
Clayton Maciel Costa

U
M

in
ho

|2
01

6

julho de 2016

Efficient adaptive query processing on large
database systems available in the cloud
environment

C
la

yt
on

 M
ac

ie
l C

os
ta

E
ff

ic
ie

n
t

a
d

a
p

ti
ve

 q
u

e
ry

 p
ro

ce
ss

in
g

 o
n

 la
rg

e
 d

a
ta

b
a

se
 s

ys
te

m
s

a
va

ila
b

le
 in

 t
h

e
 c

lo
u

d
e

n
vi

ro
n

m
e

n
t

Universidade do Minho

Escola de Engenharia

Tese de Doutoramento em Informática

Clayton Maciel Costa

julho de 2016

Efficient adaptive query processing on large
database systems available in the cloud
environment

Trabalho realizado sob a orientação do
Professor Doutor António Luís Pinto Ferreira de Sousa

Universidade do Minho

Escola de Engenharia

DECLARAÇÃO

Nome: Clayton Maciel Costa

Número do Bilhete de Identidade: FH625844

Endereço de correio eletrônico: clayton.maciel@ifrn.edu.br

Título da tese: Efficient adaptive query processing on large database systems available in the cloud
environment

Orientador: Professor Doutor António Luís Pinto Ferreira de Sousa

Ano de conclusão: 2016

Designação do Doutoramento: Doutoramento em Informática

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA EFEITOS DE

INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A TAL SE

COMPROMETE.

Universidade do Minho, / /2016

Assinatura

http://code-industry.net/

iii

DECLARAÇÃO DE INTEGRIDADE

Declaro ter atuado com integridade na elaboração da presente tese. Confirmo que em todo o

trabalho conducente à sua elaboração não recorri à prática de plágio ou a qualquer forma de

falsificação de resultados.

Mais declaro que tomei conhecimento integral do Código de Conduta Ética da Universidade do

Minho.

Universidade do Minho, / /2016

Nome completo: Clayton Maciel Costa

Assinatura:

http://code-industry.net/

http://code-industry.net/

v

“A man's mind is stretched by a new idea or sensation,
and never shrinks back to its former dimensions”

Oliver Wendell Holmes

http://code-industry.net/

http://code-industry.net/

vii

Acknowledgments

First, I would like to thank God for letting me reach this goal.

Many people directly or indirectly contributed to the development of this work in
different ways and moments.

I would like to acknowledge my Ph.D. Advisor, Professor António Luís Sousa, from the
Department of Informatics at the University of Minho, for his wise supervision, great
wisdom, guidance, extensive knowledge and experience. His guidance played a major
role in the development of this work and the good results obtained is a testimony of
that. This research work showed us that many problems are still unsolved and many
questions are unanswered. Some solutions are still under development in order to
obtain answers and therefore, many topics are still open to further discussion.

I also would like to acknowledge my Ph.D. Advisor, Professor Cícilia Raquel Maia Leite.
It was a privilege to collaborate with her during these years of research work, projects,
publications and international presentations. I am particularly grateful for her guidance
in this wonderfull experience, and also her trust, friendship and scientific support.

I would like to further thank the Federal Institute of Rio Grande do Norte for the
financial support in my qualification. In particular, I am very grateful to MSc. Professsor
Jose Yvan who established a technical cooperation between the institutions under
which this research work was developed.

I also would like to thank the Federal Institute of Rio Grande do Norte/Campus
Ipanguaçu (IFRN/IP) for providing the physical infrastructure to develop the work
reported in this thesis. Furthermore, I am also very grateful the High-Assurance
Software Lab/INESC TEC of the University of Minho for providing the required physical
infrastructure to work while I was in Portugal. Both institutes provided all the necessary
environments to develop the experimental trials which were carried out, including the
use of existent and acquired equipment and also the use of specific components
required for accomplishing the goals of this research.

I would like to thank my friends of the Department of Informatics (DI-IFRN/IP) for the
support of academic works.

I am very grateful to all my friends of IFRN/IP and all those who were present in this
important step of my life.

I wish to thank my spouse, Ceiça, and my son, Pedro Davi, for long hours of absence
and for their unconditional support. With them I shared a multitude of joy, sorrow,
anxiety and hope throughout this challenging work. I am very grateful for believing in
me, always encouraging me and for always being by my side in the hardest times.

At last, not least... I wish to thank my parents. My dear mother, for her love, dedication,
life lessons and courage. My dear father, for his constant concerns and financial

http://code-industry.net/

 viii

investment throughout my entire life. This research work and the degree itself are
dedicated to them. I am sure that they are proud of me for achieving this goal as much
as I am imensely proud of them. Throughout the years, they have made all possible
efforts and sacrifices to give the best to their sons. I am what I am today thanks to
them.

To all, my sincere thanks.

http://code-industry.net/

ix

Efficient adaptive query processing on large database systems available in the cloud environment

Abstract

Nowadays, many companies are migrating their applications and data to cloud service
providers, mainly because of their ability to answer quickly to business requirements.
Thereby, the performance is an important requirement for most customers when they
wish to migrate their applications to the cloud.

Therefore, in cloud environments, resources should be acquired and released
automatically and quickly at runtime. Moreover, the users and service providers expect
to get answers in time to ensure the service SLA (Service Level Agreement).
Consequently, ensuring the QoS (Quality of Service) is a great challenge and it
increases when we have large amounts of data to be manipulated in this environment.

To resolve this kind of problems, several researches have been focused on shorter
execution time using adaptive query processing and/or prediction of resources based
on current system status. However, they present important limitations. For example,
most of these works does not use monitoring during query execution and/or presents
intrusive solutions, i.e. applied to the particular context.

The aim of this thesis is the development of new solutions/strategies to efficient
adaptive query processing on large databases available in a cloud environment. It must
integrate adaptive re-optimization at query runtime and their costs are based on the
SRT (Service Response Time – SLA QoS performance parameter). Finally, the proposed
solution will be evaluated on large scale with large volume of data, machines and
queries in a cloud computing infrastructure.

Finally, this work also proposes a new model to estimate the SRT for different request
types (database access requests). This model will allow the cloud service provider and
its customers to establish an appropriate SLA relative to the expected performance of
the services available in the cloud.

Keywords: cloud computing; service level agreement; performance; service response time

http://code-industry.net/

http://code-industry.net/

xi

Processamento eficiente adaptativo de consultas em grandes bases de dados disponíveis em
ambiente de nuvem

Resumo

Atualmente, muitas companhias têm migrado suas aplicações e dados para
fornecedores de serviços em nuvem, pois um dos principais benefícios dessa
tecnologia é a capacidade de responder rapidamente às necessidades do negócio.
Assim, o desempenho é um dos mais importantes requisitos para a maioria dos
clientes que desejam migrar suas aplicações para a nuvem.

Em ambiente de nuvem, os recursos devem ser adquiridos e libertados
automaticamente e rapidamente em tempo de execução. Além disso, os utilizadores e
fornecedores de serviços esperam sempre garantir o contrato SLA (Acordo de Nível de
Serviço). Consequentemente, garantir o QoS (Qualidade de Serviço) é um grande
desafio, que se torna mais complexo quando existe uma grande quantidade de dados a
serem manipulados neste ambiente.

Para resolver estes tipos de problemas, diversas pesquisas têm sido realizadas
focando o menor tempo de execução dos pedidos do utilizador na nuvem usando
técnicas de processamento adaptativo de consultas e/ou utilizando técnicas de
predição de recursos baseados no estado atual do sistema. Contudo, esses trabalhos
apresentam limitações importantes. Por exemplo, a maioria desses trabalhos não
utiliza monitorazação durante a execução da consulta e/ou apresenta soluções
intrusivas, isto é, aplicadas a um contexto particular.

Portanto, o objetivo desta tese consiste no desenvolvimento de uma nova
solução/estratégia para o processamento eficiente (adaptativo) de consultas sobre
grandes bases de dados disponíveis em ambiente de nuvem. Ela irá integrar técnicas
de otimização adaptativas em tempo de execução da consulta e seus custos são
baseados no SRT (Tempo de Resposta do Serviço – parâmetro QoS de desempenho do
SLA). A solução proposta será avaliada em larga escala utilizando uma grande base de
dados, máquinas e consultas em um ambiente real de computação na nuvem.

Finalmente, este trabalho também propõe um novo modelo para estimar o SRT para
diferentes tipos de pedidos (pedidos de acesso a banco de dados). Este modelo
permitirá que um fornecedor de serviços em nuvem e seus clientes possam
estabelecer um contrato SLA adequado, relativo ao desempenho esperado dos serviços
disponíveis em nuvem.

Palavras-chave: computação em nuvem; acordo de nível de serviço; desempenho; tempo de resposta do
serviço.

http://code-industry.net/

http://code-industry.net/

xiii

Index

Acknowledgments .. vii	
Abstract .. ix	
Resumo .. xi	
List of acronyms ... xvi	
List of figures ... xvi	
List of tables .. xviii	
Chapter 1 – Introduction ... 19	

1.1	 Contextualization ... 21	
1.2	 Motivation ... 22	
1.3	 Research objectives .. 24	
1.4	 Contributions .. 25	
1.5	 List of publications from this work ... 26	
1.6	 Thesis outline ... 27	

Chapter 2 – State of art ... 29	
2.1	 Introduction .. 31	
2.2	 Data warehouse and OLAP .. 31	

2.2.1	 Multidimensional modeling of data warehouses ... 34	
2.2.2	 OLAP applications ... 35	

2.3	 SLA in cloud computing .. 37	
2.3.1	 Definition and lifecycle of a SLA .. 37	
2.3.2	 QoS parameters of a SLA .. 39	
2.3.3	 QoS performance parameters of a SLA ... 43	

2.4	 Data processing .. 46	
2.4.1	 Query processing in database ... 46	
2.4.2	 Adaptive query processing .. 48	
2.4.3	 Query processing in cloud ... 50	

2.5	 Related works ... 51	
2.6	 Conclusion .. 56	

Chapter 3 – Service response time measurement model of service level agreements 57	
3.1	 Introduction .. 59	
3.2	 Request definition ... 59	

3.2.1	 Type 1 requests: select-range and select-aggregation ... 61	
3.2.2	 Type 2 requests: select-joins ... 61	
3.2.3	 Type 3 requests: select-sets-grouping-nesting-ordering 62	

http://code-industry.net/

 xiv

3.3	 Service response time measurement model of service level agreements 63	
3.3.1	 Recommended SRT definition ... 64	
3.3.2	 SRT measurement model ... 65	

3.4	 Case study – validation and results ... 69	
3.4.1	 Experimental environment .. 69	
3.4.2	 Methodology ... 69	
3.4.3	 Used requests .. 71	
3.4.4	 Results ... 74	
3.4.5	 Analysis of results ... 78	

3.5	 Conclusion .. 80	
Chapter 4 – Efficient adaptive query processing on large database systems available in the

cloud environment .. 81	
4.1	 Introduction .. 83	
4.2	 Estimated cost model .. 83	
4.3	 Architecture .. 86	
4.4	 SiclopDB framework – components ... 88	

4.4.1	 MetaData and performance .. 88	
4.4.2	 Dynamic query optimizer (DQO) .. 90	
4.4.3	 Dynamic query scheduler (DQS) ... 92	
4.4.4	 Dynamic query monitoring (DQM) ... 103	

4.5	 Conclusion .. 105	
Chapter 5 – Experimental evaluation: validation and results ... 107	

5.1	 Introduction .. 109	
5.2	 Experimental environment ... 109	
5.3	 Methodology ... 109	
5.4	 Used requests .. 111	
5.5	 Results and analysis ... 114	

5.5.1	 Type 1 requests .. 114	
5.5.2	 Type 2 requests .. 120	
5.5.3	 Type 3 requests .. 122	
5.5.4	 All type of requests ... 125	

5.6	 Conclusion .. 126	
Chapter 6 – Conclusion ... 127	

6.1	 Final considerations .. 129	
6.2	 Future work .. 130	

References .. 133	

http://code-industry.net/

xv

Annex ... 141	
Annex A1 – Type 1 requests ... 143	
Annex A2 – Type 2 requests ... 151	
Annex A3 – Type 3 requests ... 155	
Annex A4 – paper 1 – (2013) ... 163	
Annex A5 – paper 2 – (2015) ... 165	
Annex A6 – paper 3 – (2016) ... 171	

http://code-industry.net/

 xvi

List of acronyms

AMI – Amazon Machine Image

COS – CPU Overload Simulator

CSMIC – Cloud Service Measurement Index Consortium

DBMS – Database Management System

DOS – Disk I/O Overload Simulator

DP – Disk Performance

DQM – Dynamic Query Monitoring

DQO – Dynamic Query Optimizer

DQS – Dynamic Query Scheduler

DW – Data Warehouse

EBS – Elastic Block Store

ETL – Extract-Transform-Load

IAAS – Infrastructure as a Service

KPI – Key Performance Indicator

OLAP – On-Line Analytical Processing

OpenMP – Open Multi-Processing

PP – Processor Performance

QoS – Quality of Service

RSRT – Recommended Service Response Time

SLA – Service Level Agreement

SMI – Service Measurement Index

SQL – Structured Query Language

SRT – Service Response Time

TTP – trusted third party

VM – Virtual Machine

 List of figures

Figure 2-1. Data Warehouse Architecture. ... 32	

Figure 2-2. Database of a Company: (a) Relational Scheme of Human Resources Sector and
(b) Relation Scheme of Sales Sector. ... 33	

Figure 2-3. Example of Materialized View in Data Warehouse. ... 33	

http://code-industry.net/

 xvii

Figure 2-4. Star Model of Materialized_View Fact. ... 34	

Figure 2-5. Fact: Profit Employee. .. 35	

Figure 2-6. Fact: Top Selling Products. ... 35	

Figure 2-7. Example of Drill-down and Roll-up Operation using OLAP Applications. 36	

Figure 2-8. SLA Lifecycle. ... 37	

Figure 2-9. Parameters and Sub-parameters defined in the SMI (Siegel & Perdue, 2012). 43	

Figure 2-10. Query Processing in the Cloud. ... 51	

Figure 3-1. Request-response communication of the client-server computing model. 60

Figure 3-2. Steps to obtain the Recommended SRT. ... 66	

Figure 3-3. SRT Calculator – GUI Interface. .. 68	

Figure 3-4. Methodology of experiments to obtain the Recommended SRT. 70	

Figure 3-5. Processor Status through sysstat tool. ... 70	

Figure 3-6. Disk Read/Write Status through dstat tool. .. 71	

Figure 3-7. SRT averages on all VMs for type 1 requests. .. 75	

Figure 3-8. SRT averages on all VMs for type 2 requests. .. 76	

Figure 3-9. SRT averages on all VMs for type 3 requests. .. 77	

Figure 3-10. Recommended SRT Result. .. 79	

Figure 4-1. Ideal Computational Cost: Computation Cost (x10) vs Time (seconds). 86

Figure 4-2. SiclopDB Framework Architecture. .. 88	

Figure 4-3. Flowchart of query processing in SiclopDB framework. .. 92	

Figure 5-1. Methodology of experiments of SiclopDB framework. ... 110

Figure 5-2. Type 1 Requests (Select-Range): average virtual machines used for workloads
uniformly arriving every 30 seconds for the Recommended SRTs: 80, 100 and
120 seconds. .. 115	

Figure 5-3. Type 1 Requests (Select-Range): average virtual machines used for workloads
randomly arriving between 10 and 60 seconds for the Recommended SRTs: 80,
100 and 120 seconds. .. 116	

Figure 5-4. Type 1 Requests (Select-Aggregation): average virtual machines used for
workloads uniformly arriving every 30 seconds for the Recommended SRTs: 80,
100 and 120 seconds. .. 118	

Figure 5-5. Type 1 Requests (Select-Aggregation): average virtual machines used for
workloads randomly arriving between 10 and 60 seconds for the Recommended
SRTs: 80, 100 and 120 seconds. .. 119	

Figure 5-6. Type 2 Requests: average virtual machines used with workloads uniformly arriving
every 30 seconds for the Recommended SRTs: 130, 150 and 180 seconds. 121	

Figure 5-7. Type 2 Requests: average virtual machines used with workloads randomly arriving
between 10 and 60 seconds for the Recommended SRTs: 130, 150 and 180

http://code-industry.net/

 xviii

seconds. ... 122	

Figure 5-8. Type 3 Requests: average virtual machines used with workloads uniformly arriving
every 30 seconds for the Recommended SRTs: 800, 1000 and 1200 seconds. . 124	

Figure 5-9. Type 3 Requests: average virtual machines used with workloads randomly arriving
between 10 and 60 seconds for the Recommended SRTs: 800, 100 and 1200
seconds. ... 125	

Figure 5-10. All Type Requests: average virtual machines used with workloads uniformly
arriving every 30 seconds and randomly arriving between 10 and 60 seconds. .. 126	

List of tables

Table 2-1. Characteristics of related work. .. 55	

Table 3-1. Recommended SRT Result. .. 78

http://code-industry.net/

Chapter 1 – Introduction

http://code-industry.net/

http://code-industry.net/

Chapter 1 – Introduction

 21

he amounts of data generated by new technologies is increasing every day.

With this growth, also increases the challenge to manage, manipulate, store

and query these data. To address these challenges, a solution is to provide

computing as a service, currently known as “Cloud Computing”. In this way, this

chapter presents a contextualization of the problem, motivation, objectives,

contributions and list of publication of this thesis.

1.1 Contextualization

The cloud computing facilitates access to services and computer resources, independently of

platform and architecture. Moreover, it provides users with the idea of infinite computing resources

and data storage. However, as well as utility computing, all its architectural structure is on-demand

and pay based on usage, i.e. pay only when it matters.

In the cloud environment, the infrastructure, the platform and the application services are available

on demand and they should be available, whenever requested, for access anywhere in the world

(Coutinho, de Carvalho Sousa, Rego, Gomes, & de Souza, 2015). Whereas the dimension and

heterogeneity of data stored, in general, are very large. Thus, the systems efficiency and scalability

become necessary to ensure the availability or release of resources for each request from users.

Given the rapid growth of the amount of data due to technological advances, to manage such

massive amount of information becomes a challenging problem. The use of cloud computing

platforms allows new conceptions of management and manipulation of data, because in a cloud

environment, resources can be acquired and released automatically, quickly and elastic at runtime

(Das, Agarwal, Agrawal, & El Abbadi, 2013).

In the cloud computing model, the service providers’ objective is to optimize their profit while

servicing several customers. This is obtained recurring to some level of abstraction (virtualization)

according to the type of service, such as: storage, processing, bandwidth and active user accounts.

To ensure the QoS (Quality of Service) there is a SLA (Service Level Agreement) associated to the

service delivery. The SLA is a formal contract defined between a cloud service provider and its

customers that define the level of service expected from the service provider. They are output-based

and their purpose is specifically to define what the customer will receive. Therefore, it provides QoS

parameters on the levels of availability, functionality, performance, penalties, billing etc (Emeakaroha

et al., 2012; Garg, Versteeg, & Buyya, 2013).

T

http://code-industry.net/

Chapter 1 – Introduction

 22

To ensure the QoS parameters new challenges arise due to high heterogeneity and dynamicity of

clouds. For example, new QoS parameters need to be measured and the provisioning of resources,

service delivery and monitoring need to be automated and the dynamic reallocation of resources

must be decentralized and global (Wu & Buyya, 2010; Wu, Garg, & Buyya, 2011). Furthermore, the

same QoS parameter can have different definitions between service providers.

Considering that, the performance is an important requirement for most customers when they

migrate their applications to the cloud. The SRT (Service Response Time) QoS parameter measures

the total time between the time that a request arrives at the cloud provider and the time that it

completes its execution. It is one of the best execution efficiency indicators of a request, allowing to

know how fast a service can execute, and is the main QoS parameter used in this thesis.

The measuring of SRT parameter in the cloud is a very complex task because it depends on many

system variables, such as request type, database model and current system performance (Schad,

Dittrich, & Quiané-Ruiz, 2010). Furthermore, it is common in a cloud environment that the requests

rate is highly unpredictable. Therefore, guaranteeing a specific response time for any level of request

rate is regarded as a significant challenge to the paradigm of cloud computing. Moreover, the growth

of data stored in the cloud makes this challenge ever harder.

1.2 Motivation

Nowadays, many companies have migrated their applications and data to the cloud due to the

benefits of this technology (Zhou et al., 2014). For example, the applications and data stored in the

cloud can be accessed anywhere. Another important benefit is the significant reduction of costs and

time of experimentation and development when compared with local infrastructures because it

eliminates the need of one or more physical servers in company premises, thus minimizing the

electricity cost and the necessity of specialists for repairs.

Moreover, the cloud platforms are substantially scalable, which is highly beneficial for the ever-

fluctuating storage needs of the IT environment. Before the cloud era, companies were struggling

with their storage needs and wasting time upgrading servers. But with the advent of cloud

computing, expanding storage needs are no more an issue as every change is managed on the spot.

This ability to answer quickly to business requirements is one of the major motivations for

companies to migrate their applications and data to the cloud. According to CDW’s Cloud Computing

Tracking Poll (Ray, 2012), 84% of organizations are using at least one cloud application and 76% of

http://code-industry.net/

Chapter 1 – Introduction

 23

small business cloud users say they have reduced the cost of applications moved to the cloud,

saving an average of 24% annually. Furthermore, according to (Larkin & Rose, 2015), companies

around the world must increase their investments in cloud computing projects about 40% over the

previous year.

According to (Mangard & Poschmann, 2015), cloud computing and virtualization is popular more

than ever. Companies like Microsoft, Google, Amazon, IBM, Oracle, Rackspace and many others are

investing billions of dollars trying to get a foothold in this new area of lucrative business. This rapid

increase in the number of cloud service providers is directly related to the emergence of server-less

companies like Netflix, Instagram, Pinterest, Snapchat and many others that are using commercial

cloud infrastructure.

Given this context, consider, for example, an institution/company/authority that wishes to migrate

their OLAP applications to a cloud service provider, with the objective of allocate computing

resources on-demand and ensure the Service Response Time (SRT QoS Parameter). Moreover, in

the migration process it is not interesting for the company to change the data structure. In this case,

an elastic solution becomes necessary to ensure the quality of services offered.

A solution is to use adaptive query processing. It has the ability to dynamically and automatically

allocate or release resources (elasticity of resources) at query runtime. This technique is very

important when statistical information about the services available may be minimal and the

availability of physical resources may change. This is a typical scenario of cloud environments.

However, traditional and adaptive query optimzers' main objective is to reduce response time.

Moreover, in the context of cloud computing, users and providers of services expect to get answers

in time to ensure the service SLA.

According to (Iqbal, Dailey, & Carrera, 2009), from the user’s point of view, this SRT parameter is

considered one of the mains QoS parameters. However, nowadays, the major cloud providers like

Amazon (“AWS EC2 Service Level Agreement,” 2015, “AWS S3 Service Level Agreement,” 2015)

and Google (Sanderson, 2012) only emphasize on CPU availability and cost measure. Therefore, the

SRT parameter is not handled in SLA due to its complexity.

In the literature, several works have been focused in development of techniques and algorithms for

efficient query processing to ensure the SRT parameter (Alves, Bizarro, & Marques, 2011; Amazon

Web Services, 2015; Cervino, Kalyvianaki, Salvachua, & Pietzuch, 2012; Chi, Moon, Hacigümüş, &

Tatemura, 2011; Coelho da Silva, Nascimento, de Macêdo, Sousa, & Machado, 2012, 2013;

http://code-industry.net/

Chapter 1 – Introduction

 24

Curino, Jones, Madden, & Balakrishnan, 2011; Dean & Ghemawat, 2008a, 2008b; Guitart, Carrera,

Beltran, Torres, & Ayguadé, 2008; Kllapi, Sitaridi, Tsangaris, & Ioannidis, 2011; Mian, Martin, &

Vazquez-Poletti, 2013; Rogers, Papaemmanouil, & Cetintemel, 2010; Sharma, Shenoy, Sahu, &

Shaikh, 2010, 2011; Vigfusson, Silberstein, Cooper, & Fonseca, 2009)

However, as presented in Chapter 2, these works present elasticity and/or scalability limitations in

their algorithms. Moreover, many solutions are not adaptive, intrusive and/or they do not use formal

definition of their services. Therefore, it is necessary to develop new methods, techniques and tools

that allow a service to ensure suitably to the SRT parameter, which is one of the main aims of this

work.

1.3 Research objectives

The objective of this thesis consists in development of a new solution to efficient query processing

on large databases available in a cloud environment. It integrates adaptive re-optimization at query

runtime using costs based on the SRT QoS parameter. This work focuses on OLAP applications

because in this kind of environment the adaptive processing produces positive effects on query

runtime. Based on these premises, the following specific aims and goals need to be achieved:

(i) Objective 1: Analyze the methods, techniques and tools for efficient query

processing in the cloud. In this way, it is required to understand the methods and

techniques of traditional and adaptive queries processing on databases systems in

centralized, parallel and distributed environments. Moreover, it is necessary to

understand the techniques of query processing in data warehouse and OLAP

applications and the techniques for query processing and optimization in the

cloud. Finally, it is necessary to research in papers, tutorials, technical reports and

technologies for comprehension of the state of the art and related works of this

thesis.

(ii) Objective 2: Development of a model to estimate the Recommended SRT. For this,

it is necessary to understand the requirements for good performance of queries in

a cloud environment. The query processing in the cloud comprises a series of

challenges to be overcome, including, scalability, performance and availability of

services, self-management, data security and the quality assurance of the data

service (SLA agreement). As result, it should develop a new model to estimate the

SRT for different types of database access requests in cloud environment.

http://code-industry.net/

Chapter 1 – Introduction

 25

(iii) Objective 3: Development of a new solution for efficient query

processing/optimization on large database systems available in the cloud

environment. The new solution should be based on traditional and adaptive query

processing techniques and its efficiency based on the SRT QoS parameter. It

should integrate dynamic re-optimization techniques and the queries/subqueries

are executed into several steps, where each step concurrently executes a dynamic

execution strategy at query runtime. The dynamic execution costs of queries are

based on the model proposed in Objective 2 and the proposed strategies will be

deployed in the Amazon EC2 cloud infrastructure. In this thesis, the solution was

evaluated on structured data, considering that some cloud computing platforms

support SQL queries directly or indirectly. This makes the proposed solution

relevant for these kind of problems.

1.4 Contributions

This thesis proposes a new solution to efficient query processing on large databases available in a

cloud environment. It uses adaptive query processing based on heuristic rules and the cost of failing

the SLA. Furthermore, it proposes a model for measuring the SRT estimated for different types of

database access requests in this environment. The specific contributions of this thesis are:

(i) State of the art of traditional and adaptive queries processing techniques on

databases systems in centralized, parallel and distributed environments.

Moreover, the state of the art of techniques for query processing and

optimization in the cloud;

(ii) A new model to estimate the SRT for different types of requests in cloud

environment. It is very relevant when companies wish to migrate their

applications, OLAP or not, to cloud service providers, with the goal to allocate

computational resources on demand, to guarantee the quality of service in terms

of service response time;

(iii) New algorithms and strategies based on traditional and adaptive query

processing techniques (heuristic rules). Its efficiency is based on the model

proposed to ensure the SRT QoS performance parameter;

http://code-industry.net/

Chapter 1 – Introduction

 26

(iv) Implementation of the SICLOPDB Framework based on the proposed strategies

and evaluated on large scale with large volume of data, machines and queries in

a real scenario of cloud computing.

1.5 List of publications from this work

The following papers were published during the development of this work:

 (1) (Costa & Sousa, 2013) :: [Annex A4] COSTA, C.M., SOUSA, A.L. Adaptive Query Processing

in Cloud Database Systems. In 3rd International Conference on Cloud and Green Computing (CGC

2013), Karlsruhe, Germany, 2013.

This paper shows the initial idea and main contribution of this work. Moreover, its architecture is

presented. This short paper does not present any experiments, it presents only related works,

architecture and contributions. It was published of work in progress Section.

 (2) (Costa, Leite, & Sousa, 2015) :: [Annex A5] COSTA, C.M., LEITE, C.R.M., SOUSA, A.L.

Service Response Time Measurement Model of Service Level Agreements in Cloud Environment. In

5th International Symposium on Cloud and Service Computing (SC2 2015), Chengdu, China, 2015.

In this paper, we propose a model to estimate the Recommended SRT for different types of requests

on large databases available in the cloud environment. The proposed model is a non-intrusive

solution and it the model was evaluated utilizing Amazon EC2 cloud infrastructure small instances

type and the TPC-DS (Tpc BenchmarkTM Ds, 2012) like benchmark was used only for generating an

OLAP database.

 (3) (Costa, Leite, & Sousa, 2016) :: [Annex A6] COSTA, C.M., LEITE, C.R.M., SOUSA, A.L.

Efficient SQL Adaptive Query Processing in Cloud Databases Systems. In 2016 IEEE Conference on

Evolving and Adaptive Intelligent Systems (IEEE EAIS 2016), Natal, Brazil, 2016.

This paper presents a main contribution of this thesis. It presents the partitioning and monitoring

strategies for adaptive processing of different types of queries (database access requests), a

dynamic provisioning strategy and their algorithms. Moreover, it presents an implementation of the

proposed solution and its architecture. Finally, it shows the experiments using Amazon EC2 cloud

infrastructure small instances type and the TPC-DS like benchmark was used only for generating an

OLAP database of structured data.

http://code-industry.net/

Chapter 1 – Introduction

 27

1.6 Thesis outline

To improve the understanding of the reader, we provide here a brief description of each chapter with

its aim.

Chapter 2: State of the Art and Related Works: presents researches, concepts and technologies

related to the object of study of this doctoral thesis. Firstly, we present an overview of Data

Warehouse and OLAP (On-Line Analytical Processing) applications. Then, we discuss the SLA

contract in cloud environment as well as specification of QoS parameters to this kind of SLA. After

we discuss traditional and adaptive query processing of databases and query processing in the

cloud. Finally, we present related works to query processing/optimization in cloud environments.

Chapter 3: Service Response Time Measurement Model of Service Level Agreements: In this

chapter, we present a model for measuring a Service Response Time estimated for different request

types on large databases available in a cloud environment. Firstly, we present the formal definition of

a request used in this work. After, we present the SRT measurement model, its definition and tools.

Finally, we discuss the experiments of the proposed model utilizing Amazon EC2 cloud infrastructure

and the TPC-DS like benchmark and, finally their results.

Chapter 4: Efficient Adaptive Query Processing on Large Database Systems Available in the Cloud

Environment: In this chapter, we present a new solution to efficient query processing on large

databases available in a cloud environment and the SiclopDB Framework, which implements the

proposed solution for this problem and its architecture. Firstly, we present the SLA violation cost and

the total computational cost of a request used in this work. After, we discuss the SiclopDB

framework architecture and its components. Then, we present a new partitioning and monitoring

strategies for adaptive processing of different types of queries in the cloud, the dynamic provisioning

strategy and finally their algorithms.

Chapter 5: Experimental Evaluation - Validation and Results: In this chapter we present the

experiments of a case study using the strategies of query processing presented in Chapter 4.

Therefore, firstly, we present the environment where the experiments were executed. Then, we

present the methodology of the experiments. After, we show the requests used in the experiments.

Finally, we present the results obtained as well as its analysis.

Chapter 6: Conclusions: In this chapter we conclude our work by describing the objectives achieved

and we present some ideas that would be interesting for future research in this area.

http://code-industry.net/

http://code-industry.net/

Chapter 2 – State of art

http://code-industry.net/

http://code-industry.net/

Chapter 2 – State of the art

 31

2.1 Introduction

In this chapter, we present researches, concepts and technologies, which provides the support to

this doctoral thesis. Hence, for better understanding, this chapter is organized as follows:

2.2 Data warehouse and OLAP: presents an overview of Data Warehouse and OLAP (On-Line

Analytical Processing) applications.

2.3 SLA in cloud computing: discusses the SLA contract in cloud environment as well as

specification of QoS parameters to this kind of SLA.

2.4 Data processing: discusses traditional and adaptive query processing of databases and

query processing in the cloud.

2.5 Related works: presents related works to query processing/optimization in cloud

environment.

2.6 Conclusion: presents the final considerations of this chapter.

2.2 Data warehouse and OLAP

A DW (Data Warehouse) is a computational system used to facilitate reporting and analysis of large

volumes of data. Hence, a DW's main objective is to provide data to business analysts to support

decision-making. In practice, as shown in Figure 2-1, a DW integrates multiple databases to provide

a consolidated view (materialized view) of them, focusing on the business analysis goals.

Strategic information for decision-making using Data Warehouse have aroused great interest in

organizations (Kimball & Ross, 2013), as this is a technology that when integrated with appropriate

applications has many benefits, including: the speed of decision-making, optimized resource

management and the discovery of new business opportunities.

As shown in Figure 2-1, for the construction and manipulation of a DW, applications for data

extraction and processing are required. They are called ETL (Extract-Transform-Load) tools, and are

used to build a materialized view from heterogeneous data sources. To access, manage and analyze

data in a DW, OLAP (Online Analytical Processing) tools are used, and the results used to support

decision-making.

http://code-industry.net/

Chapter 2 – State of the art

 32

Figure 2-1. Data Warehouse Architecture.

Consider, for example, two relational schemes shown in Figure 2-2. These schemes simulate

heterogeneous data sources, and they need to be designed and integrated in order to provide a

materialized view. The schemes represent different sectors of a company, human resources (Figure

2-2 (a)) and sales sector (Figure 2-2 (b)).

http://code-industry.net/

Chapter 2 – State of the art

 33

Figure 2-2. Database of a Company: (a) Relational Scheme of Human Resources Sector and (b) Relation Scheme of
Sales Sector.

Using ETL tools, after the extraction process of data sources, the transformation process constructs

the syntactic and semantic mappings between relational schemes, respecting the integrity

constraints. Finally, in the loading process, a materialized view is generated in accordance with its

mappings.

A possible materialized view is shown in Figure 2-3. It presents characteristics of both relational

schemes of Figure 2-2. It is worth noting that the materialized view in DW must be created according

to the goal to be achieved.

Figure 2-3. Example of Materialized View in Data Warehouse.

In a DW, the views are represented by multidimensional models, as will be seen in Section 2.2.1,

http://code-industry.net/

Chapter 2 – State of the art

 34

and the data is represented in data cubes, as will be seen in Section 2.2.2.

2.2.1 Multidimensional modeling of data warehouses

In DW, a scheme model widely used is the multidimensional model. It allows users to do operations

on data simply. In this model, there is the relationship of facts and dimensions, in which facts are

performance measures and dimensions are contexts of a fact.

In relational databases, a table, an attribute or a set of attributes of a table represents a dimension

and a fact represents joins between two or more dimensions. For example, in Figure 2-3, the fact is

the Materialized_View and its dimensions are Function_name, Employee_name, Customer_Name,

Sale_date_sale and Product_name.

The star or snowflake models can represent multidimensional schemes. The most widely used

model is the star model, in which a fact and its dimensions are shown explicitly. For example, Figure

2-4 shows the materialized view of Figure 2-3 in this model, there is a fact in the center of the star

and its dimensions in tips. However, it is not necessary to have five dimensions in order to be called

a star model.

Figure 2-4. Star Model of Materialized_View Fact.

Considering the relational schemes in Figure 2-2 and the materialized view in Figure 2-3 a few facts

can be represented, for example:

• A user wants to know in DW about functions and salaries of employees who best

sold between 2013 and 2015. This query would be represented by the following

model:

http://code-industry.net/

Chapter 2 – State of the art

 35

Figure 2-5. Fact: Profit Employee.

• A user wishes to know the top selling products between 2010 and 2015. Hence,

the following model represents such query:

Figure 2-6. Fact: Top Selling Products.

2.2.2 OLAP applications

In a DW, data can be represented in different ways, but the most used is the data cubes, i.e. the

data is in a cube in which each side represents a dimension. Currently, the cube modeling is the

mostly used because there are many powerful tools using such approach. They are called OLAP

applications

OLAP applications are used for analysis of DW’s complex data. It allows that analysts, managers and

executives have fast, consistent and interactive access to a wide variety of views of information

(Kimball & Ross, 2013). Currently there is a great need to provide information at the right level of

detail to support the decision-making activity. Thus, OLAP techniques provide this functionality

(Elmasri & Navathe, 2010).

http://code-industry.net/

Chapter 2 – State of the art

 36

OLAP functionality is characterized by the dynamic multidimensional analysis of consolidated data.

Thus, OLAP applications offer users several interfaces to make any operations (queries and

manipulation) on the data in a DW. For example, operations such as drill-down and roll-up, which

are the mostly used.

The drill-down operation consists of drilling a slice of the data cube, i.e. decomposing part of a cube

to form a new cube, which therefore will be in greater level of detail. The roll-up operation consists of

generating a data cube in a more generalized level, i.e. this operation is the opposite of the drill-

down operation, creating a more general cube compared to the original one. These operations are

exemplified in Figure 2-7, in which each data cube is a fact with three dimensions: Customer, Sale

and Date_Sale.

Figure 2-7. Example of Drill-down and Roll-up Operation using OLAP Applications.

In fact, OLAP applications can handle large amounts of complex data and the speed at which

executives obtain information and make decisions determines the competitiveness of a company

and its long-term success (Kimball & Ross, 2013). Therefore, considering that nowadays many

companies are migrating their applications and data to the cloud, a great challenge to cloud

computing providers is to ensure the quality of service, and performance for these types of

applications deployed in this environment. This is the scenario of this work: OLAP services that

manipulate large amounts of data in the cloud.

http://code-industry.net/

Chapter 2 – State of the art

 37

2.3 SLA in cloud computing

2.3.1 Definition and lifecycle of a SLA

The SLA (Service Level Agreement) is a formal service contract between a cloud service provider and

its customers (Patel, Ranabahu, & Sheth, 2009; Wu & Buyya, 2010), usually a document that

defines the levels of availability, functionality, performance, penalties and billing expected from the

provider to its customers.

The Figure 2-8 presents the SLA lifecycle in three high level stages. The first stage is the SLA

Contract Definition, which corresponds to the discovery of the service provider, model specification,

negotiation and optimization of the SLA and as result, a SLA template is obtained. The second stage,

called SLA Operation consists in the implementation, monitoring, evaluation, renegotiation and

accounting services of SLA. Finally, the SLA Closing/Breaking, which involves the end/breach of

contract between the parties. It is important to identify the causes to breach of contract:

irrecoverable loss of data, provider's lack of performance, etc. In the following, we detail each stage

of the SLA lifecycle.

Figure 2-8. SLA Lifecycle.

http://code-industry.net/

Chapter 2 – State of the art

 38

STAGE I – SLA Contract Definition: Discovery of the service provider, model specification, negotiation

and optimization of the SLA

In a cloud environment, it is important to locate resources that can efficiently satisfy the customer

requirements/demands, because it is possible to find environments with different kinds of

resources, standards, technologies and administrative policies. In addition, similar objects in

different cloud environments may have different meanings.

In the process of discovering a service provider, the ideal for users is to have the largest possible

amount of information of the cloud services environment. Primarily, this information must include

the resources capacity, its availability and to know if they are accessible to a wide public. Thus,

users can quickly find the services that best suit their objectives.

After choosing the provider, the terms of the contract between the parties is negotiated and defined

from an existing SLA template. Among the terms we can highlight the following QoS parameters: (i)

the provider ability to deliver the services, (ii) the desired performance of the provider from the

workload of the user, (iii) the guarantees of availability and performance, (iv) the accounting

parameters, (v) measurement/reporting mechanisms, and finally, (vi) the service costs and

parameters of penalties in case of SLA violation. Furthermore, it is important that the parties have

not ambiguous parameters, even if the parties use different protocols. Therefore languages like

WSLA (Keller & Ludwig, 2003) and WS-Agreement (Andrieux et al., 2005) can be used to minimize

this problem.

Finally, with the contract established between the parties, the responsibilities of each party should

be detailed, as well as the consequences resulting from the breach of standards, software failures

and other events that may influence the system behavior. This part of the process can consume a

lot of time, and effort.

STAGE II – SLA Operation: execution and monitoring SLA violations

In this stage starts the execution and monitoring of provisioned resources to the costumer’s

requests. The real-time monitoring checks the execution of an instance of a service according to the

settings of SLA, in order to detect whether the contract is being ensured or not.

The instance of a service is parameterized and compared to the SLA QoS parameters. When it is

approaching or reaching a limit value, the environment must react to avoid a SLA violation. For

example, (re)allocating or releasing resources to effectively optimize a task. Therefore, the provider

http://code-industry.net/

Chapter 2 – State of the art

 39

must consider how to optimize the use of resources and how to preserve the Quality of Service

according to the priorities established on the SLA contract.

According to (Wu & Buyya, 2010), there are three types of infrastructures for SLA monitoring: (i)

Trust module on the provider’s side; (ii) Trust module on the customer side; and (iii) TTP (trusted

third party), a trust module using third party. To avoid any suspect, the TTP monitoring is the

preferred approach to manage this process.

When a breach of contract happens, the renegotiating of the SLA is a difficult task because no one

wants to lose and therefore, tolerances should be part of the renegotiation. Moreover, flexibility in

contract is also important because changes can be necessary to answer some external demand.

Other information such as global statistics are also relevant to check SLA and to account and

establish the costs of the used resources. Thus resources usage should generate a list describing

which services/resources were used, the measurement used and for how long, as well as relating

the values agreed by the use of each of them in accordance to the definitions established by SLA

(Wu & Buyya, 2010; Wu et al., 2011).

STAGE III – SLA Closing: closure or breach of contract and penalties for SLA violations

At this stage, the SLA and its settings are excluded from the service provider and the contract is

finished. It is important to identify the causes that led the parties to the breach the contract, in case

it has indeed been violated. Many penalty clauses of SLAs are linear and they do not present a good

performance and best models can be extended to these clauses (Lee, Wang, Zomaya, & Zhou,

2010). Therefore, due to different types of violations, the penalty clauses need to be extensive.

The SLA cost parameters should provide information such as the price for the use of resources and

instance of a service, the country's currency and the period for which the price is valid. The SLA

model design should be flexible enough to allow different types of charges. In addition, the use of a

service or resources above the agreed limit may cause additional costs to be charged.

2.3.2 QoS parameters of a SLA

Cloud computing has become an important paradigm for outsourcing IT resources. Currently there

are many cloud providers offering different services with different prices, parameters and

performance levels, even when those providers offer similar services. For example, Amazon EC2

offers IAAS (Infrastructure as a Service) services with the same computing power with different

prices for different regions. In addition, several companies, including small and medium enterprises,

http://code-industry.net/

Chapter 2 – State of the art

 40

have started using the cloud infrastructure (Emeakaroha et al., 2012; Garg et al., 2013). Thereby,

there is a wide range of different contracts with different SLA requirements. Thus, it becomes

difficult for a customer to choose the most suitable provider to co-locate their applications.

A major challenge from the customer’s point of view is to find the best cloud service, which can

ensure/satisfy their QoS parameters agreed in contract. Therefore, it is important to consider which

is the cloud service best suited for a particular customer profile. Afterwords, the customers need to

have a way to identify and measure key performance criteria that are important to their applications.

For example, financial organizations usually require security and privacy QoS requirements, but the

availability QoS requirement, although important, is not a priority of these organizations (Chi et al.,

2011).

Therefore, how to select a feasible service to meet the demands of different users has become a

popular research area. In order to improve the customer’s satisfaction, many studies (Alrifai & Risse,

2009; Canfora, di Penta, Esposito, & Villani, 2005; Liang, Zou, Guo, Yang, & Lin, 2013; Siegel &

Perdue, 2012; Zeng et al., 2004; Zeng, Benatallah, Dumas, Kalagnanam, & Sheng, 2003; Zheng,

Ma, Lyu, & King, 2009; Zheng, Zhang, & Lyu, 2010) focused on the QoS optimization.

The CSMIC (Cloud Service Measurement Index Consortium) consortium is widely used and aims to

define the QoS parameters to be used by most cloud provider and to provide a methodology for

calculating a relative index to compare the services of different cloud providers.

The CSMIC started in 2010 by the members of CA Technologies, a software company

headquartered in New York, and by researchers at Carnegie Mellon University, located in

Pennsylvania in the United States. Currently, many others members are part of this consortium,

such as: Accenture, a global company for consulting, technology services and outsourcing serving

customers in more than 120 countries; Cask LLC, a telecommunications company located in San

Diego, California; DSCI (Data Security Council) of India, an organization of technological innovations

on the protection and technological development of security and data privacy; IAOP (International

Association of Outsourcing Professionals), a global organization of standards and defense of

outsourcing in the business world; Mycroft, an innovative IT company located in England; TM Forum,

a global nonprofit company for service providers and their suppliers in telecommunications and

entertainment industries; TPI, a consulting company in outsourcing in the United States; researchers

at the Public University of London; researchers at Stony Brook University, located in New York; and

finally, researchers at the University of Melbourne in Australia.

http://code-industry.net/

Chapter 2 – State of the art

 41

The major product of this consortium is the SMI (Service Measurement Index) (Garg, Versteeg, &

Buyya, 2011; Garg et al., 2013; Siegel & Perdue, 2012), a framework that aims to measure the

services commonly offered in cloud environments. Specifically, the SMI consists of a set of KPIs (Key

Performance Indicators), providing a global view of QoS parameters and their metrics used by cloud

service providers. With SMI, the customers can make a better selection of a cloud service provider

(Emeakaroha et al., 2012; Garg et al., 2013; Siegel & Perdue, 2012; Vaulx, Simmon, & Bohn,

2015). A KPI is a key QoS parameter, in which has one or more QoS sub-parameters. The following

are the main QoS parameters defined in the SMI:

(i) Accountability: this group includes QoS parameters that define a relationship of

trust between customer and service provider. It is a fact that no organization would

like to install their applications and store their critical data in a cloud environment,

in which there is no good ethics and/or responsibility, especially when it comes to

data safety and reliability. Among the sub-parameters considered important to

measure ethics and responsibilities of a cloud services provider, we can highlight

auditability, compliance, data ownership, ethicality and sustainability.

(ii) Agility: this group includes QoS parameters in order to measure the evolutionary

flexibility of the provider capacity, identifying how fast new capabilities can be

integrated into the IT according to business needs. This QoS parameter is quite

interesting for organizations because the expansion and faster change of IT

resources represent fewer costs for organizations. Parameters considered as agility

of cloud services are elasticity, portability, adaptability and flexibility.

(iii) Cost: one of the first questions arising in organizations before migrating data to a

cloud environment is whether it is profitable or not. Cost is clearly one of the main

QoS parameters for IT and the business, and sometimes it takes many hours or

weeks of discussion to reach an agreement. However, in the SMI, the cost is the

simplest quantifier and has the following sub-parameters: acquisition & transition

cost, on-going cost and profit or cost sharing.

(iv) Performance: this group includes QoS parameters for the performance of cloud

services. There are different solutions offered by cloud providers in face of the need

for different IT organizations. Among the sub-parameters that measure the

performance of cloud services, we can highlight accuracy, interoperability, service

response time, throughput and efficiency. This set is one of the most important

http://code-industry.net/

Chapter 2 – State of the art

 42

group of SLA QoS parameters because it is the main aim for most customers using

cloud computing. Therefore, for the cloud services to ensure customer expectations

in terms of performance, it is necessary to understand how these sub-parameters

are measured.

(v) Assurance: this group includes QoS parameters that measure the probability of a

cloud service to perform as expected or agreed in the SLA agreement. It is essential

for every organization to expand its business and provide better services to their

customers. Therefore, reliability, resiliency and service stability are important factors

when contracting a cloud service.

(vi) Security and Privacy: data security and privacy are important to the majority of

organizations. Data hosting under the responsibility of another organization is

always a critical issue and requires strict security policies of cloud providers. For

example, financial organizations require high level of security of their data. They

require their data to be safe and private from any tampering or unauthorized

access. Finally, this set includes sub-parameters such as confidentiality, privacy,

integrity and availability of data.

(vii) Usability: Usability represents one of the main quality parameters. It represents the

ease of benefiting from the service and from the information it provides (Corradini,

Polzonetti, Re, & Tesei, 2008). The easier it is, more organizations will migrate its

applications to the cloud. Usability can depend on multiple factors such as

accessibility, installability, learnability and operability.

As shown in Figure 2-9, Currently, SMI has over 50 parameters and sub-parameters, each one can

be measured and evaluated by a customer for an appropriate choice of a cloud service provider.

Thus, the SMI provides a global view of QoS parameters needed for a cloud service provider. In

addition, it assists customers in understanding and measuring the parameters that will be used in

stage of template specification, negotiation and optimization of the SLA as shown in Section 2.3.1.

One can still note that SMI indirectly helps controlling the monitoring of SLA violations, because a

service provider when properly selected increases the probability that SLA requirements are

guaranteed.

http://code-industry.net/

Chapter 2 – State of the art

 43

Figure 2-9. Parameters and Sub-parameters defined in the SMI (Siegel & Perdue, 2012).

2.3.3 QoS performance parameters of a SLA

The QoS performance parameters are among the most important clauses in a SLA, because it is of

great interest to customer to know clearly their expectations when executing a request in a service of

a cloud provider (Emeakaroha et al., 2012). To measure them, the SMI defined four sub-

parameters: service response time, accuracy, throughput, efficiency, elasticity and scalability. In the

following, we present these parameters in detail.

Service Response Time: the execution efficiency of a service can be measured in terms of response

time; i.e. how fast the service is ready for use. For example, if a user indirectly requests a virtual

machine on a cloud provider, then the service response time is the time given for the provider to

begin serving the request. In this example, it includes the virtual machine provision, start, IP address

allocation and application(s) start.

According to the SMI, the service response time depends on various factors such as average

response time, maximum response time assured by the service provider and the percentage in

which the response time exceeds the maximum time promised by the provider:

http://code-industry.net/

Chapter 2 – State of the art

 44

• The average response time of a service (T_ms) is given by:

𝑻𝒎𝒔 = 𝑻𝒓𝒔𝒊/𝒏
𝒊

 (2.1)

in which 𝑇*+,	is the time between the moment that a user i requests a service and the service is

ready to process the i request. n number of times a service was requested. Therefore, T_ms the

sum of the service response times divided by the number of times the service was requested.

• The Maximum Response Time (𝑇./0) corresponds to the maximum promised time

a cloud service is ready to execute a request.

• The Violations of Maximum Response Time of a Service (𝑇./0) is given by the

quotient between the number of times that the response time was higher than the

maximum promised response time and the number of requests, expressed in

percentage.

𝑽𝑻𝒎𝒂𝒙 = 	 (𝒏5/𝒏)×𝟏𝟎𝟎 (2.2)

in which 𝑛5 is the number of service requests that the cloud service provider was not able to ensure

the contract and n is the total number of service requests.

Accuracy: the performance accuracy of a service is measured by the degree of closeness of

requirements met when compared to the expected requirements. For computing resources, such as

virtual machines, the accuracy can be equated by the number of times the service provider

breached the SLA contract. Hence, if 𝑓, is the number of times the cloud service provider does not

met the requirements for a user i, and n the number of users who accessed the service, then the

accuracy rate is defined as:

𝒇𝒊
𝒏𝒊

 (2.3)

Throughput and efficiency: Throughput and efficiency are important measures to evaluate the

performance of services in cloud providers. The throughput corresponds to the number of activities

performed by the cloud service per time unit. The throughput depends on several factors that can

affect the performance of a task. For example, consider a user application that has n tasks, which

are subjected to run on m machines of a service provider. Let Let 𝑇=(𝑛,𝑚) be the execution time

of n tasks in m machines. Let 𝑇@ be the overhead time due to factors such as delays in the startup

http://code-industry.net/

Chapter 2 – State of the art

 45

of infrastructure and delays in communication between tasks. Thus, the total throughput of a cloud

service is given by:

𝜶	 = 	
𝒏

𝑻𝒆 𝒏,𝒎 + 𝑻𝟎
 (2.4)

The efficiency of a cloud application indicates the effective use of leased resources. Therefore, the

larger the efficiency value, the lower the overhead. Thus, system efficiency is given by:

𝑻𝒆(𝒏,𝒎)
𝑻𝒆 𝒏,𝒎 + 𝑻𝟎

 (2.5)

Besides the presented QoS parameters, other parameters related indirectly to the performance of

cloud services are elasticity, scalability and availability. Availability corresponds to the percentage of

time a customer can access the service. Let 𝑇D be the time the service was available and 𝑇DE the

time the service was not available; the availability is given by:

𝑻𝒅
𝑻𝒅 + 𝑻𝒅𝒏

×𝟏𝟎𝟎 (2.6)

Elasticity is defined in terms of how much a cloud service can be scaled, even during a service

overload. Elasticity is defined by two parameters: the average time needed to expand or contract the

capacity of the service, and the maximum capacity of the service. The capacity is the maximum

number of compute units that can be provided at peak times.

Scalability is determined by the capacity of a system to handle a large number of requests from

simultaneous applications. The ability to scale resources is an essential part of the elasticity

provided by cloud computing. However, this measure is more applied to the performance

perspective of user applications.

There are two types of scalability: horizontal, which means the increase of cloud resources of the

same type. For example, the booting of more virtual machines of the same type during overloads.

The vertical scalability is defined as the ability to increase the capacity of a cloud service, such as a

virtual machine by adding physical memory resources, CPU speed and/or network bandwidth. The

horizontal scalability is given by the elasticity and the vertical scalability can be calculated according

to the maximum increase in the available resources of a cloud service.

http://code-industry.net/

Chapter 2 – State of the art

 46

2.4 Data processing

The QoS performance parameters presented can be used to resolve the new challenges of data

management in cloud environment. Mainly, the challenges related to query optimization ensuring

the response time. In the literature, there are several works related to query processing and

optimization in traditional DBMSs (Deshpande, Ives, & Raman, 2007; Gounaris, Paton, Fernandes,

& Sakellariou, 2002; Zhao, Hu, & Meng, 2010). These works provide the basis for the current

requirements, such as, data management in the cloud. Thus, this section presents the state of the

art in query processing in databases.

2.4.1 Query processing in database

DBMSs (Database Management Systems) implement various techniques to execute efficiently a

query in their database(s). These techniques are based on the data model managed by the DBMS.

In this section, we will address the relational DBMS optimization techniques, which are the basis for

most other models.

In relational DBMS, a SQL (Structured Query Language) query first goes through a lexical analyzer

and, then, a syntactic analyzer for correctness and query validation. Then, the validated query is

rewritten in a tree data structure, called the query tree. In the literature, many authors use graphs to

represent the query tree. Then the DBMS optimizer chooses an effective strategy, also known as

efficient execution plan, to execute the query tree. A query plan (or query execution plan) is an

ordered set of steps used to access data in a SQL relational database management system.

The main goal of the optimizer is to find an appropriate query plan, among others, to process a

query that gives the lowest response time to the user. Finally, the optimized execution plan is

executed and the result of the query is returned to the user.

Therefore, the query optimizer is an indispensable component in a relational DBMS engine. To

improve the performance of a query, traditional optimizers use two techniques, not necessarily in

the following order:

(i) Optimizing the query plan based on heuristic rules, which modify the internal

representation of the query tree. The heuristics rules use equivalence expressions to

transform an initial query tree in a final optimized query tree. An example of a

classic heuristic rule is to apply SELECT and PROJECT operations before applying

JOIN or any other binary query operation. DBMSs can achieve a good optimization

http://code-industry.net/

Chapter 2 – State of the art

 47

with a set of algorithms that use several heuristics rules in order to reach maximum

query performance (Deshpande et al., 2007; Elmasri & Navathe, 2010; Gounaris et

al., 2002).

(ii) Optimizing the query plan based on costs, since the publication of the System-R

paper (Selinger et al., 1979), cost-based optimizers have been widely adopted.

Usually the costs are quite complex to calculate, because they depend on

estimates, properties of execution plans and specific cost formulas for each query

plan operator (Bruno, Chaudhuri, & Ramamurthy, 2009). According to (Elmasri &

Navathe, 2010), the cost of running a query includes the following components: (i)

I/O Cost to access the hard disk: search operations, reading and writing of data

blocks on hard disk; (ii) Storage Cost: temporary files generated during query

execution; (iii) Computing Cost: processing of query operations in main memory

and CPU, such as read-write on records and/or buffers; (iv) Memory Usage Cost:

related to the number of necessary memory buffers during query execution; (v)

Communication Cost: related to the cost of transport of the query and its results

from a database site to the site or terminal where the query originated. The

calculation of this cost is quite important because it is most expensive cost in

distributed database systems (Abadi, 2010; Elmasri & Navathe, 2010).

The cost-based optimization presents some inferences. For example, for large databases it is more

important to minimize the I/O cost of access to the hard drive. In small and parallel databases, it is

interesting to reduce the computational cost. In distributed databases, it is interesting to lower the

communication cost. In native XML databases, in addition to observing the computational cost, it is

interesting to follow some guidelines, such as avoiding standardization, employing unique element

names, pre-calculating values and transforming data with their queries.

For decades, different techniques were developed, such as, Query Hiting and Semantic Query

Optimization (Bruno et al., 2009; Elmasri & Navathe, 2010). The Query Hiting technique, quite

common in current databases, instructs the optimizer to restrict its search space to a certain subset

of query plans (for example, imposing a choice of plans that use a particular type index, or

determining the order and/or join method) (Florescu & Kossmann, 2009). The semantic

optimization techniques use restrictions of the database scheme, as CHECK, TRIGGER and STORE

PROCEDURE to improve query performance. Consider, for example, that in a STUDENT table, its

http://code-industry.net/

Chapter 2 – State of the art

 48

NAME column has a NOT NULL restriction. Therefore, the following query, SELECT * FROM

STUDENT WHERE NAME IS NULL, would be executed quickly because the semantic optimizer would

notice before executing the query, via restriction, that there is not any student with null names.

We observe a complex universe of rules, algorithms, formulas and guidelines that compose the

traditional query optimization, whose main objective is to improve the performance of queries to the

database (faster response time for users). However, in the context of cloud databases, as shown in

Section 2.4.3, it is not a priority to improve query performance, but to achieve service quality, i.e. a

suitable performance according to the SLA contract. Therefore, we understand that this universe

must be readapted for cloud computing technologies.

2.4.2 Adaptive query processing

In DBMSs, the optimizer improves the performance of compile-time queries. Thus, optimization is

just one-step before the effective execution of the query. However, in parallel and distributed

environments in which statistical information about the availability of databases can be minimal and

the availability or loading of physical and virtual resources are subject to change, query optimization

can have a poor perform, especially when queries move and/or return large amounts of data, since

it is not possible to have precise cost estimate and a good selectivity, for the environment is highly

unpredictable and volatile (Deshpande et al., 2007; Gounaris et al., 2002).

In this context, a solution to produce a good query execution plan is to use adaptive query

processing techniques, which interacts with environmental changes modifying the query execution

plan at runtime. The adaptive processing aims to improve query performance by modifying its query

plan in accordance with environmental changes (infrastructure, workload, etc.) at runtime of the

query (Deshpande et al., 2007).

Two important tasks in adaptive query processing is to modify and build, when necessary, new

operators in query plan at runtime. The modification of the query plan may occur in the physical

and/or logical query plans. Changes in logical query plan consist in modify the SELECT, PROJECT

and ORDER operations, and the query plan format. For example, a change in the execution site of

the SELECT operator may occur if during query execution, a data replica of the remote site becomes

available in the query site itself. Changes in the physical query plan consist of modifying operations

indexes and joins algorithms. For example, a hash join can be replaced by an index join, if an index

attribute of the junction becomes available during the query execution.

http://code-industry.net/

Chapter 2 – State of the art

 49

In general, the adaptive query processing techniques emphasize the following problem areas

(Deshpande et al., 2007; Gounaris et al., 2002):

(i) Fluctuations in the main memory: correspond to techniques that try to adapt the

shortage of memory and memory availability in excess. In this case, the query

execution plans may be forced to release/acquire some or all of the resources they

have during query execution;

(ii) Users preferences: cases in which techniques are built for users who are interested

in quickly obtaining partial results of a query

(iii) Data input rates: correspond to techniques that adapt to data input rates because

the quality of a query execution plan depends greatly on the estimation accuracy of

input parameter values (Yin, Hameurlain, & Morvan, 2015). They are generally

applied in parallel and distributed systems, in which the response times of the

remote data sources are quite unpredictable;

(iv) Current statistics: correspond to techniques to acquire statistical information at

runtime of the query, ensuring that the information is valid for the current conditions

and consequently adapting best query execution plan. Therefore, the optimizer may

be recalled repeatedly;

(v) Performance fluctuations: problem that often occurs in parallel systems. In this

case, the techniques are adapted to the site performance fluctuations trying to find

data replicas in sites with lower load for processing the query;

(vi) Any change in the environment: combines the previous techniques. Some are

widespread and can adapt to various types of environmental changes, that is,

computer resources, availability of processor and memory, data characteristics,

operator costs, selectivity and data input rates.

Therefore, the adaptive query processing is mainly useful in highly dynamic, unpredictable and

volatile environments, especially if databases are integrated in a cluster (Foster & Kesselman,

2003), being this the common infrastructure of computing clouds (Zhang & Ardagna, 2004).

Adaptive query processing has the ability to dynamically and automatically allocate or release

resources (elasticity of resources) during the query runtime and hence, it has a good performance in

query response. However, this technique needs to be readapted to the cloud environment, since,

along with traditional optimizers; it does not ensure all requirement for query processing in cloud.

http://code-industry.net/

Chapter 2 – State of the art

 50

2.4.3 Query processing in cloud

The infrastructure of a computing cloud consists of a cluster with hundreds or thousands of

computers, which are used for storage and data management. In the cluster, computers are

networked and their communication takes place through the system as if they were a single large

machine. These Computers are called master or slave nodes. Master nodes are responsible for the

metadata management of the entire cluster, scheduling the execution of tasks on slave nodes. Slave

nodes are responsible for storing data.

Figure 2-10 shows the query processing in a cloud. First, the query is scheduled, and then

partitioned into sub-queries, which go to the slave nodes that store the relevant data to process

them. Then each sub-query is performed on the slave nodes and one single result is presented to

the user. According to (Zhao et al., 2010), the query on the cloud platform is different from central

or parallel database. In the cloud platform, client query is often presented against the master nodes.

After that, the master nodes decide which slave nodes are relevant to the query and then the query

is passed to the slave nodes to do the query processing directly.

Hence, there are two important differences between query processing in the cloud and query

processing in traditional, parallel and distributed environment (Kllapi et al., 2011; Padhy, Patra, &

Satapathy, 2012):

(i) Interest in Data Environment: the processing and technology in parallel/distributed

environment employ system-level measures, such as, database throughput rate,

average length of query response, and so on. In the cloud environment, the interest

is linked to profit optimization in business level as in SLA contracts.

(ii) Scalability and Workload: The great scalability and dynamic workload required in

cluster makes query processing in cloud environment a different problem when

compared to parallel/distributed processing. In the cloud, these problems must be

solved by “contractual elasticity” i.e. providing use of resources to avoid SLA

contract violations.

http://code-industry.net/

Chapter 2 – State of the art

 51

Figure 2-10. Query Processing in the Cloud.

2.5 Related works

Currently, several studies have been focused in search of techniques for efficient query processing

in the cloud (Alves et al., 2011; Amazon Web Services, 2015; Cervino et al., 2012; Chi et al., 2011;

Coelho da Silva et al., 2012, 2013; Curino et al., 2011; Dean & Ghemawat, 2008a, 2008b; Guitart

et al., 2008; Kllapi et al., 2011; Mian et al., 2013; Naskos et al., 2015; Rogers et al., 2010; Sharma

et al., 2010, 2011; Vigfusson et al., 2009). Among these, we can cite the ESQP (Efficient SQL Query

Processing) (Kllapi et al., 2011; Zhao et al., 2010), which is a SQL query processing framework that

uses replicas stored in the cloud. It aims to minimize the time of query execution, exploring

replicated data. It adopts the MapReduce framework strategy (Dean & Ghemawat, 2008a, 2008b) to

decompose an SQL query into several subqueries in accordance with the corresponding data

replicas. The ESQP employs techniques including index and pipeline, to improve the processing

efficiency of the subquery. However, the ESQP does not perform adaptive query processing, acting

proactively, which may not be suitable in highly unpredictable environments on the availability of

resources.

Another important work is the development of the SLA-Tree framework (Chi et al., 2011), which

provides a new data structure to efficiently ensure the SLA agreement. SLA-Tree uses the response

time of queries according to the SLA contract. The response time in this work is the difference

http://code-industry.net/

Chapter 2 – State of the art

 52

between the time that the query is submitted to the system and the moment the query execution is

concluded in the provider. SLA-Tree considers that there is only one buffer for each cluster node

and, as in (Zhao et al., 2010) the workload is known before query execution. That way, the query is

not monitored during its execution.

(Vigfusson et al., 2009) present an adaptive algorithm to optimize the response time of queries in

distributed databases. The algorithm partitions and adaptively identifies the best level of parallelism

for each query. The authors propose an adaptive provisioning algorithm for only select-range queries

and consider variations in performance of VMs (Virtual Machines). On the other hand, this work does

not observe an SLA and does not specify the frequency of the monitoring algorithm during queries

execution.

(Iqbal et al., 2009) present an SLA-oriented resource manager focused on cloud computing and

based on open source technology. It provides adaptive resource allocation and dynamic load

balancing for Web applications in order to ensure a SLA. One of the limitations of this work is that it

uses resource increase not providing the mechanisms for resource shrink. In addition, the work

does not check DBMS variables for database access requests, addressing only the level of the

application server layer. Thus, monitoring is given using only system variables.

(Rogers et al., 2010) present a framework for the provisioning of resources that identifies a set of

minimum cost of resources (i.e. a set of potentially heterogeneous virtual machines) that can

collectively satisfy a variable workload on time within the quality expectations of the service. The

authors describe two solutions for the resource-provisioning problem. The black box provisioning,

which considers profiles of performance and cost of different types of VMs under the variation rates

of queries that are given previously (it uses execution samples). The goal is to capture the input rate

that each VM supports without violating the service quality associated with the queries executed by

the system. The white box provisioning, which estimates how much computational resources are

required to execute the workload using the database optimizer statistics to predict the consumption

of physical resources (I/O, memory, CPU) for each query. Despite the fact, the work presents a

solution that involves minimizing costs in the use of resources to customer requests and worries

about latency of these consultations of a given SLA, it does not use a monitoring strategy during

requests execution, which may not be suitable in highly unpredictable environments on the

availability of resources.

http://code-industry.net/

Chapter 2 – State of the art

 53

(Alves et al., 2011) propose the FloodDQ system, a MapReduce system that uses deadlines for

running queries without discarding data or reducing results accuracy. The FloodDQ uses adaptive

processing providing the increase or decrease of resources during query execution. If during query

execution it is determined that it passed a margin of query execution safety (progress monitoring

estimate and computing resources), the system requests more computational nodes to execute the

query. The safety margin is calculated by using the estimated query execution progress using

algorithms (Morton, Balazinska, & Grossman, 2010; Morton, Friesen, Balazinska, & Grossman,

2010). This work restricts its scope to pipeline single queries (queries without joins). The calculation

of the number of nodes to be added or removed is based on the data processing rate and the work

assumes that all nodes have the same data processing capability. Moreover, this work uses the

strategy of regular intervals monitoring, which requires that VMs have the same performance.

(Sharma et al., 2010, 2011) propose the Kingfisher, a provisioning framework based on applications

cost in a cloud environment. It aims at minimizing the customer cost. That is, the provisioning is

based on the best use of resources while minimizing the cost of the customer according to

resources usage. This work uses integer linear programming to calculate the costs and decision-

making in elasticity. The variables used for the calculations involve performance characteristics of

different types of servers and their costs for core, provisioning mechanisms supported in the cloud

and a model to estimate the cost/overhead of each mechanism. Kingfisher uses a proactive method

to know when provisioning and assumes an ideal workload predictor that uses recovered statistics of

a monitoring system. This predictor is able to obtain estimates of future workloads. Finally, the

Kingfisher does not perform adaptive processing queries.

(Curino et al., 2011) propose the Kairos system, which uses nonlinear programming in order to

minimize the number of servers and make load balancing for running queries. The Kairos uses

techniques to measure the hardware requirements for workload on the database, thereby achieving

to predict resources that will be used for query. This work also does not use adaptive query

processing.

(Cervino et al., 2012) propose an adaptive algorithm of VM provisioning. It uses a stream processing

system distributed in the cloud. The provisioning of VMs to be allocated for a given query is based

on streams rate of the current workload. The methodology consists of periodically calling the

algorithm and calculating the number of VMs that are required to process the demand. It scales the

http://code-industry.net/

Chapter 2 – State of the art

 54

number of VMs based only on input stream rate. In addition, there is the dynamic resources

provisioning during query processing.

(Coelho da Silva et al., 2012, 2013) present a non-intrusive framework for adaptive query

processing in databases implanted in a cloud environment. This work observes query response time

of the SLA contract; makes adaptive monitoring considering the heterogeneous environment, and

therefore, it considers that the VMs may have different performances. One limitation of this work is

that it limits the scope to only select-range queries.

(Mian et al., 2013) propose a resource-provisioning framework in a public cloud to execute requests

in large amounts of data. This work proposes an SLA cost model and presents a provisioning

method based on SLA time, predicting the best value to execute requests at any given time. For

validation, the framework was evaluated using Amazon EC2. This work does not use monitoring

strategy during requests execution, which might not be suitable in highly unpredictable environments

on the availability of resources.

(Naskos et al., 2015) propose a probabilistic model checking-based approach to resizing an

application cluster of VMs so that elasticity decisions are amenable to quantitative analysis.

Experiments using real datasets were conducted, and the results shown a significantly decrease on

the frequency of user-defined threshold violations. However, this work does not perform adaptive

query processing and does not use monitoring during requests execution. There is only the

monitoring of the incoming workload and the current system state.

Another important work is the Amazon Auto Scaling (Amazon Web Services, 2015), which allows

scaling requests following criteria, for example, the average CPU utilization. The automatic scheduler

is based on analysis of requests traffic in execution and this solution works with Axis2 Web services

running on Amazon EC2. Finally, (Goiri, Julià, Fitó, Macías, & Guitart, 2012; Guitart et al., 2008)

uses admission control and dynamic resource provisioning. This work is responsible for allocating

resources and tries to ensure the desired QoS during system overload. The server machines of their

systems are able to adapt automatically to changes in workload. However, these works do not use

monitoring during requests execution.

Finally, Table 2-1 summarizes the related works. As shown in the table(Amazon Web Services,

2015; Cervino et al., 2012; Chi et al., 2011; Curino et al., 2011; Guitart et al., 2008; Kllapi et al.,

2011; Mian et al., 2013; Naskos et al., 2015; Rogers et al., 2010; Sharma et al., 2011; Zhao et al.,

2010) do not use the strategy of monitoring during requests execution. In (Vigfusson et al., 2009)

http://code-industry.net/

Chapter 2 – State of the art

 55

the algorithm is adaptive optimizing the response time of queries. However, it does not observe the

SLA agreement and does not specify the frequency of the monitoring algorithm during query

execution. (Iqbal et al., 2009) presents an adaptive SLA-oriented resource manager. However, it only

predicts the provisioning of resources and does not check DBMS variables for database access

requests, addressing only the level of the application server layer. (Alves et al., 2011) uses the

strategy of regular monitoring intervals during requests execution and therefore does not consider

that VMs may have different performance. In addition, it limits its scope to single pipeline queries

(queries without joints). (Coelho da Silva et al., 2012, 2013) consider that VMs may have different

performances and there is the adaptive monitoring query execution. However, the scope is limited

only to select-range queries.

Table 2-1. Characteristics of related work.

Researches
Adaptive
Query

Processing

Based on
SRT on the

SLA contract

Type of
Environment it is

Applied

Query
Restriction

Scaling:
provisioning or

release of
resources

(Goiri et al., 2012;
Guitart et al.,

2008)
No Yes Heterogeneous

Not
restricted

Provisioning of
Resources

(Vigfusson et al.,
2009)

Yes No Heterogeneous Select-range
Provisioning of

Resources

(Iqbal et al., 2009) No Yes Heterogeneous
Not

restricted
Provisioning of

Resources
(Rogers et al.,

2010)
No Yes Heterogeneous

Not
restricted

Provisioning of
Resources

(Alves et al., 2011) Yes Yes Homogeneous Select-range
Provisioning and

Release of
Resources

(Curino et al.,
2011)

No Yes Heterogeneous
Not

restricted
Not applied

(Kllapi et al.,
2011; Zhao et al.,

2010)
No Yes Heterogeneous

Not
restricted

Provisioning of
Resources

(Sharma et al.,
2010, 2011)

No No Heterogeneous
Not

restricted
Provisioning of

Resources

(Chi et al., 2011) No Yes Heterogeneous
Not

restricted
Provisioning of

Resources
(Cervino et al.,

2012)
No No Heterogeneous

Not
restricted

Provisioning of
Resources

(Coelho da Silva et
al., 2012, 2013)

Yes Yes Heterogeneous Select-range
Provisioning and

Release of
Resources

(Mian et al., 2013) No Yes Heterogeneous
Not

restricted
Provisioning of

Resources

http://code-industry.net/

Chapter 2 – State of the art

 56

Researches
Adaptive
Query

Processing

Based on
SRT on the

SLA contract

Type of
Environment it is

Applied

Query
Restriction

Scaling:
provisioning or

release of
resources

(Naskos et al.,
2015)

No No Heterogeneous
Not

restricted
Provisioning of

Resources
(Amazon Web

Services, 2015)
No No Heterogeneous

Not
restricted

Provisioning of
Resources

2.6 Conclusion

This chapter presented the concepts of data warehouse and OLAP applications, SLA contract, data

processing in databases and related works. Nowadays, many companies have migrated their

applications and data to the cloud due to the benefits of this technology. Therefore, it is very

important for users to choose “the best” cloud service provider, i.e. the provider most suitable for

their needs. For this, it is important to know the QoS parameters of the SLA agreement.

From the user’s point of view, the SRT (Service Response Time) parameter is considered one of the

main QoS parameters. However, the major cloud providers have ignored or inappropriately treated

the SRT parameter in SLA due to its complexity. Therefore, one of contributions of this work,

presented in Chapter 3, is to propose a model for obtaining the SRT, so it can be treated adequately

in SLA contracts.

In turn, we can observe that most works in the literature focus on queries with short execution time

and on the prediction of the resources to be used for query processing through the current system

context. These works may not be suitable in highly unpredictable environments on the availability of

resources. Other related works focus on adaptive query processing. However, they present

limitations of elasticity and/or scalability in their algorithms: (i) the absence of adaptive monitoring

query processing; (ii) use of intrusive solutions and/or proprietary technology; and (iii) lack of

formalism in the definition of the QoS parameters in their solutions. As a result, the same service

may have different understanding among cloud service providers. Therefore, the main contribution

of this thesis, to be presented in Chapter 4, is a new solution to efficient query processing on large

databases available in a cloud environment. This solution must overcome some of the above

limitations.

.

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

http://code-industry.net/

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 59

3.1 Introduction

This chapter proposes a model for measuring a Service Response Time estimated for different

request types on large databases available in a cloud environment. Therefore, to better

understanding, this chapter is organized as follows:

3.2 Request definition: presents the formal definition of a request used in this work.

3.3 Service response time measurement model of service level agreements: presents the

SRT measurement model, its definition and tools.

3.4 Case study - validation and results: presents the experiments of the proposed model

using the Amazon EC2 cloud infrastructure, a TPC-DS like benchmark and finally, their

results.

3.5 Conclusion: presents the final considerations of this chapter.

3.2 Request definition

In computational context, a request corresponds a task to be executed by a Web Service sent by a

customer who has access to the service. The model request-response is the base of data

communication on the Internet. Browsing a Web page is an example of request–response

communication. For example, as shown in Figure 3-1, a customer submits a request message to a

service of a Web server. The server provides the resources, it executes tasks and it returns a

response message to the customer.

This work focuses on database access requests of OLAP applications in a cloud environment. This

problem presents a lot of data processing. A request message is a SQL (Structured Query Language)

query composed by one or more tables and it can be of different types. For example, select-range,

select-aggregation, select-joins and select-sets-grouping-nesting-ordering. Therefore, in this work a

request can be formally defined as follows:

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 60

Figure 3-1. Request-response communication of the client-server computing model.

[WITH AS table]
SELECT [DISTINCT | ALL] | [OPER] < list of attributes> | <nested SQL query>
FROM <list of tables> | <nested SQL query>
[WHERE <predicate> | <nested SQL query> | [OPERCON]]
[UNION] | [INTERSECT] | [EXCEPT]
[GROUP BY <attributes>]
[HAVING <predicative>]
[ORDER BY attribute [ASC | DESC]];
[FECTH…]

[OPER] is an aggregation operator (AVG, for example), [OPERCON] is a set operator (UNION,

INTERSECT OR EXCEPT, for example), [FETCH] is the operator to control the pagination of quantity

of tuples returned and [WITH] is the operator responsible for generating a virtual view.

The most basic request of this work presents at least two SQL clauses: SELECT and FROM. This

request is generic enough to accommodate the requests presented in the TPC-DS Benchmark (Tpc

BenchmarkTM Ds, 2012), which are used in the experiments of the proposed model. The TPC-DS is a

decision support benchmark standard, it illustrates decision support systems that (i) examine large

volumes of data; (ii) give answers to real-world business questions; (iii) execute queries of various

operational requirements and complexities (e.g., ad-hoc, reporting, iterative OLAP, data mining); (iv)

they are characterized by high CPU and IO load. Finally, (v) they are periodically synchronized with

source OLTP databases through database maintenance functions.

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 61

To better understanding the proposed model described in next section, the requests were classified

between three types, according to level of complexity. Therefore, the following subsections define

each one of them.

3.2.1 Type 1 requests: select-range and select-aggregation

Type 1 requests represent the select-range and/or select-aggregation requests. Select-range are the

database access requests that will return only tuples that are in a given range of a table. An index

can be used to select the tuples. The range is used when a column, key or not, is compared with a

constant using: =, <>, >, > =, <, <=, IS NULL, <=>, BETWEEN or IN. For example:

SELECT * FROM table WHERE key_column = 10;
SELECT * FROM table WHERE key_column BETWEEN 10 and 20;
SELECT * FROM table WHERE key_column IN (10,20,30);
SELECT * FROM table WHERE key_part1= 10 and key_part2 IN (10,20,30);
SELECT * FROM table WHERE date_column BETWEEN '2015-08-10' and '2015-09-10';

The select-aggregation requests are the database access requests that use aggregate operators for

arithmetic expressions. For example, COUNT, SUM, AVG, MAX and MIN. They are applied to a set or

multi-set of values and it returns the result of operation to the user. These operators can also be

used in the HAVING clause (as shown in section 3.2.3). Examples of requests with aggregate

operators:

SELECT MAX(column) FROM table WHERE key_column = 10;
SELECT column, AVG(column) FROM table WHERE column > 10;
SELECT MIN(key_column) FROM table;
SELECT COUNT(*) FROM table;
SELECT SUM(column), COUNT(column) FROM table;

3.2.2 Type 2 requests: select-joins

Type 2 requests represent the database access requests that uses one or more of the following

operators: cross join, inner join, left outer join, right outer join or full outer join. A SQL join clause

combines records from two or more tables in a relational database. It creates a set that can be

saved as a table or used as it is (Elmasri & Navathe, 2010). These are examples of requests with

joins:

SELECT * FROM table1, table2;
SELECT column1, column2 FROM table1 CROSS JOIN table2;
SELECT * FROM table1, table2 where table1.key_column = table2. key_column;
SELECT column1

FROM table1 INNER JOIN table2 ON (table1.key_column =table2.key_column);

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 62

SELECT *
FROM table1 LEFT OUTER JOIN table2 ON (table1.key_column = table2.key_column);

SELECT column1, column2
FROM table1 RIGHT OUTER JOIN table2 ON (table1.key_column = table2.key_column);

SELECT *
FROM table1 FULL OUTER JOIN table2 ON (table1.key_column = table2.key_column);

3.2.3 Type 3 requests: select-sets-grouping-nesting-ordering

Type 3 requests represent the database access requests that uses aggregation, joins, union,

grouping and/or nesting operators. They can be UNION, INTERSECTION, EXCEPT, ANY, IN,

UNIQUE, EXISTS, NOT EXISTS, GROUP BY, HAVING, ORDER BY or FETCH WITH. For example:

SELECT * FROM table1 UNION SELECT * FROM table2;

((SELECT * FROM table1 UNION ALL SELECT * FROM table2) UNION SELECT * FROM table3);

SELECT column FROM table1 INTERSECT SELECT column FROM table2;

SELECT column FROM table1 EXCEPT SELECT column FROM table2;

SELECT * FROM table1 WHERE column = 'WA' AND
EXISTS (SELECT column FROM table2 WHERE table2.key_column = table1.key_column);

SELECT column FROM table1 WHERE
NOT EXISTS (SELECT *
 FROM table2
 WHERE key_column = table1.key_column AND column = 'Name');

WITH Query_View (column1, column2, column3)
AS (
 SELECT column1, column2, column3 FROM table1 WHERE column1 IS NOT NULL
)
SELECT column1, column2, column3 FROM Query_View
GROUP BY column1, column2 ORDER BY column1;

SELECT column1, column2, column3
FROM table1
 INNER JOIN table2
 ON table1.key_column = table2.key_column
 INNER JOIN table3
 ON table2.key_column = table3.key_column
 INNER JOIN table4
 ON table3.key_column = table4.key_column
WHERE table1.column = 'Europe'
 AND table2.column IN(N'DE', N'FR')
 AND table3.column IN(287, 290, 288)
 AND SUBSTRING(table2.Name,1,4) IN (N'Vers', N'Spa')
GROUP BY table1.column1, table2.column
ORDER BY table1.column2, table1.column3;

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 63

SELECT COUNT(*)
FROM table1, table2, table3, table4
WHERE table1.key_column = table2.key_column and
 table2.key_column = table3.key_column and
 table3.key_column = table4.key_column and
 table4.column = 8 and
 table3.column >= 30 and
 table2.column = 5 and
 table1.column1 = ‘ese’
ORDER BY COUNT(*);

3.3 Service response time measurement model of service level agreements

The CSMIC consortium (Garg et al., 2013; Siegel & Perdue, 2012) emphasizes only a SRT (Service

Response Time) parameter among QoS performance parameters. Its definition corresponds the time

between the instant the request arrives at the provider and the instant it starts executing, i.e. the

time that the service takes to start the execution of a request. However, other parameters should be

considered.

Let TSRTJ be total execution time of a request	R	, i.e. the total time that a request takes to be

executed in provider and its results to be presented to the user. Thus, TSRTJ	of a request is

composed by the sum of the times:

𝑻𝑺𝑹𝑻𝑹 = 𝑺𝑹𝑻𝑹5 + 𝑺𝑹𝑻𝑹55 + 𝑺𝑹𝑻𝑹555 (3.1)

where 𝑆𝑅𝑇O5 is the service response time, i.e. the time that the service takes to start the execution

of a request (CSMIC consortium definition), 𝑆𝑅𝑇O55	is the time of execution effectively of a request

and 𝑆𝑅𝑇O555	is the time that the result takes to be presented to user.

Ensuring the	𝑇𝑆𝑅𝑇O parameter is a very difficult task because it depends on many factors.

Moreover, due to the unpredictability of data traffic on the Internet, it becomes almost impossible to

solve this challenge. In the literature, most researches focus on ensuring 𝑆𝑅𝑇O55	parameter, which is

also the objective of this thesis. Thus, in this work, to better understanding the 𝑆𝑅𝑇O55	is called only

SRT.

Therefore, in this work, the SRT corresponds to the time that a service takes to execute

effectively a request. This way, the SRT of a service starts when a customer request is ready to

execute and it finishes when the request executes effectively. Including, for example, startup time of

virtual machine or wait of a fragment request, etc.

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 64

3.3.1 Recommended SRT definition

Nowadays, many companies have migrated their applications and data to the cloud due to the

benefits of this technology. However, we can see that major cloud providers like Amazon (“AWS EC2

Service Level Agreement,” 2015, “AWS S3 Service Level Agreement,” 2015) and Google APP

Engine (Sanderson, 2012) emphasizing availability, CPU instance and cost measure. Therefore, the

SRT parameter is not completely handled or inappropriately treated in SLA. In order to ensure

customer expectations relative to performance, cloud service providers have to understand how to

incorporate suitably the SRT parameter in their SLA.

A contribution of this thesis is the proposal of a model for obtaining the SRT, so it can be treated

adequately in SLA contracts. Thereby, it is necessary to define what a Recommended SRT is.

Let 𝑅,	be a database access request in a cloud, where 𝑖	represents one of the following request

types: (i) select-range and/or select-aggregation, (ii) select-joins or (iii) select-sets-grouping-nesting.

The Average Service Response Time of a request 𝑅,	(𝐴𝑆𝑅𝑇O,) executed by 𝑛	physical/virtual

machines is given by:

𝑨𝑺𝑹𝑻𝑹𝒊 = 𝑺𝑹𝑻𝑹𝒊/𝒏
𝑹𝒊

 (3.2)

in which 𝑆𝑅𝑇O,	is the time between the moment a request 𝑅,	is ready to run and the service

executes the request effectively.

Let 𝐴O,	be a set of average service response times for all type 𝑖	requests, i.e. 𝐴O, = {	𝐴𝑆𝑅𝑇O,T ,

𝐴𝑆𝑅𝑇O,U , 𝐴𝑆𝑅𝑇O,V , … , 𝐴𝑆𝑅𝑇O,X 	, where 𝑘	is the number of type 𝑖	requests. Let 𝐴O,^ 		be a set of half

the size of 𝐴O, (𝑘/2) with the highest averages of 𝐴O,.

Thus, the Recommended SRT (𝑅𝑆𝑅𝑇O,) for a set of type 𝑖	requests deployed in the cloud is given

by median of	𝐴O,^ 		:

𝑹𝑺𝑹𝑻𝑹𝒊 =	↑ 𝑨𝑹𝒊^ 𝒌
𝟐_𝟎.𝟓

							𝒇𝒐𝒓	𝒐𝒅𝒅	𝒌 (3.3.1)

Or

𝑹𝑺𝑹𝑻𝑹𝒊 = 	
↑ 𝑨𝑹𝒊^ 𝒌

𝟐
+↑ 𝑨𝑹𝒊^ 𝒌

𝟐_𝟏
	

𝟐 					𝒇𝒐𝒓	𝒆𝒗𝒆𝒏	𝒌 (3.3.2)

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 65

It is worth noting that Recommended SRT presents a pessimistic estimate of response time,

because it is based on requests that require more time to process, i.e. on median of the upper half

that represents the highest requests response time.

The discussion of Recommended SRT occurs in SLA construction phase (SLA Contract Definition),

which evaluates several tasks of customer applications on the cloud service provider. The complex

applications most used by a curtomer are defined and selected. In this work, the complex

applications are those which use high load of system (large use of CPU and disk read/write).

3.3.2 SRT measurement model

A cloud computing platform is a cluster with hundreds or thousands of Computers (nodes) for data

computing and storage. There are two types of nodes in the cluster: master nodes and slave nodes.

Master nodes store metadata and manage all cluster slave nodes. The slave nodes store the data

and their replicas for security.

In this context, Figure 3-2 shows the steps to obtain the Recommended SRT of a cloud computing

platform: (1) acquisition of customer applications; (2) selection and classification of applications

according to the request types: (i) select-range and/or select-aggregation, (ii) select-joins or (iii)

select-sets-grouping-nesting; (3) experiments of customer applications deployed on master nodes

and slave nodes of cloud provider; and finally, (4) analysis of results, which should define a

Recommended SRT for each request type and system load.

It is worth noting that in contract level, the confidence and validation of the results will depend

mainly on good practice in step 2, because good selectivity of customer applications will reduce SLA

violation.

In step 3, to assist the tests, three tools were implemented and deployed in the cloud provider, they

are COS (CPU Overload Simulator), DOS (Disk I/O Overload Simulator) and SRT Calculator.

Following we detail each of them and their functions.

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 66

Figure 3-2. Steps to obtain the Recommended SRT.

COS: CPU Overload Simulator

The COS tool was deployed in slave nodes of a cloud service provider and is used to simulate partial

and total CPU overload, i.e. the overload can also be by the processor core.

The COS tool generates an overload of threads of similar execution priority of the processes running

in the operating system. Although the set of threads are running in the same process, if the COS tool

executes itself more than once it will generate a set of threads in different processes causing large

number of processes of equal priority competing for the processor. Thus, to overload the processor,

the tool executes itself generating a large amount of processes, each having a large number of

threads.

The tool allows serial execution by processor core, i.e. each core will be overloading by time. Thus, it

allows configuring how many cores are overloaded. To analyze the CPU, the user can use the

sysstat tool, which checks the processor usage in real time. The sysstat tool is a package with a

collection of performance monitoring tools for major Linux distributions.

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 67

DOS: Disk I/O Overload Simulator

The DOS tool was deployed in slave nodes of provider and it serves to simulate disk read/write

overload. Reading and writing is quantified in bytes read and written from/to disk.

The DOS tool generates an overload of threads of database access requests with similar execution

priority of the processes running in operating system. Unlike COS tool, DOS simply run once,

generating a very large set of threads of equal priority in the same process, overloading the system

and competing with any another database access request that arrives at the processor.

The tool allows also defining the quantity of threads to be generated, in which each one simulates a

database access request in the machine. This way, the tool allows a wide variation in quantity of

bytes to read and write from/to disk.

The overloading in gigabytes is allowed as long as (i) the machine has enough main memory and (ii)

the secondary disk has storage in terabytes, because temporary data can be written to disk in

runtime of request. To analyze the disk read/write, the user can use the dstat tool, which allows to

monitor the server resources in real-time. It is supported by most major Linux distributions such as

RedHat, CentOS and Debian.

SRT Calculator

The SRT Calculator tool was deployed in master nodes of the cloud service provider and was used to

execute the tests in the specified slave nodes. The SRT Calculator computes a set the

Recommended SRT as defined in section 3.3.1 and generates a parameterized report to be

analyzed and discussed between the cloud service provider and its customers.

The report presents the Recommended SRT for each request type and overload variation in slave

nodes, through the COS and DOS tools. Beyond, for each request type, statistical parameters are

generated from the set of the requests response times (usually values in nanoseconds), such as

arithmetic average, sample variance, standard deviation, mode and coefficient of variation.

Therefore, these parameters can be evaluated to validate the results. For the better understanding,

the summary of SRT Calculator algorithm is shown below:

- Config_VM; //Configuration File of Physique/Virtual Machine (Slave Nodes).
- REQUEST-TYPE[i]; //Requests Type, i equals 1, 2 or 3.
1. BEGIN
2. SLAVE-NODE[i..n] = Config_VM;
3. FOR EACH SLAVE-NODE DO
4. FOR EACH REQUEST-TYPE DO
5. ExecuteRequest(SLAVE-NODE[i], REQUEST-TYPE [i]);

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 68

6. ENDFOR
7. REPORT(REQUEST-TYPE);
8. ENDFOR
9. REPORT(ALL-REQUEST);
10.
11. VOID REPORT(REQUEST)
12. BEGIN
13. Avegare(); //(ns) -- (ms) -- (s) -- (min)
14. Sample Variance(); //(ns) -- (ms) -- (s) -- (min)
15. Standard Deviation(); //(ns) -- (ms) -- (s) -- (min)
16. Mode; //(ns) -- (ms) -- (s) -- (min)
17. Coefficient of Variation(); //(ns) -- (ms) -- (s) -- (min)
18. Recommended SRT (); //(ns) -- (ms) -- (s) -- (min)
19. END
20. END

To use the SRT Calculator it is necessary to classify the customer applications in one of three

requests types. In addition, a set of physical/virtual machines of the cloud must be selected to store

customer applications. This way it is necessary to configure the following files: (1) network

configuration file and database connection of slave nodes; (2) configuration file for requests with

select-range and/or aggregating functions requests; (3) configuration file for requests with one or

more joins; and finally, (4) configuration file for requests with set of operations, grouping and/or

nesting.

Figure 3-3 shows the main GUI of SRT Calculator at the instant an experiment terminates. Next

Section presents a case study of the proposed model using Amazon EC2 cloud infrastructure and

TCP-DS, which was used to generate an OLAP database and some requests.

Figure 3-3. SRT Calculator – GUI Interface.

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 69

3.4 Case study – validation and results

This Section presents a case study of the proposed model to obtain the Recommended SRT utilizing

small instances of Amazon EC2 cloud infrastructure. First, we present the environment and the

experiments methodology. Then, we show the requests used and finally, we present the results

obtained as well as its analysis.

3.4.1 Experimental environment

The tools (COS, DOS and SRT Calculator) were implemented in Java language using concurrent

programming with threads and a Java API based on OpenMP - Open Multi-Processing (Bull &

Kambites, 2000). They were deployed in the Amazon EC2 cloud infrastructure in small instances

(homogeneous environment). Due to the limitations of Amazon, it was used 20 VMs (Virtual

Machines), each one with an Intel Xeon Processor with turbo up to 3.3GHz, 1.7 GB of main memory

and 160 GB of disk storage.

It was created an AMI (Amazon Machine Image) of VM with the database. This image allows startup

a new VM quickly. The Amazon EBS (Elastic Block Store) was used to store the AMI. Therefore, VM

startup and instantiation times were not considered. However, the time of network authentication

and database connection were considered in experiments.

Each VM runs the Ubuntu 12.04 operating system and PostgreSQL 9.3 DBMS. This work focuses on

OLAP applications with very large and complex database. Thus, the TPC-DS was used to generate a

database of approximately 13 GB, fully replicated in each VM. Furthermore, 150 requests of several

complexities were selected. Therefore, we consider the database and the generated requests as

representative of customer applications.

3.4.2 Methodology

Figure 3-4 presents the methodology of the experiments. As shown, SRT Calculator tool was

deployed in a master node chosen arbitrarily and it communicates with other VMs (slave nodes).

Furthermore, the 150 requests were classified according to level of complexity between three types.

Thus, the SRT Calculator executes all requests of each type in all VMs, varying the overload on the

slave nodes through using the COS and DOS tool (they were deployed in slave nodes). The PP

(Processor Performance) represents the CPU overload levels. The DP (Disk Performance) verifies the

overload of reading and/or writing on disk.

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 70

Figure 3-4. Methodology of experiments to obtain the Recommended SRT.

To view the rate of CPU and disk usage, the sysstat and dstat tools were used. Figure 3-5 shows a

screenshot of the sysstat tool when three CPU cores are overloaded. Figure 3-6 shows a screenshot

of dstat tool when approximately 20 Megabytes of data for reading and some Kilobytes of data for

writing on disk are being used.

Figure 3-5. Processor Status through sysstat tool.

Master Node

VM i = [1..16]
REQUEST j = [1..50]

PP (%) [0,50,100]
DP (%) [MBytes]

Avegare()
Sample Variance()
Mode()
Coefficient of Variation()
Recommended SRT()

SRT Calculator

Config_PMs

Request Type

Type 2 Type 3Type 1

...

Slave Nodes

COS
DOS

COS
DOS

COS
DOS

COS
DOS

COS
DOS

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 71

Figure 3-6. Disk Read/Write Status through dstat tool.

3.4.3 Used requests

This Section presents some of the requests used in the case study. The TPC-DS offers many

database requests for experiments. For this case study, many requests from the TPC-DS were

selected. The classification of each request was based on results of explain analyze command of the

PostgreSQL DBMS.

Type 1 requests are select-range and/or select-aggregation requests. They have approximately

140,000 tuples of selectivity using the catalog_sales table of TPC-DS. In the following, some

examples of type 1 requests used in the experiments are presented:

select * from catalog_sales where cs_item_sk between 1 and 1000;
select * from catalog_sales where cs_item_sk between 1001 and 2000;
select * from catalog_sales where cs_item_sk between 2001 and 3000;
select * from catalog_sales where cs_item_sk between 3001 and 4000;
select * from catalog_sales where cs_item_sk between 4001 and 5000;

Type 2 requests are select-joins requests and optional select-aggregation functions. The selectivity of

these requests varied between 1000 and 60,000 tuples using at least 20 different tables of TPC-DS.

In the following, some examples of type 2 requests used in the experiments are presented:

select count(*)
from store_sales,household_demographics,time_dim, store
where ss_sold_time_sk = time_dim.t_time_sk
 and ss_hdemo_sk = household_demographics.hd_demo_sk
 and ss_store_sk = s_store_sk
 and time_dim.t_hour = 8
 and time_dim.t_minute >= 30
 and household_demographics.hd_dep_count = 5

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 72

 and store.s_store_name = 'ese'
order by count(*);

select i_item_id, avg(ss_quantity) agg1, avg(ss_list_price) agg2, avg(ss_coupon_amt) agg3,
 avg(ss_sales_price) agg4
 from store_sales, customer_demographics, date_dim, item, promotion
 where ss_sold_date_sk = d_date_sk and
 ss_item_sk = i_item_sk and
 ss_cdemo_sk = cd_demo_sk and
 ss_promo_sk = p_promo_sk and
 cd_gender = 'M' and
 cd_marital_status = 'M' and
 cd_education_status = '4 yr Degree' and
 (p_channel_email = 'N' or p_channel_event = 'N') and
 d_year = 2001
 group by i_item_id
 order by i_item_id;

select sum(cs_ext_discount_amt) as "excess discount amount"
from
 catalog_sales,item,date_dim
where i_manufact_id = 577
and i_item_sk = cs_item_sk
and d_date between '1998-03-18' and
 (cast('1998-03-18' as date) + 90)
and d_date_sk = cs_sold_date_sk
and cs_ext_discount_amt
 > (
 select 1.3 * avg(cs_ext_discount_amt)
 from catalog_sales,date_dim
 where cs_item_sk = i_item_sk
 and d_date between '1998-03-18' and
 (cast('1998-03-18' as date) + 90)
 and d_date_sk = cs_sold_date_sk
) ;

Type 3 requests are select-sets-grouping-nesting requests and, optional select-aggregation and

select-joins. They present very complex query plans and its selectivity is between 100,000 and

200,000 tuples. It uses at least 20 different tables of TPC-DS. In the following, some examples of

type 3 requests used in the experiments are presented:

WITH all_sales AS (
 SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id
 ,SUM(sales_cnt) AS sales_cnt
 ,SUM(sales_amt) AS sales_amt
 FROM (SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id
 ,cs_quantity - COALESCE(cr_return_quantity,0) AS sales_cnt
 ,cs_ext_sales_price - COALESCE(cr_return_amount,0.0) AS sales_amt
 FROM catalog_sales JOIN item ON i_item_sk=cs_item_sk

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 73

 JOIN date_dim ON d_date_sk=cs_sold_date_sk
 LEFT JOIN catalog_returns ON (cs_order_number=cr_order_number
 AND cs_item_sk=cr_item_sk)
 WHERE i_category='Shoes'
 UNION
 SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id
 ,ss_quantity - COALESCE(sr_return_quantity,0) AS sales_cnt
 ,ss_ext_sales_price - COALESCE(sr_return_amt,0.0) AS sales_amt
 FROM store_sales JOIN item ON i_item_sk=ss_item_sk
 JOIN date_dim ON d_date_sk=ss_sold_date_sk
 LEFT JOIN store_returns ON (ss_ticket_number=sr_ticket_number
 AND ss_item_sk=sr_item_sk)
 WHERE i_category='Shoes'
 UNION
 SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id
 ,ws_quantity - COALESCE(wr_return_quantity,0) AS sales_cnt
 ,ws_ext_sales_price - COALESCE(wr_return_amt,0.0) AS sales_amt
 FROM web_sales JOIN item ON i_item_sk=ws_item_sk
 JOIN date_dim ON d_date_sk=ws_sold_date_sk
 LEFT JOIN web_returns ON (ws_order_number=wr_order_number
 AND ws_item_sk=wr_item_sk)
 WHERE i_category='Shoes') sales_detail
 GROUP BY d_year, i_brand_id, i_class_id, i_category_id, i_manufact_id)
 SELECT prev_yr.d_year AS prev_year,curr_yr.d_year AS year,curr_yr.i_brand_id
 ,curr_yr.i_class_id,curr_yr.i_category_id,curr_yr.i_manufact_id
 ,prev_yr.sales_cnt AS prev_yr_cnt,curr_yr.sales_cnt AS curr_yr_cnt
 ,curr_yr.sales_cnt-prev_yr.sales_cnt AS sales_cnt_diff
 ,curr_yr.sales_amt-prev_yr.sales_amt AS sales_amt_diff
 FROM all_sales curr_yr, all_sales prev_yr
 WHERE curr_yr.i_brand_id=prev_yr.i_brand_id AND curr_yr.i_class_id=prev_yr.i_class_id
 AND curr_yr.i_category_id=prev_yr.i_category_id AND curr_yr.i_manufact_id=prev_yr.i_manufact_id
 AND curr_yr.d_year=2000 AND prev_yr.d_year=2000-1
 AND CAST(curr_yr.sales_cnt AS DECIMAL(17,2))/CAST(prev_yr.sales_cnt AS DECIMAL(17,2))<0.9
 ORDER BY sales_cnt_diff;

with wss as
 (select d_week_seq,
 ss_store_sk,
 sum(case when (d_day_name='Sunday') then ss_sales_price else null end) sun_sales,
 sum(case when (d_day_name='Monday') then ss_sales_price else null end) mon_sales,
 sum(case when (d_day_name='Tuesday') then ss_sales_price else null end) tue_sales,
 sum(case when (d_day_name='Wednesday') then ss_sales_price else null end) wed_sales,
 sum(case when (d_day_name='Thursday') then ss_sales_price else null end) thu_sales,
 sum(case when (d_day_name='Friday') then ss_sales_price else null end) fri_sales,
 sum(case when (d_day_name='Saturday') then ss_sales_price else null end) sat_sales
 from store_sales,date_dim
 where d_date_sk = ss_sold_date_sk
 group by d_week_seq,ss_store_sk
)
 select s_store_name1,s_store_id1,d_week_seq1
 ,sun_sales1/sun_sales2,mon_sales1/mon_sales2
 ,tue_sales1/tue_sales2,wed_sales1/wed_sales2,thu_sales1/thu_sales2
 ,fri_sales1/fri_sales2,sat_sales1/sat_sales2

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 74

 from
 (select s_store_name s_store_name1,wss.d_week_seq d_week_seq1
 ,s_store_id s_store_id1,sun_sales sun_sales1
 ,mon_sales mon_sales1,tue_sales tue_sales1
 ,wed_sales wed_sales1,thu_sales thu_sales1
 ,fri_sales fri_sales1,sat_sales sat_sales1
 from wss,store,date_dim d
 where d.d_week_seq = wss.d_week_seq and
 ss_store_sk = s_store_sk and
 d_month_seq between 1200 and 1200 + 11) y,
 (select s_store_name s_store_name2,wss.d_week_seq d_week_seq2
 ,s_store_id s_store_id2,sun_sales sun_sales2
 ,mon_sales mon_sales2,tue_sales tue_sales2
 ,wed_sales wed_sales2,thu_sales thu_sales2
 ,fri_sales fri_sales2,sat_sales sat_sales2
 from wss,store,date_dim d
 where d.d_week_seq = wss.d_week_seq and
 ss_store_sk = s_store_sk and
 d_month_seq between 1200+ 12 and 1200 + 23) x
 where s_store_id1=s_store_id2
 and d_week_seq1=d_week_seq2-52
 order by s_store_name1,s_store_id1,d_week_seq1;

3.4.4 Results

Following methodology presented in section 3.4.2, firsty, 50 requests of the same type are executed

sequentially on all VMs. After, the experiments were repeated 5 times, erasing the DBMS cache for

each repetition. Following, the same experiments were executed considering the overloaded CPU

and finally considering the overloaded disk. Finally, the experiments were executed similarly for each

request type.

Therefore, the results were grouped by type of request and overload variation in slave nodes. So, to

type 1 Requests, the result of experiments on all VMs are presented in Figure 3-7. It shows the SRT

averages to 50 requests executed on all VMs (all slave nodes) as well as when they are not

overloaded (current) and when they are with CPU and Disk Overloaded. As discussed in the section

3.3, this work used the 𝑺𝑹𝑻𝑹55	parameter, which is called only SRT.

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 75

Figure 3-7. SRT averages on all VMs for type 1 requests.

Therefore, based on definition of Recommended SRT and considering that the processor and disk

not overloaded (Current Status in Figure 3-7) we have the following result:

::TYPE 1 REQUESTS::
 Average: 34,46(s)
 Sample Variance: 71,02897959
 Standard Deviation: 8,42786922
 Mode: 35
 Coefficient of Variation: 24,45696233
 Recommended SRT: 42(s)

Overload with COS tool (CPU Overload in Figure 3-7), the result is as follows:

::TYPE 1 REQUESTS::
 Average: 741,3(s)
 Sample Variance: 32053,03061
 Standard Deviation: 179,0336019
 Mode: 620
 Coefficient of Variation: 24,15130202
 Recommended SRT: 865(s)

Overload with DOS tool (Disk R/W Overload in Figure 3-7), the following values were found:

::TYPE 1 REQUESTS::
 Average: 1402,16(s)
 Sample Variance: 134948,0555
 Standard Deviation: 367,3527671
 Mode: 1450
 Coefficient of Variation: 26,19906196

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 76

 Recommended SRT: 1718(s)

To type 2 requests, the result of experiments in all VMs are presented in Figure 3-8. It shows the

SRT averages to 50 requests executed on all VMs (all slave nodes) when they are not overloaded

(current) and when they are with CPU and Disk Overloaded.

Figure 3-8. SRT averages on all VMs for type 2 requests.

Therefore, based on definition of Recommended SRT and considering the processor and disk not

overloaded (Current Status in Figure 3-8) we have the following result:

::TYPE 2 REQUESTS::
 Average: 187,6(s)
 Sample Variance: 5059,755102
 Standard Deviation: 71,13195556
 Mode: 288
 Coefficient of Variation: 37,91682066
 Recommended SRT: 242(s)

Overload with COS tool (CPU Overload in Figure 3-8), the result is as follows:

::TYPE 2 REQUESTS::
 Average: 567,86(s)
 Sample Variance: 76106,16367
 Standard Deviation: 275,8734559
 Mode: 127
 Coefficient of Variation: 48,58124466
 Recommended SRT: 783(s)

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 77

Overload with DOS tool (Disk R/W Overload in Figure 3-8), the following values were found:

::TYPE 2 REQUESTS::
 Average: 2514,8(s)
 Sample Variance: 977864,7347
 Standard Deviation: 988,8704337
 Mode: 2618
 Coefficient of Variation: 39,32203093
 Recommended SRT: 3455(s)

To type 3 requests, the result of experiments on all VMs are presented in Figure 3.9. It shows the

SRT averages to 50 requests executed on all VMs (all slave nodes) when they are not overloaded

(current) and when they are with CPU and Disk Overloaded.

Figure 3-9. SRT averages on all VMs for type 3 requests.

Therefore, based on definition of Recommended SRT and considering that the processor and disk

not overloaded (Current Status in Figure 3-9) we have the following result:

::TYPE 3 REQUESTS::
 Average: 981,52(s)
 Sample Variance: 106462,9486
 Standard Deviation: 326,286605
 Mode: 1001
 Coefficient of Variation: 33,24299097
 Recommended SRT: 1283(s)

Overload with COS tool (CPU Overload in Figure 3-9), the result is as follows:

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 78

::TYPE 3 REQUESTS::
 Average: 3044,6(s)
 Sample Variance: 2667600,653
 Standard Deviation: 1633,279111
 Mode: 2960
 Coefficient of Variation: 53,64511301
 Recommended SRT: 4431(s)

Overload with DOS tool (Disk R/W Overload in Figure 3-9), the following values were found:

::TYPE 3 REQUESTS::
 Average: 8284,32(s)
 Sample Variance: 16121155,85
 Standard Deviation: 4015,11592
 Mode: 8200
 Coefficient of Variation: 48,46645133
 Recommended SRT: 11391(s)

3.4.5 Analysis of results

Table 3-1 and Figure 3-10 summarizes the results of Recommended SRT. According to results, the

SRT was higher when CPU or disk were overloaded, mainly the disk, which caused also overload in

CPU.

Table 3-1. Recommended SRT Result.

Request Type
Recommended SRT

Current CPU Overload
Disk R/W
Overload

1 42(s) 865(s) 1718(s)

2 242(s) 783(s) 3455(s)

3 1283(s) 4431(s) 11391(s)

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 79

Figure 3-10. Recommended SRT Result.

It is worth noting that the number of rows and columns returned from a request (query selectivity)

increases significantly the total time of its execution. For example, type 3 requests have very high

selectivity and therefore, they have higher Recommended SRT. Other example, even with overloaded

CPU, type 2 requests have Recommended SRT smaller than type 3 requests with current CPU

utilization.

In general, type 1 and type 2 requests have smaller Recommended SRTs than type 3 requests.

However, type 1 requests when overloaded CPU, its Recommended SRT is bigger than type 2

requests because the selectivity of type 1 requests is greater than type 2 requests.

The results obtained provide the basis for negotiation between the cloud service provider and its

customers in order to establish an expected Service Response Time of their services. Furthermore,

these values can be used by monitoring tools, when a limit value is achieved, the environment can

react recovering or minimizing the consequences of SLA violation. For example, allocating,

reallocating and/or releasing resources at run-time.

Therefore, an appropriately defined SRT brings benefits to both sides: the customers will have

accurate information about the performance of their applications running in cloud and the provider

will reduce penalties, since it knows the expected behavior of customer applications.

http://code-industry.net/

Chapter 3 – Service response time measurement model of service level agreements

 80

3.5 Conclusion

This chapter presented a measurement model that allows the cloud service provider and its

customers to establish an appropriate SLA relative to SRT performance of its applications available

in the cloud.

The proposed model is a non-intrusive solution and can be applied when companies wish to migrate

their applications, OLAP or not, to cloud service providers, with the goal to allocate computational

resources on demand, to ensure the quality of service in terms of Service Response Time. Finally,

our proposed model focuses on OLAP applications with very large and complex databases. The

model was evaluated using structured data of TPC-DS like Benchmark, considering that many cloud

computing platforms support SQL requests directly or indirectly, this makes the proposed solution

relevant for these kind of problems.

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud
environment

http://code-industry.net/

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 83

4.1 Introduction

This chapter presents a new solution to efficient query processing on large databases available in

the cloud environment. We present partitioning and monitoring strategies for adaptive processing of

different types of queries (database access requests), a dynamic provisioning strategy and their

algorithms. Furthermore, we present the SiclopDB framework, an implementation of the proposed

solution and its architecture. Therefore, to better understanding, this chapter is organized as follows:

4.2 Estimated cost model: presents the SLA violation cost and the total computational cost

of a request used in this work.

4.3 Architecture: presents the SiclopDB framework architecture and its components.

4.4 SiclopDB framework - components: presents a new partitioning and monitoring

strategies for adaptive processing of different types of requests in the cloud. Moreover, it

shows the new dynamic provisioning strategy and their algorithms.

4.5 Conclusion: presents the final considerations of this chapter.

4.2 Estimated cost model

To measure whether the SRT parameter is being violated or not, it is necessary to define the SLA

violation cost per unit of time as well as the computational cost used for the provider to execute a

user’s request.

As defined in Chapter 3, in this work uses the 𝑺𝑹𝑻𝑹55	parameter, called only 𝑺𝑹𝑻𝑹. Therefore, let

𝑻𝒔 be the start time of a request that arrives on cloud service provider. Thus, one of two situations

may occur: (1) the request is ready to execute or (2) the request is waiting for a service to start its

execution. When the request is ready to execute, 𝑻𝒔 will be 𝟎. Therefore, in this work the start time

of a request corresponds to the time that it starts its execution effectively.

After its complete execution, the finish time 𝑻𝒇	is obtained. Considering that the request can be

partitioned, the complete execution is given when the last fragment arrives at the master node and

the complete response is sent to the user.

Let 𝑺𝑹𝑻𝑹𝒊 be the total execution time of a request 𝑹𝒊, i.e. 𝑺𝑹𝑻𝑹𝒊 = 	𝑻𝒇 − 𝑻𝒔. Let 𝑹𝑺𝑹𝑻𝒊	the

Recommended SRT for requests of type 𝒊, i.e. the maximum time promised in which the service

provider must execute a type 𝒊 request. If 𝑺𝑹𝑻𝑹𝒊	is bigger than		𝑹𝑺𝑹𝑻𝒊, the SLA has been violated.

Therefore:

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 84

𝑺𝑹𝑻𝑹𝒊 > 𝑹𝑺𝑹𝑻𝒊 → 𝑽𝒊 (4.1)

Let 𝑻𝑽𝒊 be the number of times that the request of type 𝒊 violated the Recommended SRT and

𝑻𝑺𝑹𝑻𝒊	the quantity of type 𝒊 requests executed by a service. Therefore, as shown below, violations

of recommended SRT is given by the percentage of times that response time was bigger than the

maximum time promised. As will be shown in Section 4.4, this parameter is used to define the

optimistic or pessimistic approach of complex requests execution.

𝑷𝑽𝑹𝒊 =
𝑻𝑽𝒊
𝑻𝑺𝑹𝑻𝒊

×𝟏𝟎𝟎 (4.2)

Let 𝑪 be the SLA violation cost per unit of time. If 𝑽𝒊 > 𝟎, the penalties of the provider are

computed by cost per unit of time, multiplied by the time elapsed minus the maximum time

promised.

𝑽𝑹𝑺𝑹𝑻𝒊 = 𝒎𝒂𝒙{ 𝑺𝑹𝑻𝑹𝒊 − 𝑹𝑺𝑹𝑻𝒊 ×𝑪, 𝟎} (4.3)

in which 𝑽𝑹𝑺𝑹𝑻𝑹𝒊	 represents the penalties of provider. The 𝐦𝐚𝐱 function returns the maximum

value between a set of values.

It is worth noting that SLA violation cost per unit of time 𝑪 and the estimated costs must be

presented at the construction step of a SLA. In addition, the result of SLA violations need to be

discussed between the service provider and its customers.

The total computational cost for the provider to execute a user request is important to identify the

lowest computational cost required by provider to execute a request in SRT time. Let 𝑪𝑴𝑷𝑹𝒊 be the

cost of main memory given by quantity in bytes of memory used per unit of time. Let 𝑪𝑪𝑷𝑼𝑹𝒊 be the

cost of CPU given by percentage of CPU core used per unit of time. Finally, let 𝑪𝑫𝑩𝑹𝒊 be the cost of

database given by quantity in bytes of data disk pages retrieved per unit of time.

Considering that, each machine of slave node in cloud infrastructure has different costs. Therefore,

the total cost of a machine 𝑴	to execute a request 𝑹𝒊 or to execute subpart of request 𝑹𝒊	is given

by:

𝑪𝑴𝑹𝒊 = 𝑪𝑴𝑴𝑷𝑹𝒊
+ 𝑪𝑴𝑪𝑷𝑼𝑹𝒊

+ 𝑪𝑴𝑫𝑩𝑹𝒊

(4.4)

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 85

A request 𝑹𝒊 can use 𝒌	slave nodes to complete its execution. Thus, the total computational cost

(𝑻𝑪𝑪𝑹𝒊) is given by sum of costs of all slave nodes effectively used to execute 𝑹𝒊:

𝑻𝑪𝑪𝑹𝒊 = 𝑪𝑴𝑹𝒊
𝟏 + 𝑪𝑴𝑹𝒊

𝟐 + 𝑪𝑴𝑹𝒊
𝟑 + ⋯+ 𝑪𝑴𝑹𝒊

𝒌
(4.5)

Therefore, the total computational cost to execute effectively a request 𝑹𝒊	is given by:

𝑻𝑪𝑪𝑹𝒊 = 	 𝑪𝑴𝑹𝒊
𝒌

𝒌

(4.6)

This work considers an environment with several machines having different performances.

Consequently, each machines may have different costs and as the purpose of this work is to use the

adaptive algorithm, the costs can change in query run-time depending on the necessity of

provisioning or releasing of resources. As operations in this work are read-only, there are no costs

associated in data updates and the data traffic between nodes in the cloud infrastructure.

It is worth noting that having many machines allocated minimizes the penalties of the provider, but

can increase the computational cost. However, having a smaller amount of machines allocated

reduces the computational costs, but can increase the penalty costs.

Therefore, a big challenge is to use the optimal number of machines to execute all requests in SRT

time using lowest computational cost. The minimum cost for each request is the lowest

computational cost to ensure the SRT. Considering a request with Recommended SRT of 100

seconds and after some previous analyses, it was obtained the minimum cost of 10. Then, the

machines will execute the request in exactly 100 seconds, using suitable computing resources. The

example is shown in Figure 4-1, which presents this approximation of the minimum cost and

Recommended SRT corresponds to the ideal computational cost.

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 86

Figure 4-1. Ideal Computational Cost: Computation Cost (x10) vs Time (seconds).

4.3 Architecture

Based on the cloud computing infrastructure described in Figure 2-10 (query processing in the

cloud), to obtain the elasticity in query processing, it is necessary an adaptive optimization

algorithm. It must be implemented in the master nodes to manage the most appropriate allocation,

reallocation or release of slave nodes resources in runtime of requests, according to the

Recommended SRT and costs model already shown. This will maximize the SLA success probability.

Figure 4-2 presents the SiclopDB framework architecture as a new solution to efficient query

processing on large databases available in the cloud environment. It integrates adaptive/dynamic re-

optimization techniques by performing distributed queries in several steps, where each step

concurrently executes a dynamic execution strategy at runtime of the queries, which will be

presented in the next section.

Each component of the framework uses adaptive strategies during request runtime. Their costs are

based on the 𝑷𝑽𝑹𝒊, 𝑽𝑹𝑺𝑹𝑻𝒊 and 𝑻𝑪𝑪𝑹𝒊 parameters defined in previous section and the SRT time

is the 𝑹𝑺𝑹𝑻𝑹𝒊 presented in Chapter 3. The following presents the main components of the

SiclopDB framework.

Dynamic Query Optimizer (DQO): It is used to construct an optimized query plan with objective of

minimizing costs and maximizing the probability of success. The main difference for traditional

optimizers is the construction of the query plan considering the SRT time restriction. For this

purpose, that RSRT times agreed must be sufficient to execute the user's requests, observing the

technological limits of the service provider.

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 87

Dynamic Query Scheduler (DQS): It is used to schedule the execution of distributed query plans.

This component optimizes dynamically the queries at runtime, which is based on Service Response

Time and the variation of resources utilized to process the query (for instance, average CPU

utilization, available memory and estimated rates to processing of each slave node). Indeed, the

queries submitted to DQS will be executed in the "best slave nodes". In this work, the definition of a

"best nodes group" corresponds the group of slave nodes that possibly meets the Recommended

SRT for a given request.

Dynamic Query Monitoring (DQM): Given an optimized and scheduled query plan, the aim of this

component is to monitor the query execution. The monitoring verifies, periodically, the probability of

a query to be executed in SRT time restriction. Therefore, the DQM reevaluates periodically all

subqueries execution plans at runtime to check the possibility of SRT violation, whether the

possibility is low, the query continues its execution, otherwise, the query will be re-optimized. The

probability is estimated according to DBMS costs of slave nodes, slave nodes configurations, the

query plan and a statistical table of metadata with Recommended SRT. The metadata serves as a

cache, it stores information of previously executed queries on the provider (for instance,

𝑺𝑹𝑻𝑹𝒊,	𝑻𝑪𝑪𝑹𝒊	and 𝑽𝒊). The metadata aids to reduce the computing overhead to calculate an

estimated time to execute a query. Furthermore, the metadata will be automatically populated by the

framework according to its use.

In the case that the request can not be executed before SRT time, the framework must calculate the

execution time nearer to SRT time and the cloud provider must inform the penalties to be paid to

customers. In this case, the traditional adaptive optimization algorithm will be executed because at

this moment the fastest response time becomes more important than the SRT time. The next

section presents in detail the partitioning and monitoring adaptive strategies, dynamic provisioning

and the algorithms implemented in each of these components.

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 88

Figure 4-2. SiclopDB Framework Architecture.

4.4 SiclopDB framework – components

4.4.1 MetaData and performance

It is worth noting that before the effective execution of a request, it is replicated to the metadata

server. The metadata main objective is to extract process and store information about the request

that will be useful to its execution. Furthermore, the metadata monitors the real-time performance of

each slave node with the aim to estimate query execution time. The following presents the main

information of metadata:

(i) Request Costs: To estimate the cost of a request, this work uses the EXPLAIN

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 89

command that shows the query plan chosen by the DBMS optimizer. The query plan or

query execution plan is the sequence of operations DBMS performs to run a request.

The values obtained does not represent the correct estimated cost if the query is too

complex, but it serves as a basis for estimating the request performance (PostgreSQL

9.3.9 Documentation, 2015; Riggs, Ciolli, Krosing, & Bartolini, 2015). This command

returns the variables: cost, rows and width. The cost estimates are measured in units

of disk I/O. An operator that reads a single block of 8.192 bytes (8K) from the disk has

a cost of one unit. CPU time is also measured in disk I/O units, but usually as a

fraction. For example, the amount of CPU time required to process a single tuple is

assumed to be 1/100th (0,01) of a single disk I/O. Finally, the rows variable

corresponds the number of tuples to be returned of a request and the width variable

corresponds the quantity of bytes of each returned tuple. Therefore, the total cost is the

sum of the quantity of disk pages to access the data plus the quantity of returned rows

times 0,01, i.e. 𝒄𝒐𝒔𝒕 = 𝒅𝒊𝒔𝒌_𝒑𝒂𝒈𝒆𝒔	 + 𝒓𝒐𝒘𝒔	×	𝟎, 𝟎𝟏.

(ii) Request Types (Range, Aggregation, Joins, Union, Grouping and Nesting Operators): As

defined in Chapter 3, the requests executed in SiclopDB are classified between three

types, according to complexity level: (1) type 1 requests represent the select-range

and/or select-aggregation requests; (2) type 2 requests represent the database access

requests that uses one or more of the following operators: equi join, cross join, inner

join, left outer join, right outer join or full outer join; and finally, (3) type 3 requests that

uses aggregation, joins, union, grouping and/or nesting operators. The result of

classification is used to trace a request-profile that will be used by other requests in

search of similar characteristics. Therefore, the explain command of DBMS can be

used to obtain this information.

(iii) Probability of SRT Violation: Based on the requests of the similar characteristics that

executed on the provider, it is calculated the probability of Recommended SRT

violation. Let 𝑷𝑽𝑹𝒊	be the percentage of times that the response time of similar

requests was bigger than Recommended SRT. If 𝑷𝑽𝑹𝒊		exceeds 50%, the query plan

will take on a pessimistic approach, which consists to use more computational cost to

decrease the probability of SRT violation. If 𝑷𝑽𝑹𝒊		does not exceeds 50%, the query

plan of 𝑹𝒊	will take an optimistic approach, which consists to use enough

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 90

computational cost to execute	𝑹𝒊. Section 4.4.3 explains the use of these approaches.

(iv) Performance Monitoring: To get the current performance of a slave node the iostat

(Layton, 2015; System Analysis and Tuning Guide, 2015) and mpstat tools (Russell &

Cohn, 2012; System Analysis and Tuning Guide, 2015) were used. The iostat tool was

used to check the disk saturation (Input/Output requests) and mpstat tool writes to

standard output activities for each available processor core. These tools have many

variables for monitoring the system performance (CPU utilization and device utilization

report). However, this work used the variables util, iowait and idle. They are very

important to identify problems of CPU and device saturation. util variable shows

percentage of CPU time during which I/O requests were issued to the device

(bandwidth utilization for the device). Device saturation occurs when this value is close

to 100%. iowait variable shows the percentage of time that the CPU or CPUs were idle

during which the system had an outstanding disk I/O request. idle variable shows the

percentage of time that the CPU or CPUs were idle and the system did not have an

outstanding disk I/O request. In metadata these values for each slave node are

updated and stored at regular intervals. In SiclopDB, a slave node can be available or

unavailable to execute a request. Therefore, the metadata analyzes the use of primary

device bandwidth of each slave node through the util variable. Whether this percentage

is above 80%, the slave node is unavailable for executing requests, because there is a

high risk of not meet the expectations of query response. Following, the idle and iowait

variables verify the average idle time and iowait for each CPU core. In the case,

whether all CPU cores are below 10% (idle) and above 80% (iowait), the slave node is

unavailable. Otherwise, the slave node is available to execute requests. The iowait

depends on the number of CPU cores. A high iowait is an indicator of storage

bottlenecks but not an indicator of storage saturation. This way, it was also used the

idle variable. Finally, the information of availability or unavailability of a slave node is

important to reduce the search overhead by slave nodes to execute a request, since

that search overhead can be costly in infrastructures with many slave nodes.

4.4.2 Dynamic query optimizer (DQO)

This component is responsible to manage requests execution plan, based on the Recommended

SRT and its type. In summary, Figure 4-3 shows the flowchart of possible execution plans to perform

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 91

a request.

For type 1 requests, in the initial provisioning, the request is partitioned and its subqueries are

distributed according to the current performance of each slave node in order to have an execution

plan that ensures the Recommended SRT. For this, it will use the metadata variables presented in

previous section and partitioning strategies presented in Section 4.4.3.

During the execution of each partition, the monitoring checks the elapsed time and take one of two

ways: (1) Estimating non SRT violation: the execution of other subqueries continues because the

Recommended SRT is equal or greater than the elapsed time plus the remaining time (sum of

estimated times of subqueries obtained from the initial provisioning. (2) Estimate SRT violation: the

elapsed time plus the remaining time is greater than the Recommended SRT. Then, SiclopDB

merges the remaining subqueries and executes a new provisioning. The Recommended SRT

becomes the Recommended SRT minus elapsed time.

For type 2 requests, it is initially executed the partitioning of the request according to its simple

nested loops (equi joins partitioning in SiclopDB) and if exists, its predicates. Then, each subquery is

executed according to the type 1 requests. After processing all sub-queries, the result is unified in

accordance with its joins.

Type 3 requests can be executed using a pessimistic or optimistic approach. The pessimistic

approach is used when the 𝑷𝑽𝑹𝒊	of similar requests is greater than 50% and the optimistic

approach when the 𝑷𝑽𝑹𝒊		is less than or equal to 50%.

Type 3 requests do not use monitoring nor adaptive partitioning during query execution. In the

optimistic approach a greedy strategy is used, which choses only a slave node with sufficient

capacity to execute the request in SRT time. In the pessimistic approach, the request is replicated to

a set of slave nodes that can execute the request in SRT Time. The first slave node to execute the

request signals the other nodes to abort their execution.

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 92

Figure 4-3. Flowchart of query processing in SiclopDB framework.

4.4.3 Dynamic query scheduler (DQS)

The DQS component is used to schedule the execution of distributed query plans. Thus, it distributes

the partitions of a request to each slave node available based on its performance. This becomes a

complex task in dynamic cloud environments where the performance of each machine can be

different in time. This way, with the performance of slave nodes and database costs it is possible to

estimate the expected performance of a slave node executing a partition. Consequently, it is possible

to determine the appropriate number of partitions to split the request.

Let 𝑻𝟐𝑹𝑺𝑵		the Tuple Read Rate, the estimated time in seconds for a slave node to process a

quantity of tuples:

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 93

𝑻𝟐𝑹𝑺𝑵 =
𝒓𝒐𝒘𝒔×𝟎, 𝟏
𝒄𝒐𝒔𝒕×𝑺𝒗𝒄𝒕𝒎 (4.7)

where 𝒓𝒐𝒘𝒔		corresponds the number of tuples to be returned of a request, 𝒄𝒐𝒔𝒕		is estimated in

units of disk I/O and 𝑺𝒗𝒄𝒕𝒎		the average service time (in seconds) for I/O requests that were

issued to the device of a slave node. This last parameter can be obtained through the iostat tool.

To better understanding, consider a request R with Recommended SRT received by a cloud provider:

Select * // ß R
From Table T;

Consider that Recommended SRT is 100 seconds and through the explain command we have the

cost = 368 and rows = 12.000. Moreover, consider that SN1 is an available slave node and it has

svctm = 13 milliseconds. Thus, 𝑻𝟐𝑹𝑺𝑵𝟏		of SN1 presents read rate of 250 tuples/second. Thus,

SN1 meets the Recommended SRT because it was estimated that SN1 in 100 seconds could

process 25.000 tuples.

It is worth noting that the equation does not considers CPU overhead as well as the use of DBMS

cache. However, it presents an estimate used only in the initial provisioning. Thus, at query

processing, the 𝑻𝟐𝑹𝑺𝑵		is calculated by dividing the number of rows retrieved (𝑹𝑻) by the time to

retrieve them (𝑻𝑹𝑻).

𝑻𝟐𝑹𝑺𝑵 =
𝑹𝑻
𝑻𝑹𝑻 (4.8)

For complex queries, the strategy is similar to select-range queries. However, the rows variable is

obtained by summing the number of accessed tuples by each query plan operator. Even if more

than one operator uses these tuples and/or if these tuples are not part of the result. As well as

select-range queries, this work considers that all access to a tuple block (on disk or temporary data

pagination) is an I/O cost.

It is worth noting that this estimate does not consider the CPU overhead. However, the overhead of

temporary data pagination is considered, since it does not distinguish the repetition of tuples during

each step of the query execution plan.

Therefore, if we have the current speed of tuples read rate per second of a slave node, it is possible

to partition a request in accordance with the estimated time to execute the request on each node. In

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 94

order to not violate the SRT, the sum of the times for each partition to execute a subquery,

according to the times of each Slave Node (SN), it has to be less than the Recommended SRT.

𝑹𝑺𝑹𝑻𝑹𝒊 ≥ 	𝑻𝟐𝑹𝑺𝑵𝟏 +	𝑻𝟐𝑹𝑺𝑵𝟐 + ⋯+	𝑻𝟐𝑹𝑺𝑵𝒌
(4.9)

In this work, the partitioning strategy depends on the type of request and we consider that all tables

are clustered by primary key. Following, it will be presented the strategies implemented in the DQS

component for each request type.

Type 1 Request: Assume that a cloud provider receives the following select-range request R with

Recommended SRT:

SELECT * // ß R
FROM table T
WHERE T.pk >= 1000 and T.pk < 5000;
such that pk is the primary key of table T.

Considering that primary key values of T are sequential, without gaps between values, then we can

extract rows = 4.000 tuples. Besides, consider that Recommended SRT is 100 seconds and that

initial provisioning is a single slave node (SN1) such that the current moment 𝑻𝟐𝑹𝑺𝑵𝟏		= 20

tuples/sec.

Consequently, the initial provisioning using only SN1 will bring a penalty to be paid by the provider

because it was estimated that SN1 in 100 seconds will process in 2.000 tuples. In this case, it is

necessary to allocate a new slave node (SN2) to help out. Assume that 𝑻𝟐𝑹𝑺𝑵𝟐		= 10 tuples/sec

then only 1.000 tuples can be processed in 100 seconds. Then, a new slave node (SN3) is required

to process the request. Then, consider 𝑻𝟐𝑹𝑺𝑵𝟑		= 10 tuples/sec.

At this point, it is possible that three slave nodes are sufficient to process R and ensure the

Recommended SRT. R is rewritten in three subqueries: R1, R2 and R3, the first one is executed in

SN1, the second one in SN2 and the third one in SN3, respectively. Note that in this case a virtual

partitioning is used (i.e. we partition using the predicate of the primary key) to divide R in R1, R2 and

R3.

SELECT * // ß R1
FROM table T
WHERE T.pk >= 1000 and T.pk < 3000;

SELECT * // ß R2
FROM table T
WHERE T.pk >= 3000 and T.pk < 4000;

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 95

SELECT * // ß R3
FROM table T
WHERE T.pk >= 4000 and T.pk < 5000;

Using only three slave nodes does not guarantee that the quality defined in SRT will be met, because

the cloud environment is unstable and the performance of the nodes can change during the queries

execution. Therefore, it is indispensable to use a proactive approach based on statistical data in

metadata. For this, the DQM component is used. DQM partitions the queries, in such a way that the

performance of the nodes can be monitored at a frequency that allows other nodes to be added

when necessary in order to ensure the Recommended SRT.

An important issue is the monitoring frequency. If too frequent, the original query would have to be

partitioned into many subqueries. Thus, the overload added could prejudice more than help. If

monitoring is infrequent, it may be difficult to make corrections in a timely manner and avoid

possible penalties.

The partitioning process in DQM uses historical data about the request containing information about

how long it was necessary to process similar requests (same type of request), including the number

of partitions used. From this information, it is possible to efficiently monitor the request execution.

The next section presents the strategies of monitoring.

Consider that, for example, for similar requests 2 partitions were used for each partition of the initial

provisioning. Then, R1 is partitioned in two requests:

SELECT * // ß R1,1
FROM table T
WHERE T.pk >= 1000 and T.pk < 2000;

SELECT * // ß R1;2
FROM table T
WHERE T.pk >= 2000 and T.pk < 3000;

When R1,1 is done, we have the first opportunity to monitor the query execution performance in a

non-intrusive way. Consider that 70 seconds were spent to execute R1;1. This means that the

performance 𝑻𝟐𝑹𝑺𝑵𝟏		was below of predicted, which leads to a completion time with the expected

processing of the next subquery of 140 seconds. However, this value is above the Recommended

SRT. Thus, it starts a revision of the initial provisioning that allows for the SRT to be satisfied. Before

reviewing, the remaining partitions will be merged in a single query.

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 96

In this case, a solution is to relocate the remaining subquery to another slave node. Consider a slave

node (SN4) such that 𝑻𝟐𝑹𝑺𝑵𝟒		= 30. Thus, all the 1.000 remaining tuples can be read by SN4 in 30

seconds in the best-case scenario, and that does not lead to a violation of Recommended SRT. To

monitor the request execution, the query is partitioned in two, each of the following way. This

partitioning strategy is presented in section 4.4.4:

SELECT * // ß R1,2,1
FROM table T
WHERE T.pk >= 2000 and T.pk < 2500;

SELECT * // ß R1,2,2
FROM table T
WHERE T.pk >= 2500 and T.pk < 3000;

Consider that the performance is stable and it is able to finish its workload on schedule. Thus, the

same strategy can be applied in the processing of R2 in SN2 and R3 in SN3. This partitioning method

using the primary key as the partitioning attribute is the same for similar select-range requests and

similar requests with aggregation.

Consider a new scenario, now with the increased performance of the slave node. For example,

suppose R2 request was partitioned into, for example, 2 subqueries. Imagine that after the first

subquery ends and the monitoring starts, it is discovered it has executed in a shorter time than

expected, possibly because of some other processes in the slave node that finished, and then SN2

can finish processing R2 before planned. Thus, this time off can be used to process some requests

that SN1 can not run. These queries can be allocated to SN2 in order to satisfy the Recommended

SRT. Although this is a simple example and with some assumptions, the solution given by this work

deals with scenarios of reduced and increased performance of slave nodes.

It is important to note that all monitoring and setting is made in a non-intrusive way, i.e. our solution

does not depend on technology used by the provider. For example, database version, operating

system etc. Therefore, the slave nodes and their respective DBMSs do not require any changes to be

used by framework.

Now consider that a cloud provider receives the following request R with Recommended SRT:

SELECT * // ß R
FROM table T;

Also considering that values of the primary key of T are sequential, without gaps between the values,

then we extract rows = 8.000 tuples. Also, consider that Recommended SRT is 100 seconds and

that the initial provisioning is a single slave node (SN1) such that now 𝑻𝟐𝑹𝑺𝑵𝟏		= 20 tuples/sec.

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 97

Consequently, as in the previous example, it will bring a penalty to be paid by the provider. Thus, a

new slave node (SN2) is allocated to help. Consider that 𝑻𝟐𝑹𝑺𝑵𝟐		= 20 tuples/sec then, as in SN1,

2.000 tuples can be processed in 100 seconds. Then a new slave node (SN3) is required to process

the query. Then, consider 𝑻𝟐𝑹𝑺𝑵𝟑		= 40 tuples/sec.

Thus, it is possible that those three slave nodes are sufficient to process R and ensure the

Recommended SRT. R is rewritten into three subqueries: R1, R2 and R3, the first one is executed in

the first SN1, the second one in SN2 and the third one in SN3, respectively. As in the previous

example, a virtual partition is created. However, the request is rewritten adding a range predicate on

the table’s primary key (Vmin and Vmax primary key) as shown below:

SELECT * // ß R1
FROM table T
WHERE T.pk >= Vmin and T.pk < Vmin + 2000;

SELECT * // ß R2
FROM table T
WHERE T.pk >= Vmin + 2000 and T.pk < Vmin + 4000;

SELECT * // ß R3
FROM table T
WHERE T.pk >= Vmin + 4000 and T.pk < Vmax + 1;
such that Vmin and Vmax is the minimum and the maximum value of the primary key of Table T,
respectively.

After the query is rewritten, we use the partitioning methodology described previously. The

monitoring and provisioning of slave nodes to process the rewritten query is made the same way.

Now consider that a cloud provider receives the following request R1 or R2 with Recommended SRT:

SELECT * // ß R1
FROM table T
WHERE T.pk > <<value>>;
such that pk is the primary key of table T.

or

SELECT * // ß R2
FROM table T
WHERE T.pk < <<value>>;
such that pk is the primary key of table T.

For this example, the request is rewritten adding a range predicate on the table’s primary key

obtaining the queries below:

SELECT * // ß R1
FROM table T
WHERE T.pk > <<value>> and T.pk < Vmax + 1;

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 98

or

SELECT * // ß R2
FROM table T
WHERE T.pk >= Vmin and T.pk < <<value>> + 1;

Therefore, after the query is rewritten, partitioning strategies described previously are used. The

monitoring and provisioning of slave nodes to process the rewritten query is made the same way.

Now consider that a cloud provider receives the following request R with Recommended SRT:

SELECT * // ß R
FROM table T
WHERE T.attr > <<value>> and T.attr < <<value>>;
such that attr is not a primary key of table T.

Different from the previous cases in which an index can be trivially used in execution of each

partition, in this case the query plan of each partition is a linear scan on the table. Creating an index

for each attribute present in the request predicate is not viable. Therefore, the proposed solution is

to rewrite the request the same way to the previous solutions, however, using the primary key for

partitioning, as shown below:

SELECT * // ß R
FROM table T
WHERE T.attr > <<value>> and T.attr < <<value>> and T.pk >= Vmin and T.pk < Vmax+1;

After the request is rewritten, the partitioning methodology in the primary key is used the same way

as well as the monitoring and provisioning to process the rewritten query. It is worth noting that if all

previous cases did not use the primary key, they would be rewritten in a similar way to this strategy.

Now consider that a cloud provider receives the following request R with Recommended SRT:

SELECT * // ß R
FROM table T
WHERE T.attr = <<value>>;
such that attr is not the primary key of table T.

In this case is worth noting that R is not a select-range request. However, it is not as complex as

type 3 requests. Hence, R is an exception and the strategy is different from the previous ones. The

strategy is, in the initial provisioning, to seek the set of slave node with 𝑻𝟐𝑹	enough to process the

request that ensures the Recommended SRT. Besides, consider that Recommended SRT is 100

seconds and total rows in a linear scan on the table is 8.000 tuples. If the attr attribute was a

primary key and there was no composite primary key in table T, rows assume the value 1.

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 99

Now consider three slave nodes, SN1, SN2 and SN3, with 𝑻𝟐𝑹𝑺𝑵𝟏		= 400 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟐		=

20 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟑= 100 tuples/sec, respectively. Following the optimistic approach, the

algorithm does a search in the slave nodes and executes the query in first slave node sufficient in

such a way to execute R within the Recommended SRT. Thus, in this case, 𝑻𝟐𝑹𝑺𝑵𝟏		is chosen. If

the pessimistic approach of the algorithm is active, R will be executed in half of slave nodes with the

highest 𝑻𝟐𝑹	that ensures the SRT. The first slave node that finishes the request execution throws a

signal to others slave nodes to abort their execution. Consequently, it reduces the risk of penalty to

be paid by the provider. These strategies are also used for Type 3 requests.

Monitoring the slave node to process this type of request is made after its processing and then the

metadata is updated with success or failure of request execution. Thus, as in type 3 requests, this

exception of type 1 request does not use monitoring nor adaptive partitioning during query

execution.

For requests with aggregation operators, it is added a predicate on the table’s primary key, being

used as a partitioning attribute. If the operation is distributive such as SUM, COUNT, MIN or MAX, it

can be easily rewritten analogously to the previous examples (i.e. a linear scan predicate of the table

is added).

Consider for example that a cloud provider receives the following request R with Recommended

SRT:

SELECT Dist_Oper(*) // ß R
FROM table T;

Then the request is rewritten as follows:

SELECT Dist_Oper(*) // ß R
FROM table T
WHERE T.pk >= Vmin and T.pk <Vmax + 1;
such that pk is the primary key of table T.

Considering that, values of the primary key of T are sequential, without gaps between the values.

After the query is rewritten, we use the partitioning strategies described previously. The monitoring

and provisioning of slave nodes to process the rewritten query is made the same way.

Whether the request presents an algebraic aggregation operator, such as AVG, the result of the

original query can not be easily obtained by means of partitions. With that, we transform the

algebraic function into distributive functions, as for instance AVG, it is possible to transform into

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 100

SUM and COUNT, so that the result of the original request. Consider for example that a cloud

provider receives the following request R with Recommended SRT:

SELECT AVG(T.attr) // ß R
FROM table T;

Then the request is rewritten as follows queries:

SELECT SUM(T.attr) into VSum // ß R1
FROM table T;

SELECT COUNT(T.attr) into VCou // ß R2
FROM table T;

Then R1 and R2 are rewritten again as the previous example. Like this:

SELECT SUM(*) // ß R1
FROM table T
WHERE T.pk >= Vmin and T.pk <Vmax + 1;
such that pk is the primary key of table T.

SELECT COUNT(*) // ß R2
FROM table T
WHERE T.pk >= Vmin and T.pk <Vmax + 1;
such that pk is the primary key of table T.

Therefore, after the query is rewritten, it is used the partitioning strategies already described. The

monitoring and provisioning of slave nodes to process the rewritten query is made the same way.

Type 2 Request: For requests with joins, DQS rewrites the query, separating all tables of FROM

clause. Currently, the component allows only equi joins requests. Consider that a cloud provider

receives the following trivial select-join request R with Recommended SRT:

SELECT * // ß R
FROM table T1, table T2
WHERE T1.fk = T2.pk;
such that T1.fk the foreign key referenced by the primary key T2.pk.

The request R is rewritten in two subqueries, R1 and R2:

SELECT * // ß R1
FROM table T1;
SELECT * // ß R2
FROM table T2;

In this case, R1 and R2 will be executed utilizing strategies of type 1 requests. Thus, R1 and R2 are

rewritten as follows:

SELECT * // ß R1

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 101

FROM table T1
WHERE T1.pk >= Vmin and T1.pk <Vmax+1;

SELECT * // ß R2
FROM table T2
WHERE T2.pk>=Vmin and T2.pk<Vmax+1;

Thus, it uses the partitioning methodology described for type 1 requests, as well as the monitoring

and provisioning of slave nodes to process the rewritten queries. After the execution of all partitions,

the slave node that executed R1 makes the join to present the result. Therefore, it uses a similar

algorithm to nested loops join algorithm. The R1 is chosen as the outer table, or the driving table.

The other table is called the inner table. For each row in the outer table, the algorithm finds all rows

in the inner table that satisfy the join condition. Finally, it combines the data in each pair of rows that

satisfy the join condition and returns the resulting rows.

Now consider that a cloud provider receives the following select-join request R with Recommended

SRT:

SELECT * // ß R
FROM table T1, table T2
WHERE T1.fk = T2.pk and T1.pk = <<value>>;
such that T1.fk the foreign key referenced by the primary key T2.pk,

The request R is rewritten in two subqueries, R1 and R2 as follows:

SELECT * // ß R1
FROM table T1
WHERE T1.pk = <<value>>;

SELECT * // ß R2
FROM table T2;

One more time, R1 and R2 will be executed using strategies of type 1 requests. Thus, R2 is rewritten

as follows:

SELECT * // ß R2
FROM table T2
WHERE T2.pk>=Vmin and T1.pk<Vmax+1;

Thus, we use the partitioning methodology described previously and the monitoring and provisioning

of slave nodes to process the rewritten query. Finally, after the execution of all partitions the slave

node that executed R1 makes the join to present the result.

Type 3 Request: For complex requests and others not shown here, SiclopDB adopts the strategy of

seeking the set of available slave nodes with 𝑻𝟐𝑹	enough to process the request that ensures the

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 102

Recommended SRT. Therefore, this type of request does not use monitoring nor adaptive

partitioning during query execution.

Consider the following request R with Recommended SRT is 100 seconds and rows = 200.000

tuples.

SELECT column1, column2, column3 // ß R
FROM table1
 INNER JOIN table2
 ON table1.key_column = table2.key_column
 INNER JOIN table3
 ON table2.key_column = table3.key_column
 INNER JOIN table4
 ON table3.key_column = table4.key_column
WHERE table1.column = <<value1>>
 AND table2.column IN(<<value2>>, <<value3>>)
 AND table3.column IN(<<value4>>, <<value5>>, <<value6>>)
 AND SUBSTRING(table2.Name,1,4) IN (<<value7>>, <<value8>>)
GROUP BY table1.column1, table2.column
ORDER BY table1.column2, table1.column3;

In the optimistic approach, the greedy strategy is adopted, in which only one slave node executes

the request and it is expected that ensures the Recommended SRT. Now consider three slave

nodes, SN1, SN2 and SN3, with 𝑻𝟐𝑹𝑺𝑵𝟏		= 4.000 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟐		= 2.000 tuples/sec,

𝑻𝟐𝑹𝑺𝑵𝟑		= 1.000 tuples/sec, respectively. In this case, the algorithm using greedy strategy

chooses SN1 because it was the first and enough in such a way to execute R within the

Recommended SRT.

In pessimistic approach, the algorithm strategy is to choose half the number of slave nodes available

with the highest 𝑻𝟐𝑹	to execute request R. Consider four available slave nodes, SN1, SN2, SN3, SN4,

with 𝑻𝟐𝑹𝑺𝑵𝟏		= 4.000 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟐		= 2.000 tuples/sec, 𝑻𝟐𝑹𝑺𝑵𝟑		= 1.000 tuples/sec

and 𝑻𝟐𝑹𝑺𝑵𝟒		= 1.500 tuples/sec, respectively. Then, the algorithm replicates the request R for SN1

and SN2, in such a way that least one can ensure the Recommended SRT.

In the worst-case scenario, if there are no slave nodes that meets the Recommended SRT, the

closest node to meet the Recommended SRT in terms of 𝑻𝟐𝑹	is selected. Monitoring the slave

node to process this type of request is made after its processing, when it is checked for violation or

not of Recommended SRT and metadata updates its information.

Finally, the summary of DQS component algorithm is shown below. As presented, for each type of

request is used a strategy of partitioning and execution. After its execution, the request result is

presented to the customer and to the provider it is presented the request information, such as SRT

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 103

violation, elapsed time of request etc. The information of SRT violation is important for the provider

to understand the reasons of the violation and to make decisions to reduce the problem.

DQS ALGORITHM (R, TR, ET): RETURN RESULT

- ET; //Elapsed Time = RSRT - ET.
- R; //Request
- TR; //Type of Request
- METADATA; //Metadata Class
- SLAVE_NODE[0..i]; //Available Slave Nodes
21. BEGIN
22. SWITCH(TR)
23. CASE 1: //Type 1 Request
24. IF (R.hasPredicate(“WHERE T.pk = <<value>>;”)) //Exception
25. DQS(R,3,ET);
26. ELSE
27. Partition[0..i] = METADATA.getSelectedSlaveNode(R, SLAVE_NODE[0..i]);
28. FOR EACH Partition DO
29. RESULT += DQM(Partition, ET, 1, SLAVE_NODE[j]);
30. ENDFOR
31. RETURN RESULT;
32. ENDIF
33. BREAK;
34. CASE 2: //Type 2 Request
35. Partition[0..i] = PartitionEquiJoin(R);
36. FOR EACH Partition DO
37. SubResult [0..i] = DQS (Partition,1,ET);
38. ENDFOR
39. RETURN JOIN(SubResult);
40. BREAK;
41. CASE 3: //Type 3 Request
42. SelectedSlaveNodes[0..i]=METADATA.getSelectedSlaveNodes(R,SLAVE_NODE);//all

nodes > ET
43. IF (METADATA.getProbability(R) == OPTIMISTIC)
44. RESULT = DQM(R,ET,3,SelectedSlaveNodes[i]);
45. ELSE //All slave nodes satisfy the ET
46. RESULT = DQM(R,ET,3,SelectedSlaveNodes[0..i/2]);
47. ENDIF
48. RETURN RESULT;
49. BREAK;
50. ENDSWITCH
51. IF (ET > RSRT)
52. METADATA.setViolation(TRUE);
53. ENDIF
54. END

4.4.4 Dynamic query monitoring (DQM)

Given an optimized and scheduled query plan, the aim of this component is to monitor the query

execution. As shown in Figure 4-3, the monitoring verifies, periodically, the possibility of a query to

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 104

be executed before a Recommended SRT. Therefore, the DQM component reevaluates each

subquery at runtime and checks the possibility of SRT violation, whether it is low, the query

continues its execution, otherwise, the query will be re-optimized in DQS component.

The monitoring will check the request execution progress. Whether the performance of slave node

decreases, the system can try recovering and meeting the recommended SRT or if the performance

of slave node increases, the system can use that to its advantage. Therefore, monitoring is adaptive

with non-regular intervals, because the framework uses a strategy is based on following variables:

CPU, memory and processing and reading percentage in DBMS of each slave node used by request.

Thus, this work considers that slave nodes can have different performance.

The challenge of the monitoring algorithm is to define the best period to monitor, i.e., the time

between consecutive probes. It should not be too small, since original queries would be partitioned

into many subqueries. Thus, the overload added can prejudice more than help. Moreover, it should

not be too large, because if that happens, it may be difficult to make corrections in a timely manner

and avoid possible penalties.

DQM uses historical data of similar requests to establish the most efficient number of partitions for

monitoring. Thus, the algorithm checks the request selectivity and the current performance of the

first slave node in the initial provisioning. When there is no statistical data, by default, if the request

selectivity is less than 10.000 tuples, the DQM will fragment the request within 2 partitions. If it is

between 10.000 and 100.000 tuples, the DQM will fragment the request up to 4 partitions. If the

selectivity is greater than 100.000 tuples, the DQM will fragment the request up to 8 partitions.

When there is statistical data, the number of partitions and the Recommended SRT used in the

execution of similar requests is checked in metadata. Thus, the number of partitions for monitoring

is chosen based on the similarity of the request (selectivity) and Recommended SRT. It is important

to note that the operations will be realized in the metadata and will be available at the moment that

is required by the request.

The summary of DQM component algorithm is shown below. As presented, type 1 and 3 requests

use different strategies. For type 1 requests, the DQM uses monitoring and adaptive query

processing and for type 3 requests, it does not use adaptive query processing, it uses a greedy

algorithm in optimistic approach and the fastest execution in set of slave nodes in pessimistic

approach.

http://code-industry.net/

Chapter 4 – Efficient adaptive query processing on large database systems available in the cloud environment

 105

DQM ALGORITHM (R, ET, TR, SLAVENODES): RETURN RESULT

- R; //Request.
- ET; //Elapsed Time: RSRT - ET
- TR; //Type of Request.
- SLAVENODES; //Slave Node to execute R.
1. BEGIN
2. SWITCH(TR)
3. CASE 1: //Type 1 Request
4. Partition[0..i] = Metadata.Partitioning(R);
5. FOR EACH Partition DO
6. IF((RESULT+=EXECUTE(Partition,SLAVENODES[0])).getElapsedTime()>T2R)
7. DQS (MERGE(Partition[j..i]),1, ET);
8. ENDIF
9. ENDFOR
10. BREAK;
11. CASE 3: //Type 3 Request
12. //optimistic approach: SLAVENODES.getLength() returns 1.
13. RESULT=EXECUTE(R,SLAVENODES[0..i]));
14. BREAK;
15. ENDSWITCH
16. RETURN RESULT;
17. END

4.5 Conclusion

This chapter presented solutions to efficient query processing of different types: select-range and

select-aggregation queries (type 1 requests), select-equi-join queries (type 2 requests) and complex

queries (type 3 requests). The strategies for adaptive processing were implemented and discussed

in each component of SiclopDB framework.

It is important to note that all solutions (partitioning, monitoring and settings) are made in a non-

intrusive way, i.e. slave nodes and their respective DBMSs do not require any changes to be used.

Furthermore, these solutions are based on the costs of SLA violation and the computational cost

model proposed in this work. To validate our solution, the next chapter presents the experimental

results of these strategies with a large volume of data, machines and queries in the cloud.

http://code-industry.net/

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

http://code-industry.net/

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 109

5.1 Introduction

This chapter presents the experiments of a case study using the strategies of query processing

presented in Chapter 4. To better understanding, this chapter is organized as follows:

5.2 Experimental rnvironment: presents the environment where the experiments were

executed.

5.3 Methodology: presents the methodology of the experiments.

5.4 Requests used: shows the requests used to the experiments.

5.5 Results and analysis: presents the results obtained as well as its analysis.

5.6 Conclusion: presents the final considerations of this chapter.

5.2 Experimental environment

The strategies presented in Chapter 4 were implemented in the SiclopDB framework using the Java

language and concurrent programming with threads and an API based on OpenMP - Open Multi-

Processing (Bull & Kambites, 2000). It was deployed in the Amazon EC2 cloud infrastructure using

small instances (homogeneous environment). However, the performance of each VM (Virtual

Machine) may vary over time. Due to the limitations of Amazon, 20 VMs were used, each with an

Intel Xeon Processor with turbo up to 3.3GHz, 1.7 GB of main memory and 160 GB of disk storage.

It was created an AMI (Amazon Machine Image) of a VM with the database. This image allows to

startup new VMs quickly. The Amazon EBS (Elastic Block Store) was used to store the AMI.

Therefore, the startup time and instantiation of VM as well as the time of network authentication and

database connection were not considered in experiments.

Each VM runs the Ubuntu 12.04 operating system and PostgreSQL 9.3 DBMS. This work focuses on

OLAP applications with very large and complex database. Thus, a TPC-DS like benchmark was used

to generate a database of approximately 13 GB, fully replicated in all VMs. Therefore, the database

generated represents the customer data.

5.3 Methodology

The experiments aim at showing the efficiency of the query processing strategies proposed in this

work. This way, it will check the ability to avoid penalties associated with SRT violation and the

elasticity of the algorithm, according to the number of VMs allocated when processing queries.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 110

Figure 5-1 shows step-by-step the methodology of the experiments. The first step consists in the

definition and classification of the queries that will be used in the experiments. So, the queries are

classified into one of three types of requests as defined in Chapter 3. Then, for each type of request,

a set of queries workloads will be executed on SiclopDB framework. Finally, results will be analyzed

checking the penalties, workloads statistics and metadata.

Figure 5-1. Methodology of experiments of SiclopDB framework.

For type 1 and type 2 requests, the experiments consisted in stressing the system using 10

workloads, each workload having 10 queries of the same type. For type 3 requests, as the strategy

is predictive and queries are complex, 5 workloads were used, each workload having 5 queries of

the same type. Finally, the experiments were performed using 10 workloads and each workload

having 10 queries of several types of requests.

To know the minimum amount of required machines is a complex task. Therefore, previous tests

were performed using a fixed number of VMs according to the strategy presented in Chapter 3.

Thus, the minimum number of machines was found for the workload of the experiments. However, if

new workloads arrive to the system, it will be necessary to perform extensive experiments again (as

shown in Chapter 3) to obtain a new configuration of the service provider.

The arrival time of the queries workloads was disposed in two ways: (i) uniform distribution: each

workload arriving at intervals of 30 seconds and (ii) uniformly varied distribution (non-uniform

distribution): each workload arriving at random time intervals between 10 and 60 seconds. This

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 111

distribution is closer to real environments, since the unpredictability of workloads arriving to the

system and performance variation are characteristics of cloud environments.

In this work, different values of Recommended SRT were used, from the most restricted to the most

relaxed. After definition and classification of the queries to be used in the experiments, the values of

Recommended SRT were obtained from tests following the methodology presented in Chapter 3. In

order to find more restricted as well as more relaxed values of Recommended SRT, it was adapted

according to SRT value. Therefore, minus 20% of SRT value corresponds the most restricted value of

Recommended SRT and more 20% of SRT value corresponds the most relaxed value of

Recommended SRT. For example, if the Recommended SRT is 100 seconds, experiments were

performed also considering Recommended SRT of 80 seconds, and finally considering

Recommended SRT of 120 seconds.

Seeking for more accurate results for each type of request, experiments were repeated 10 times.

Finally, to eliminate any possible interference between successive experiments, in particular, effects

of other queries already executed, the OS cache was deleted and the DBMS has been restarted

before executing the queries workloads again.

For each experiment, the number of virtual machines used are observed in accordance with time. To

calculate the computational cost, it is enough to observe the number of virtual machines used by

each query. Finally, the query runtime is measured according to the strategies described in Chapter

4.

5.4 Used requests

This section presents some requests used in the case study. Type 1 requests are select-range

and/or select-aggregation requests. They have approximately 300,000 tuples of selectivity and uses

the catalog_sales table of TPC-DS. For the select-range queries whose predicate is on non-key

attribute, it was used the cs_bill_hdemo_sk attribute and to queries whose predicate is on the key

attribute, it was used cs_item_sk attribute of the same table.

The experiments involving the select-aggregation queries use the same select-range queries.

However, the SELECT clause was modified. Finally, values interval for cs_item_sk and

cs_bill_hdemo_sk attributes of each query was generated randomly from the values stored in the

database. Following are examples of type 1 requests used in the experiments. All type 1 requests

used in the experiments are listed in Annex A1.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 112

select * from catalog_sales where cs_item_sk >= 1 and cs_item_sk < 300000;
select * from catalog_sales where cs_bill_hdemo_sk > 150000;
select * from catalog_sales where cs_item_sk > 600000;
select SUM(cs_bill_hdemo_sk) from catalog_sales;
select COUNT(cs_bill_hdemo_sk) from catalog_sales;

Type 2 requests are select-joins requests. The selectivity of these requests varied between 1,000

and 30,000 tuples and it uses different tables of TPC-DS benchmark. Besides, equi-joins predicates

are represented according to the number of tables in the FROM clause. Following some examples of

type 2 requests used in the experiments. The mostly used type 2 requests in the experiments are

listed in Annex A2.

select *
from store_sales,household_demographics,time_dim, store
where ss_sold_time_sk = time_dim.t_time_sk
 and ss_hdemo_sk = household_demographics.hd_demo_sk
 and ss_store_sk = s_store_sk;

select ss_item_sk
from store_sales, time_dim
where ss_sold_time_sk = t_time_sk;

select store_sales.*
from store_sales, customer_demographics, date_dim, item, promotion
where ss_sold_date_sk = d_date_sk and
 ss_item_sk = i_item_sk and
 ss_cdemo_sk = cd_demo_sk and
 ss_promo_sk = p_promo_sk and
 cd_gender = 'M';

Type 3 requests are select-sets-grouping-nesting requests and, optional select-aggregation and

select-joins. They present very complex queries plans and its selectivity is between 150,000 and

200,000 tuples. It uses at least 10 different tables of TPC-DS. Following some examples of type 3

requests used in the experiments. The most type 3 requests used in the experiments are listed in

Annex A3.

select i_brand_id brand_id, i_brand brand, i_manufact_id, i_manufact, sum(ss_ext_sales_price)
ext_price
from date_dim, store_sales, item,customer,customer_address,store
where d_date_sk = ss_sold_date_sk and ss_item_sk = i_item_sk
 and i_manager_id=13 and d_moy=11
 and d_year=2001 and ss_customer_sk = c_customer_sk
 and c_current_addr_sk = ca_address_sk and substr(ca_zip,1,5) <> substr(s_zip,1,5)
 and ss_store_sk = s_store_sk
 group by i_brand,i_brand_id,i_manufact_id,i_manufact
 order by ext_price desc,i_brand,i_brand_id,i_manufact_id,i_manufact;

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 113

select i_item_id,
 avg(ss_quantity) agg1,
 avg(ss_list_price) agg2,
 avg(ss_coupon_amt) agg3,
 avg(ss_sales_price) agg4
 from store_sales, customer_demographics, date_dim, item, promotion
 where ss_sold_date_sk = d_date_sk and
 ss_item_sk = i_item_sk and
 ss_cdemo_sk = cd_demo_sk and
 ss_promo_sk = p_promo_sk and
 cd_gender = 'M' and
 cd_marital_status = 'M' and
 cd_education_status = '4 yr Degree' and
 (p_channel_email = 'N' or p_channel_event = 'N') and
 d_year = 2001
 group by i_item_id
 order by i_item_id

with wss as
 (select d_week_seq,
 ss_store_sk,
 sum(case when (d_day_name='Sunday') then ss_sales_price else null end) sun_sales,
 sum(case when (d_day_name='Monday') then ss_sales_price else null end) mon_sales,
 sum(case when (d_day_name='Tuesday') then ss_sales_price else null end) tue_sales,
 sum(case when (d_day_name='Wednesday') then ss_sales_price else null end) wed_sales,
 sum(case when (d_day_name='Thursday') then ss_sales_price else null end) thu_sales,
 sum(case when (d_day_name='Friday') then ss_sales_price else null end) fri_sales,
 sum(case when (d_day_name='Saturday') then ss_sales_price else null end) sat_sales
 from store_sales,date_dim
 where d_date_sk = ss_sold_date_sk
 group by d_week_seq,ss_store_sk
)
 select s_store_name1,s_store_id1,d_week_seq1
 ,sun_sales1/sun_sales2,mon_sales1/mon_sales2
 ,tue_sales1/tue_sales2,wed_sales1/wed_sales2,thu_sales1/thu_sales2
 ,fri_sales1/fri_sales2,sat_sales1/sat_sales2
 from
 (select s_store_name s_store_name1,wss.d_week_seq d_week_seq1
 ,s_store_id s_store_id1,sun_sales sun_sales1
 ,mon_sales mon_sales1,tue_sales tue_sales1
 ,wed_sales wed_sales1,thu_sales thu_sales1
 ,fri_sales fri_sales1,sat_sales sat_sales1
 from wss,store,date_dim d
 where d.d_week_seq = wss.d_week_seq and
 ss_store_sk = s_store_sk and
 d_month_seq between 1200 and 1200 + 11) y,
 (select s_store_name s_store_name2,wss.d_week_seq d_week_seq2

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 114

 ,s_store_id s_store_id2,sun_sales sun_sales2
 ,mon_sales mon_sales2,tue_sales tue_sales2
 ,wed_sales wed_sales2,thu_sales thu_sales2
 ,fri_sales fri_sales2,sat_sales sat_sales2
 from wss,store,date_dim d
 where d.d_week_seq = wss.d_week_seq and
 ss_store_sk = s_store_sk and
 d_month_seq between 1200+ 12 and 1200 + 23) x
 where s_store_id1=s_store_id2
 and d_week_seq1=d_week_seq2-52
 order by s_store_name1,s_store_id1,d_week_seq1;

5.5 Results and analysis

To execute the experiments, a VM was chosen arbitrarily to be the master node and consequently

the other nodes become slave nodes. SiclopDB framework was deployed in the master node and the

others were deployed with the TPC-DS benchmark database. Following are presented the results of

experiments for each type of request.

5.5.1 Type 1 requests

For type 1 requests, experiments were divided into select-range queries and select-aggregation

queries. Figures 5.2 and 5.3 show, respectively, experiments of select-range queries with the arrival

of workloads following the uniform distribution and with the arrival of workloads following the non-

uniform distribution. The graphs present the number of VMs used by time in seconds and the

Recommended SRTs used were 80, 100 and 120 seconds. These values were obtained according

to experiments realized following the methodology in Chapter 3. Finally, the queries predicate may

be on a non-key attribute or on a key attribute.

It is important to emphasize at this point that when the attribute is not a primary key, our strategy

scans all tuples of the table, i.e. all tuples are checked to verify whether they satisfy the predicate.

Thus, this type of queries requires more processing time than the select-range that have a predicate

on key attribute. Consequently, this causes the increase of VM computational cost, since the

response time is higher.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 115

Figure 5-2. Type 1 Requests (Select-Range): average virtual machines used for workloads uniformly arriving every 30
seconds for the Recommended SRTs: 80, 100 and 120 seconds.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 116

Figure 5-3. Type 1 Requests (Select-Range): average virtual machines used for workloads randomly arriving between 10
and 60 seconds for the Recommended SRTs: 80, 100 and 120 seconds.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 117

According to the results, it can be seen the increase and decrease of the workloads on the system

and the elasticity on the number of virtual machines allocated to execute the queries. We can also

see that in Figure 5.2 and 5.3 the SiclopDB used almost all VMs available in the most restricted

Recommended SRT, whose limit was almost reached in ninth and tenth workload. If the limit was

reached, to reduce the provider penalties, this problem could be solved recommending the

customer to acquire more VMs and/or to making new experiments to update the Recommended

SRT.

When the SRT is more restricted, the computational cost is higher or equal to the computational cost

of the most relaxed SRT, this happens to avoid penalties. Moreover, the computational cost is higher

when the workloads arrive at random times (non-uniform distribution) if compared to uniform

distribution. We believe that the system may not recover quickly when there is an unexpected

overload of the resources, and seeking quick reaction to execute the queries, the algorithm allocates

more VMs to execute the workload in SRT time. Consequently, the computational cost increases.

The results of experiments utilizing only select-aggregation queries are shown in Figures 5.4 and

5.5. Figure 5.4 presents experiments with uniform distribution of workloads and Figure 5.5 shows

the experiments with non-uniform distribution. As for the select-range queries, the Recommended

SRT was varied, the most restricted SRT was 80 seconds and the most relaxed SRT was 120

seconds.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 118

Figure 5-4. Type 1 Requests (Select-Aggregation): average virtual machines used for workloads uniformly arriving every
30 seconds for the Recommended SRTs: 80, 100 and 120 seconds.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 119

Figure 5-5. Type 1 Requests (Select-Aggregation): average virtual machines used for workloads randomly arriving
between 10 and 60 seconds for the Recommended SRTs: 80, 100 and 120 seconds.

We can see that results show a similar behavior with the select-range queries. This is due to the

strategy used to perform this type of query, which is similar to select-range queries. Moreover, for all

experiments, the workloads are of the same type. However, several factors that are out of control,

for example, other processes running on the physical machine hosting the VM can contribute to

performance variation.

Comparing both experiments (select-range and select-aggregation queries) it can be noticed that

select-aggregation queries present faster response time than the select-range queries. This is due to

the amount of data to be retrieved by the SELECT clause. The select-range queries used in the

experiments recover all attributes of a table (SELECT *), i.e. a large volume of data and according to

(Elmasri & Navathe, 2010) more I/O operations are performed. Finally, select-aggregation queries

need to retrieve only the aggregated value of an attribute.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 120

5.5.2 Type 2 requests

For type 2 requests, experiments were realized in queries with or without predicate as shown in

section 5.4. As shown in the previous subsection, the following graphs show the number of VMs

used by the time in seconds. According to the proposed strategy in this work, it has obtained similar

results to type 1 requests, because each fragment of a query is executed using the same strategy.

Therefore, the primary difference between these types (type 1 and type 2 requests) is the query

partitioning and merge of their results.

Figures 5.6 and 5.7 show, respectively, the experiments with the arrival of workloads following the

uniform distribution and with the arrival of workloads following the non-uniform distribution. As in

previous experiments, the Recommended SRT was varied, the most restricted SRT was 130 seconds

and the most relaxed SRT was 180 seconds

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 121

Figure 5-6. Type 2 Requests: average virtual machines used with workloads uniformly arriving every 30 seconds for the
Recommended SRTs: 130, 150 and 180 seconds.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 122

Figure 5-7. Type 2 Requests: average virtual machines used with workloads randomly arriving between 10 and 60
seconds for the Recommended SRTs: 130, 150 and 180 seconds.

In this work, the partitioning and merge of a query occurs in the VM Leader, which is a VM

responsible for partitioning the query, processing joins and applying merge of their results. The VM

Leader was chosen automatically and corresponds to the VM that receives the first fragment of a

query.

Each fragment of a query receives a FID (Fragment Identifier) that is used to control and correctly

merge the results. The partitioning time of queries was not considered because the reduced

complexity of the queries used in the experiments. However, it was observed that the merging of the

results causes a higher time to execute queries, approximately 10% more than the select-range

requests. Finally, it is important to observe that in the most restricted SRT, the ninth workload

reached the limit of the infrastructure service provider.

5.5.3 Type 3 requests

For type 3 requests, the experiments were realized with complex queries obtained from the TPC-DS

Benchmark. As shown in previous sessions, the following graphs show the number of VMs allocated

by time in seconds and the Recommended SRT was varied, the most restricted SRT was 800

seconds and the most relaxed SRT was 1200 seconds. However, due to the complexity of these

queries and the limit of VMs available in the service provider, only 5 workloads were used, each

having 5 complex queries.

According to proposed strategy of this work, the experiments stressed the system searching a VM

that could execute successfully a query in SRT time (optimistic approach) or executing a query over

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 123

a set of VMs that one VM could execute successfully the query in SRT time (pessimistic approach).

Therefore, it is not used monitoring nor adaptive partitioning during query execution.

Figures 5.8 and 5.9 show, respectively, the results of experiments following the uniform distribution

and non-uniform distribution of workloads. We can observe that due to the strategy used in this work

a large number of VMs are used since the first query workload. In addition, in accordance to the

strategy presented in Chapter 4, the algorithm chooses through the metadata the optimistic or

pessimistic strategy for executing a query and after its execution the metadata are updated.

However, we believe that the decrease in the use of virtual machines after the third workload

happened due to the algorithm starting to use more often the optimistic approach. Consequently,

the queries were being executed successfully. Moreover, it can be observed that due to the

complexity and selectivity of the queries, there is a greater overhead for the ending its results.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 124

Figure 5-8. Type 3 Requests: average virtual machines used with workloads uniformly arriving every 30 seconds for the
Recommended SRTs: 800, 1000 and 1200 seconds.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 125

Figure 5-9. Type 3 Requests: average virtual machines used with workloads randomly arriving between 10 and 60
seconds for the Recommended SRTs: 800, 100 and 1200 seconds.

5.5.4 All type of requests

Finally, experiments were realized using all requests types over the same queries workload.

According to the strategies proposed in this thesis, similar results to the previous ones were

obtained. The main overhead is the algorithm having to classify each query to be executed (type 1, 2

or 3 of request). After classifying the query, the query is executed according to the already

mentioned strategies.

Figure 5.10 shows, respectively, the experiments with the arrival of workloads following uniform

distribution and non-uniform distribution. The graphs show the number of VMs used by the time in

seconds. However, unlike previous experiments, each query after classification has a different

Recommended SRT, according to their type of request.

http://code-industry.net/

Chapter 5 – Experimental evaluation: validation and results

 126

Figure 5-10. All Type Requests: average virtual machines used with workloads uniformly arriving every 30 seconds and
randomly arriving between 10 and 60 seconds.

For several moments, it can be seen that the limit of the provider’s infrastructure is reached;

however, it has not been exceeded. Thus, it can be seen the increase and decrease in workloads

due to elasticity in the number of allocated virtual machines to execute all queries. It is important to

observe that no penalty occurred with all queries. However, if new workloads arrive to the system, it

will be necessary to perform extensive experiments again (as shown in Chapter 3) to obtain a new

configuration of service provider.

5.6 Conclusion

This chapter presented the experiments of the proposed strategies in Chapter 4. Given the increase

and decrease of the workloads, it can be seen the elasticity in the number of virtual machines

allocated by the methods proposed in this thesis to execute queries.

Furthermore, results show that the solution reacts to the resources variation of the environment and

to different sizes of workloads. The solution ensures that the Recommended SRT is satisfied in a

non-intrusive and automatic way. Finally, our proposal was effective to avoid the penalties in the

execution of queries and the Recommended SRT was satisfied in all experiments without incurring

penalties.

http://code-industry.net/

Chapter 6 – Conclusion

http://code-industry.net/

http://code-industry.net/

Chapter 6 – Conclusion

 129

6.1 Final considerations

This chapter presents the main conclusions of this thesis. They are closely related to the objectives,

contributions and solutions that have been presented along this work. Part of this thesis has been

evaluated by the community in (Costa et al., 2015, 2016; Costa & Sousa, 2013).

This work presented a new solution to efficient query processing on large databases available in a

cloud environment. It integrated adaptive re-optimization at runtime of the query and their costs are

based on the SRT (Service Response Time) QoS parameter. For this, it was firstly proposed a model

that allows the cloud service provider and its customers to establish an appropriate SLA relative to

SRT performance of their applications available in the cloud. After, it was presented a new

partitioning and monitoring strategies for adaptive processing of different types of queries (database

access requests). Moreover, a dynamic provisioning strategy and its algorithm were presented.

Finally, to validate this work, the strategies were implemented in the SiclopDB framework and the

experiments were evaluated in Amazon EC2 cloud infrastructure.

Chapter 2 presented researches, concepts and technologies related to the object of study of this

doctoral thesis (Objective 1 of the thesis). From the user’s point of view, the SRT parameter is

considered one of the main QoS performance parameters. However, major cloud providers have

ignored or inappropriately treated the SRT parameter in SLA due to its complexity.

Furthermore, we can observe that most works in the literature focus on shorter query execution time

and in the prediction of resources that will used by a query through the system current context.

These works may not be suitable in unpredictable environments related to the availability of

resources. Other related works focus on adaptive query processing. However, they present

limitations of elasticity and/or scalability in their algorithms, the absence of adaptive monitoring

query processing and/or use of intrusive solutions.

Chapter 3 presented one of the main contributions of this thesis (Objective 2 of the thesis). We

propose a model that allows the cloud service provider and its customers to establish an appropriate

SLA relative to SRT performance of their applications running in the cloud. The proposed model is a

non-intrusive solution and can be applied when companies plan to migrate their applications, OLAP

or not, to cloud services providers, with the goal to allocate computational resources on demand, to

ensure the quality of service in terms of SRT.

Finally, the proposed model was evaluated in the Amazon EC2 cloud infrastructure using small

instances and a TPC-DS (Tpc BenchmarkTM Ds, 2012) like benchmark. It was used for generating an

http://code-industry.net/

Chapter 6 – Conclusion

 130

OLAP database, considering that some cloud computing platforms support SQL queries directly or

indirectly, this makes the proposed solution suitable for these kind of problems.

Chapter 4 presented the main contribution of this work (Objective 3 of the thesis), a new solution to

efficient query processing on large databases available in a cloud environment. It is restricted to

relational database requests. This way, it presented solutions to efficient processing of different

queries: select-range and select-aggregation queries (type 1 requests), select-equi-join queries (type

2 requests) and complex queries (type 3 requests). Finally, the partitioning and monitoring strategies

and a dynamic provisioning strategy were discussed and implemented for each component of the

SiclopDB framework.

It is important to emphasize that this work focuses on OLAP applications because in this kind of

environment, adaptive processing produces positive effects at query runtime. Furthermore, it is

important to note that all solutions (partitioning, monitoring and settings) are made in a non-intrusive

way, i.e. slave nodes and their respective DBMSs do not require any changes to be used. Finally,

these solutions were based on the costs of SLA violation and the computational cost model

proposed in this work.

To validate our solution, chapter 5 presented the experiments of the proposed strategies of Chapter

4. For this, the SiclopDB framework was evaluated in Amazon EC2 cloud infrastructure using small

instances and the TPC-DS like benchmark was used for generating the OLAP database.

Given the increase and decrease of the workloads, it could be seen the elasticity in the number of

virtual machines allocated to execute queries. Furthermore, results shown that the solution reacts to

the variation of the environment with different of workloads. Finally, our proposal was effective to

avoid the penalties in the execution of queries and the Recommended SRT was satisfied in all

experiments without incurring penalties.

6.2 Future work

As future work, we will deploy our proposed model, beyond Amazon, in an Azure and Google Cloud

Platform, using similar VMs. After, we will compare the response time between the different public

cloud providers. Moreover, other future work consists to use specialized systems for the automatic

classification of applications according to the request types as well as to the automatic analysis of

results. Other work comprises to replace DOS and COS tools by others benchmark tools, for

example, pgbench tool that allows a greater variation of performance parameters.

http://code-industry.net/

Chapter 6 – Conclusion

 131

Furthermore, we intend to improve adaptive strategies to incorporate/allow different query types. For

example, allowing SQL predicates more complex and reduction network data traffic. Consequently,

we expect to carry out more experiments and modify the presented cost models. Finally, we intend

to improve the cost model involving other SLA parameters, such as resiliency, throughput and

efficiency, since they are important measures to evaluate the performance of services in cloud

infrastructures.

http://code-industry.net/

http://code-industry.net/

References

http://code-industry.net/

http://code-industry.net/

References

 135

References

Abadi, D. J. (2010). DataManagement in the Cloud: Limitations and Opportunities. Bulletin of the
IEEE Computer Society Technical Commitee on Data Engineering, 132, 1–10.
http://doi.org/10.1007/978-1-4419-0176-7

Alrifai, M., & Risse, T. (2009). Combining Global Optimization with Local Selection for Efficient QoS-
aware Service Composition. In Proceedings of the 18th International Conference on World
Wide Web (pp. 881–890). New York, NY, USA: ACM.
http://doi.org/10.1145/1526709.1526828

Alves, D., Bizarro, P., & Marques, P. (2011). Deadline Queries: Leveraging the Cloud to Produce On-
Time Results. In 2011 IEEE 4th International Conference on Cloud Computing (pp. 171–178).
IEEE. http://doi.org/10.1109/CLOUD.2011.12

Amazon Web Services. (2015). Auto Scaling: Developer Guide. Retrieved from
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-dg.pdf

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., … Xu, M. (2005). Web
Services Agreement Specification (WS-Agreement). Retrieved from
http://www.ggf.org/Public_Comment_Docs/Documents/Oct-2005/WS-
AgreementSpecificationDraft050920.pdf

AWS EC2 Service Level Agreement. (2015). Retrieved June 15, 2015, from
http://aws.amazon.com/ec2-sla

AWS S3 Service Level Agreement. (2015). Retrieved June 15, 2015, from
http://aws.amazon.com/s3-sla

Bruno, N., Chaudhuri, S., & Ramamurthy, R. (2009). Power Hints for Query Optimization. In 2009
IEEE 25th International Conference on Data Engineering (pp. 469–480). Shanghai, China:
IEEE. http://doi.org/10.1109/ICDE.2009.68

Bull, J. M., & Kambites, M. E. (2000). JOMP--an OpenMP-like Interface for Java. In Proceedings of
the ACM 2000 Conference on Java Grande (pp. 44–53). New York, New York, USA: ACM
Press. http://doi.org/10.1145/337449.337466

Canfora, G., di Penta, M., Esposito, R., & Villani, M. L. (2005). An approach for QoS-aware service
composition based on genetic algorithms. In Proceedings of the 2005 conference on Genetic
and evolutionary computation - GECCO ’05 (p. 1069). New York, New York, USA: ACM Press.
http://doi.org/10.1145/1068009.1068189

Cervino, J., Kalyvianaki, E., Salvachua, J., & Pietzuch, P. (2012). Adaptive Provisioning of Stream
Processing Systems in the Cloud. In 2012 IEEE 28th International Conference on Data
Engineering Workshops (pp. 295–301). IEEE. http://doi.org/10.1109/ICDEW.2012.40

Chi, Y., Moon, H. J., Hacigümüş, H., & Tatemura, J. (2011). SLA-tree. In Proceedings of the 14th
International Conference on Extending Database Technology - EDBT/ICDT ’11 (p. 129). New
York, New York, USA: ACM Press. http://doi.org/10.1145/1951365.1951383

Coelho da Silva, T. L., Nascimento, M. A., de Macêdo, J. A. F., Sousa, F. R. C., & Machado, J. C.
(2012). Towards non-intrusive elastic query processing in the cloud. In Proceedings of the
fourth international workshop on Cloud data management - CloudDB ’12 (p. 9). New York,
New York, USA: ACM Press. http://doi.org/10.1145/2390021.2390024

http://code-industry.net/

References

 136

Coelho da Silva, T. L., Nascimento, M. A., de Macêdo, J. A. F., Sousa, F. R. C., & Machado, J. C.
(2013). Non-Intrusive Elastic Query Processing in the Cloud. Journal of Computer Science and
Technology, 28(6), 932–947. http://doi.org/10.1007/s11390-013-1389-2

Corradini, F., Polzonetti, A., Re, B., & Tesei, L. (2008). Quality of service in e-government underlines
the role of information usability. International Journal of Information Quality, 2(2), 133.
http://doi.org/10.1504/IJIQ.2008.022960

Costa, C. M., Leite, C. R. M., & Sousa, A. L. (2015). Service Response Time Measurement Model of
Service Level Agreements in Cloud Environment. In 2015 {IEEE} International Conference on
Smart City/SocialCom/SustainCom, SmartCity 2015, Chengdu, China, December 19-21,
2015 (pp. 969–974). {IEEE} Computer Society. http://doi.org/10.1109/SmartCity.2015.196

Costa, C. M., Leite, C. R. M., & Sousa, A. L. (2016). Efficient SQL Adaptive Query Processing in
Cloud Databases Systems. In 2016 IEEE Conference on Evolving and Adaptive Intelligent
Systems (IEEE EAIS 2016) (pp. 114–121). Natal, RN, Brazil: {IEEE} Computer Society.

Costa, C. M., & Sousa, A. L. (2013). Adaptive Query Processing in Cloud Database Systems. In
Third International Conference on Cloud and Green Computing (CGC) (pp. 201–202).
http://doi.org/10.1109/CGC.2013.39

Coutinho, E. F., de Carvalho Sousa, F. R., Rego, P. A. L., Gomes, D. G., & de Souza, J. N. (2015).
Elasticity in cloud computing: a survey. Annals of Telecommunications - Annales Des
Télécommunications, 70(7-8), 289–309. http://doi.org/10.1007/s12243-014-0450-7

Curino, C., Jones, E. P. C., Madden, S., & Balakrishnan, H. (2011). Workload-aware database
monitoring and consolidation. In Proceedings of the 2011 international conference on
Management of data - SIGMOD ’11 (p. 313). New York, New York, USA: ACM Press.
http://doi.org/10.1145/1989323.1989357

Das, S., Agarwal, S., Agrawal, D., & El Abbadi, A. (2013). ElasTraS. ACM Transactions on Database
Systems, 38(1), 1–45. http://doi.org/10.1145/2445583.2445588

Dean, J., & Ghemawat, S. (2008a). MapReduce: Simplified Data Processing on Large Clusters.
Magazine Communications of the ACM, 51(1), 107–113.
http://doi.org/10114513274521327492

Dean, J., & Ghemawat, S. (2008b). MapReduce: Simplified Data Processing on Large Clusters.
Communications of the ACM, 51(1), 107. http://doi.org/10.1145/1327452.1327492

Deshpande, A., Ives, Z., & Raman, V. (2007). Adaptive Query Processing. Foundations and Trends®
in Databases, 1(1), 1–140. http://doi.org/10.1561/1900000001

Elmasri, R., & Navathe, S. (2010). Fundamentals of Database Systems (6th ed.). USA: Addison-
Wesley Publishing Company.

Emeakaroha, V. C., Netto, M. A. S., Calheiros, R. N., Brandic, I., Buyya, R., & de Rose, C. A. F.
(2012). Towards autonomic detection of SLA violations in Cloud infrastructures. Future
Generation Computer Systems, 28(7), 1017–1029.
http://doi.org/10.1016/j.future.2011.08.018

Florescu, D., & Kossmann, D. (2009). Rethinking cost and performance of database systems. ACM
SIGMOD Record, 38(1), 43. http://doi.org/10.1145/1558334.1558339

Foster, I., & Kesselman, C. (2003). The Grid 2: Blueprint for a New Computing Infrastructure. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

http://code-industry.net/

References

 137

Garg, S. K., Versteeg, S., & Buyya, R. (2011). SMICloud: A Framework for Comparing and Ranking
Cloud Services. In 4th IEEE International Conference on Utility and Cloud Computing (pp.
210–218). http://doi.org/10.1109/UCC.2011.36

Garg, S. K., Versteeg, S., & Buyya, R. (2013). A framework for ranking of cloud computing services.
Future Generation Computer Systems, 29(4), 1012–1023.
http://doi.org/10.1016/j.future.2012.06.006

Goiri, Í., Julià, F., Fitó, J. O., Macías, M., & Guitart, J. (2012). Supporting CPU-based guarantees in
cloud SLAs via resource-level QoS metrics. Future Generation Computer Systems, 28(8),
1295–1302. http://doi.org/10.1016/j.future.2011.11.004

Gounaris, A., Paton, N. W., Fernandes, A. A. A., & Sakellariou, R. (2002). Adaptive Query
Processing: A Survey. In British National Conference on Databases (BNCOD’02) (pp. 11–25).
London, UK, UK. http://doi.org/10.1007/3-540-45495-0_2

Guitart, J., Carrera, D., Beltran, V., Torres, J., & Ayguadé, E. (2008). Dynamic CPU provisioning for
self-managed secure web applications in SMP hosting platforms. Computer Networks, 52(7),
1390–1409. http://doi.org/10.1016/j.comnet.2007.12.009

Iqbal, W., Dailey, M., & Carrera, D. (2009). SLA-Driven Adaptive Resource Management for Web
Applications on a Heterogeneous Compute Cloud. In 1st International Conference on Cloud
Computing (CloudCom ’09) (pp. 243–253). http://doi.org/10.1007/978-3-642-10665-1_22

Keller, A., & Ludwig, H. (2003). No Title. Journal of Network and Systems Management, 11(1), 57–
81. http://doi.org/10.1023/A:1022445108617

Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modeling (3rd ed.). Wiley. Retrieved from http://www.amazon.com/Data-Warehouse-Toolkit-
Definitive-Dimensional/dp/1118530802/ref=tmm_pap_title_0?_encoding=UTF8&qid=&sr=

Kllapi, H., Sitaridi, E., Tsangaris, M. M., & Ioannidis, Y. (2011). Schedule optimization for data
processing flows on the cloud. In Proceedings of the 2011 international conference on
Management of data - SIGMOD ’11 (p. 289). New York, New York, USA: ACM Press.
http://doi.org/10.1145/1989323.1989355

Larkin, B., & Rose, M. (2015). 2015 ITA Cloud Computing Top Markets Report. International Trade
Administration. Retrieved from
http://trade.gov/topmarkets/pdf/Cloud_Computing_Top_Markets_Report.pdf

Layton, J. (2015). Monitoring Storage Devices with iostat. ADMIN Magazine Headquarters Linux New
Media, USA, LCC. Retrieved from http://www.admin-magazine.com/HPC/Articles/Monitoring-
Storage-with-iostat

Lee, Y. C., Wang, C., Zomaya, A. Y., & Zhou, B. B. (2010). Profit-Driven Service Request Scheduling
in Clouds. In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (pp. 15–24). Washington, DC, USA: IEEE.
http://doi.org/10.1109/CCGRID.2010.83

Liang, Z., Zou, H., Guo, J., Yang, F., & Lin, R. (2013). Selecting Web Service for Multi-user Based on
Multi-QoS Prediction. In Services Computing (SCC), 2013 IEEE International Conference on
(pp. 551–558). http://doi.org/10.1109/SCC.2013.35

Mangard, S., & Poschmann, A. Y. (Eds.). (2015). Constructive Side-Channel Analysis and Secure
Design (Vol. 9064). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-
319-21476-4

http://code-industry.net/

References

 138

Mian, R., Martin, P., & Vazquez-Poletti, J. L. (2013). Provisioning data analytic workloads in a cloud.
Future Generation Computer Systems, 29(6), 1452–1458.
http://doi.org/10.1016/j.future.2012.01.008

Morton, K., Balazinska, M., & Grossman, D. (2010). ParaTimer: A Progress Indicator for MapReduce
DAGs. In Proceedings of the 2010 international conference on Management of data - SIGMOD
’10 (p. 507). New York, New York, USA: ACM Press.
http://doi.org/10.1145/1807167.1807223

Morton, K., Friesen, A., Balazinska, M., & Grossman, D. (2010). Estimating the progress of
MapReduce pipelines. In 2010 IEEE 26th International Conference on Data Engineering (ICDE
2010) (pp. 681–684). IEEE. http://doi.org/10.1109/ICDE.2010.5447919

Naskos, A., Stachtiari, E., Gounaris, A., Katsaros, P., Tsoumakos, D., Konstantinou, I., & Sioutas, S.
(2015). Dependable Horizontal Scaling Based on Probabilistic Model Checking. In 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (pp. 31–40). IEEE.
http://doi.org/10.1109/CCGrid.2015.91

Padhy, R. P., Patra, M. R., & Satapathy, S. C. (2012). SLAs in Cloud Systems : The Business
Perspective. International Journal of Computer Science and Technology, 8491, 481–488.

Patel, P., Ranabahu, A., & Sheth, A. (2009). Service Level Agreement in Cloud Computing. In Cloud
Workshops at OOPSLA09 (pp. 1–10). Retrieved from
http://knoesis.wright.edu/library/download/OOPSLA_cloud_wsla_v3.pdf

PostgreSQL 9.3.9 Documentation. (2015). University of Berkeley. California, USA. Retrieved from
https://www.postgresql.org/docs/9.3/static/index.html

Ray, R. (2012). Cloud Computing: Are Small Businesses Embracing The Technology? Business
Insider, 2. Retrieved from http://www.businessinsider.com/cloud-computing-are-small-
businesses-embracing-the-technology-2012-3

Riggs, S., Ciolli, G., Krosing, H., & Bartolini, G. (2015). PostgreSQL 9 Administration Cookbook (2nd
ed.). Packt Publishing - ebooks Account.

Rogers, J., Papaemmanouil, O., & Cetintemel, U. (2010). A generic auto-provisioning framework for
cloud databases. In 2010 IEEE 26th International Conference on Data Engineering Workshops
(ICDEW 2010) (pp. 63–68). IEEE. http://doi.org/10.1109/ICDEW.2010.5452746

Russell, J., & Cohn, R. (2012). Mpstat. Book on Demand Ltd. Retrieved from
http://www.linuxcommand.org/man_pages/mpstat1.html

Sanderson, D. (2012). Programming Google App Engine: (2nd ed.). O’Reilly Media | Google Press.
Retrieved from cloud.google.com/appengine

Schad, J., Dittrich, J., & Quiané-Ruiz, J.-A. (2010). Runtime measurements in the cloud. Proceedings
of the VLDB Endowment, 3(1-2), 460–471. http://doi.org/10.14778/1920841.1920902

Selinger, P. G. (1979). Access Path Selection in a Relational DBMS. In SIGMOD (pp. 23–24).
Boston, USA.

Sharma, U., Shenoy, P., Sahu, S., & Shaikh, A. (2010). Kingfisher: A system for elastic cost-aware
provisioning in the cloud. Technical Report UM-CS-2010-005. Retrieved from
http://web.cs.umass.edu/publication/docs/2010/UM-CS-2010-005.pdf

Sharma, U., Shenoy, P., Sahu, S., & Shaikh, A. (2011). A Cost-Aware Elasticity Provisioning System
for the Cloud. In 31st International Conference on Distributed Computing Systems (ICDCS’11)

http://code-industry.net/

References

 139

(pp. 559–570). Washignton, DC, USA: IEEE Computer Society.
http://doi.org/10.1109/ICDCS.2011.59

Siegel, J., & Perdue, J. (2012). Cloud services measures for global use: The Service Measurement
Index (SMI). Annual SRII Global Conference, SRII, 411–415.
http://doi.org/10.1109/SRII.2012.51

System Analysis and Tuning Guide. (2015). USA. Retrieved from
https://www.suse.com/documentation/sles-12/pdfdoc/book_sle_tuning/book_sle_tuning.pdf

Tpc BenchmarkTM Ds. (2012). Retrieved from http://www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf

Vaulx, F. D., Simmon, E., & Bohn, R. (2015). Cloud Computing Service Metrics Description. NIST -
National Institute of Standards and Technology - Special Publicaiton (Vol. 500). USA.

Vigfusson, Y., Silberstein, A., Cooper, B. F., & Fonseca, R. (2009). Adaptively parallelizing distributed
range queries. In Proceedings of the VLDB Endowment (Vol. 2, pp. 682–693). VLDB
Endowment. http://doi.org/10.14778/1687627.1687705

Wu, L., & Buyya, R. (2010). Service Level Agreement (SLA) in Utility Computing Systems. In
Performance and Dependability in Service Computing (Vol. abs/1010.2, pp. 1–25). IGI Global.
http://doi.org/10.4018/978-1-60960-794-4.ch001

Wu, L., Garg, S. K., & Buyya, R. (2011). SLA-Based Resource Allocation for Software as a Service
Provider (SaaS) in Cloud Computing Environments. In 2011 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (pp. 195–204). IEEE.
http://doi.org/10.1109/CCGrid.2011.51

Yin, S., Hameurlain, A., & Morvan, F. (2015). Robust Query Optimization Methods With Respect to
Estimation Errors. ACM SIGMOD Record, 44(3), 25–36.
http://doi.org/10.1145/2854006.2854012

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., & Sheng, Q. Z. (2003). Quality Driven Web
Services Composition. In Proceedings of the 12th International Conference on World Wide Web
(pp. 411–421). New York, NY, USA: ACM. http://doi.org/10.1145/775152.775211

Zeng, L., Benatallah, B., H.H. Ngu, A., Dumas, M., Kalagnanam, J., & Chang, H. (2004). QoS-Aware
Middleware for Web Services Composition. IEEE Trans. Softw. Eng., 30(5), 311–327.
http://doi.org/10.1109/TSE.2004.11

Zhang, L., & Ardagna, D. (2004). SLA based profit optimization in autonomic computing systems. In
Proceedings of the 2nd international conference on Service oriented computing - ICSOC ’04 (p.
173). New York, New York, USA: ACM Press. http://doi.org/10.1145/1035167.1035193

Zhao, J., Hu, X., & Meng, X. (2010). ESQP. In Proceedings of the second international workshop on
Cloud data management - CloudDB ’10 (p. 1). New York, New York, USA: ACM Press.
http://doi.org/10.1145/1871929.1871931

Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2009). WSRec: A Collaborative Filtering Based Web Service
Recommender System. In Web Services, 2009. ICWS 2009. IEEE International Conference on
(pp. 437–444). http://doi.org/10.1109/ICWS.2009.30

Zheng, Z., Zhang, Y., & Lyu, M. R. (2010). Distributed QoS Evaluation for Real-World Web Services.
In Web Services (ICWS), 2010 IEEE International Conference on (pp. 83–90).
http://doi.org/10.1109/ICWS.2010.10

Zhou, A., Wang, S., Zheng, Z., Hsu, C.-H., Lyu, M., & Yang, F. (2014). On Cloud Service Reliability

http://code-industry.net/

References

 140

Enhancement with Optimal Resource Usage. IEEE Transactions on Cloud Computing, PP(99),
1–1. http://doi.org/10.1109/TCC.2014.2369421

http://code-industry.net/

Annex

http://code-industry.net/

http://code-industry.net/

Annex A1 – Type 1 requests

 143

Annex A1 – Type 1 requests

1. select * from catalog_sales where cs_item_sk >= 1 and cs_item_sk < 300000;

2. select * from catalog_sales where cs_bill_hdemo_sk > 150000;

3. select * from catalog_sales where cs_item_sk >= 300001 and cs_item_sk < 600000;

4. select * from catalog_sales where cs_item_sk > 600000;

5. select * from catalog_sales where cs_item_sk >= 600001 and cs_item_sk < 900000;

6. select * from catalog_sales where cs_item_sk >= 900001 and cs_item_sk < 1200000;

7. select * from catalog_sales where cs_item_sk >= 1200001 and cs_item_sk < 1500000;

8. select * from catalog_sales where cs_item_sk = 900000;

9. select * from catalog_sales where cs_item_sk >= 1500001 and cs_item_sk < 1800000;

10. select cs_bill_hdemo_sk from catalog_sales;

11. select * from catalog_sales where cs_item_sk >= 1800001 and cs_item_sk < 2100000;

12. select * from catalog_sales where cs_bill_hdemo_sk >= 1800001 and cs_bill_hdemo_sk <

2100000;

13. select * from catalog_sales where cs_item_sk >= 2100000 and cs_item_sk < 2400000;

14. select * from catalog_sales where cs_bill_hdemo_sk >= 2100001 and cs_bill_hdemo_sk <

2400000;

15. select * from catalog_sales where cs_item_sk >= 2400001 and cs_item_sk < 2700000;

16. select * from catalog_sales where cs_bill_hdemo_sk >= 2400001 and cs_bill_hdemo_sk <

2700000;

17. select * from catalog_sales where cs_item_sk >= 2700001 and cs_item_sk < 3000000;

18. select * from catalog_sales where cs_bill_hdemo_sk >= 2700001 and cs_bill_hdemo_sk <

3000000;

19. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 1 and cs_item_sk <

http://code-industry.net/

Annex A1 – Type 1 requests

 144

300000;

20. select SUM(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000;

21. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 300001 and

cs_item_sk < 600000;

22. select SUM(cs_item_sk) from catalog_sales where cs_item_sk > 600000;

23. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 600001 and cs_item_sk

< 900000;

24. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 900001 and cs_item_sk

< 1200000;

25. select SUM(cs_item_sk) from catalog_sales where cs_item_sk >= 1200001 and cs_item_sk <

1500000;

26. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000;

27. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 1500001 and

cs_item_sk < 1800000;

28. select SUM(cs_bill_hdemo_sk) from catalog_sales;

29. select SUM(cs_item_sk) from catalog_sales where cs_item_sk >= 1800001 and cs_item_sk <

2100000;

30. select SUM(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 1800001 and

cs_bill_hdemo_sk < 2100000;

31. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2100000 and

cs_item_sk < 2400000;

32. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk >= 2100001 and

cs_bill_hdemo_sk < 2400000;

33. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2400001 and

cs_item_sk < 2700000;

34. select SUM(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 2400001 and

cs_bill_hdemo_sk < 2700000;

35. select SUM(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2700001 and

http://code-industry.net/

Annex A1 – Type 1 requests

 145

cs_item_sk < 3000000;

36. select SUM(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 2700001 and

cs_bill_hdemo_sk < 3000000;

37. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 1 and cs_item_sk <

300000;

38. select AVG(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000;

39. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 300001 and cs_item_sk

< 600000;

40. select AVG(cs_item_sk) from catalog_sales where cs_item_sk > 600000;

41. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 600001 and cs_item_sk

< 900000;

42. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 900001 and cs_item_sk

< 1200000;

43. select AVG(cs_item_sk) from catalog_sales where cs_item_sk >= 1200001 and cs_item_sk <

1500000;

44. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000;

45. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 1500001 and

cs_item_sk < 1800000;

46. select AVG(cs_bill_hdemo_sk) from catalog_sales;

47. select AVG(cs_item_sk) from catalog_sales where cs_item_sk >= 1800001 and cs_item_sk <

2100000;

48. select AVG(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 1800001 and

cs_bill_hdemo_sk < 2100000;

49. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2100000 and

cs_item_sk < 2400000;

50. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk >= 2100001 and

cs_bill_hdemo_sk < 2400000;

51. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2400001 and

http://code-industry.net/

Annex A1 – Type 1 requests

 146

cs_item_sk < 2700000;

52. select AVG(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 2400001 and

cs_bill_hdemo_sk < 2700000;

53. select AVG(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2700001 and

cs_item_sk < 3000000;

54. select AVG(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 2700001 and

cs_bill_hdemo_sk < 3000000;

55. select COUNT(*) from catalog_sales where cs_item_sk >= 1 and cs_item_sk < 300000;

56. select COUNT(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000;

57. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 300001 and

cs_item_sk < 600000;

58. select COUNT(*) from catalog_sales where cs_item_sk > 600000;

59. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 600001 and

cs_item_sk < 900000;

60. select COUNT(*) from catalog_sales where cs_item_sk >= 900001 and cs_item_sk < 1200000;

61. select COUNT(cs_item_sk) from catalog_sales where cs_item_sk >= 1200001 and cs_item_sk <

1500000;

62. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000;

63. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 1500001 and

cs_item_sk < 1800000;

64. select COUNT(cs_bill_hdemo_sk) from catalog_sales;

65. select COUNT(cs_item_sk) from catalog_sales where cs_item_sk >= 1800001 and cs_item_sk <

2100000;

66. select COUNT(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 1800001 and

cs_bill_hdemo_sk < 2100000;

67. select COUNT(*) from catalog_sales where cs_item_sk >= 2100000 and cs_item_sk < 2400000;

68. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk >= 2100001 and

http://code-industry.net/

Annex A1 – Type 1 requests

 147

cs_bill_hdemo_sk < 2400000;

69. select COUNT(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2400001 and

cs_item_sk < 2700000;

70. select COUNT(*) from catalog_sales where cs_bill_hdemo_sk >= 2400001 and cs_bill_hdemo_sk

< 2700000;

71. select COUNT(*) from catalog_sales where cs_item_sk >= 2700001 and cs_item_sk < 3000000;

72. select COUNT(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 2700001 and

cs_bill_hdemo_sk < 3000000;

73. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 1 and cs_item_sk <

300000;

74. select MIN(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000;

75. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 300001 and cs_item_sk

< 600000;

76. select MIN(cs_item_sk) from catalog_sales where cs_item_sk > 600000;

77. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 600001 and cs_item_sk

< 900000;

78. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 900001 and cs_item_sk

< 1200000;

79. select MIN(cs_item_sk) from catalog_sales where cs_item_sk >= 1200001 and cs_item_sk <

1500000;

80. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000;

81. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 1500001 and

cs_item_sk < 1800000;

82. select MIN(cs_bill_hdemo_sk) from catalog_sales;

83. select MIN(cs_item_sk) from catalog_sales where cs_item_sk >= 1800001 and cs_item_sk <

2100000;

84. select MIN(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 1800001 and

cs_bill_hdemo_sk < 2100000;

http://code-industry.net/

Annex A1 – Type 1 requests

 148

85. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2100000 and

cs_item_sk < 2400000;

86. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk >= 2100001 and

cs_bill_hdemo_sk < 2400000;

87. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2400001 and

cs_item_sk < 2700000;

88. select MIN(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 2400001 and

cs_bill_hdemo_sk < 2700000;

89. select MIN(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2700001 and

cs_item_sk < 3000000;

90. select MIN(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 2700001 and

cs_bill_hdemo_sk < 3000000;

91. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 1 and cs_item_sk <

300000;

92. select MAX(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk > 150000;

93. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 300001 and cs_item_sk

< 600000;

94. select MAX(cs_item_sk) from catalog_sales where cs_item_sk > 600000;

95. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 600001 and cs_item_sk

< 900000;

96. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 900001 and cs_item_sk

< 1200000;

97. select MAX(cs_item_sk) from catalog_sales where cs_item_sk >= 1200001 and cs_item_sk <

1500000;

98. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk = 900000;

99. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 1500001 and

cs_item_sk < 1800000;

100. select MAX(cs_bill_hdemo_sk) from catalog_sales;

http://code-industry.net/

Annex A1 – Type 1 requests

 149

101. select MAX(cs_item_sk) from catalog_sales where cs_item_sk >= 1800001 and cs_item_sk <

2100000;

102. select MAX(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 1800001 and

cs_bill_hdemo_sk < 2100000;

103. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2100000 and

cs_item_sk < 2400000;

104. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_bill_hdemo_sk >= 2100001 and

cs_bill_hdemo_sk < 2400000;

105. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2400001 and

cs_item_sk < 2700000;

106. select MAX(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 2400001 and

cs_bill_hdemo_sk < 2700000;

107. select MAX(cs_bill_hdemo_sk) from catalog_sales where cs_item_sk >= 2700001 and

cs_item_sk < 3000000;

108. select MAX(cs_item_sk) from catalog_sales where cs_bill_hdemo_sk >= 2700001 and

cs_bill_hdemo_sk < 3000000;

http://code-industry.net/

http://code-industry.net/

Annex A2 – Type 2 requests

 151

Annex A2 – Type 2 requests

1. select *

from store_sales,household_demographics,time_dim, store
where ss_sold_time_sk = time_dim.t_time_sk
and ss_hdemo_sk = household_demographics.hd_demo_sk
and ss_store_sk = s_store_sk;

2. select ss_item_sk
from store_sales, time_dim
where ss_sold_time_sk = t_time_sk;

3. select store_sales.*
from store_sales, customer_demographics, date_dim, item, promotion
where ss_sold_date_sk = d_date_sk and

ss_item_sk = i_item_sk and
ss_cdemo_sk = cd_demo_sk and
ss_promo_sk = p_promo_sk and
cd_gender = 'M';

4. select *
from store_sales,household_demographics,time_dim
where ss_sold_time_sk = time_dim.t_time_sk
and ss_hdemo_sk = household_demographics.hd_demo_sk;

5. select ss_item_sk
from store_sales, time_dim
where ss_sold_time_sk = t_time_sk and ss_item_sk > 100000;

6. select store_sales.*
from store_sales, customer_demographics, date_dim, item, promotion
where ss_sold_date_sk = d_date_sk and

ss_item_sk = i_item_sk and
ss_cdemo_sk = cd_demo_sk and
ss_promo_sk = p_promo_sk and
cd_gender = 'F';

7. select count(store.s_store_name)
from store_sales,household_demographics,time_dim, store
where ss_sold_time_sk = time_dim.t_time_sk

and ss_hdemo_sk = household_demographics.hd_demo_sk
and ss_store_sk = s_store_sk
and time_dim.t_hour = 8
and time_dim.t_minute >= 30

http://code-industry.net/

Annex A2 – Type 2 requests

 152

and household_demographics.hd_dep_count = 5

8. select i_item_id, avg(ss_quantity) agg1, avg(ss_list_price) agg2, avg(ss_coupon_amt) agg3,

avg(ss_sales_price) agg4
from store_sales, customer_demographics, date_dim, item, promotion
where ss_sold_date_sk = d_date_sk and

ss_item_sk = i_item_sk and
ss_cdemo_sk = cd_demo_sk and
ss_promo_sk = p_promo_sk;

9. select i_item_id, avg(ss_quantity)

from store_sales, customer_demographics, date_dim, item, promotion
where ss_sold_date_sk = d_date_sk and

ss_item_sk = i_item_sk and
ss_cdemo_sk = cd_demo_sk and
ss_promo_sk = p_promo_sk and
cd_gender = 'M' and
cd_marital_status = 'M' and
cd_education_status = '4 yr Degree' and
(p_channel_email = 'N' or p_channel_event = 'N') and
d_year = 2001;

10. select sum(cs_ext_discount_amt) as "excess discount amount"
from catalog_sales,item,date_dim
where i_manufact_id = 577

and i_item_sk = cs_item_sk
and d_date between '1998-03-18' and
(cast('1998-03-18' as date) + 90)
and d_date_sk = cs_sold_date_sk;

11. select 1.3 * avg(cs_ext_discount_amt)

from catalog_sales,date_dim
where cs_item_sk = i_item_sk

and d_date between '1998-03-18' and
(cast('1998-03-18' as date) + 90)
and d_date_sk = cs_sold_date_sk

12. select *

from store_sales,date_dim
where c.c_customer_sk = ss_customer_sk and

ss_sold_date_sk = d_date_sk and
d_year = 2001

13. select cd_gender, cd_marital_status, cd_education_status, count(*) cnt1, cd_purchase_estimate,

count(*) cnt2, cd_credit_rating, count(*) cnt3
from customer c,customer_address ca,customer_demographics
where c.c_current_addr_sk = ca.ca_address_sk and

http://code-industry.net/

Annex A2 – Type 2 requests

 153

cd_demo_sk = c.c_current_cdemo_sk;

14. select *

from web_sales,date_dim
where c.c_customer_sk = ws_bill_customer_sk and

ws_sold_date_sk = d_date_sk and
d_year = 2001 and
d_moy between 2 and 2+2;

15. select *

from catalog_sales,date_dim
where c.c_customer_sk = cs_ship_customer_sk and

cs_sold_date_sk = d_date_sk and
d_year = 2001 and
d_moy between 2 and 2+2;

16. select count(*)

from customer c,customer_address ca,customer_demographics
where c.c_current_addr_sk = ca.ca_address_sk and

cd_demo_sk = c.c_current_cdemo_sk;

17. select ss_item_sk

from store_sales, time_dim
where ss_sold_time_sk = t_time_sk and ss_item_sk >= 100000 and ss_item_sk < 400000;

18. select ss_item_sk

from store_sales, time_dim
where ss_sold_time_sk = t_time_sk and ss_item_sk < 900000;

19. select count(*)

from store_sales,household_demographics,time_dim, store
where ss_sold_time_sk = time_dim.t_time_sk

and ss_hdemo_sk = household_demographics.hd_demo_sk
and ss_store_sk = s_store_sk
and time_dim.t_minute >= 30
and store.s_store_name = 'ese';

http://code-industry.net/

http://code-industry.net/

Annex A3 – Type 3 requests

 155

Annex A3 – Type 3 requests

1. select count(*)
from store_sales,household_demographics,time_dim, store
where ss_sold_time_sk = time_dim.t_time_sk
 and ss_hdemo_sk = household_demographics.hd_demo_sk
 and ss_store_sk = s_store_sk
 and time_dim.t_hour = 8
 and time_dim.t_minute >= 30
 and household_demographics.hd_dep_count = 5
 and store.s_store_name = 'ese'
order by count(*);

2. select i_item_id, avg(ss_quantity) agg1, avg(ss_list_price) agg2, avg(ss_coupon_amt) agg3,
 avg(ss_sales_price) agg4
 from store_sales, customer_demographics, date_dim, item, promotion
 where ss_sold_date_sk = d_date_sk and
 ss_item_sk = i_item_sk and
 ss_cdemo_sk = cd_demo_sk and
 ss_promo_sk = p_promo_sk and
 cd_gender = 'M' and
 cd_marital_status = 'M' and
 cd_education_status = '4 yr Degree' and
 (p_channel_email = 'N' or p_channel_event = 'N') and
 d_year = 2001
 group by i_item_id
 order by i_item_id;

3. select asceding.rnk, i1.i_product_name best_performing, i2.i_product_name worst_performing
from(select *
 from (select item_sk,rank() over (order by rank_col asc) rnk
 from (select ss_item_sk item_sk,avg(ss_net_profit) rank_col
 from store_sales ss1
 where ss_store_sk = 30
 group by ss_item_sk
 having avg(ss_net_profit) > 0.9*(select avg(ss_net_profit) rank_col
 from store_sales
 where ss_store_sk = 30
 and ss_hdemo_sk is null
 group by ss_store_sk))V1)V11
 where rnk < 11) asceding,
 (select *
 from (select item_sk,rank() over (order by rank_col desc) rnk
 from (select ss_item_sk item_sk,avg(ss_net_profit) rank_col
 from store_sales ss1
 where ss_store_sk = 30

http://code-industry.net/

Annex A3 – Type 3 requests

 156

 group by ss_item_sk
 having avg(ss_net_profit) > 0.9*(select avg(ss_net_profit) rank_col
 from store_sales
 where ss_store_sk = 30
 and ss_hdemo_sk is null
 group by ss_store_sk))V2)V21
 where rnk < 11) descending,
item i1,
item i2
where asceding.rnk = descending.rnk
 and i1.i_item_sk=asceding.item_sk
 and i2.i_item_sk=descending.item_sk
order by asceding.rnk;

4. select sum(cs_ext_discount_amt) as "excess discount amount"
from
 catalog_sales,item,date_dim
where i_manufact_id = 577
and i_item_sk = cs_item_sk
and d_date between '1998-03-18' and
 (cast('1998-03-18' as date) + 90)
and d_date_sk = cs_sold_date_sk
and cs_ext_discount_amt
 > (
 select 1.3 * avg(cs_ext_discount_amt)
 from catalog_sales,date_dim
 where cs_item_sk = i_item_sk
 and d_date between '1998-03-18' and
 (cast('1998-03-18' as date) + 90)
 and d_date_sk = cs_sold_date_sk
);

5. select cd_gender, cd_marital_status, cd_education_status, count(*) cnt1, cd_purchase_estimate,
 count(*) cnt2, cd_credit_rating, count(*) cnt3
 from customer c,customer_address ca,customer_demographics
 where c.c_current_addr_sk = ca.ca_address_sk and
 ca_state in ('KS','ND','WV') and
 cd_demo_sk = c.c_current_cdemo_sk and
 exists (select *
 from store_sales,date_dim
 where c.c_customer_sk = ss_customer_sk and
 ss_sold_date_sk = d_date_sk and
 d_year = 2001 and
 d_moy between 2 and 2+2) and
 (not exists (select *
 from web_sales,date_dim

http://code-industry.net/

Annex A3 – Type 3 requests

 157

 where c.c_customer_sk = ws_bill_customer_sk and
 ws_sold_date_sk = d_date_sk and
 d_year = 2001 and
 d_moy between 2 and 2+2) and
 not exists (select *
 from catalog_sales,date_dim
 where c.c_customer_sk = cs_ship_customer_sk and
 cs_sold_date_sk = d_date_sk and
 d_year = 2001 and
 d_moy between 2 and 2+2))
 group by cd_gender, cd_marital_status, cd_education_status, cd_purchase_estimate,
 cd_credit_rating
 order by cd_gender, cd_marital_status, cd_education_status, cd_purchase_estimate,
 cd_credit_rating;

6. WITH all_sales AS (
 SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id
 ,SUM(sales_cnt) AS sales_cnt
 ,SUM(sales_amt) AS sales_amt
 FROM (SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id
 ,cs_quantity - COALESCE(cr_return_quantity,0) AS sales_cnt
 ,cs_ext_sales_price - COALESCE(cr_return_amount,0.0) AS sales_amt
 FROM catalog_sales JOIN item ON i_item_sk=cs_item_sk
 JOIN date_dim ON d_date_sk=cs_sold_date_sk
 LEFT JOIN catalog_returns ON (cs_order_number=cr_order_number
 AND cs_item_sk=cr_item_sk)
 WHERE i_category='Shoes'
 UNION
 SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id
 ,ss_quantity - COALESCE(sr_return_quantity,0) AS sales_cnt
 ,ss_ext_sales_price - COALESCE(sr_return_amt,0.0) AS sales_amt
 FROM store_sales JOIN item ON i_item_sk=ss_item_sk
 JOIN date_dim ON d_date_sk=ss_sold_date_sk
 LEFT JOIN store_returns ON (ss_ticket_number=sr_ticket_number
 AND ss_item_sk=sr_item_sk)
 WHERE i_category='Shoes'
 UNION
 SELECT d_year,i_brand_id,i_class_id,i_category_id,i_manufact_id
 ,ws_quantity - COALESCE(wr_return_quantity,0) AS sales_cnt
 ,ws_ext_sales_price - COALESCE(wr_return_amt,0.0) AS sales_amt
 FROM web_sales JOIN item ON i_item_sk=ws_item_sk
 JOIN date_dim ON d_date_sk=ws_sold_date_sk
 LEFT JOIN web_returns ON (ws_order_number=wr_order_number
 AND ws_item_sk=wr_item_sk)
 WHERE i_category='Shoes') sales_detail
 GROUP BY d_year, i_brand_id, i_class_id, i_category_id, i_manufact_id)
 SELECT prev_yr.d_year AS prev_year,curr_yr.d_year AS year,curr_yr.i_brand_id
 ,curr_yr.i_class_id,curr_yr.i_category_id,curr_yr.i_manufact_id

http://code-industry.net/

Annex A3 – Type 3 requests

 158

 ,prev_yr.sales_cnt AS prev_yr_cnt,curr_yr.sales_cnt AS curr_yr_cnt
 ,curr_yr.sales_cnt-prev_yr.sales_cnt AS sales_cnt_diff
 ,curr_yr.sales_amt-prev_yr.sales_amt AS sales_amt_diff
 FROM all_sales curr_yr, all_sales prev_yr
 WHERE curr_yr.i_brand_id=prev_yr.i_brand_id AND curr_yr.i_class_id=prev_yr.i_class_id
 AND curr_yr.i_category_id=prev_yr.i_category_id AND curr_yr.i_manufact_id=prev_yr.i_manufact_id
 AND curr_yr.d_year=2000 AND prev_yr.d_year=2000-1
 AND CAST(curr_yr.sales_cnt AS DECIMAL(17,2))/CAST(prev_yr.sales_cnt AS DECIMAL(17,2))<0.9
 ORDER BY sales_cnt_diff;

7. with ssr as
 (select s_store_id as store_id,
 sum(ss_ext_sales_price) as sales,
 sum(coalesce(sr_return_amt, 0)) as returns,
 sum(ss_net_profit - coalesce(sr_net_loss, 0)) as profit
 from store_sales left outer join store_returns on
 (ss_item_sk = sr_item_sk and ss_ticket_number = sr_ticket_number),
 date_dim, store, item,promotion
 where ss_sold_date_sk = d_date_sk
 and d_date between cast('2000-08-10' as date)
 and (cast('2000-08-10' as date) + 30)
 and ss_store_sk = s_store_sk
 and ss_item_sk = i_item_sk
 and i_current_price > 50
 and ss_promo_sk = p_promo_sk
 and p_channel_tv = 'N'
 group by s_store_id)
 ,
 csr as
 (select cp_catalog_page_id as catalog_page_id,
 sum(cs_ext_sales_price) as sales,
 sum(coalesce(cr_return_amount, 0)) as returns,
 sum(cs_net_profit - coalesce(cr_net_loss, 0)) as profit
 from catalog_sales left outer join catalog_returns on
 (cs_item_sk = cr_item_sk and cs_order_number = cr_order_number),
 date_dim, catalog_page, item, promotion
 where cs_sold_date_sk = d_date_sk
 and d_date between cast('2000-08-10' as date)
 and (cast('2000-08-10' as date) + 30)
 and cs_catalog_page_sk = cp_catalog_page_sk
 and cs_item_sk = i_item_sk
 and i_current_price > 50
 and cs_promo_sk = p_promo_sk
 and p_channel_tv = 'N'
group by cp_catalog_page_id)
 ,
 wsr as

http://code-industry.net/

Annex A3 – Type 3 requests

 159

 (select web_site_id,
 sum(ws_ext_sales_price) as sales,
 sum(coalesce(wr_return_amt, 0)) as returns,
 sum(ws_net_profit - coalesce(wr_net_loss, 0)) as profit
 from web_sales left outer join web_returns on
 (ws_item_sk = wr_item_sk and ws_order_number = wr_order_number),
 date_dim, web_site, item, promotion
 where ws_sold_date_sk = d_date_sk
 and d_date between cast('2000-08-10' as date)
 and (cast('2000-08-10' as date) + 30)
 and ws_web_site_sk = web_site_sk
 and ws_item_sk = i_item_sk
 and i_current_price > 50
 and ws_promo_sk = p_promo_sk
 and p_channel_tv = 'N'
group by web_site_id)
 select channel, id, sum(sales) as sales, sum(returns) as returns, sum(profit) as profit
 from (select 'store channel' as channel, 'store' || store_id as id, sales, returns, profit
 from ssr
 union all
 select 'catalog channel' as channel, 'catalog_page' || catalog_page_id as id, sales, returns, profit
 from csr
 union all
 select 'web channel' as channel, 'web_site' || web_site_id as id, sales, returns, profit
 from wsr
) x
 group by channel, id
 order by channel,id;

8. select i_brand_id brand_id, i_brand brand, i_manufact_id, i_manufact,
 sum(ss_ext_sales_price) ext_price
 from date_dim, store_sales, item,customer,customer_address,store
 where d_date_sk = ss_sold_date_sk and ss_item_sk = i_item_sk
 and i_manager_id=13 and d_moy=11
 and d_year=2001 and ss_customer_sk = c_customer_sk
 and c_current_addr_sk = ca_address_sk and substr(ca_zip,1,5) <> substr(s_zip,1,5)
 and ss_store_sk = s_store_sk
 group by i_brand,i_brand_id,i_manufact_id,i_manufact
 order by ext_price desc,i_brand,i_brand_id,i_manufact_id,i_manufact;

9. with ws as
 (select d_year AS ws_sold_year, ws_item_sk,
 ws_bill_customer_sk ws_customer_sk,
 sum(ws_quantity) ws_qty,
 sum(ws_wholesale_cost) ws_wc,

http://code-industry.net/

Annex A3 – Type 3 requests

 160

 sum(ws_sales_price) ws_sp
 from web_sales
 left join web_returns on wr_order_number=ws_order_number and ws_item_sk=wr_item_sk
 join date_dim on ws_sold_date_sk = d_date_sk
 where wr_order_number is null
 group by d_year, ws_item_sk, ws_bill_customer_sk
),
cs as
 (select d_year AS cs_sold_year, cs_item_sk,
 cs_bill_customer_sk cs_customer_sk,
 sum(cs_quantity) cs_qty,
 sum(cs_wholesale_cost) cs_wc,
 sum(cs_sales_price) cs_sp
 from catalog_sales
 left join catalog_returns on cr_order_number=cs_order_number and cs_item_sk=cr_item_sk
 join date_dim on cs_sold_date_sk = d_date_sk
 where cr_order_number is null
 group by d_year, cs_item_sk, cs_bill_customer_sk
),
ss as
 (select d_year AS ss_sold_year, ss_item_sk,
 ss_customer_sk,
 sum(ss_quantity) ss_qty,
 sum(ss_wholesale_cost) ss_wc,
 sum(ss_sales_price) ss_sp
 from store_sales
 left join store_returns on sr_ticket_number=ss_ticket_number and ss_item_sk=sr_item_sk
 join date_dim on ss_sold_date_sk = d_date_sk
 where sr_ticket_number is null
 group by d_year, ss_item_sk, ss_customer_sk
)
 select
ss_sold_year, ss_item_sk, ss_customer_sk,
round(ss_qty/(coalesce(ws_qty+cs_qty,1)),2) ratio,
ss_qty store_qty, ss_wc store_wholesale_cost, ss_sp store_sales_price,
coalesce(ws_qty,0)+coalesce(cs_qty,0) other_chan_qty,
coalesce(ws_wc,0)+coalesce(cs_wc,0) other_chan_wholesale_cost,
coalesce(ws_sp,0)+coalesce(cs_sp,0) other_chan_sales_price
from ss
left join ws on (ws_sold_year=ss_sold_year and ws_item_sk=ss_item_sk and
ws_customer_sk=ss_customer_sk)
left join cs on (cs_sold_year=ss_sold_year and cs_item_sk=cs_item_sk and
cs_customer_sk=ss_customer_sk)
where coalesce(ws_qty,0)>0 and coalesce(cs_qty, 0)>0 and ss_sold_year=1999
order by
 ss_sold_year, ss_item_sk, ss_customer_sk,
 ss_qty desc, ss_wc desc, ss_sp desc,
 other_chan_qty,

http://code-industry.net/

Annex A3 – Type 3 requests

 161

 other_chan_wholesale_cost,
 other_chan_sales_price,
 round(ss_qty/(coalesce(ws_qty+cs_qty,1)),2);

10. with wss as
 (select d_week_seq,
 ss_store_sk,
 sum(case when (d_day_name='Sunday') then ss_sales_price else null end) sun_sales,
 sum(case when (d_day_name='Monday') then ss_sales_price else null end) mon_sales,
 sum(case when (d_day_name='Tuesday') then ss_sales_price else null end) tue_sales,
 sum(case when (d_day_name='Wednesday') then ss_sales_price else null end) wed_sales,
 sum(case when (d_day_name='Thursday') then ss_sales_price else null end) thu_sales,
 sum(case when (d_day_name='Friday') then ss_sales_price else null end) fri_sales,
 sum(case when (d_day_name='Saturday') then ss_sales_price else null end) sat_sales
 from store_sales,date_dim
 where d_date_sk = ss_sold_date_sk
 group by d_week_seq,ss_store_sk
) select s_store_name1,s_store_id1,d_week_seq1
 ,sun_sales1/sun_sales2,mon_sales1/mon_sales2
 ,tue_sales1/tue_sales2,wed_sales1/wed_sales2,thu_sales1/thu_sales2
 ,fri_sales1/fri_sales2,sat_sales1/sat_sales2
 from (select s_store_name s_store_name1,wss.d_week_seq d_week_seq1
 ,s_store_id s_store_id1,sun_sales sun_sales1
 ,mon_sales mon_sales1,tue_sales tue_sales1
 ,wed_sales wed_sales1,thu_sales thu_sales1
 ,fri_sales fri_sales1,sat_sales sat_sales1
 from wss,store,date_dim d
 where d.d_week_seq = wss.d_week_seq and
 ss_store_sk = s_store_sk and
 d_month_seq between 1200 and 1200 + 11) y,
 (select s_store_name s_store_name2,wss.d_week_seq d_week_seq2
 ,s_store_id s_store_id2,sun_sales sun_sales2
 ,mon_sales mon_sales2,tue_sales tue_sales2
 ,wed_sales wed_sales2,thu_sales thu_sales2
 ,fri_sales fri_sales2,sat_sales sat_sales2
 from wss,store,date_dim d
 where d.d_week_seq = wss.d_week_seq and ss_store_sk = s_store_sk and
 d_month_seq between 1200+ 12 and 1200 + 23) x
 where s_store_id1=s_store_id2
 and d_week_seq1=d_week_seq2-52
 order by s_store_name1,s_store_id1,d_week_seq1;

http://code-industry.net/

http://code-industry.net/

Annex A4 – paper 1 – (2013)

 163

Annex A4 – paper 1 – (2013)

Adaptive Query Processing in Cloud Database
Systems

Clayton Maciel Costa
HASLab / INESC TEC

Instituto Federal do Rio Grande do Norte / Univ. do Minho
Ipanguaçu, Brasil / Braga, Portugal

clayton.maciel@ifrn.edu.br

António Luís Sousa
 HASLab / INESC TEC

 Universidade do Minho
Braga, Portugal

als@di.uminho.pt

Abstract – In cloud environments, resources should be acquired
and released automatically and quickly at runtime. Thereby, the
implementation of traditional query optimization strategies in
cloud platforms can have a poor performance, because they cannot
predict future availability and/or release of resources. In such
scenarios, adaptive query processing can adapt itself to the
available resources to run queries and, consequently, present an
acceptable performance in response to a query. However,
traditional and adaptive query optimizers main objective is to
reduce response time. Moreover, in the context of cloud
computing, users and providers of services expect to get answers
in time to guarantee the SLA. Therefore, we propose a framework
that uses adaptive query processing based on heuristic rules and
cost of failing the SLA. It will be implemented on structured data,
considering that some cloud computing platforms support SQL
queries directly or indirectly, which makes this problem relevant.

Keywords—cloud computing; database systems; adaptive query
processing

I. INTRODUCTION
In the cloud computing model, the cloud providers have to

optimize their profits while servicing several clients. This is
obtained recurring to some level of abstraction (virtualization)
according to the type of service, such as: storage, processing,
bandwidth and active user accounts. To guarantee the quality of
service (QoS - Quality of Service) there are SLA (Service Level
Agreement) associated to the service delivery. The SLA is a
contract formalized between a cloud service provider and its
customers that define the level of service expected from the
service provider. SLAs are output-based in that their purpose is
specifically to define what the customer will receive. The SLA
provides several metrics on the levels of availability,
functionality, performance, penalties, billing etc [1, 2, 3]. In this
work, we use the Service Response Time SLA metric, which is
the total time between the instance the query is presented to the
system and the time it completes its execution in the system.

Following this context, adaptive query processing has the
ability to dynamically and automatically allocate or release
resources (elasticity of resources) during the query runtime. This
technique is very important when statistical information about
the services available may be minimal and the availability of
physical resources may change. This is a typical scenario of
cloud environments. However, traditional and adaptive query

optimzers' main objective is to reduce response time. Moreover,
in the context of cloud computing, users and providers of
services expect to get answers in time to guarantee the service
SLA. Therefore, we propose a framework that uses adaptive
query processing based on heuristic rules and the cost of failing
the SLA. Figure 1 presents the Framework Architecture which
uses dynamic re-optimization techniques. The Section II
presents briefly related works and the Section III we explain in
detail each component of Framework. Finally, Section IV shows
the conclusions.

Data Query
Request

Query
Results

...

Local Data 1
Subquery execution
Result Returning

Local Data 2
Subquery execution
Result Returning

Local Data N
Subquery execution
Result Returning

Slave Nodes

Subqueries Parcial Results

Dynamic Query Optimizer (DQO)

Dynamic Query Scheduler (DQS)

Communication Manager (CM)

SLA Metric and Query Fragment
Evaluator (SLAMQFE)

Query
Execution

Plan (QEP)

Scheduling
Plan

QEP
Redesign

QEP
Redesign

Subquery Execution
Concurrently

Framework

Master Nodes
SLA

Metrics

Meta
Data

Request

Application Client

Fig. 1. Framework Architecture

II. RELATED WORK
There are several works related to efficient query processing

in cloud database systems [3, 4, 5]. Most of these works provide
the basis for new technologies of query
processing/optimization. For instance, ESQP, an efficient SQL
query processing algorithm using data replicas in cloud storage,
it is based on traditional techniques of parallel/distributed
DBMS, such as use of index and pipeline [4]. SLA-Tree
improves the efficiency using scheduling (environment of
multiple queries with different profiles to be executed),

http://code-industry.net/

Annex A4 – paper 1 – (2013)

 164

.

[4]. SLA-Tree improves the efficiency using scheduling
(environment of multiple queries with different profiles to be
executed), dispatching (environment of several servers for one
query to be execute), and capacity planning (current dynamic
workload) [5]. These problems are very important to cloud
database systems and they are based on classic techniques.

I. FRAMEWORK
 Our framework integrates adaptive/dynamic re-optimization
techniques by performing distributed queries in several steps.
Each component of the Framework (Figure 1) utilizes adaptive
strategies applied at runtime of the query and their costs are
based on the Service Response Time QoS parameter, defined by
SMI-CSMIC consortium [1, 2]. The components are specified
below:

Dynamic Query Optimizer (DQO): It is used to construct an
optimized query plan based on Service Response Time. The
main difference of traditional optimizers is to construct query
plans considering the SLA time restriction. For this purpose, it
is important to consider that the initial SLA time agreed must be
sufficient, observing the technological limits of the service
provider.

Dynamic Query Scheduler (DQS): It is used to schedule the
execution of distributed query plans. This component optimizes
dynamically the queries at runtime, which is based on Service
Response Time and the variation of resources utilized to process
the query (for instance, average CPU utilization, available
memory and estimated rates to processing of each slave node).
Indeed, the queries submitted to DQS will be processed in the
"best hosts" among all available slave nodes. In this work, the
definition of a "best hosts group" depends on system variables,
such as: available resources, resources needed to meet SLA
requirements and optimization objectives, which can relate
directly with SLA requirements, for instance, minimizing costs
and maximizing the probability of success, or can relate
indirectly, for example, the better workload balancing.

SLA Metric and Query Fragment Evaluator (SLAMQFE):
Given an optimized and scheduled query plan, the aim of this
component is to monitor the query execution. In case of being
necessary to make a re-optimizing, the component loads the
query to DQS component. The monitoring verifies, periodically,
the probability of a query to be executed before a SLA time
restriction. Therefore, the SLAMQFE reevaluates periodically
all queries execution plans at runtime to check the probability of
violate the SLA, whether the probability is low, the query
continues its execution, otherwise, the query will be re-
optimized. The probability is estimated according to DBMS
metadata of slave nodes, slave nodes configurations, the query
plans and a statistical table with specific maximum service
response time. The statistical table serves as a cache, as it is
storing successful probabilities (queries that did not violate the
SLA time) of previously executed queries. The table aids to
reduce the computing overhead to calculate an estimated time to
execute a query. Furthermore, it will be automatically populated
by the Framework according to its use. The Table I presents the
SLAMQFE component algorithm.

TABLE I. SLAMQFE COMPONENT ALGORITHM

SLAMQFE ALGORITHM (Q, TLSLA): RETURN Tr
 TLSLA; //SLA Time.
 Tr = 0; //Query Processing Total Time. Default = 0.
 Tini; //Query Processing Start Time.
 Tprop; //Average Time Estimated to Process Completely the Query Q.
 TabProp; //Statistical Table.
 SlaveNode[]; // Slave Nodes Available.
 Q; //Query Plan.
1. BEGIN
2. Tini = getCurrentTime();
3. Tprop = SlaveNode[i..i+1].getSRT().comparedTo(execute(Q));
4. IF (Tprop > TLSA) THEN
5. SlaveNode[i..i+1] = new SlaveNode(); //New Slave Node Instances
6. Schedule SubQueryPlan[j..j+1] for SlaveNode[i..i+1];
7. Tr = Tr + (getCurrentTime() - Tini);
8. Tr += (SLAMQFE(SubQueryPlan[j..j+1],(TLSA-Tr)));
9. ELSE
10. SlaveNode[i..i+1] = execute(Q); //Query Processing on Slave Node
11. Tr = Tr + (getCurrentTime() - Tini);
12. TabProp[k..k+1] = Q and Tr; //Statistical Table
13. ENDIF
14. RETURN Tr;
15. END

 In the case that the query cannot be executed before time
SLA, the Framework must calculate the execution time nearer
to SLA time and the cloud provider must inform to the customer,
discussing the penalties. In this case, the adaptive optimization
traditional algorithm will execute because at this moment the
fastest response time becomes more important than the SLA
time.

II. CONCLUSION
In this work, we present a Framework using adaptive

techniques to efficient processing of queries in cloud database
systems. Our solution is restricted to requests of database access
and it based on the QoS parameters, formalized by SMI-CSMIC
consortium [1, 2]. Furthermore, our approach has not restriction
of elasticity and/or scalability of their algorithms and it is non-
intrusive. In future work, we intend to realize experiments on
large scale with large volume of data and queries in the cloud.

REFERENCES
[1] “Cloud Service Measurement Index Consortium (CSMIC)”. URL:

http://www.cloudcommons.com/group/cloud-service-measurement-
initiative-consortium/home.

[2] S. K. Garg, S. Versteeg and R. Buyya, “A framework for ranking of cloud
computing services”, Future Gener. Comput. Syst. 29, pp. 1012-1023.
DOI=10.1016/j.future.2012.06.006, 2012.

[3] R. Buyya, S. K. Garg and R. N. Calheiros, “SLA-oriented resource
provisioning for cloud computing: Challenges, architecture, and
solutions”, Proceedings of the 2011 International Conference on Cloud
and Service Computing (CSC '11). IEEE Computer Society, Washington,
DC, USA, 1-10. DOI=10.1109/CSC.2011.6138522, 2011.

[4] J. Zhao, X. Hu and X. Meng, “ESQP: an efficient SQL query processing
for cloud data management”, Proceedings of the second international
workshop on Cloud data management (CloudDB '10). ACM, New York,
NY, USA, pp. 1-8. DOI=10.1145/1871929.1871931, 2010.

[5] Y. Chi, H. J. Moon, H. Hacig\&\#252;m\&\#252;\&\#351 and J.
Tatemura, “SLA-tree: a framework for efficiently supporting SLA-based
decisions in cloud computing”, Proceedings of the 14th International
Conference on Extending Database Technology (EDBT/ICDT '11),
Anastasia Ailamaki, Sihem Amer-Yahia, Jignesh Pate, Tore Risch, Pierre
Senellart, and Julia Stoyanovich (Eds.). ACM, New York, NY, USA, pp.
129-140. DOI=10.1145/1951365.1951383, 2011.

http://code-industry.net/

Annex A5 – paper 2 – (2015)

 165

Annex A5 – paper 2 – (2015)

Service Response Time Measurement Model of Service Level Agreements in Cloud
Environment

Clayton Maciel Costa
High-Assurance Software Lab /

INESC TEC
Instituto Federal do Rio Grande do

Norte / Universidade do Minho
Ipanguaçu, Brasil / Braga, Portugal

clayton.maciel@ifrn.edu.br

Cicília Raquel Maia Leite
Software Engineering Lab

Universidade do Estado do Rio
Grande do Norte
Mossoró, Brasil

ciciliamaia@gmail.com

António Luís Sousa
 High-Assurance Software Lab /

INESC TEC
 Universidade do Minho

Braga, Portugal
als@di.uminho.pt

Abstract – In cloud environments, resources should be acquired

and released automatically and quickly at runtime. Therefore,
ensuring the desired QoS is a great challenge for the cloud service
provider. Moreover, it increases when we have large amount of
data to be manipulated in this environment. Considering that,
performance is an important requirement for most customers
when they migrate their applications to the cloud. In this paper,
we propose a model for measuring a Service Response Time
estimated for different request types on large databases available
in a cloud environment. This work allows the cloud service
provider and its customers establish an appropriate SLA relative
to performance expected of services available in the cloud. Finally,
the model was evaluated in Amazon EC2 cloud infrastructure and
the TPC-DS like benchmark was used for generating a database
of structured data, considering that some cloud computing
platforms support SQL queries directly or indirectly. This makes
the proposed solution relevant for these kind of problems.

Keywords-cloud computing; service level agreement;
performance; service response time

I. INTRODUCTION
In the cloud computing model, the cloud providers have to

optimize their profits while servicing several customers. This is
obtained recurring to some level of abstraction (virtualization)
according to the type of service, such as: storage, processing,
bandwidth and active user accounts [1]. To ensure QoS (Quality
of Service), there are SLA (Service Level Agreements)
associated to the service delivery. The SLA is a formal contract
defined between a cloud service provider and its customers that
describe the level of service expected from provider. SLAs are
output-based in that their purpose is specifically to define what
the customers expect to receive. The SLA is composed of
several metrics on the levels of availability, functionality,
performance, penalties, billing, etc [1, 2, 9]. In this work, our
focus is the SRT (Service Response Time) performance
parameter of SLA, which corresponds to the total time between
time that the request/query arrives to the provider and at the time
it completes its execution in the system.

The performance metrics in the SLA, including SRT, is one
of the most important requirements for most of customers when
they migrate their applications to the cloud, as it relates to
expectations of their applications in the cloud performance.
From the user’s point of view, this parameter is considered one
of the main QoS parameters [4]. However, nowadays one can
see that the major cloud providers like Amazon [5, 6] and

Google [7] emphasizing guaranteeing of availability, CPU
instance and cost measure. Therefore, the SRT parameter is not
completely handled or inappropriately treated in SLA.
Therefore, in order to ensure customer expectations relative to
performance, cloud service providers have to understand how to
incorporate suitably the SRT parameter in their SLA.

The measuring of SRT parameter in SLA is a very complex
task because it depends on many system variables, such as
request type, database model and current rate system
performance. Furthermore, it is common in a cloud environment
that the requests rate is highly unpredictable. Therefore,
guaranteeing a specific response time for any level of request
rate is regarded as a significant challenge to the paradigm of
cloud computing. Moreover, the growth of data stored in the
cloud makes this challenge ever harder.

Thereby, in this paper, we propose a model for estimating
the SRT for different types of requests on large databases
available in the cloud environment. Our propose is to allow the
cloud service provider and its clients to establish an appropriate
SLA relative to SRT performance of services available in the
cloud. The proposed model is a non-intrusive solution and it can
be applied when companies wish to migrate their applications,
OLAP or not, to cloud services providers, with the goal to
allocate computational resources on demand, to ensure the
quality of service in terms of service response time. Finally, the
model was evaluated utilizing Amazon EC2 cloud infrastructure
small instances type and the TPC-DS [8] like benchmark was
used only for generating an OLAP database of structured data,
considering that some cloud computing platforms support SQL
queries directly or indirectly, this makes the proposed solution
suitable for these kind of problems.

This paper is organized as follows. Section II presents related
works. Section III presents the SRT definition, its measurement
model, and finally, their tools. Section IV shows the experiments
of proposed model. Finally, Section V shows the conclusions
and future works.

II. RELATED WORKS
In the context of SLA agreements, it is possible to identify

two important research areas:
(i) QoS Parameters Definition: currently we have many
cloud providers offering different prices, parameters and

performance levels, even different services with when those
providers offer similar services. In addition, several

http://code-industry.net/

Annex A5 – paper 2 – (2015)

 166

infrastructure [2, 9]. Thereby, there is a wide range of different
contracts with different SLA requirements. Thus, it becomes
difficult for a customer to choose the most suitable provider to
migrate their applications. For example, in [1, 2, 9] the authors
are focused on the definition and measurement of SLA
parameters in general. Then, they have main objective to define
a global view of QoS parameters and their metrics used by
cloud service providers. In context of this paper, the authors
define the SRT how fast the service is ready for use. Moreover,
they do not define the time of effective execution of any request.
(ii) QoS Parameters Ensure: The provider must consider how
to optimize the use of resources and how to preserve the QoS
parameters that it must be guaranteed according to SLA. In this
scenario, it is very important to consider the possibility of new
requests and their priorities; even when running other tasks, the
provider must use efficiently the resources to guarantee the
requirements. For example, financial organizations usually
require security and privacy QoS requirements, but for
example, the availability QoS requirement, although important,
it is not a priority of these organizations [9]. For example, in [3]
proposes a resource-provisioning framework in a public cloud
to execute requests in large amounts of data. This work
proposes an SLA cost model and presents a provisioning
method based on SLA time, predicting the best value to execute
requests at any given time. In [4] presents an SLA-oriented
resource manager focused on cloud computing and based on
open source technology. It provides adaptive resource
allocation and dynamic load balancing for Web applications in
order to ensure a SLA. However, these works define the Service
Response Time arbitrarily.

I. SERVICE RESPONSE TIME MEASUREMENT MODEL
To try to resolve the above challenges, it is necessary to

define and to standardize the QoS parameters used by most
cloud provider and finally, to provide a methodology to
compare services of different cloud. Consequently, the
customers can make a better selection of a cloud service
provider [2, 9]; because, an appropriately selected service
provider increases the probability that SLA requirements are
guaranteed.

In this context, nowadays, many companies have migrated
their applications and data to the cloud due to the benefits of
this technology. From the user’s point of view, the SRT metric
is considered one of the main QoS parameters. However, the
major cloud providers have ignored or inappropriately treated
the SRT parameter in SLA due to its complexity.

This way, our proposal is an estimation of SRT parameter
for customers who wish to migrate their applications to the
cloud but have no idea of the performance offered by the cloud
provider for its applications. Therefore, the main contribution
of this work is to propose a model for obtaining the SRT, so it
can be treated adequately in SLA contracts. Thereby, it is
necessary to define formally, what is a Recommended SRT.

A. Definition
In this work, the SRT (Service Response Time) corresponds

to the time that a service takes to execute effectively a request
[2]. This way, the SRT of a service starts when a customer
request is ready to execute and it finishes when the request

executes effectively. Including, for example, startup time of
virtual machine or wait of a fragment request, etc.

Let Ri a database access request in a cloud, where i represents
one of the following request types: (i) select-range and/or select-
aggregation, (ii) select-joins or (iii) select-sets-grouping-
nesting. The Average Service Response Time of a request Ri
(ASRTRi) executed by n physical/virtual machines is given by:

𝐴𝑆𝑅𝑇𝑅𝑖 =' 𝑆𝑅𝑇𝑅𝑖/𝑛
𝑅𝑖

 (1)

where SRTRi is the time between the moment a request Ri is ready
to run and the service executes the request effectively.

Let ARi be a set of averages service response time for all type
i requests, i.e. ARi = { ASRTRi1, ASRTRi2, ASRTRi3,… ASRTRiK},
where k is the quantity of type i requests. Let A ARi be a set of
half the size of ARi (k/2) with the highest averages of ARi.

Thus, the Recommended SRT (RSRTRi) for a set of Type i
Requests deployed in the cloud is given by median of A ARi:

𝑅𝑆𝑅𝑇𝑅𝑖 =	↑ 𝐴 ↑ 𝐴𝑅𝑖𝑘
4+0.5

							𝑓𝑜𝑟	𝑜𝑑𝑑	𝑘 (2)

or

𝑅𝑆𝑅𝑇𝑅𝑖 = 	
6↑ 𝐴 ↑ 𝐴𝑅𝑖𝑘

4
+↑ 𝐴 ↑ 𝐴𝑅𝑖𝑘

4+1
8	

2
					𝑓𝑜𝑟	𝑒𝑣𝑒𝑛	𝑘

(3)

It is worth noting that Recommended SRT presents a
pessimistic estimate of response time, because it is based on
requests that require more time to process, i.e. on median of the
upper half that represents the highest requests response time.

The discussion of Recommended SRT occurs in SLA
contract definition phase, in which evaluate several tasks of
customers applications on the cloud service provider. The
applications most used and complex are defined and selected. In
this work, complex applications represent applications that use
high load of system (large use of CPU and disk read/write).

B. SRT Measurement Model
According [11], a cloud computing platform is a cluster with

hundreds or thousands of PCs (nodes) for data computing and
storage. There are two types of nodes in the cluster: master nodes
and slave nodes. Master nodes store metadata and they manage
the all cluster slave nodes. The slave nodes store the data and
their replicas for security.

In this context, the Figure 1 shows the steps to obtain the
Recommended SRT of a cloud computing platform: (1)
acquisition of customer applications; (2) selection and
classification of applications according to the request types: (i)
select-range and/or select-aggregation, (ii) select-joins or (iii)
select-sets-grouping-nesting; (3) experiments of customer
applications deployed on master nodes and slave nodes of cloud
provider; and finally, (4) analysis of results, which is a
Recommended SRT for each request type and system load.

It is worth noting that in contract level, the trust and
validation of the results will depend mainly on good practice in
step 2, because good selectivity of customer applications will
reduce SLA violation.
In step 3, to assist the tests were implemented three tools and

deployed in cloud provider, they are COS (CPU Overload

http://code-industry.net/

Annex A5 – paper 2 – (2015)

 167

Simulator), DOS (Disk I/O Overload Simulator) and SRT
Calculator. Following we detail each of them and their functions.

Figure. 1. Steps to obtain the Recommended SRT.

A. COS and DOS: Overload Simulator
The tools were deployed in slave nodes of cloud service

provider and it serves, respectively, to simulate partial and total
CPU overload, i.e. the overload can also be by the processor
core and serves to simulate disk read/write overload.

The COS tool generates an overload of threads of similar
execution priority of the processes running in operating system.
Although the set of threads are running in the same process, if
the COS tool executes itself more than once it will generate a set
of threads in different processes causing large number of
processes of equal priority competing for the processor. Thus, to
overload the processor, the tool executes itself generating a large
amount of processes, each having a large number of threads.

This tool allows serial execution by processor core, i.e. each
core will be overloading by time. Thus, it allows configuring
how many cores are overloaded. To analyze the CPU, the user
can use the sysstat tool, in which checks the processor in real
time. The sysstat tool is package with a collection of
performance monitoring tools for major Linux distribution.

The DOS tool generates an overload of threads of database
access requests with similar execution priority of the processes
running in operating system. Unlike COS tool, DOS simply run
once, generating a very large set of threads of equal priority in
the same process, overloading the system and competing with
any another database access request that arrives at the
processor.

This tool allows also defining the quantity of threads to be
generate, in which each one simulates a database access request
in the machine. This way, the tool allows a wide variation in
quantity of bytes of reading and writing from/to disk.

B. SRT Calculator
The SRT Calculator tool was deployed in master nodes of

provider and it serves to execute the tests in the specified slave
nodes.

The SRT Calculator computes a set the Recommended SRT
as defined in Section III – A and it generates a parameterized

report to be analyzed and discussed between the cloud service
provider and it customer.

The report presents the Recommended SRT for each request
type and overload variation in slave nodes, through the COS
and DOS tools. Beyond, for each of request type, statistical
parameters are generated from the set of the requests response
times (seconds), such as arithmetic average, sample variance,
standard deviation, mode and coefficient of variation.
Therefore, a specialist can evaluate these parameters to validate
the results. For example, a high standard deviation indicates that
the data points are spread out over a wider range of values.
Then, the result can not be reliable. For the better
understanding, the summary of SRT Calculator algorithm is
shown below:

 Config_VM; //Configuration File of Physique/Virtual Machine (Slave Nodes).
 REQUEST-TYPE[i]; //Requests Type File, i equals 1, 2 or 3.
1. BEGIN
2. SLAVE-NODE[i..n] = Config_VM;
3. FOR EACH SLAVE-NODE DO
4. FOR EACH REQUEST-TYPE DO
5. ExecuteRequest(SLAVE-NODE[i], REQUEST-TYPE [i]) ;
6. ENDFOR
7. REPORT(REQUEST-TYPE);
8. ENDFOR
9. REPORT(ALL-REQUEST);
10.
11. VOID REPORT(REQUEST)
12. BEGIN
13. Avegare(); //(nanosseg) -- (milisseg) -- (seg) -- (min)
14. Sample Variance(); //(seg)
15. Mode; //(seg)
16. Coefficient of Variation(); //(seg)
17. Recommended SRT ();//(nanosseg) -- (milisseg) -- (seg) -- (min)
18. END
19. END

To use the SRT Calculator is necessary to classify the
customer applications in one of three requests type. In addition,
a set of physical/virtual machines of the cloud must be selected
to store customer applications. This way it is necessary to
configure the following files: (1) network configuration file and
database connection of slave nodes; (2) configuration file for
requests with select-range and/or aggregating functions
requests; (3) configuration file for requests with one or more
joins; and finally, (4) configuration file for requests with set of
operations, grouping and/or nesting. Next Section presents a
case study of the proposed model using Amazon EC2 cloud
infrastructure and TCP-DS to generate an OLAP database and
requests.

II. EXPERIMENTAL EVALUATION
This Section presents a case study of the proposed model to

obtain the Recommended SRT utilizing small instances of
Amazon EC2 cloud infrastructure. First, we present the
environment and the experiments methodology. Then, we show
the requests used and finally, we present the results obtained as
well as its analysis.

A. Experimental Environment
The tools (COS, DOS and SRT Calculator) were implemented
in Java language using concurrent programming with threads

and API based on OpenMP (Open Multi-

http://code-industry.net/

Annex A5 – paper 2 – (2015)

 168

Processing) [10]. They were deployed in the Amazon EC2
cloud infrastructure in small instances (homogeneous
environment). Due to the limitations of Amazon, it was used 16
VMs (Virtual Machines), each one with an Intel Xeon
Processor with turbo up to 3.3GHz, 1.7 GB of main memory
and 160 GB of disk storage.

It was created an AMI (Amazon Machine Image) of VM
with the database. This image allows startup a new VM quickly.
The Amazon EBS (Elastic Block Store) was used to storage the
AMI. Therefore, the startup time and instantiation of VM, the
time of network authentication and database connection were
considers in experiments.

Each VM runs the Ubuntu 12.04 operating system and
PostgreSQL 9.3 DBMS. This work focuses on OLAP
applications with very large and complex database. Thus, the
TPC-DS was used to generate a database of approximately 13
GB, fully replicated in each VM. Furthermore, 50 requests of
several complexities were selected. Therefore, the database and
the requests generated represents the customer applications.

A. Methodology
Figure 2 presents the methodology of experiments. As

shown, in a VM, chosen arbitrarily, it was deployed the SRT
Calculator tool (master node). It communicates with others
VMs (slave nodes). Furthermore, the 50 requests obtained of
TPC-DS were classified according to level of complexity
between three types.

Thus, the SRT Calculator executes all request of each type
in all VMs, varying the overload on the slave nodes through of
COS and DOS tool (they were deployed in slave nodes).

The PP (Processor Performance) represents levels of
overload of CPU. The DP (Disk Performance) consists of
percentage level of overload in Megabytes of reading and/or
writing on disk. To view the rate of CPU and disk usage, the
sysstat and dstat tools were used.

Figure. 1. Methodology of experiments to obtain the Recommended SRT.

B. Requests
The TPC-DS offers many database requests for

experiments, which for this case study were selected 50
requests. The classification of each request was based on results
of explain analyze command of the PostgreSQL DBMS.

Type 1 Requests are select-range and/or select-aggregation
requests. They have approximately 140,000 tuples of selectivity
and it uses the catalog_sales table of TPC-DS. Type 2 Requests
are select-joins requests and optional select-aggregation
functions. The selectivity of these requests varied between 1000
and 60,000 tuples and it uses at least 20 different tables of TPC-
DS. Finally, Type 3 Requests are select-sets-grouping-nesting
requests and, optional select-aggregation and select-joins. They
present very complex query plan and its selectivity is between
100,000 and 200,000 tuples. It uses at least 20 different tables
of database generated by TPC-DS Benchmark.

C. Results
The results were grouped by type of request and overload

variation in slave nodes. So, to Type 1 Requests, the result of
experiments on all VMs are presented in Figure 3. It shows the
SRT averages to 50 requests executed on all VMs (all slave
nodes) when they are not overloaded (current) and when they
are with CPU and Disk Overloaded.

Figure. 2. SRT averages on all VMs for Type 1 Requests.

Therefore, based on definition of Recommended SRT and
considering that the processor and disk not overloaded (Current
Status in Figure 3) we have the following result:

::TYPE 1 REQUESTS::
 Average: 34,46(s)
 Sample Variance: 71,02897959
 Standard Deviation: 8,42786922
 Mode: 35
 Coefficient of Variation: 24,45696233
 Recommended SRT: 42(s)

Overload with COS tool (CPU Overload in Figure 3), the
result is as follows:

::TYPE 1 REQUESTS::
 Average: 741,3(s)
 Sample Variance: 32053,03061
 Standard Deviation: 179,0336019
 Mode: 620
 Coefficient of Variation: 24,15130202
 Recommended SRT: 865(s)

http://code-industry.net/

Annex A5 – paper 2 – (2015)

 169

Overload with DOS tool (Disk R/W Overload in Figure 3),
the following values were found:

::TYPE 1 REQUESTS::
 Average: 1402,16(s)
 Sample Variance: 134948,0555
 Standard Deviation: 367,3527671
 Mode: 1450
 Coefficient of Variation: 26,19906196
 Recommended SRT: 1718(s)

To Type 2 Requests, the result of experiments in all VMs
are presented in Figure 4. It shows the SRT averages to 50
requests executed on all VMs (all slave nodes) when they are
not overloaded (current) and when they are with CPU and Disk
Overloaded.

Figure. 1. SRT averages on all VMs for Type 2 Requests.

Therefore, based on definition of Recommended SRT and
considering the processor and disk not overloaded (Current
Status in Figure 4) we have the following result:

::TYPE 2 REQUESTS::
 Average: 187,6(s)
 Sample Variance: 5059,755102
 Standard Deviation: 71,13195556
 Mode: 288
 Coefficient of Variation: 37,91682066
 Recommended SRT: 242(s)

Overload with COS tool (CPU Overload in Figure 4), the
result is as follows:

::TYPE 2 REQUESTS::
 Average: 567,86(s)
 Sample Variance: 76106,16367
 Standard Deviation: 275,8734559
 Mode: 127
 Coefficient of Variation: 48,58124466
 Recommended SRT: 783(s)

Overload with DOS tool (Disk R/W Overload in Figure 4),
the following values were found:

::TYPE 2 REQUESTS::
 Average: 2514,8(s)
 Sample Variance: 977864,7347
 Standard Deviation: 988,8704337
 Mode: 2618

 Coefficient of Variation: 39,32203093
 Recommended SRT: 3455(s)

To Type 3 Requests, the result of experiments on all VMs
are presented in Figure 5. It shows the SRT averages to 50
requests executed on all VMs (all slave nodes) when they are
not overloaded (current) and when they are with CPU and Disk
Overloaded.

Figure. 2. SRT averages on all VMs for Type 3 Requests.

Therefore, based on definition of Recommended SRT and
considering that processor and disk not overloaded (Current
Status in Figure 5) we have the following result:

::TYPE 3 REQUESTS::
 Average: 981,52(s)
 Sample Variance: 106462,9486
 Standard Deviation: 326,286605
 Mode: 1001
 Coefficient of Variation: 33,24299097
 Recommended SRT: 1283(s)

Overload with COS tool (CPU Overload in Figure 5), the
result is as follows:

::TYPE 3 REQUESTS::
 Average: 3044,6(s)
 Sample Variance: 2667600,653
 Standard Deviation: 1633,279111
 Mode: 2960
 Coefficient of Variation: 53,64511301
 Recommended SRT: 4431(s)

Overload with DOS tool (Disk R/W Overload in Figure 5),
the following values were found:

::TYPE 3 REQUESTS::
 Average: 8284,32(s)
 Sample Variance: 16121155,85
 Standard Deviation: 4015,11592
 Mode: 8200
 Coefficient of Variation: 48,46645133
 Recommended SRT: 11391(s)

A. Analysis of Results
Figure 6 and Table I summarizes the results of

Recommended SRT. According to results, the SRT was higher
when CPU or disk were overwhelmed, mainly the disk, which
caused also overload in CPU.

http://code-industry.net/

Annex A5 – paper 2 – (2015)

 170

TABLE I. RECOMMENDED SRT RESULT

Request
Type

Recommended SRT

Current CPU Overload Disk R/W
Overload

1 42(s) 865(s) 1718(s)

2 242(s) 783(s) 3455(s)

3 1283(s) 4431(s) 11391(s)

Figure. 1. Recommended SRT Result.

It is worth noting that the number of rows and columns
returned from a request (query selectivity) increases
significantly the total time of its execution. For example, Type
3 Requests have very high selectivity and therefore, they have
higher Recommended SRT. Other example, even with
overloaded CPU, Type 2 Requests have Recommended SRT
smaller than Type 3 Requests with current CPU utilization.

In general, Type 1 and Type 2 Requests have smaller
Recommended SRTs than Type 3 requests. However, Type 1
requests when overloaded CPU, its Recommended SRT is
bigger than Type 2 Request because the selectivity of Type 1
Requests is greater than Type 2 Requests.

The results obtained provide the basis for negotiation
between the cloud service provider and its customers establish
an expected Service Response Time of their services.
Furthermore, these values can be used by monitoring tools,
when a limit value is achieved, the environment can react
recovering or minimizing the consequences of SLA violation.
For example, allocating, reallocating and/or releasing resources
at run-time.

Therefore, a well-chosen provider brings benefits to both
sides: the customer will have accurate information about the
performance of their applications when they are performed in
the cloud and the provider will reduce future penalties, as it has
the provider's expected behavior after the tests.

I. CONCLUSION
In this paper, we presented a model that allows the cloud

service provider and its customers establish an appropriate SLA
relative to SRT performance of its applications available in the
cloud.

The proposed model is a non-intrusive solution and can be
applied when companies wish to migrate their applications,
OLAP or not, to cloud services providers, with the goal to
allocate computational resources on demand, to ensure the
quality of service in terms of Service Response Time.

Finally, this work focuses on OLAP applications with very
large and complex database, it was evaluated utilizing structured
data of TPC-DS like Benchmark, considering that many cloud
computing platforms support SQL requests directly or
indirectly, this makes the proposed solution relevant for these
kind of problems.

As future work, we will deploy our propose, beyond
Amazon, in an Azure and Google Cloud Platform, using similar
VM flavors, and then compare the response time between the
different public cloud providers. Furthermore, other future work
consists to use specialist systems to the automatic classification
of applications according to the request types, as well as, to the
automatic analysis of results. Other work comprises to replace
DOS and COS tools by others benchmark tools for example,
pgbench tool that allows a greater variation of performance
parameters.

REFERENCES
[1] “Cloud Service Measurement Index Consortium (CSMIC)”. URL:

http://www.cloudcommons.com/group/cloud-service-measurement-
initiative-consortium/home.

[2] S. K. Garg, S. Versteeg and R. Buyya, “A framework for ranking of cloud
computing services”, Future Gener. Comput. Syst. 29, 2012, pp. 1012-
1023. DOI=10.1016/j.future.2012.06.006.

[3] R. Mian, P. Martin, and J. L. Vazquez-Poletti. 2013. Provisioning data
analytic workloads in a cloud. Future Gener. Comput. Syst. 29, 2013, pp.
1452-1458. DOI=10.1016/j.future.2012.01.008
http://dx.doi.org/10.1016/j.future.2012.01.008

[4] W. Iqbal, M. Dailey, and D. Carrera. “SLA-Driven Adaptive Resource
Management for Web Applications on a Heterogeneous Compute Cloud”,
In Proceedings of the 1st International Conference on Cloud Computing
(CloudCom '09), Martin Gilje Jaatun, Gansen Zhao, and Chunming Rong
(Eds.). Springer-Verlag, Berlin, Heidelberg, 2009, pp. 243-253.
DOI=10.1007/978-3-642-10665-1_22 http://dx.doi.org/10.1007/978-3-
642-10665-1_22.

[5] AWS EC2 Service Level Agreement. URL: http://aws.amazon.com/ec2-
sla.

[6] AWS S3 Service Level Agreement. URL: http://aws.amazon.com/s3-sla.
[7] D. Sanderson. “Programming Google App Engine” (2nd ed.), O'Reilly

Media, 2012, p. 536, ISBN 978-1449398262. URL:
cloud.google.com/appengine.

[8] TPC-DS. TPC-DS Benchmark. 2014. URL: http://www.tpc.org/tpcds/
[9] V. C. Emeakaroha, M. A. S. Netto, R. N. Calheiros, I. Brandic, R. Buyya,

and C. A. F. De Rose. “Towards autonomic detection of SLA violations
in Cloud infrastructures”, Future Gener. Comput. Syst. 28, 2012, pp.
1017-1029. DOI=10.1016/j.future.2011.08.018
http://dx.doi.org/10.1016/j.future.2011.08.018.

[10] “About the OpenMP ARB”. OpenMP.org. 2013-07-11. Retrieved 2013-
08-14.”. URL: http://openmp.org/wp/about-openmp/.

[11] H. Kllapi, E. Sitaridi, M. M. Tsangaris and Y. Ioannidis. “Schedule
optimization for data processing flows on the cloud”, In Proceedings of
the 2011 international conference on Management of data (SIGMOD
'11). ACM, New York, NY, USA, 2011, pp. 289-300.
DOI=10.1145/1989323.1989355
http://doi.acm.org/10.1145/1989323.1989355.

http://code-industry.net/

Annex A6 – paper 3 – (2016)

 171

Annex A6 – paper 3 – (2016)

http://code-industry.net/

Annex A6 – paper 3 – (2016)

 172

http://code-industry.net/

Annex A6 – paper 3 – (2016)

 173

http://code-industry.net/

Annex A6 – paper 3 – (2016)

 174

http://code-industry.net/

Annex A6 – paper 3 – (2016)

 175

http://code-industry.net/

Annex A6 – paper 3 – (2016)

 176

http://code-industry.net/

Annex A6 – paper 3 – (2016)

 177

http://code-industry.net/

Annex A6 – paper 3 – (2016)

 178

http://code-industry.net/

	Página 1
	Página 2
	Página 3
	Página 4
	Página 5
	Página 6

