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Abstract

This paper presents the application of a topology optimization algorithm based in homogenization theory. Three

examples in structural design will be solved numerically. The first two are formulated such that analytical solutions can

also be developed. To obtain this goal, the microscopic structure that we considered is formed of laminates because for

this type of composite materials there is an explicit dependence of the homogenized coefficients on the design variables.

The last example regards bone remodelling. Here, where it is impossible to obtain the analytical solution, the applied

algorithm produces numerical results which are in good agreement with Wolff’s Law.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In 1892 the German physiologist Julius Wolff pro-

posed an explanation for the distribution of cortical

bone and cancellous bone, actually known as Wolff’s

Law [15]. Basically it states that bone has the ability to

remodel, by changing its size, shape, and structure, to

meet the mechanical demands placed on it. It also says

that bone remodelling is a kind of an optimization

problem, in the sense that bone distributes in a way that

maximizes its stiffness, while the trabeculae will orient

along major stress lines [13].

The algorithm introduced by Bendsøe and Kikuchi in

1988 [5] for topology optimization problems when ap-

plied to the determination of bone distribution seems to

recover Wolff’s conjectures. There, the first introduced

novelty was the transformation of the initial problem

into a material distribution problem, where composite

materials were used as the base material. Another nov-

elty was the application of Homogenization Theory (e.g.

[6,10]) to determine the macroscopic material properties
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from the microscopic material constituents (cf.

[1,3,7,11]). This approach to solve remodelling problems

is followed e.g. in [2,9,12].

In order to better understand the algorithm, we wish

to apply it to simple examples where it is possible to

develop analytical solutions, starting with the unidi-

mensional case––bending of a bar––in Section 2. Section

3 considers elasticity problems. The first example of this

section, with simple geometry and loads, is still capable

of developing analytical solutions to compare with the

obtained numerical results. The second one, is the

application of the algorithm to bone remodelling.
2. Bending of a bar

2.1. Problem formulation

Consider a rod occupying the interval X ¼ ð0; LÞ �
R, with cross section area A and with second moment of

area with respect to a principal axes perpendicular to the

bending plane of the rod denoted by I . Consider that the
rod is subjected to a transverse load of intensity f over

its domain X, clamped at x ¼ 0 and also subjected to a

transversal tip force F at x ¼ L.
ed.
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Let us assume that the material the rod is made of

possesses a microstructure formed by the layered com-

bination of two homogeneous and isotropic materials:

one, strong and expensive, with Young’s modulus Eþ,

specific mass qþ and proportion s, with 06 s6 1; the

other, weak and cheap, with Young’s modulus

E�ð< EþÞ, specific mass q�ð< qþÞ and proportion 1� s;
we assume that f is independent of the specific mass, i.e.,

of =oq ¼ 0.

We will consider a laminated microstructure oriented

along a system of axes Oy1y2 such that Oy1 is parallel to
Ox1 and Oy2 is parallel to Ox2 (left-hand side of Fig. 1). If

we apply the Homogenization Theory [4], the homo-

genized or macroscopic Young’s modulus has the fol-

lowing expression:

EH
1 ¼ EþE�

sE� þ ð1� sÞEþ : ð1Þ

If we consider, instead, that the layer’s orientation is

defined by axes Oy1 parallel to Ox2 and Oy2 parallel to

Ox1 (right-hand side of Fig. 1), the expression of the

homogenized Young’s modulus is

EH
2 ¼ sEþ þ ð1� sÞE�: ð2Þ

In both situations, the expression for the homoge-

nized specific mass is given by

qH ¼ sqþ þ ð1� sÞq�:

The equilibrium equation the displacement field u has
to satisfy, in its weak form, is given by

aðs; us; vÞ ¼ ‘ðvÞ 8v 2 V ;

where

aðs; u; vÞ ¼
Z L

0

EHðsÞI d
2u

dx2
d2v
dx2

dx;

‘ðvÞ ¼
Z L

0

fvdxþ FvðLÞ;
1−τ

1−τ

τ

τ
x1,y1 x1,y2

x2,y2 x2,y1

E+ -EE

E+

-E

E

Fig. 1. Rank-1 layered microstructure, where the system of

axes Oy1y2 represents the microscopic level and Ox1x2 the

macroscopic level.
V ¼ v 2 H 2ðXÞ : vð0Þ
�

¼ dv
dx

ð0Þ ¼ 0

�
;

V denotes the space of kinematically admissible dis-

placement fields and EH the homogenized Young’s

modulus independently of the laminated orientation.

The fact that for fixed control s the problem pos-

sesses a unique solution us relies on standard results. In

fact for a given s 2 L1ðX; ½0; 1�Þ, the functional aðs; �; �Þ
is bilinear, continuous and coercive. On the other hand,

functional ‘ð�Þ is linear and continuous and the conclu-

sion follows from Lax-Milgram’s Lemma.

The problem we are addressing considers as objective

function the work of the applied forces plus a term

which penalizes the stiffest and more expensive material

Eþ. We want to determine the function s which mini-

mizes this objective function, subject to the equilibrium

equation and to the lower and upper bounds in s. The
problem formulation is the following:

min
s

jðsÞ

s:t:: aðs; us; vÞ ¼ ‘ðvÞ 8v 2 V ;

06 s6 1

with

jðsÞ ¼
Z L

0

fus dxþ FusðLÞ þ k
Z L

0

qHAdx;

where the positive constant k represents the work done

in order to add to the rod a unit of mass. We should note

that this formulation is equivalent to the maximization

of the stiffness of the solid, taking into account the cost

penalization.

2.2. Analytical solution

In order to solve the problem under consideration,

we construct the Lagrangian

L ¼ jðsÞ þ kðaðs; us; vÞ � ‘ðvÞÞ

þ
Z L

0

sþðs� 1Þdx�
Z L

0

s�sdx;

where sþ, s� and k are the Lagrange multipliers associ-

ated to constraints s6 1, sP 0 and the equilibrium

equation, respectively. From the necessary conditions of

stationarity one obtains the following conditions for a.e.

x 2 X and for all v 2 V :

v ¼ 1

k
us; ð3Þ

aðs; us; vÞ ¼ ‘ðvÞ; ð4Þ

sþ P 0; sþðs� 1Þ ¼ 0; ð5Þ

s� P 0; s�s ¼ 0; ð6Þ
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k
dqH

ds
A� dEH

ds
I

d2us

dx2

� �2

þ sþ � s� ¼ 0: ð7Þ

If Eq. (7) is rewritten as

vs þ sþ � s� ¼ 0; ð8Þ
vs ¼ k
dqH

ds
A� dEH

ds
I

d2us

dx2

� �2

; ð9Þ

and considering (5) and (6), we have

vs < 0 ) sþ > 0; s� ¼ 0 ) s ¼ 1;
vs ¼ 0 ) sþ ¼ 0; s� ¼ 0 ) s 2 ½0; 1�;
vs > 0 ) sþ ¼ 0; s� > 0 ) s ¼ 0:

8<
: ð10Þ

So, as k, dqH=ds, A, dEH=ds, I and ðd2us=dx2Þ2 are all

positive terms, if the cost k is sufficiently low we just

have the stiffest material; if the cost is too high, we just

have the weakest material; for intermediate values of k,
we have a real laminate with a mixture of the two base

materials.

Call, now, FðxÞ the total applied force at x, i.e.,

FðxÞ ¼
Z L

x
F
�

þ
Z L

t
f ds

�
dt:

Considering the natural boundary conditions at x ¼ L

EHI
d2u
dx2

¼ 0 and � d

dx
EHI

d2u
dx2

� �
¼ F ;

and integrating twice the differential expression of the

equilibrium equation

d2

dx2
EHI

d2u
dx2

� �
¼ f ;

one obtains

EHI
d2u
dx2

¼ F:

Finally, this last expression and (1), (2) and (9), lead to

vs;EH
1
¼ kðqþ � q�ÞA� ðEþ � E�ÞF2

EþE�I
;

vs;EH
2
¼ kðqþ � q�ÞA� ðEþ � E�ÞF2

ðsEþ þ ð1� sÞE�Þ2I
:

These expressions will enable us to determine the ana-

lytical solutions of the examples presented in Section 2.4.

2.3. Numerical solution

In order to solve the problem numerically, we use the

finite element method.

We start by discretizing the domain X in a finite

element mesh, where we assume a constant value for the
design variable s in each finite element. As an iterative

algorithm, an initial approximation for s in each finite

element should be given, after what we can compute the

homogenized elastic properties. Then, we determine an

approximation for the displacement field u. A new

approximation of s is calculated in each element and a

stopping criteria is tested (we consider as stopping cri-

teria the condition ksðnþ1Þ � sðnÞk1 6 �, where sðnÞ and

sðnþ1Þ are the approximation vectors to s at iterations ðnÞ
and ðnþ 1Þ, respectively). If the criteria is satisfied, the

iterative process is stopped. Otherwise, the process re-

starts where a new approximation to s is calculated.

From (10), the update scheme for the design variable

s should satisfy the following conditions:

vse;p�1
< 0 ) se;p P se;p�1;

vse;p�1
¼ 0 ) se;p ¼ se;p�1;

vse;p�1
> 0 ) se;p 6 se;p�1;

8<
:
where we denote by se;p the value of s in iteration p and

at element e. We note that for intermediate densities

(0 < s < 1, sþ ¼ s� ¼ 0), Eq. (9) can be written as

vs ¼
1

k dqH

ds A

dEH

ds
I

dus

dx

� �2

:

Combining these two last considerations, [4] proposed

the following fixed-point update algorithm for se;p:

• if se;p�1ðvp�1Þ
g
6 maxfð1� fÞse;p�1;0g: se;p ¼maxfð1�

fÞse;p�1;0g;
• if maxfð1� fÞse;p�1; 0g6 se;p�1ðve;p�1Þ

g
6 minfð1þ

fÞse;p�1; 1g: se;p ¼ se;p�1ðvp�1Þ
g
;

• if minfð1þ fÞse;p�1; 1g6 se;p�1ðvp�1Þ
g
: se;p ¼ minfð1þ

fÞse;p�1; 1g,

where g is a weighting factor and f is a move limit to

control design changes between iterations (in our com-

putations we consider g ¼ 0:8 and f ¼ 0:5).

2.4. Examples

Let us consider a bar with constant square cross

section of side 1 (I ¼ 1
12
), length L ¼ 10 and subjected to

the loads f ¼ sinð2pxL Þ and F ¼ L
2p. Since the major role is

played by the ratio between homologous quantities, the

properties of the base materials were chosen to be

Eþ ¼ 2, qþ ¼ 2, E� ¼ 1 and q� ¼ 1. However different

values could have been considered.

In Table 1 we compare the analytical solutions

developed in the previous section with the obtained

numerical results for two values of k, as well as for the
two orientations of the layers of the microstructure. For

each value of k and for each type of microstructure, the

numerical solution is presented as the top bar and the

analytical solution, �s, as the bottom bar. Elements where

�s is not constant are represented by theirs middle point.



Table 1

Numerical and analytical solution for k ¼ 100 (first line) and k ¼ 8 (second line)

ben-1-10 ben-1-11

nit ¼ 14/j ¼ 1383:4194 nit ¼ 29/j ¼ 1383:4009

ben-2-10 ben-2-11

nit ¼ 29/j ¼ 335:8419 nit ¼ 24/j ¼ 334:9749
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In all numerical tests we used 40 C1 cubic elements

with sð0Þ ¼ 0:5.
We identify each tested case by a sequence formed of

three parts: the first part, ‘‘ben’’, identifies the problem

type; the second one indicates the order in the sequence

of the values of k; the last one identifies if the laminated

microstructure is oriented along a system of axes Oy1y2
such that Oy1 is parallel to Ox1 and Oy2 is parallel to

Ox2––suffix 10––or if Oy1 is parallel to Ox2 and Oy2 is

parallel to Ox1––suffix 11.

For each example, we also indicate the number of

iterations the process took to reach convergence (nit)

and the value of the objective function (j).
Considering EH

1 , the analytical solution is given by:

• if 06 k6 3L4

8p4 and ððx� < x < L
2
� x�Þ or ðL

2
þ x� <

x < L� x�ÞÞ, with x� ¼ L
2p arcsinð

ffiffiffiffi
8k
3

q
p2

L2Þ: �sðxÞ ¼ 1;

• otherwise: �sðxÞ ¼ 0.

Considering EH
2 , we have:

• if k ¼ 0: �sðxÞ ¼ 1;

• otherwise: �sðxÞ ¼ maxð0;minð1; s�ÞÞ, with s� ¼
ffiffiffiffi
3
4k

q
L2

p2

j sinð2pxL Þj � 1.

It is visible that there is a perfect agreement between

the numerical results and the analytical solution.
1−ττ

1−µ

µ

1−ττ

y1

y2 y2

y1

E+ -E

E

E
+

-

E+ H-
EE

Fig. 2. Rank-1 and rank-2 layered microstructure, where the

system of axes Oy1y2 represents the microscopic level.
3. Linearized elasticity

3.1. Problem definition

During this section, we will use the usual notation in

plane elasticity theory, where greek indices take the

values 1 and 2. Although we will only consider the two-

dimensional case, it should be noted that everything that
will follow has an immediate generalization to the three-

dimensional case. The summation convention on re-

peated indices will also be assumed.

Let us consider a solid occupying volume X, an open

bounded simply-connected subset of R2, with surface

oX. Moreover, consider that the body is fixed in a part

of its surface, C0, and that we have oX ¼ C0 [ C1;C0 \
C1 ¼ ;. Let f ¼ ðfaÞ and g ¼ ðgaÞ, denote the force per

unit volume and the force per unit surface area applied

to the body, respectively.

Let us assume, again, that the material the solid is

made of possesses a laminated microstructure formed by

two base materials. The characteristics of these materials

are the same as in the previous section, that is, homo-

geneous and isotropic of Young’s modulus Eþ and E�

and with specific mass qþ and q�, respectively, both with

Poisson’s ratio m, where we still have Eþ > E� and

qþ > q�.

We will consider two kinds of microstructure: in the

first one, the material represented by the pair ðEþ; qþÞ is
vertically intercalated with the material represented by

the pair ðE�; q�Þ, in the proportions s and 1� s,
respectively, with 06 s6 1––this is called the rank-1

microstructure (left-hand side of Fig. 2); in the second

one, the material represented by the pair ðEþ; qþÞ is
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again vertically intercalated with proportions s and

1� s, but this time with a new material, that we identify

by the pair ðEH�; qH�Þ; this new material is a rank-1,

formed once again with the two base materials with

proportions l and 1� l (06 l6 1), being the two scales

of layers orthogonal––this is called the rank-2 micro-

structure (right-hand side of Fig. 2).

If we apply the Homogenization Theory [4], the non-

null homogenized elasticity coefficients have the fol-

lowing expressions:

E
H

1111 ¼
Eþ
1111E

�
1111

sE�
1111 þ ð1� sÞEþ

1111

;

E
H

1122 ¼ s
Eþ
1122

Eþ
1111

�
þ ð1� sÞE

�
1122

E�
1111

�
E
H

1111;

E
H

2222 ¼ sEþ
2222 þ ð1� sÞE�

2222

� s
ðEþ

1122Þ
2

Eþ
1111

 
þ ð1� sÞ ðE

�
1122Þ

2

E�
1111

!

þ s
Eþ
1122

Eþ
1111

�
þ ð1� sÞE

�
1122

E�
1111

�2

E
H

1111;

E
H

1212 ¼
Eþ
1212E

�
1212

sE�
1212 þ ð1� sÞEþ

1212

;

ð11Þ

where, in plane stress, we have for the non-null coeffi-

cients Eþ
abcd (both for rank-1 and rank-2 microstruc-

tures):

Eþ
1111 ¼

Eþ

1� m2
; Eþ

1122 ¼
mEþ

1� m2
;

Eþ
2222 ¼

Eþ

1� m2
; Eþ

1212 ¼
Eþ

2ð1þ mÞ ;
ð12Þ

and for the non-null coefficients E�
abcd the expressions:

E�
1111 ¼

E�

1� m2
; E�

1122 ¼
mE�

1� m2
;

E�
2222 ¼

E�

1� m2
; E�

1212 ¼
E�

2ð1þ mÞ ;
ð13Þ

for a rank-1 microstructure and

E�
1111 ¼ I2 þ

m2I1
1� m2

; E�
1122 ¼

mI1
1� m2

;

E�
2222 ¼

I1
1� m2

; E�
1212 ¼

I1
2ð1þ mÞ ;

ð14Þ

for a rank-2 microstructure, and where

I1 ¼
EþE�

lE� þ ð1� lÞEþ ; I2 ¼ lEþ þ ð1� lÞE�: ð15Þ

(If instead of plane stress, we have plane deformation,

we just have to alter the expressions (12)–(14), but

qualitatively there is no difference between these two

situations.)
If we consider an angle h made by the microstructure

reference axes Oy1y2 with respect to the macroscopic

axes Ox1x2, the homogenized elasticity coefficients are

given by [4]

EH
abcdðs; l; hÞ ¼ E

H

efgnðs; lÞRaeRbfRcgRdn;

where

R ¼ cos h sin h
� sin h cos h

� �
:

The homogenized specific mass is given by

qHðsÞ ¼ sqþ þ ð1� sÞq�

if a rank-1 microstructure is considered, or by

qHðs; lÞ ¼ qþðsþ ð1� sÞlÞ þ q�ð1� sÞð1� lÞ

if rank-2 microstructure is considered.

Denoting the independent variable by x ¼ ðxaÞ, the
displacement field by u ¼ ðuaÞ, the strain tensor by

e ¼ ðeabÞ, where eab ¼ 1
2
ðoua
oxb

þ oub
oxa
Þ, and the stress tensor

by r ¼ ðrabÞ, where rab ¼ Eabcdecd, the equilibrium

equations that the displacement field u has to satisfy, in

its weak form, are given by

aðs; l; h; uslh; vÞ ¼ ‘ðvÞ 8v 2 V ;

where

aðs; l; h; u; vÞ ¼
Z
X
EH
abcdðs; l; hÞecdðuÞeabðvÞdx;

‘ðvÞ ¼
Z
X
fava dxþ

Z
C1

gava ds;

V ¼ fv 2 ½H 1ðXÞ�2 : va ¼ 0 on C0g:

The fact that for fixed controls s, l and h the elas-

ticity problem possesses a unique solution uslh relies on

standard results in elasticity theory. In fact for a given

s; l 2 L1ðX; ½0; 1�Þ and h 2 L1ðX; ½�p=2; p=2�Þ, the

functional aðs; l; h; �; �Þ is bilinear, continuous and

coercive, due to Korn’s inequality. On the other hand,

functional ‘ð�Þ is linear and continuous and the conclu-

sion follows from Lax-Milgram’s Lemma.

The optimization problem, equivalent to the one

presented in the previous section, can be stated as

min
s;l;h

jðs; l; hÞ

s:t: : aðs; l; h; uslh; vÞ ¼ ‘ðvÞ 8v 2 V ;

06 s6 1;

06 l6 1;
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where

jðs; l; hÞ ¼
Z
X
fauslha dxþ

Z
C1

gauslha ds

þ k
Z
X
qHðs; lÞdx:

ð16Þ

3.2. Analytical solution

In order to solve the problem under consideration,

and for a rank-2 microstructure with rotation, we con-

struct the Lagrangian

L ¼ jðs; l; hÞ þ kðaðs; l; h; uslh; vÞ � ‘ðvÞÞ

þ
Z
X
sþðs� 1Þdx�

Z
X
s�sdx

þ
Z
X
lþðl� 1Þdx�

Z
X
l�ldx;

where sþ, s�, lþ, l� and k are the Lagrange multipliers

associated to constraints s6 1, sP 0, l6 1, lP 0 and

the equilibrium equation, respectively. From the neces-

sary conditions of stationarity one obtains the following

conditions for a.e. x 2 X and for all v 2 V :

v ¼ 1

k
uslh; ð17Þ
aðs; l; h; uslh; vÞ ¼ ‘ðvÞ; ð18Þ
sþ P 0; sþðs� 1Þ ¼ 0; ð19Þ

s� P 0; s�s ¼ 0; ð20Þ
lþ P 0; lþðl� 1Þ ¼ 0; ð21Þ
σ22

σ12 σ11

Fig. 3. Geometry and boundary conditions of the considered

linear elasticity example in plane stress.
l� P 0; l�l ¼ 0; ð22Þ

k
oqH

os
�
oEH

abcd

os
ecdðuslhÞeabðuslhÞ þ sþ � s� ¼ 0; ð23Þ

k
oqH

ol
�
oEH

abcd

ol
ecdðuslhÞeabðuslhÞ þ lþ � l� ¼ 0; ð24Þ

oEH
abcd

oh
ecdðuslhÞeabðuslhÞ ¼ 0: ð25Þ

The procedure to treat the design variables s and l is

similar to the one presented in the previous section.

Relatively to h and following [4], if a denotes the angle

formed by the principal strain axes with the macroscopic

system of axes Ox1x2 and w the angle of rotation of the

material frame Oy1y2 with respect to the principal strain

axes (we denote by eI and eII the principal strains), that

is if h ¼ aþ w, then, from (25), it can be shown that, if

eI ¼ eII, then w can take any value (in this case, we

consider h ¼ 0); if eI 6¼ eII, then
sinð2wÞ ¼ 0 or cosð2wÞ ¼ � a
b
eI þ eII
eI � eII

; ð26Þ

where

a ¼ E
H

1111 � E
H

2222;

b ¼ E
H

1111 þ E
H

2222 � 2E
H

1122 � 4E
H

1212;
ð27Þ

and one should choose the value that maximizes the

strain energy

1
2
EH
abcdeabecd: ð28Þ
3.3. Numerical solution

The numerical discretization and update scheme is an

adaptation of what is described in Section 2.3. We

should also refer that in order to avoid checkerboard

patterns, which are usual in this type of problems when

four-node quadrilateral elements are involved, in the

application of the finite element method we use iso-

parametric C0 quadrilateral elements with nine nodes in

Section 3.4.1 and with eight nodes in Section 3.4.2 (cf.

[8]).

3.4. Examples

3.4.1. Plane stress

Consider a rectangular plate with principal axes Ox1
and Ox2 subjected to uniform loads on its boundary––

r11 ¼ �r11, r22 ¼ �r22 and r12 ¼ �r12––in a plane stress state

(Fig. 3).

If we a consider a rank-1 layered microstructure

without rotation, the strain field for a homogeneous

solution obtained from the constitutive equations

rab ¼ Eabcdecd, is given by

e11ðusÞ ¼ �r11

1� m2

I1

�
þ m2

I2

�
� �r22m

I2
; ð29Þ
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e22ðusÞ ¼
�r22

I2
� �r11m

I2
; ð30Þ

e12ðusÞ ¼ � �r12ð1þ mÞ
I1

; ð31Þ

where

I1 ¼
EþE�

sE� þ ð1� sÞEþ ; I2 ¼ sEþ þ ð1� sÞE�: ð32Þ

So, we have

vs ¼ kðqþ � q�Þ � Eþ � E�

EþE� ð1

0
@ � m2Þ�r2

11

þ EþE� �r22 � m�r11

I2

 !2

þ 2ð1þ mÞ�r2
12

1
A;

which will enable us to determine the analytical solution.

So, let us consider a plate with dimensions 4 times 1

subjected to �r11 ¼ 1, �r22 ¼ 0 and �r12 ¼ 0. The properties

of the base materials are Eþ ¼ 2, qþ ¼ 2, E� ¼ 1, q� ¼ 1

and m ¼ 0:25. For these values, the analytical solution

for a rank-1 microstructure without rotation is given by

• if kP 0:53125: �sðxÞ ¼ 0;

• if k6 0:484375: �sðxÞ ¼ 1;

• otherwise: �sðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

2
32k�15

q
� 1.

Table 2 illustrates the numerical results for three

values of k, each of them tested for the two types of

microstructure, with and without rotation. These are
Table 2

Numerical solutions for k ¼ 0:54 (first line), k ¼ 0:5 (second line) and

ela-01-10 ela-01-11 el

nit ¼ 141/j ¼ 3:0802 nit ¼ 12/j ¼ 2:9394 ni

s ¼ 0:01/�s ¼ 0 s ¼ 0:36/h ¼ 1:57 s

ela-02-10 ela-02-11 el

nit ¼ 345/j ¼ 2:8507 nit ¼ 11/j ¼ 2:8284 ni

s ¼ . . ./�s ¼
ffiffiffi
2

p
� 1 s ¼ 0:41/h ¼ 1:57 s

ela-03-10 ela-03-11 el

nit ¼ 6/j ¼ 2:6000 nit ¼ 7/j ¼ 2:5298 ni

s ¼ 1:00/�s ¼ 1 s ¼ 0:58/h ¼ 1:57 s
represented just by one element if the design variables

take the same value in all elements, where we also

indicate the respective values. If the numerical solution

is not constant in the domain, we just represent its right-

hand side.

In all examples we used a mesh with 20 by 20 ele-

ments. The exception is example ela-2-10, where we have

a mesh of 20 by 40 elements.

The values of k where chosen taking into consider-

ation the qualitative different parts of the presented

analytical solution, with particular care to the transition

points.

Again, we identify each tested case by a sequence

formed of three parts: the first, ‘‘ela’’, identifies the

problem type; the second indicates the order in the se-

quence of the values of k; the last one identifies the

microstructure type: suffix 10 if rank-1 without rotation

(sð0Þ ¼ 0:5), suffix 11 if rank-1 with rotation (sð0Þ ¼ 0:5;
hð0Þ ¼ 0), suffix 20 if rank-2 without rotation (sð0Þ ¼ 0:5;
lð0Þ ¼ 0:5), suffix 21 if rank-2 with rotation (sð0Þ ¼
0:5; lð0Þ ¼ 0:5; hð0Þ ¼ 0).

For each example, we also indicate the number of

iterations the process took to reach convergence (nit)

and the value the objective function attained (j).
The obtained numerical solutions for cases 11, 20 and

21 were the expected ones: the solutions are homoge-

neous and the fibers aligned with the load direction. Two

distinct situations occurred regarding case 10: ela-1-10

and ela-3-10 reproduced solutions according with the

analytical one. In these two cases the values of k were

sufficiently far from the transition points which define
k ¼ 0:4 (third line)

a-01-20 ela-01-21

t ¼ 23/j ¼ 2:9395 nit ¼ 23/j ¼ 2:9395

¼ 0:00/l ¼ 0:36 s ¼ 0:00/l ¼ 0:36/h ¼ 0

a-02-20 ela-02-21

t ¼ 26/j ¼ 2:8285 nit ¼ 26/j ¼ 2:8285

¼ 0:00/l ¼ 0:41 s ¼ 0:00/l ¼ 0:41/h ¼ 0

a-03-20 ela-03-21

t ¼ 36/j ¼ 2:5299 nit ¼ 36/j ¼ 2:5299

¼ 0:00/l ¼ 0:58 s ¼ 0:00/l ¼ 0:58/h ¼ 0
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the three branches of the analytical solution. On the

other hand, example ela-2-10 produced a non-homoge-

neous solution. We should note that if we had consid-

ered sð0Þ ¼ �sð¼
ffiffiffi
2

p
� 1Þ, the iterative process would have

stopped after the first iteration. In this case we would

have obtained j ¼ 2:9893, which confirms the obtained

result as a better one.

The reason which we identified as the cause to pro-

duce better than expected results is the rounding of errors

due to float point arithmetic. Indeed, since we are using

nine-node quadrilateral elements, for these particular

geometry and load conditions and the fact that sð0Þ is a
constant vector, the approximation vectors for eð0Þ11 , e

ð0Þ
22

and eð0Þ12 should also be constant in all the domain and

equal to the exact values given by (29)–(31), respectively.
Table 3

Bone remodelling example––numerical solution

bon-10 b

bon-20 b
This implies that the new approximation sð1Þ should also

have been a constant vector. So, the algorithm would

produce new approximations till convergence, all of

them constant vectors. As this is not what happened, we

observe that the algorithm has the ability to take

advantage of the rounding errors in such a way that the

final solution is a better one, although not homogeneous.

3.4.2. Bone remodelling

The example presented in this last section is the

application of the presented algorithm to a two-dimen-

sional finite element model of the proximal femur.

The ability of the skeleton to adapt to its functional

demands was formally proposed more than a century ago,

as outlined in Julius Wolff’s 1892 treatise, which hypoth-
on-11

on-21



G. Machado, L. Trabucho / Computers and Structures 82 (2004) 1389–1397 1397
esized that the form and interior constitution of bone is a

product of alterations in its internal architecture accord-

ing to a kind of intrinsic mathematical rules. The main

point of Wolff’s Law––bone remodelling tends towards

optimizing (minimal mass/maximal stiffness) structural

criteria of the skeleton, has gained wide acceptance.

The model presented gives: first, the objective func-

tion (16) expresses the conflict between the minimization

of stress and minimization of mass identified in Wollf’s

Law; second, the use of laminates allows for the exact

calculation of the homogenized coefficients and to

reproduce a kind of oriented trabeculae where rotation

of the laminate is enabled.

Table 3 illustrates the numerical results for a finite

element mesh with 1144 isoparametric C0 quadrilateral

eight-node elements and a side-plate [14] with 567 non-

design elements, in plane strain.

In this example we identify each tested case by a se-

quence formed of two parts: the first, ‘‘bon’’, identifies

the problem type; the second identifies the microstruc-

ture type and if rotation is allowed or not.

The considered properties of the based materials were

Eþ ¼ 14; 500 N/mm2, qþ ¼ 174e-2 g/mm3, E� ¼ 500 N/

mm2, q� ¼ 30e-2 g/mm3 and m ¼ 0:2. The loads, mea-

sured in N/mm2 and which represent a day-by-day situa-

tion, are represented in the figures by black lines

proportionally to their values. The obtained results are

qualitatively in accordance with the expected ones. How-

ever, we should note that when rotation is enabled, the

laminate orientates with the principal strains. This is due

to the fact the material is anisotropic, where there is not an

agreement between principal stresses and principal strains.
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