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ARTICLE INFO ABSTRACT

Article history:

Received 30 January 2017 Cervical cancer is primarily caused by Human papillomavirus (HPV) infection, but other factors such as
Received in revised form 28 June 2017 smoking habits, co-infections and genetic background, can also contribute to its development. Although
Accepted 29 June 2017 this cancer is avoidable, it is the fourth most frequent type of cancer in females worldwide and can only
Available online 30 June 2017 be treated with chemotherapy and radical surgery. There is a need for biomarkers that will enable early

diagnosis and targeted therapy for this type of cancer. Therefore, a systems biology pipeline was applied
Keywords: in order to identify potential biomarkers for cervical cancer, which show significant reports in three
Clinical markers molecular aspects: DNA sequence variants, DNA methylation pattern and alterations in mRNA/protein

Genetic panel
Prognostic factors

expression levels. CDH1, CDKN2A, RB1 and TP53 genes were selected as putative biomarkers, being
involved in metastasis, cell cycle regulation and tumour suppression. Other ten genes (CDH13, FHIT,

Therapeutics PTEN, MLH1, TP73, CDKN1A, CACNA2D2, TERT, WIF1, APC) seemed to play a role in cervical cancer, but the
lack of studies prevented their inclusion as possible biomarkers. Our results highlight the importance of
these genes. However, further studies should be performed to elucidate the impact of DNA sequence
variants and/or epigenetic deregulation and altered expression of these genes in cervical carcinogenesis
and their potential as biomarkers for cervical cancer diagnosis and prognosis.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Worldwide, there are over 527,000 new cases of cervical cancer
each year, qualifying it as the fourth most frequent type of cancer
among women. It is responsible for approximately 265,700 deaths
per year, with the large majority occurring in less developed
countries [1]. Human papillomavirus (HPV) infection is the main
etiological factor for the development of cervical cancer but other
aspects, such as age, smoking oral contraceptives and parity, can
also contribute to its development [2].

Most HPV infections are transient and asymptomatic and the
majority of HPV infections, including those with high-risk
genotypes, get cleared or become undetectable within two years
[3,4]. The Pap smear test is the gold standard for cervical cancer
prevention, although it has low sensitivity and a high frequency of
false negatives. Visual inspection with acetic acid is used as a
complementary method of evaluation, but only after a positive Pap
smear result [5].

The occurrence of HPV infection is related to the secretion of
molecules by the innate immune system that are able to recognize
the presence of HPV. These molecules show higher expression
levels in the endocervical specimens infected with HPV16,
assisting in avoiding the viral infection and blocking the escape
of the virion from the endocytic vesicles [6,7]. However, HPV is still
able to avoid the activation of the immune response by escaping
from antigen presentation and downregulating pro-inflammatory
signalling [8]. Additionally, the genetic background of the patient
can influence the development of the disease and can be associated
with different outcomes. This perspective has emphasized the
importance of studying variations within the DNA sequence,
alterations in epigenetic modifications and deregulation in gene
expression in order to determine genetic markers [9].

These findings pave the major steps towards personalized
medicine, a tool to provide more reliable approaches for diagnosis
and improve prognosis. Some molecular panels have been
developed for breast and colorectal cancer [10,11], but none are
available for cervical cancer. This study aims to identify the main
genes associated with cervical cancer and their role in carcino-
genesis, thus highlighting potential biomarkers for early diagnosis,
prognosis and targeted therapy.
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2. Biomarker selection for cervical cancer

A systems biology pipeline was established to search the
Metacore™ database for genes with variations in their DNA
sequence, alterations in methylation patterns and changes in
mRNA/protein expression patterns in cervical cancer samples.
After that, the obtained results were cross-referenced with
previously obtained data. At this point, a list of diseases affected
by each molecular aspect of the selected genes in Metacore™ was
collected.

Manual data mining of scientific studies using the scientific
search engines PubMed and ScienceDirect was conducted to
identify the genes that showed significant molecular alterations in
cervical cancer, leading to the identification of a total of 2980
candidate genes. Single nucleotide variation (SNV) occurrence was
studied in 2487 genes, while only 54 genes were evaluated for
methylation patterns changes. The mRNA/protein levels were
evaluated for 2464 genes, but the reports rarely correlated with the
role of SNVs and epigenetic modifications in these genes (Fig. 1).

A cross-reference analysis was performed, allowing the
identification of genes reported with the following three aspects
in cervical cancer: DNA sequence variation, alteration in methyla-
tion or changes in mRNA/protein levels. A total of 14 genes were
selected, among them nine were tumour suppressors genes (TP53,
RB1, TP73, APC, PTEN, FHIT, CDH1, CDH13, WIF1); two cell cycle
regulator genes (CDKN1A, CDKN2A); one gene related to mismatch
repair (MLH1); one oncogene (TERT); and one gene encoding a
calcium channel (CACNA2D2). This approach was able to identify
genes that are known to be affected by HPV infection, such as TP53
and RB1, and are highly studied in cervical cancer, as well as others
relatively new to this field, such as FHIT and CDH13. This set of
genes was already studied in 366 diseases and, for didactic
purposes, it was divided into 17 categories according to the organ/
system affected. The cancer category consisted of 180 cancer types
(Fig. 2).

Integration of the data for SNVs, DNA methylation and mRNA/
protein expression for each gene showed different correlation
levels to different diseases (Fig. 3). Although these 14 genes were
studied in cervical cancer, only CDH1, CDKN2A, RB1 and TP53 were
reported as statistical significant in the literature for all the three

Triply affected in
cervical cancer
14 genes

|

Manual data mining
(Pubmed and
ScienceDirect)
|

1

Slgmflcant p-value
in all three

molecular aspects

Putative biomarkers
4 genes
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at least one level

Possible biomarkers
10 genes

Fig. 1. Gene selection through the systems biology pipeline.
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Fig. 2. Distribution of diseases observed according to the 17 Categories.

molecular aspects (Table 1), thus granting them the status of
putative biomarkers.

TP53 was the most cited gene with 838 references reported in
all the 17 diseases categories and 282 different diseases studied,
while the CDH1 gene showed only 20 cross-References.

2.1. Variant profiles of biomarkers

Together, the CDH1, CDKN2A, RB1 and TP53 SNVs showed 494
cross-references in 79 cancer types (Fig. 4A). The list of SNVs in
cervical cancer in relation to their molecular characteristics, the
categories reported and the number of diseases associated with
them is presented in Supplementary data, Table 1.

The CDH1 gene product, E-cadherin, is present on the
membrane of epithelial cells. E-cadherin is responsible for cell
adhesion, but it is also involved in transducing chemical signals
inside cells, controlling cell maturation and movement, and
regulating the activity of certain genes. E-cadherin also acts as a
tumour suppressor [34], but only one SNV in its gene has been
studied in cervical cancer. The CDH1 c.*54C >T SNV is located in
the 3’-untranslated region (3’UTR), and it was identified in 280
cervical cancer samples. The T allele was shown to be protective
against the development of cervical cancer (p=0.01), with a lower
frequency in stage Il patients [12]. This SNV was also studied in 4
other cancer types (breast, oesophageal, non-small-cell lung and

stomach cancers), showing significance in oesophageal carcinoma
[35], and non-small-cell lung cancer [12].

The retinoblastoma 1 (RB1) gene, a tumour suppressor gene,
encodes the pRB protein, which regulates cell growth and interacts
with other proteins to influence cell survival, apoptosis and
differentiation [36]. The RB1 c.1814 + 394G > A SNV located in the
intronic region has only been studied in cervical cancer. A study on
150 samples from an Indian population showed that individuals
with the AA genotype had a 1.77-fold higher risk for development
of cervical cancer (p=0.026) [20].

Cyclin-dependent kinase inhibitor 2A (CDKN2A) encodes two
different proteins, p14**F and p16™%4, due to alternative splicing of
exon 13 and exon 1q, respectively [37], and both are able to induce
cell cycle arrest [38]. CDKN2A has 12 SNVs studied in cervical
cancer out of which ¢.*29G > C located in the 3’UTR is the most
reported. A study in 150 cervical cancer patients and 150 age-
matched women with no malignancy demonstrated a protective
effect of the G allele against cervical cancer (p=0.0001). The same
study showed that c.*69C>T, also located in 3'UTR, was
significantly found in the patients carrying the T allele (CT or TT
genotypes) (p =0.0004), although the allelic frequency evaluation
did not show such association (p=0.072) [20]. On the contrary, no
significance was observed for any of these SNVs in a study of 92
abnormal cervical samples infected with HPV16 and 32 normal
samples [39], indicating that even though CDKN2A is not involved
in the viral infection and proliferation, it may be important for the
neoplastic process.

The tumour suppressor 53 (TP53) gene encodes for a tumour
suppressor protein that plays a critical role in determining whether
the DNA will be repaired or if the damaged cell will undergo
apoptosis [40]. This is the most studied gene in cancer (79 cancer
types) with 40 SNVs evaluated. The missense variant of TP53
¢.215C > G, corresponding to codon P72R, is the most studied SNV
among the cardiovascular, endocrine, gastrointestinal and genetic
categories. In a Chinese study in 323 cervical cancer patients and
568 normal samples, it was found that the CG genotype is a risk
factor for the development of cervical cancer (p=0.02) [29], and
another study found that the genotype GG is associated with
cervical cancer [30]. Despite that, this TP53 variant was not found
to be associated with 43 squamous cell carcinoma (SCC) and 67
cervical intraepithelial neoplasia (CIN) samples in another study
[24]. The frequency of TP53 SNVs was not only associated with
different populations, as it was more common in Asian popula-
tions, but also related to different cervical cancer types, with the
higher variant frequency associated with adenocarcinoma (AC)
than SCC [40].

2.2. Methylation profiles of biomarkers

All four genes showed hypermethylation of the promoter
regions in cervical cancer, having also been studied in the other 56
different types of cancer (Fig. 4B). CDKN2A methylation was
studied in 51 cancer types, while TP53 was studied in just seven
types of cancer, namely cervical cancer, breast cancer, hepatocel-
lular carcinoma, multiple myeloma, non-small-cell lung cancer,
ovarian cancer and stomach cancer.

Although TP53 is the most studied gene in various cancer types,
little is known about its role in cervical cancer. Only one study with
125 cervical cancer samples and 100 control samples describing
the methylation of the TP53 gene in association with cancer risk
(p <0.05) has been reported [31]. Hypermethylation of TP53 had
already been reported in other diseases such as hepatocellular
carcinoma in relation to the reduced expression of TP53 [41], as
well as in breast cancer [42] and ovarian cancer [43], thereby
reinforcing the importance of its alteration in carcinogenesis.
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Fig. 3. Relation between SNVs, alterations in methylation patterns and deregulation of mRNA/protein expression in all the 14 selected genes and diseases within the
categories. The information on the genes are organized in tabs in the outer portion of the circle. In each gene tab, the information is displayed following the sequence of SNVs,
alterations in methylation patterns and deregulation of mRNA/protein expression. In the inner circle, there is a category tab showing the list of diseases that belong to a certain
system/organ. Lines connect each gene characteristic to the diseases. Transparency is attributed to colour of the lines, so that opacity is directly related to the number of

diseases affected by each molecular aspect.

A study investigating the methylation status of CDKN2A in 78
cervical cancer samples showed significant hypermethylation in
cervical cancer in comparison with the normal cervix (p < 0.0001),
thus also correlating the methylation status of CDKN2A to the stage
of cancer [21]. The hypermethylation status of CDKN2A indeed
increased with the progression from low- to high-grade lesions of
the cervix (p<0.05) [22], which could explain the reduced
expression of p16™** in the high-grade cervical lesions [44].
However, there are conflicting results for CDKN2A methylation
thus questioning the significance of the methylation status being
observed in the cancer and normal samples [45].

The hypermethylation of the RB1 promoter was studied in 50
samples from patients with prior lesions in the cervix and 15 cervix
samples from patients with normal cytology and colposcopy. The
results demonstrated an increasing degree of methylation with the
severity of the lesion (p=0.009) as well as an association with HPV

infection (p=0.042) [28]. However, these results are still contro-
versial [31].

The CDH1 gene showed increasing methylation levels from the
normal to dysplastic to invasive cervical cancer samples (p < 0.05)
[15]. This gene was also hypermethylated in several SCC and CIN3
samples [14]. A study in 82 cervical cancer samples investigating
16 genes, including DAPK, RARB, FHIT, and TIMP3, demonstrated
that CDH1 is the most hypermethylated gene and is associated
with the cancer stage (p=0.0005) [16]. Together with CDH13 (H-
cadherin), CDH1 hypermethylation was also associated with worse
disease prognosis (p <0.05) [17], indicating its participation in
cervical cancer. It was associated with a 92.8-fold risk of relapse
(p=0.005) and a 7.8-fold risk of death (p=0.001) [13]. In HeLa cells,
the hypermethylation of the CDH1 promoter region was associated
with the absence of gene expression. However, the treatment with
the green tea polyphenol (—)-epigallocatechin-3-gallate could
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Table 1

List of genes and their molecular aspects reported in cervical cancer showing experimental design and p-value.

Gene Molecular Samples Sample characterization Sample type; Country Analysis p-value Ref.
aspect
CDH1 c+54C > T 280 SG 280 CC+330 normal cytology Blood; China PCR-RFLP 0.01 [12]
330C
Methylation 49 SG 49 CC+40 non-malignant gynaecological diseases Serum; Austria MPCR 0.001 [13]
40 C
49 SG 49 ISCC+22 normal cytology FFPE + LBC; USA PS <0.05 [14]
22C
62 SG 35 CC+27 SIL+38 normal cytology Fresh Tissue; India MSP <0.05 [15]
38C
121 SG 77 SCC+5 AC+39 CIN +8 normal cytology Fresh tissue, FFPE, LBC; MSP 0.0005 [16]
8C Colombia + Germany
93 SG 84 SCC+9 AC Serum; Austria MPCR <0.05 [17]
Expression 100 SG 70 CC+11 CIN3+19 CIN1/2+6 Normal TMA; China IHC <0.05 [18]
6C
135SG 135 SCC+55 normal cytology FFPE; China IHC <0.05 [19]
55 C
CDKN2A ¢.*29G > C 150 SG 150 CC+ 150 normal cytology Fresh Tissue +LBC; India PCR-RFLP 0.0001 [20]
150 C
Methylation 78 SG 66 SCC+12 AC+24 normal cytology Fresh frozen tissue; South Korea MSP <0.0001 [21]
24 C
68 SG 23 ISCC+10 CIN3 +8 CIN2+27 CIN1 Fresh frozen tissue + LBC; USA lla+HTa+TBS <0.05 [22]
Expression 166 SG 16 SCC+2 AC+98 HSIL+50 LSIL FFPE; Brazil [HC <0.001 [23]
110 SG 43 ISCC+38 CIN3+11 CIN2 +18 CIN1+20 normal Fresh frozen tissue; Egypt IHC 0.01 [24]
20C cytology
132 SG 20 ISCC+20 HSIL+42 LSIL+50 ASCUS + 17 normal LBC; China ICC+qRT-PCR <0.05 [25]
17 C cytology
200 SG 30 SCC+50 CIN3 +50 CIN2+50 CIN1 FFPE; China IHC 0.046 [26]
30C
45 SG 5 CL+45 HSIL+48 normal cytology LBC; Germany qRT-PCR <0.001 [27]
5CL
48 C
RB1 c.1814+394G > 150 SG 150 CC+ 150 normal cytology Fresh tissue + LBC; India PCR-RFLP 0.02 [20]
A 150 C
Methylation 50 SG 18 CC+15 HSIL+ 17 LSIL+ 15 normal cytology Fresh tissue + LBC; Brazil MSP 0.009 [28]
15 C
Expression 110 SG 43 ISCC+38 CIN3+11 CIN2 +18 CIN1 +20 normal Fresh frozen tissue; Egypt IHC <0.05 [24]
20 C cytology
TP53 c.215C > G 328 SG 328 CC+568 normal cytology Blood; China PCR-RFLP 0.02 [29]
568 C
114 SG 103 AC+9 SCC+200 cancer-free cervix Blood.; China PCR-RFLP 0.009 [30]
200 C
Methylation 125 SG 125 CC+100 healthy females Fresh tissue +Blood; India MSP <0.05 [31]
100 C
Expression 110 SG 43 ISCC+38 CIN3 +11 CIN2+18 CIN1+20 normal Fresh frozen tissue; Egypt IHC 0.01 [24]
20 C cytology
125 SG 92 SCC+33 AC FFPE, China IHC <0.05 [32]
60 SG 60 CC+60 normal tumour-adjacent regions FFPE, China IHC <0.05 [33]
60 C

AC: Adenocarcinoma; ASCUS: atypical cells of undetermined significance; C: Control; CIN: Cervical intraepithelial neoplasia; CL: Cell line; CC: Cervical cancer; FFPE: formalin-
fixed paraffin-embedded; HSIL: High-grade squamous intraepithelial lesion; HTa: HELP-tagging assay; ICC: Immunocytochemistry; IHC: Immunohistochemistry; Ila:
[llumina Infinium assay; ISCC: Invasive squamous cervical carcinoma; LBC: Liquid-based cytology; LSIL: Low-grade squamous intraepithelial lesion; MPCR: MethyLight PCR;
MSP: Methylation-specific PCR; PCR-RFLP: Polymerase chain reaction Restriction fragment length polymorphism; PS: Pyrosequencing; qRT-PCR: Quantitative real-time:
polymerase chain reaction; SCC: Squamous cervical carcinoma; SG: study group; SIL: Squamous intraepithelial lesion; TBS: Targeted bisulfide sequencing; TMA: Tissue

microarray paraffin-embedded

revert this effect [46], which suggests that the CDH1 gene can be a
relevant biomarker for targeted therapy.

2.3. Expression profiles of biomarkers

Our cross-referencing results showed that a total of 394 mRNA/
protein expression were associated with 169 cancer types, and
studies in 33 cancer types demonstrated the deregulation of
expression for all the genes (Fig. 4C). TP53 and CDKN2A, which
were found to be upregulated in cervical cancer, are the most
studied genes in cancer, while CDH1 and RB1 were found to be
downregulated.

Deregulation of TP53 protein expression was the most reported
among the four biomarkers selected and was affected in 144 cancer
types. During cervical infection with high-risk HPV, the production
of the oncoprotein E6 targets the p53 protein for proteosomal

degradation [47], resulting in lower levels of p53 in the cervical
cancer cells. Therefore, low levels of p53 have been found in the
cells infected with HPV16 and producing oncoprotein E6 [48].
Another study in 125 patients showed the presence of p53 in 56.8%
of the cases, with higher levels in AC compared to SCC (p < 0.05).
The level of p53 was also associated with lymph node metastasis
(p<0.05) [32]. A study in 60 cervical cancer samples and 60
controls also showed higher p53 levels in the cervical cancer
samples than the normal samples (p < 0.05), and the elevated p53
level was also associated with lymph node metastasis (p < 0.05)
[33]. This identifies p53 as a robust prognostic biomarker in
cervical cancer, even though its regulatory mechanism needs to be
elucidated further.

Although CDKN2A encodes for both p14RF and p16™*4, most
studies have focused on the latter. The expression of p16™** has
been evaluated in 114 different types of cancer, and a study in 50
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Fig. 4. Relation of molecular aspects with cancer-associated diseases for the 4 candidate biomarkers comprising (A) SNVs, (B) alterations in methylation patterns and (C)

deregulation of mRNA/protein expression.

low-grade squamous intraepithelial lesions (LSIL), 98 high-grade
squamous intraepithelial lesions (HSIL), 16 SCC and 2 AC. The levels
of p16™** increased with the severity of the cervical lesions
(p<0.05) [23], and similar results were obtained in 20 HSIL, 42
LSIL, 50 atypical squamous cells of undetermined significance
(ASCUS), 20 cervical cancer and 17 normal samples (p < 0.05) [25].
Furthermore, another study with 30 normal cervix samples, 150
CIN lesions and 50 cervical cancer samples showed the over-
expression of p16™X4 which was associated with poor cervical
cancer prognosis (p < 0.05) [26]. The levels of p16™%* and p14/RF
were evaluated in 5 cervical cell lines, 48 normal samples and 48
HSIL samples, and showed a 6.27 and 4.87-fold increase,
respectively, compared to the normal samples [27]. It is interesting
to note that although higher p16™¥* Jevels were significantly
associated with the progression of cervical lesions to cervical
cancer (p=0.001), no CDKN2A variant was linked to the increase in

protein levels [24], indicating that different types of regulation
other than methylation events could be involved and should be
evaluated.

Deregulation of the RB1 gene has been reported in 67 types
of cancer. Similar to p53, pRB is also affected by high-risk HPV
infection. In this case, upon binding of oncoprotein E7, the
complex of pRB with E2F is disrupted, leading to the expression
of E2F responsive genes and pRB degradation [48,49]. A study in
130 cervix samples showed decreasing levels of pRB with
increasing severity of the cervical lesions (p=0.01) [24], and
similar results were observed in a study with 114 cervical tissue
samples [50]. However, a study in 98 samples of cervical
neoplastic lesions showed no alteration in the expression of
PRB compared to the normal samples [51]. It has also been
demonstrated that the inhibition of HPV16 E7 can restore the
activity of pRB [52].



M.ES. Cardoso et al./ Mutation Research 773 (2017) 161-173 167

CDH1
CDKIVQA

.
\Q@

Fig. 4. (Continued)

Evaluation of CDH1 expression was performed in 60 types of
cancer. For cervical cancer, a study in 40 patients with HSIL caused
by HPV16 infection showed lower levels of E-cadherin upon the
expression of HPV16 E6/E7 genes (p < 0.01) [18]. This decrease led
to the promotion of cell proliferation and increase in cell migration
and invasion due to weaker cell adhesion properties [53].
Additionally, reduced levels of E-cadherin and [(3-catenin were
observed in 135 cervical cancer samples, which was associated
with histological differentiation (p < 0.001), metastasis (p < 0.001)
and recurrence (p<0.001) [19], suggesting that the E-cadherin
status could be used as prognostic biomarker.

3. Gene interactions networks
To determine the metabolic importance of CDH1, CDKN2A, RB1

and TP53 genes in the development of cervical cancer, their
metabolic pathways were studied, by text and data mining of

scientific papers, together with the molecules related to HPV
infection. Additionally, the molecular interactions with the other
10 genes were also investigated for cervical cancer in order to
assess their role in cervical carcinogenesis (Fig. 5).

3.1. Tumour suppressor pathways

The epidermal growth factor receptor (EGFR) pathway regu-
lates cell growth, cellular maturation, proliferation, inhibition of
apoptosis, angiogenesis and metastasis [54]. EGFR is known to be
activated by binding to different ligands and stimulating the
dimerization of the receptor. The dimerization induces the
activation of the tyrosine kinase domain, which leads to auto-
phosphorylation and recruitment of a range of adaptor proteins
such as growth factor receptor bound protein2 (GRB2) and the
proto-oncogene tyrosine protein kinase (Src). The intracellular
signalling cascades affect gene transcription, which in turn
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promotes cancer cell proliferation, reduces apoptosis, increases
invasion and metastasis and stimulates tumour-induced angio-
genesis [55].

E-cadherin and H-cadherin (CDH13) play key roles in cell-
cell adhesion, being involved in EGFR inhibition through the
negative regulation of ligand binding [56,57]. Low expression of
CDH1 gene can facilitate EGFR signalling, and disruptions in the
function of E-cadherin leads to the enhancement of this
pathway and changes in cell-cell and cell-matrix adhesion.
This can increase the severity of the cervical lesions and induce
metastasis [58]. The downregulation of CDH13 as a result of
hypermethylation, is also associated with poor disease-free
survival [17], possibly due to the lack of inhibition of the EGFR
pathway. However, further analysis should be performed to
elucidate the contributions of epigenetic events and gene
variants on the function of the protein if the CDH13
methylation status is cannot be well-established [14,17,59].

Additionally, it is not clear how the variant allele in CDH1 c.
*54C>T confers protection against cervical cancer [12].

In the EGFR pathway, Src kinase phosphorylates fragile
histidine triad (FHIT), a tumour suppressor protein, to inactivate
it and target it for proteasomal degradation in cancer cells. The
tumour supressor properties of FHIT include the ability to induce
apoptosis, arrest cell cycle and suppress tumourigenesis in nude
mice [60]. High-risk HPV infections can induce FHIT loss of
heterozygosity (LOH) in cervical cancer patients [61]. The
epigenetic deregulation of FHIT [14,45,59,62,63] appears to be a
late event during cervical carcinogenesis [64], arising from high
instability in response to genotoxicities or replicative stress [65].
Smoking habits in patients with cervical cancer contribute to the
homo/hemizygous deletion and downregulation of FHIT [66].
However, some variants can lead to the loss of protein function as
reported in the case of the c¢.293A > G missense SNV at codon 35
(histidine is replaced by an arginine) or the absence of exon 5 [67].
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Fig. 5. Metabolic interaction networks including the four putative biomarkers and 10 possible biomarkers and their cellular outcomes.

Together with low levels of FHIT, elevated levels of p53 are
related a higher recurrence of cervical cancer [68] resulting in
worse prognosis. The tumour suppressor properties of TP53 result
from its antiproliferative functions as it can induce G1 arrest (by
functioning as a cell-cycle checkpoint), senescence (by causing
permanent cell cycle arrest) and modulate autophagy [69]. Allelic
imbalance in TP53 was shown to be associated with a reduced
relapse-free survival [70], reinforcing its importance in the
maintenance of cancer and indicating it as a putative predictor
of poor prognosis.

3.2. Cell cycle regulation and DNA repair

Cell cycle dysregulation is one of the main mechanisms by
which cancers develops. The ability to sustain proliferation in
response to continuous growth-stimulatory signals is a hallmark of
cancer development, translating into the evasion from growth
suppressors [71]. The phosphatidylinositol 3-kinase (PI3K) path-
way is one of the most relevant pathways in cancer due to its role in
apoptosis prevention, cellular survival and proliferation promo-
tion. Activation of the PI3K pathway is able to stimulate
transmembrane tyrosine kinase receptors, such as EGFR, promot-
ing its dimerization and leading to the phosphorylation of PtdIns
(4,5)P, (PIP2) into PtdIns(3,4,5)P3 (PIP3), which acts as second
messenger in the cell [72]. PIP3 is the principal mediator of the
PI3K pathway, and protein kinase B (AKT) is one of the most
important downstream effectors, which can activate other
important pathways, such as the rapamycin complex 1 (mTORC1)
[73]. The PI3K signalling pathway can be inhibited by phosphatase
and tensin-homologue (PTEN) through the conversion of PIP3 into
PIP2. Similar to p53, PTEN has several tumour suppressor
properties and can affect cellular functions such as survival,
proliferation, energy metabolism and cellular architecture [74].

Regulation of PTEN expression can occur at several levels. In
cervical cancer, PTEN variants were shown to be associated with
HPV-negative adenocarcinoma [75], although it was not repro-
duced in other studies [76]. The epigenetic regulation of gene
expression seems to be relevant for PTEN as it is hypermethylated
in cervical cancer and associated with the disease stage [77] and

histological type [78], which is consistent with lower levels of
PTEN and PTEN silencing [76,79]. The methylation events were also
reported to be affected by the SNV in the CpG islands c.-9C > G,
which modifies the methylation status and thus gene expression
[80]. PTEN c.273delA, located in the functional domain of PTEN can
interfere with the function of PTEN [81], showing the importance
of the loss of function of PTEN in cancer development.

The p53 protein, a well-known tumour suppressor, is located
downstream of the PI3K pathway and is tightly regulated by the
proto-oncogene MDM2 (MDM2), p14RF, p73 and MutL homolog 1
(MLH1). It stimulates the expression of p21 to arrest cell cycle and
its inactivation through the oncoprotein effects of HPV-E6 on the
cell cycle leads to a cascade of deregulating events that induces cell
proliferation. p53 is regulated by cyclin dependent kinase inhibitor
1A (CDKN1A), which is also activated by p73 (TAp73). p21 acts as
regulator of cell cycle and inhibits the activity of CDK2, which is
required for the phosphorylation of pRB [82]. Thus, it is important
to determine the impact of variants in this gene. In Chinese and in
non-Asian women, the missense variant c.93C > A located in codon
31 was associated with protective effects against cervical cancer
[83,84]. In the Brazilian population, ¢.93C>A and c.*20C>T
(located in 3’UTR) variants of CDKN1A were also associated with
protection against cervical cancer [85]. CDKN1A was found to be
hypermethylated in less than 10% of cervical cancer samples [31].
This is consistent with the reports of high levels of p21 in cervical
cancer samples, which was also shown to be associated with the
progression of lesions in several studies [23,24,86,87].

The gene encoding tumour suppressor 73 (TP73) is a functional
and structural homologue of p53 that codes for multiple proteins
through alternative splicing. There are mainly two isoforms of this
gene: TAp73, which is a full length protein containing a
transactivation domain (TA) that is able to activate other genes
and induce apoptosis and ANp73, the NH2-terminal truncated
isoform that acts as an inhibitor of TAp73 [88]. Epigenetic
deregulation of TP73 is dependent on the production of high-
risk HPV E6 and E7 oncoproteins leading to cellular immortaliza-
tion [89]. This gene is also hypermethylated to a higher degree in
AC than in SCC. Hypermethylation in the promoter region of TP73
not only increases the risk of cervical cancer by 1.81-fold [31] but is
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also associated with lower expression levels of the protein.
Furthermore, the TAp73 gene was found to be overexpressed in
radiosensitive cervical cancer cells, and ANp73 overexpression was
correlated with resistance to radiation and worse outcome [88],
thus indicating the epigenetic and expression deregulation of TP73
as potential prognostic biomarkers in cervical carcinogenesis.
Although there is a lack of association of SNVs in NearGene-5 of
TP73 (c.-20G > A and c.-30C > T) with cervical cancer [90], its
presence may have consequences in the methylation status and
expression of TP73.

The regulation of these proteins is very tight. Increased p73
levels were found to be associated with higher levels of the p21
protein [91]. Both p53 and p73 proteins can be stimulated by the
MLH1 protein, thereby affecting the cell cycle regulation. MLH1
also participates in intracellular processes for recognizing and
repairing foreign DNA, by a process called DNA mismatch repair.
Sequence variants in a set of proteins involved in this process,
including MLH1, have been shown to increase the susceptibility to
cancer due to the high levels of microsatellite instability [92].
Hypermethylation of the MLH1 promoter has been reported in
cervical cancer [93] and is associated with low-risk HPV infection
[94]. Significant lower levels of MLH1 has been found in invasive
cervical cancer (ICC) samples [95], suggesting that the loss of MLH1
protein is associated with neoplastic invasiveness [96]. Reduced
levels of MLH1, FHIT together with increased levels of p53 proteins
have been considered indicators of higher recurrence of cervical
cancer [68], which could be an indicative of their potential as
candidates for cervical cancer prognosis.

3.3. Senescence and apoptosis evasion pathways

Calcium voltage-gated channel auxiliary subunit alpha2 delta2
(CACNA2D2) is a member of the calcium channel family, CACN. The
input of Ca%* into the cytoplasm is one of the mechanisms by which
the RAS pathway is activated [97]. There are very few studies
investigating the role of CACNA2D2 in cervical cancer but its
presence in a locus deleted in 15% of cervical cancer samples
suggests that it could be a tumour suppressor gene [98]. In fact, the
CACNA2D?2 loci was found to be deleted in 50% of cervical cancer
samples or its increased methylation level, which ranged from 9%
to 27%, was shown to promote the progression from CIN to cervical
cancer, resulting in over 5 times reduction in CACNA2D2
expression in cervical cancer samples in comparison with normal
samples [99].

The RAS pathway leads to cell growth, differentiation and
survival once the Ras protein inhibits pRb. pRB is maintained in
an active hypophosphorylated state by p16™%* and is able to
repress the E2F-mediated transcription, inducing cell cycle
arrest and senescence [100]. The downregulation of pRb is
related to the activation of p53 by increasing levels of E2F,
thereby stimulating p14**F, p142RF inhibits MDM2 [101], an
important negative regulator of p53 and pRB, which promotes
proliferation by stimulating the S phase through the induction
of the transcriptional activity of E2F1/DP1. AKT and E2F are
responsible for phosphorylation and activation of telomerase
reverse transcriptase (TERT), an oncogene responsible for
telomere elongation that allows the cells to evade apoptosis
[102]. HPV16 E6 binds to the TERT promoter and induces its
expression, leading to significant higher levels of TERT in the
cervical cancer samples [103,104] as well as the upregulation of
vascular endothelial growth factor (VEGF) [105], which contrib-
utes for tumour angiogenesis. Silencing of TERT leads to the
suppression of cell proliferation, cell cycle, cell migration and
invasion leading to the induction of apoptosis, thereby
suppressing the growth of cervical cancer cells in vitro [106].

However, hypermethylation of the TERT promoter was found to
be significant in CIN3 lesions [107] and cervical cancer samples
[108]. TERT promoter variants c.-146C > T and c.-124C > T were
observed in 21.4% of cervical cancer patients in India, which is
almost 4 times higher than the proportions reported by studies
in Western populations [109].

3.4. Cell proliferation

The Wnt signalling pathway is a major regulator of cell
proliferation, migration, differentiation and tumour progression
[110] and is important for cervical cancer formation as it is affected
by several genes included in this study, such as CDH1, Wnt
inhibitory factor 1 (WIF1) and adenomatous polyposis coli (APC).
The Wnt pathway plays a key role in cell proliferation via the
transcriptional activation by [3-catenin mediated through the
binding of E-cadherin. On the other hand, WIF1 inhibits ligation of
Wnt to its receptor frizzled, leading to the activation of the Axin
complex and constant degradation of [3-catenin [110], which
prevents signalling by the Wnt pathway. This has been implicated
in the inhibition of tumour proliferation, invasion, angiogenesis
and apoptosis [111]. Hypermethylation of WIF1 was detected in
approximately 87% of the cervical cancer samples [14,112], which
could be correlated to low levels or absence of WIF1 protein in the
cervical cancer samples [111].

APC, another negative regulator of Wnt pathway, is involved not
only in the Axin complex but also in actin assembly, cell-to-cell
adhesion and microtubule network formation [113]. APC hyper-
methylation was found in cancer cell lines but was absent in HPV-
immortalized cell lines [114], indicating that genetic silencing due
to methylation may be a later event in transformation or might be
cell cycle dependent [114]. In cervical cancer samples, APC
hypermethylation was significantly higher in AC compared to
SCC [16,115]. Low levels of APC in the cytoplasm was correlated
with high levels of -catenin in the nucleus and cytoplasm of
cervical cancer cells, suggesting the activation of the Wnt pathway
[116]. In HeLa and CaSki cells, treatment with hydralazine
promotes APC demethylation, inducing the expression of APC
and leading to growth inhibition [117]. This shows the importance
of the Wnt signalling pathway in the development of cervical
cancer and denotes WIF1 and APC as therapeutic targets in cervical
cancer.

4. Conclusion

The process of finding compelling biomarkers for the develop-
ment or prognosis of cervical cancer is complex. In this study, it
was possible to unveil four putative biomarkers that are
significantly correlated with the development and maintenance
of cervical cancer due to the presence of variants in the respective
genes, alterations in gene methylation patterns and deregulated
expression patterns. Further studies should be performed to
elucidate the role of these four genes as well as to include the
others ten possible genes that lack studies with significance due to
the inconsistency of the number of patients and chosen
methodology to determine the presence of SNV, methylation
status and expression deregulation in these genes. This will allow
the development of a robust genetic panel for the early diagnosis
and evaluation of prognosis of cervical cancer as has been already
observed for other types of cancers.
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