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Introduction

1995 Galicia pollution data - Cr, Ni and Pb
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Formal tests of Monte Carlo point to rejection of H0 : non-PS for Ni and Pb.
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Introduction

The traditional geostatistical model

observed data (y , x) unobserved data s
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x1, ..., xn are locations within an observation region D ⊂ IR2

y1, ..., yn are measurements associated with these locations
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x1, ..., xn are locations within an observation region D ⊂ IR2

y1, ..., yn are measurements associated with these locations

So, consider next 3 stochastic processes:

1 Field S(x) : x ∈ D ⊂ IR2 (goal of prediction)

Raquel Menezes CEIO 2005



logo-um

Introduction

The traditional geostatistical model

observed data (y , x) unobserved data s

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x1, ..., xn are locations within an observation region D ⊂ IR2

y1, ..., yn are measurements associated with these locations

So, consider next 3 stochastic processes:

1 Field S(x) : x ∈ D ⊂ IR2 (goal of prediction)
2 Point process P of sample locations x

Raquel Menezes CEIO 2005



logo-um

Introduction

The traditional geostatistical model

observed data (y , x) unobserved data s
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x1, ..., xn are locations within an observation region D ⊂ IR2

y1, ..., yn are measurements associated with these locations

So, consider next 3 stochastic processes:

1 Field S(x) : x ∈ D ⊂ IR2 (goal of prediction)
2 Point process P of sample locations x
3 Measurement process Y ≡ Y (xi) (noisy version of S)
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Problems and solutions

Motivation

Geostatistical methods rely on the fundamental
assumption that the sampling points have been
chosen independently of the values of the spatial
variable. (Diggle et al, 2003)

Raquel Menezes CEIO 2005



logo-um

Problems and solutions

Motivation

Geostatistical methods rely on the fundamental
assumption that the sampling points have been
chosen independently of the values of the spatial
variable. (Diggle et al, 2003)

Additionally, most methods consider the sample locations as
being uniformly spread over the observed region.

Raquel Menezes CEIO 2005



logo-um

Problems and solutions

Motivation

Geostatistical methods rely on the fundamental
assumption that the sampling points have been
chosen independently of the values of the spatial
variable. (Diggle et al, 2003)

Additionally, most methods consider the sample locations as
being uniformly spread over the observed region.

What happens if these assumptions fail?

preferability issue

clustering issue
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Problems and solutions

A variogram robust to clusters
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P

i
P

j wij (u)[Y (xi)−Y (xj)]
2

P

i
P

j wij (u)

wij(u) = 1√
ni×nj

× K
“

u−‖xi−xj‖

h

”

, where ni =
P

k I{‖xi−xk‖≤δ}

wij(u) = 1 (classic estimator)
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This new variogram is proven to enjoy good properties, such as
asymptotic unbiasedness and consistency.
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Problems and solutions

Model-based approach for preferential sampling

Stochastic dependence between S and P =⇒ [S, P] 6= [S][P]

Log-Gaussian Cox processes – [P | S]
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Problems and solutions

Model-based approach for preferential sampling

Stochastic dependence between S and P =⇒ [S, P] 6= [S][P]

Log-Gaussian Cox processes – [P | S]

1 Cox process – Diggle(2003):

Useful to model aggregated spatial point patterns where the

aggregation is due to a stochastic environmental heterogeneity.

2 Log-Gaussian process – Møller et al.(1998):

Takes log Λ(x) = Z (x), where Z (x) is some Gaussian process.
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Model-based approach for preferential sampling

Stochastic dependence between S and P =⇒ [S, P] 6= [S][P]

Log-Gaussian Cox processes – [P | S]

1 Cox process – Diggle(2003):

Useful to model aggregated spatial point patterns where the

aggregation is due to a stochastic environmental heterogeneity.

2 Log-Gaussian process – Møller et al.(1998):

Takes log Λ(x) = Z (x), where Z (x) is some Gaussian process.

P | S ∼ Poisson (exp{α + β S(x)})

where |β| identifies the degree of “preferability”, i.e., it
measures how much the “intensity” depends on S
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Problems and solutions

Influence of β on sample locations (α = 0)

Given two distinct Gaussian fields S(.)
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Some results

1995 versus 2000 Galicia pollution data
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Some results

Variogram estimation for Cr, Ni and Pb data
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Some results

1995 kriging — Parametric versus Non-Parametric
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Some results

Cross-validation or leave-one-out method

Aims of CV:

compare the P and the NP variogram models;

inspect the effect of sampling procedure (1995 vs 2000).
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Cross-validation or leave-one-out method

Aims of CV:

compare the P and the NP variogram models;

inspect the effect of sampling procedure (1995 vs 2000).

Fundamental idea behind CV:

estimate the concentration measurement Y (x) at each
sample point xi from neighbouring data
Yj = Y (xj), j 6= i , as if Yi = Y (xi) were unknown.

MSE =
1
n

n∑

i=1

(Yi − Ŷ
−i)

2 and MSSE =
1
n

n∑

i=1

(Yi − Ŷ
−i)

2

σ̂
2
−i
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Some results

Main conclusions

MSE MSSE
Cr Ni Pb Cr Ni Pb

1995 P 0.265 0.187 0.798 1.167 1.292 0.996

NP 0.247 0.172 0.801 0.837 1.305 1.032

2000 P 1.738 1.331 0.217 1.036 1.028 1.012

NP 1.672 1.276 0.217 0.974 0.978 0.986

With respect to MSE, smaller values are normally associated
with the NP approach, reinforcing the advantages of the NP
variogram.
Note that MSE is sensible to data poorly explained by their neighbors, which

possibly explains higher values for Cr and Ni in 2000.
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Main conclusions

MSE MSSE
Cr Ni Pb Cr Ni Pb

1995 P 0.265 0.187 0.798 1.167 1.292 0.996

NP 0.247 0.172 0.801 0.837 1.305 1.032

2000 P 1.738 1.331 0.217 1.036 1.028 1.012

NP 1.672 1.276 0.217 0.974 0.978 0.986

With respect to MSE, smaller values are normally associated
with the NP approach, reinforcing the advantages of the NP
variogram.
Note that MSE is sensible to data poorly explained by their neighbors, which

possibly explains higher values for Cr and Ni in 2000.

With respect to MSSE, note that these values are closer to 1 in
2000. We think such results, mainly those for Ni, support the
need for a model-based approach to preferential sampling.
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