 but also on the diffusivity of 

the fluid phase. According to Kazarian et al.(3, 4) there are mainly two mechanisms which 

describe scCO2 assisted impregnation. One is highly dependent on the swelling ability of the 

polymeric matrix, when in contact of the scCO2 the drug is solubilized in CO2 and is placed in 

contact with the polymer, upon depressurization, the CO2 rapidly leaves the polymer matrix, the 

solubilized drug precipitates and is deposited within the polymeric matrix. The second 

mechanism is more dependent on the affinity of the CO2 with the drug and the drug towards the 

polymeric matrix. One of the major advances of this impregnation process is the fact that after 

impregnation, the drug-eluting device can be recovered free of any solvent residue and that the 

impregnation is carried under mild temperature and pressure conditions, which enables the 

impregnation of thermosensitive APIs (5, 6). In the last decades scCO2 has been claimed as a 

good candidate to replace conventional organic solvents in order to develop a sustainable 

chemical process and to meet the regulatory requirements (6, 7). Furthermore, it is non-

flammable, non-toxic, highly abundant and low cost solvent. CO2 can be easily separated from 

other compounds such as APIs and/or co-solvent, recovered and recycled (5).  

Due to the advantages of this process it has been applied in different fields from food to textile 

industries (5, 8, 9). Nowadays, scCO2 assisted impregnation process is commercially used to dye 

textiles (9) and to impregnate fungicide in wood (2, 10). In the last years, the higher number of 

publications suggest a growing interest on scCO2 assisted impregnation in biomedical and 

pharmaceutical fields, particularly in the processing of polymer-based systems for tissue 

engineering (7, 11-15) and drug delivery (1, 6, 16-18). In this review, we highlight the most 

recent advances and give some perspectives on what could be seen as the next big steps in the 

field. 

 

IMPREGNATION OF ACTIVE COMPOUNDS FOR BIOMEDICAL APP LICATIONS  

The interest and advantages of using scCO2 assisted impregnation process in the biomedical field 

are notorious. The process has been essentially used to disperse APIs into a polymeric matrix, 

but at the same time it favors the crystallization of the API in the amorphous form. Not only the 

impregnation in polymeric matrixes has been described in the literature but also the creation of 
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drug-eluting devices through the impregnation of the APIs in a preexistent polymer-based device 

is a very ingenious way to prepare new therapeutic delivery devices (5). Different studies suggest 

the advantage of this process compared with other methods, in different areas such as oral drug 

delivery, ophthalmic (lenses and subconjunctival implants) and tissue engineering (sutures and 

scaffolds) (5, 16, 17). In which concerns oral drug delivery this has been by far the most studied 

area. scCO2 assisted impregnation process has been intensively applied to prepare new drug 

loaded micro- or nanoparticles. This technique has not only improved the efficiency of drug 

loading but also it has enabled to improve the solubility and the dissolution rate of poorly water 

soluble drugs such as crystalline drugs (8, 19). García-González et al. (18) used scCO2 assisted 

impregnation process to impregnate ketoprofen, an anti-inflammatory agent in polysaccharide-

based aerogels in the form of microspheres, which may be used as carriers of poorly water 

soluble drugs for oral administration. The authors suggest the possibility of tuning drug loading 

and release by carefully choosing the polysaccharide used to prepare the aerogels. Another recent 

example. that can be found in literature are the use of scCO2 for impregnation to create 

microcontainers with APIs for oral drug delivery (1). 

Another interesting field in which scCO2 impregnation process has been applied, is in 

ophthalmic drug delivery. These systems aim at the increase in the contact time of the drugs in 

the aqueous humor which enhances their efficacy and their biocompatibility (20). Different 

studies show the successful impregnation of different drugs (acetazolamide (21-23), timolol 

maleate (21), flurbiprofen (24, 25), ciprofloxacin and dexamethasone 21-phosphate disodium 

(20)) in soft contact lens without modifying their important characteristics such as oxygen 

permeability, wettability and transparency. This would not be possible by any other means of 

impregnation, due to the low drug solubility in aqueous solutions and the strict limitations in the 

use of organic solvents. 

In the tissue engineering field, several studies demonstrate the advantage to use scCO2 

impregnation process in comparison with traditional processes for impregnation of antibacterial 

and anti-inflammatory compounds into commercial hydrogels, scaffolds and films, based on 

chitosan, collagen/cellulose, agarose and hyaluronic acid (25-27). In particular, the results of this 

studies suggest that using scCO2 impregnation was observed higher drug loadings and a more 

efficient drug release (25-27). 
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Biodegradable and non-degradable sutures fibers have been also impregnated by scCO2. The 

impregnation time to reach the maximal loading drug is relatively low, around one hour (2, 28, 

29). Champeau et al. in a recent study, studied the influence of scCO2 impregnation process in 

the tensile properties of the sutures made of poly-l-lactide (PLLA), poly (ethylene terephthalate) 

(PET) and polypropylene (PP) with two anti-inflammatory drugs namely ketoprofen and aspirin 

(2, 30).  

scCO2 assisted impregnation process has been a valuable tool in the development of other 

medical devices. Different commercial catheters and stents (from silicone and/or polyurethane) 

have been successfully impregnated with antibacterial, antimicrobial and antifungal drugs with 

the objective to decrease the risk of infection upon implantation (31-33). Various patents claim 

the use of this process for impregnation for example, for up to 25% of benzocaine into 

polyurethane-based catheter, under mild conditions (40°C; 80 bar) (31) and triclosan into 

silicone-based stent (33). On the same field, Barros et al. (17) developed of a ketoprofen-eluting 

biodegradable ureteral stent. The study involved a variety of biodegradable natural polymers in 

different concentrations and the results demonstrated that in fact different polymer matrixes 

render different impregnation yields at the same operating conditions. These systems have also 

shown to be effective carriers for the delivery of anti-cancer drugs targeting upper urinary tract 

urothelial tumors (16). To avoid the problems of the conventional method of drug administration 

via drug instillation, the authors proposed the use of biodegradable ureteral stents impregnated 

by scCO2 with four different anti-cancer drugs (paclitaxel, doxorubicin, epirubicin and 

gemcitabine). The anti-cancer drugs eluted by the degradable stent showed to be able to reduce 

75% of urothelial cancer cell (T24) after 72 hours, in vitro, with no toxicity observed in the non-

cancer cells (HUVEC cells), which was used as a control.  

A new trend in which concerns supercritical impregnation has to do with the coupling and 

integration of processes. Namely, the extraction of natural active compounds from plants 

followed by their impregnation in suitable polymeric matrices is becoming a focus of attention 

for scientist in the field. For example, Fanovich et al. investigated an integrated supercritical 

fluid extraction and impregnation process in order to fabricate microporous polycaprolactone-

hydroxyapatite (PCL-HA) scaffolds with antibacterial activity after impregnation with Usnea 

lethariiformis extract (34). The authors obtained a PCL–HA scaffolds with Usnea extract with a 

yield of impregnation up to 5.9 wt.%, and the antibacterial activity of scaffolds was confirmed. 
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The use of natural extracts rather than synthetic antibacterial molecules may render 

products with an enhanced biocompatibility. 

Industrial implementation of supercritical fluid impregnation has been validated for wood 

treatment and textile dyeing. In our opinion, scCO2 assisted impregnation processes should soon 

start to be scaled-up in other fields, but especially for biomedical applications as the high added 

value of the products is indisputable the translation of the processes from bench to industrial 

scale urges. The recent studies clearly demonstrate that new processes using CO2 around and 

below critical point, coupled with semi-finished medical devices aiming new applications may 

see interesting breakthroughs in the coming years.  

 

IMPREGNATION OF THERAPEUTIC DEEP EUTECTIC SYSTEMS 

Deep eutectic solvents (DES) appear as a new class of solvents that can be simply obtained 

via mixing of two or more components, which at a certain molar ratio  interact through 

hydrogen bonding and lead to a decrease in the overall melting temperature of the system 

when compared to the individual components.(35-37) This family of solvents presents several 

advantages that turn them into promising alternative solvents, such as their low cost, both in 

which concerns production and raw materials, ease of preparation, negligible vapor pressure and 

non-flammability.(36-39) Thus, DES are generally called tailored made solvents due to the wide 

variety of compounds available coupled with the different arrangements of molecules that can be 

done and which may lead to up to 106 combinations.(36, 40, 41) 

Among the compounds that can be used to form DES appear the ones that are involved in 

metabolic pathways. This subclass of DES has been termed natural deep eutectic solvents 

(NADES) and include the primary metabolites, such as organic acids, amino acids and 

sugars ( e.g., choline chloride, citric acid, ascorbic acid, sucrose, tartaric acid, glucose, 

sucrose and xylose”. (35-37) Later on, Stott and co-workers, introduced the use of DES in 

transdermal devices, being nowadays well-stablished the potential of these solvents to 

dissolve model drugs, by increasing their solubility, permeation and absorption.(36, 42-44) 

These can hence be called therapeutic deep eutectic systems (THEDES), since the eutectic 

system contain an active pharmaceutical ingredient (API’s) as one of the DES components. 

The development of innovative, more effective and specialized release dosage is an emergent 

need to improve the poor drug solubility and bioavailability, avoiding high dosage 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

concentrations which inherently lead to severe side effects. THEDES have been attracting 

significant attention due to their high stabilization and solubilization power strength of a wide 

range of compounds such as the ones poorly water soluble.(36, 42, 43, 45) Up to now, several 

compounds have been reported to be successful included in DES which is an invaluable 

challenge in healthcare worldwide, as they increase the bioavailability of API’s. The API’s can 

be included in DES either by solubilizing them in the eutectic mixture either by using them as 

part of the mixture, i.e. being an eutectic component.(36, 42, 43) 

There is always, however, the need to develop delivery systems and new carriers for drug 

delivery. The coupling of THEDES with polymeric material has been recently reported and 

brings new exciting possibilities for the production of suitable pharmaceutical systems. By 

doping polymers with THEDES and subjecting the mixture to scCO2, a foaming/sintering 

process takes place due to the plasticizing properties of THEDES, rendering polymeric matrices 

with enhanced porosity being a viable alternative for drug delivery systems.(36, 42, 44) 

Subcritical fluid sintering is a process which takes place at subcritical conditions and it is 

based on the slight plasticization of the polymeric particles which are fused together, 

creating a 3D architecture. Recent results show that it is possible to solubilize dexamethasone 

in a DES based on choline chloride:ascorbic acid. This system is particularly relevant in the case 

of bone tissue engineering as ascorbic acid and dexamethasone are known to act on the 

differentiation of stem cells in the osteogenic lineage. A controlled delivery system based on a 

starch polymer blend was impregnated with the THEDES choline chloride:ascorbic acid: 

dexamethasone by supercritical fluid sintering (Figure 2). The results obtained corroborated the 

previous one and suggested the plasticization effect of THEDES as well as an increase on the 

porosity and surface area of the final construct.(42, 44)  

Impregnation of drugs in polymeric matrices using supercritical CO2 is a well described and 

studied method, with many examples using ibuprofen as a model nonsteroidal anti-inflammatory 

drug (NSAID)(46, 47). On the other hand, the impregnation of therapeutic DES in polymers 

using scCO2 is still an area under development, particularly due to the lack of solubility 

measurements on the binary systems THEDES + CO2. In a preliminary work we have evaluated 

the possibility to incorporate a THEDES system composed of menthol:ibuprofen 3:1 in alginate 

sponges prepared by freeze drying. The dissociation/precipitation of THEDES in its components 
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was never observed throughout the work, which means that THEDES and CO2 behave as a 

pseudo-binary mixture. 

VLE experiments were carried out at two different pressures, at 10 MPa and 15 MPa, 

bellow and above the supercritical region of THEDES respectively. At 15 MPa, the mixture 

THEDES/CO2 presents only one phase, meaning that a high amount of THEDES is 

available for impregnation, thus increasing diffusion driving force. In Figure 3 it is observed 

the release profile of ibuprofen from alginate sponges in a PBS solution for different 

impregnation times at 15 MPa. As expected impregnation time influences the maximum amount 

of THEDES impregnated in the alginate sponges. The maximum impregnation amount is 

achieved at 3h with a value of 148 mgIbuprofen/gAlginate for 15 MPa. Further studies will be 

necessary to carry out a thorough characterization of the systems. Nonetheless, we can envisage 

that the possibility of coupling these new therapeutic agents with a technology that presents 

significant advantages in comparison with traditional impregnation techniques may open in the 

near future new opportunities for the preparation of enhanced drug delivery systems. 

Seeking of new delivery systems based on polymeric matrices loaded with DES is hence 

attracting widespread and technological interests. The invaluable potential and high flexibility of 

the systems render them a guarantee of success that will surely find its way for a strong 

appearance in biomaterials science for different applications depending on the DES properties. 
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Figure 2. (A) Schematic representation of the preparation of DES and its respective 

impregnation in polymeric matrix. (B) Micro-computed tomography cross-section of SPCL (B1), 

SPCL + choline chloride:ascorbic acid: dexamethasone (B2). 

 

Figure 3. Impregnation amount of ibuprofen, from alginate hydrogels impregnated with 

THEDES at 15 MPa during different periods of time (10, 30, 60, 180 and 360 minutes). Values 

were obtained through release tests of the impregnated alginate sponges in PBS medium and 

ibuprofen concentration was obtained by measuring UV absorbance (at 265 nm) of aliquots 

taken at different time intervals.  
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