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ABSTRACT

Supercritical carbon dioxide has been used asengelvent due to their well-known potential
in biomaterials impregnation. The versatility ofsthechnique enables the loading of implants
with Active Pharmaceutical Ingredients which présseveral benefits when compared with
traditional techniques to impregnate active compisuin this review, we have summarized the
recent progresses achieved in supercriticap @€3isted impregnation of active compounds and
therapeutic deep eutectic systems for biomedigalicgiions.
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INTRODUCTION

Supercritical CQ@ (scCQ) assisted impregnation has been used for loadictvea
pharmaceuticals ingredients (APIs) in order to ttgved drug-eluting devices.

The preparation of drug-release products usingr@rdgnation process demands the use of a
mobile phase dissolve and transport the APIs, whtdhe same time should be able to swell the
polymeric matrix, allowing the diffusion of the dyunto the polymer bulk, increasing the
impregnation rate (1). Typically, the preparatidndoug-release systems requires three steps:
solubilization of the APIs in an adequate solvéit]s diffusion through the polymer matrix and
removal of the residual solvent (2). Fig.1 the schematic representation of the three phéses o

the impregnation process is presented.
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Figurel. Schematic representation of the three phas of the impregnation process.

In this sense, scGassisted impregnation has proven to be feasiblenviie pharmaceutical

compound is soluble in carbon dioxide and the pelyoan be swollen by the supercritical fluid.



Different yields of impregnation can be obtained dnCQ assisted impregnation. The most
relevant factors that affect the yield directly #ne operating pressure and temperature of the
system, due to their influence on density and stlpewer of CQbut also on the diffusivity of
the fluid phase. According to Kazarian et al.(3,td@re are mainly two mechanisms which
describe scCgassisted impregnation. One is highly dependenthenstvelling ability of the
polymeric matrix, when in contact of the sc£&x@®e drug is solubilized in CQand is placed in
contact with the polymer, upon depressurizatioa, @@ rapidly leaves the polymer matrix, the
solubilized drug precipitates and is deposited witlthe polymeric matrix. The second
mechanism is more dependent on the affinity ofGkk with the drug and the drug towards the
polymeric matrix. One of the major advances of thpregnation process is the fact that after
impregnation, the drug-eluting device can be repevdree of any solvent residue and that the
impregnation is carried under mild temperature anelssure conditions, which enables the
impregnation of thermosensitive APIs (5, 6). In tast decades scGas been claimed as a
good candidate to replace conventional organic estdv in order to develop a sustainable
chemical process and to meet the regulatory rempeinés (6, 7). Furthermore, it is non-
flammable, non-toxic, highly abundant and low ceslivent. CQ can be easily separated from
other compounds such as APIs and/or co-solvertyesed and recycled (5).

Due to the advantages of this process it has bgglred in different fields from food to textile
industries (5, 8, 9). Nowadays, scE£é¥sisted impregnation process is commercially tselye
textiles (9) and to impregnate fungicide in wood 1Q). In the last years, the higher number of
publications suggest a growing interest on sg@Ssisted impregnation in biomedical and
pharmaceutical fields, particularly in the procegsiof polymer-based systems for tissue
engineering (7, 11-15) and drug delivery (1, 6,18%- In this review, we highlight the most
recent advances and give some perspectives onoohlt be seen as the next big steps in the
field.

IMPREGNATION OF ACTIVE COMPOUNDS FOR BIOMEDICAL APP LICATIONS

The interest and advantages of using sc@€3isted impregnation process in the biomedie# fi
are notorious. The process has been essentialty tosdisperse APIs into a polymeric matrix,
but at the same time it favors the crystallizatdrihe API in the amorphous form. Not only the

impregnation in polymeric matrixes has been desdriin the literature but also the creation of



drug-eluting devices through the impregnation ef APIs in a preexistent polymer-based device
is a very ingenious way to prepare new therapeidiwery devices (5). Different studies suggest
the advantage of this process compared with otlehads, in different areas such as oral drug
delivery, ophthalmic (lenses and subconjunctivgblants) and tissue engineering (sutures and
scaffolds) (5, 16, 17). In which concerns oral ddafjvery this has been by far the most studied
area. scCg@ assisted impregnation process has been intensamdlied to prepare new drug
loaded micro- or nanoparticles. This technique haisonly improved the efficiency of drug
loading but also it has enabled to improve thelsbty and the dissolution rate of poorly water
soluble drugs such as crystalline drugs (8, 19)ci@asonzalezt al. (18) used scCg@assisted
impregnation process to impregnate ketoprofen, iirg#lammatory agent in polysaccharide-
based aerogels in the form of microspheres, whiely e used as carriers of poorly water
soluble drugs for oral administration. The auth&uggest the possibility of tuning drug loading
and release by carefully choosing the polysaccharsd to prepare the aerogels. Another recent
example. that can be found in literature are the of scCQ for impregnation to create
microcontainers with APIs for oral drug delivery.(1

Another interesting field in which scGOmpregnation process has been applied, is in
ophthalmic drug delivery. These systems aim atinbheease in the contact time of the drugs in
the aqueous humor which enhances their efficacy tar@t biocompatibility (20). Different
studies show the successful impregnation of differdrugs (acetazolamide (21-23), timolol
maleate (21), flurbiprofen (24, 25), ciprofloxacaimd dexamethasone 21-phosphate disodium
(20)) in soft contact lens without modifying themportant characteristics such as oxygen
permeability, wettability and transparency. Thiswdbnot be possible by any other means of
impregnation, due to the low drug solubility in @gus solutions and the strict limitations in the
use of organic solvents.

In the tissue engineering field, several studiesnalestrate the advantage to use sgCO
impregnation process in comparison with traditiomacesses for impregnation of antibacterial
and anti-inflammatory compounds into commercial rogels, scaffolds and films, based on
chitosan, collagen/cellulose, agarose and hyalaracid (25-27). In particular, the results of this
studies suggest that using sc@pregnation was observed higher drug loadings aamaore
efficient drug release (25-27).



Biodegradable and non-degradable sutures fibers baen also impregnated by sgCOhe
impregnation time to reach the maximal loading dsigelatively low, around one hour (2, 28,
29). Champeaasat al. in a recent study, studied the influence of sg@@pregnation process in
the tensile properties of the sutures made of ptagtide (PLLA), poly (ethylene terephthalate)
(PET) and polypropylene (PP) with two anti-inflantorg@ drugs namely ketoprofen and aspirin
(2, 30).

scCQ assisted impregnation process has been a valtablen the development of other
medical devices. Different commercial catheters steats (from silicone and/or polyurethane)
have been successfully impregnated with antibadieantimicrobial and antifungal drugs with
the objective to decrease the risk of infectionrupuplantation (31-33). Various patents claim
the use of this process for impregnation for exanpbr up to 25% of benzocaine into
polyurethane-based catheter, under mild conditi#®C; 80 bar) (31) and triclosan into
silicone-based stent (33). On the same field, Baatral. (17) developed of a ketoprofen-eluting
biodegradable ureteral stent. The study involve@réety of biodegradable natural polymers in
different concentrations and the results demorestrahat in fact different polymer matrixes
render different impregnation yields at the samerajing conditions. These systems have also
shown to be effective carriers for the deliveryaoti-cancer drugs targeting upper urinary tract
urothelial tumors (16). To avoid the problems @& tonventional method of drug administration
via drug instillation, the authors proposed the okbiodegradable ureteral stents impregnated
by scCQ with four different anti-cancer drugs (paclitaxelpxorubicin, epirubicin and
gemcitabine). The anti-cancer drugs eluted by #gratiable stent showed to be able to reduce
75% of urothelial cancer cell (T24) after 72 houmnsyitro, with no toxicity observed in the non-
cancer cells (HUVEC cells), which was used as drobn

A new trend in which concerns supercritical impragon has to do with the coupling and
integration of processes. Namely, the extractionnafural active compounds from plants
followed by their impregnation in suitable polyneematrices is becoming a focus of attention
for scientist in the field. For example, Fanovighal. investigated an integrated supercritical
fluid extraction and impregnation process in orttefabricate microporous polycaprolactone-
hydroxyapatite (PCL-HA) scaffolds with antibactéractivity after impregnation with Usnea
lethariiformis extract (34). The authors obtained a PCL-HA stddfavith Usnea extract with a

yield of impregnation up to 5.9 wt.%, and the aatiierial activity of scaffolds was confirmed.



The use of natural extracts rather than synthetic atibacterial molecules may render
products with an enhanced biocompatibility.

Industrial implementation of supercritical fluid pregnation has been validated for wood
treatment and textile dyeing. In our opinion, se@Gsisted impregnation processes should soon
start to be scaled-up in other fields, but esplcfal biomedical applications as the high added
value of the products is indisputable the transfaif the processes from bench to industrial
scale urges. The recent studies clearly demondinatenew processes using £&round and
below critical point, coupled with semi-finished dieal devices aiming new applications may

see interesting breakthroughs in the coming years.

IMPREGNATION OF THERAPEUTIC DEEP EUTECTIC SYSTEMS

Deep eutectic solvents (DES) appear as a new clagsolvents that can be simply obtained
via mixing of two or more components, which at a a&in molar ratio interact through
hydrogen bonding and lead to a decrease in the o\al melting temperature of the system
when compared to the individual components.(35-37)his family of solvents presents several
advantages that turn them into promising altereasi®vents such as their low cost, both in
which concerns production and raw materials, edpeeparation, negligible vapor pressure and
non-flammability.(36-39) Thus, DES are generalljlethtailored made solvents due to the wide
variety of compounds available coupled with théedént arrangements of molecules that can be
done and which may lead to up td’ tdmbinations.(36, 40, 41)

Among the compounds that can be used to form DES ppar the ones that are involved in
metabolic pathways. This subclass of DES has beegrined natural deep eutectic solvents
(NADES) and include the primary metabolites, such & organic acids, amino acids and
sugars ( e.g., choline chloride, citric acid, ascbic acid, sucrose, tartaric acid, glucose,
sucrose and xylose”. (35-37) Later on, Stott and emorkers, introduced the use of DES in
transdermal devices, being nowadays well-stablishethe potential of these solvents to
dissolve model drugs, by increasing their solubilit, permeation and absorption.(36, 42-44)
These can hence be called therapeutic deep eutedigstems (THEDES), since the eutectic
system contain an active pharmaceutical ingredientAPI’s) as one of the DES components.
The development of innovative, more effective apdcglized release dosage is an emergent

need to improve the poor drug solubility and bidlamlity, avoiding high dosage



concentrations which inherently lead to severe stffects. THEDES have been attracting
significant attention due to their high stabilipatiand solubilization power strength of a wide
range of compounds such as the ones poorly walableq36, 42, 43, 45) Up to now, several
compounds have been reported to be successfuldedtlin DES which is an invaluable
challenge in healthcare worldwide, as they increheebioavailability of API's. The API’s can
be included in DES either by solubilizing them e teutectic mixture either by using them as
part of the mixture, i.e. being an eutectic compr{d6, 42, 43)

There is always, however, the need to develop @slisystems and new carriers for drug
delivery. The coupling of THEDES with polymeric ragtal has been recently reported and
brings new exciting possibilities for the productiof suitable pharmaceutical systems. By
doping polymers with THEDES and subjecting the om&tto scC@ a foaming/sintering
process takes place due to the plasticizing prigseof THEDES, rendering polymeric matrices
with enhanced porosity being a viable alternatioe @irug delivery systems.(36, 42, 44)
Subcritical fluid sintering is a process which take place at subcritical conditions and it is
based on the slight plasticization of the polymerigarticles which are fused together,
creating a 3D architecture.Recent results show that it is possible to salbitiexamethasone
in a DES based on choline chloride:ascorbic admis $ystem is particularly relevant in the case
of bone tissue engineering as ascorbic acid anaardethasone are known to act on the
differentiation of stem cells in the osteogenicblige. A controlled delivery system based on a
starch polymer blend was impregnated with the THED&holine chloride:ascorbic acid:
dexamethasone by supercritical fluid sintering (Fég2). The results obtained corroborated the
previous one and suggested the plasticization teffed HEDES as well as an increase on the

porosity and surface area of the final constru2t.¢4t)

Impregnation of drugs in polymeric matrices usingpexcritical CQ is a well described and
studied method, with many examples using ibuprafea model nonsteroidal anti-inflammatory
drug (NSAID)(46, 47). On the other hand, the impagn of therapeutic DES in polymers
using scCQ is still an area under development, particularlye do the lack of solubility
measurements on the binary systems THEDES # @Ca preliminary work we have evaluated
the possibility to incorporate a THEDES system cosgal of menthol:ibuprofen 3:1 in alginate

sponges prepared by freeze drying. The dissocigtiecipitation of THEDES in its components



was never observed throughout the work, which mehas THEDES and CObehave as a

pseudo-binary mixture.

VLE experiments were carried out at two different pessures, at 10 MPa and 15 MPa,
bellow and above the supercritical region of THEDESespectively. At 15 MPa, the mixture
THEDES/CO, presents only one phase, meaning that a high amauwef THEDES is
available for impregnation, thus increasing diffuson driving force. In Figure 3 it is observed
the release profile of ibuprofen from alginate gpes in a PBS solution for different
impregnation times at 15 MPa. As expected impregndime influences the maximum amount
of THEDES impregnated in the alginate sponges. ffaimum impregnatioramount is
achieved at 3h with a value of 148 RgofedJaiginae for 15 MPa. Further studies will be
necessary to carry out a thorough characterizatiadghe systems. Nonetheless, we can envisage
that the possibility of coupling these new therdapeagents with a technology that presents
significant advantages in comparison with tradiloimpregnation techniques may open in the

near future new opportunities for the preparatibardanced drug delivery systems.

Seeking of new delivery systems based on polymeratrices loaded with DES is hence
attracting widespread and technological interédte. invaluable potential and high flexibility of
the systems render them a guarantee of successwilhaturely find its way for a strong

appearance in biomaterials science for differeptiegtions depending on the DES properties.
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Figure 3. Impregnationamount of ibuprofen, from alginate hydrogels impregnatedh

THEDES at 15 MPa during different periods of tini®,(30, 60, 180 and 360 minutes). Values
were obtained through release tests of the imptedgnalginate sponges in PBS medium and
ibuprofen concentration was obtained by measuring dbsorbance (at 265 nm) of aliquots

taken at different time intervals.
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