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RESUMO 

A literatura biomédica é constituída por um número alargado e em crescimento de 

publicações escritas em linguagem natural. As patentes, uma fração integrante das referidas 

publicações, têm vindo a ser consideradas importantes fontes de informação, uma vez que possuem 

informação curada resultante do seu processo de atribuição. Apesar de serem consideradas 

verdadeiras bibliotecas tecnológicas, a sua informação não estruturada transforma a procura de 

informação nesses textos uma tarefa deveras desafiante. A mineração de textos biomédicos é um 

campo científico que explora esta tarefa, criando metodologias para a pesquisa de informação 

estruturada em literatura biomédica.  

A obtenção de informação é uma tarefa integrante do processo de mineração de textos 

biomédicos, na qual a informação relevante é obtida de uma extensa coleção de documentos 

usando diversas metodologias. O processo de obtenção de toda a informação contida numa patente 

requer o download do respetivo ficheiro PDF que posteriormente é convertido em texto passível de 

ser lido por máquinas recorrendo a tecnologias de processamento tais como o reconhecimento ótico 

de carateres (OCR). 

Neste projeto, um sistema de obtenção de informação e um sistema de conversão de PDF 

em texto foram desenvolvidos dando origem a uma ferramenta de tratamento de patentes que foi 

integrada no @note2, uma plataforma computacional de código aberto usada para a mineração de 

textos biomédicos. A pipeline elaborada pode ser desintegrada em quatro diferentes funções: 

pesquisa de patentes, obtenção de meta-informação das mesmas, obtenção dos seus ficheiros em 

formato PDF e a extração de todo o texto desses documentos. 

Um conjunto de patentes do desafio BioCreative V CHEMDNER foi usado para testar a 

ferramenta desenvolvida, avaliando o seu desempenho e a sua real capacidade de obtenção das 

patentes e todo o processo de extração de informação das mesmas. Os resultados são promissores, 

aproximando a comunidade científica da informação disponibilizada nas patentes publicadas, 

permitindo a posterior implementação de outros processos da mineração de textos biomédicos a 

esses documentos.  

 

Palavras-chave: Mineração de textos biomédicos; patentes, obtenção de informação, 

reconhecimento ótico de caracteres, @note2 
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ABSTRACT 

Biomedical literature is composed of a large and ever increasing number of publications, 

written in natural language. Patents are a relevant fraction of these publications, considered 

important sources of information due to all the curated information available in the documents, from 

the granting process. Although being real technological libraries, their unstructured data turns the 

search of information within these documents a challenging task. Biomedical text mining is a 

scientific field that explores this task, creating methodologies to search and structure the information 

in the biomedical literature.  

Information retrieval is one of the biomedical text mining tasks, in which the relevant 

information is obtained from an extensive collection of documents using several text retrieval 

methodologies. Getting all the information available on a patent document requires the download of 

the respective PDF document, that is then converted into a machine-readable text by technologies as 

Optical Character Recognition (OCR). 

In this project, an information retrieval, and a PDF to text conversion system were developed 

building a “patent pipeline” which was integrated into @note2, an open-source computational 

framework for biomedical text mining. The patent pipeline can be disintegrated into four different 

tasks: the patent search, the retrieval of patent metadata, the retrieval of their PDF files, and the 

extraction of all the information from these documents. 

A set of patents from the BioCreative V CHEMDNER task was used to test the developed 

pipeline, evaluating the framework performance and the real capacity to retrieve the requested 

patents and extract their unstructured information. The results were promising, bringing to the 

scientific community the published patent information and allowing the posterior implementation of 

other biomedical text mining processes over these documents. 

 

Keywords: Biomedical text mining, patents, information retrieval task, Optical Character 

Recognition, @note2 
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1. INTRODUCTION 

1.1. Context and Motivation 

Nowadays, we are living in a digital era with lots of textual sources to look for, what makes 

this process a challenging task. Looking only at the life sciences, we get a huge number of new 

publications, research reports and patents every year (Klinger et al., 2008). 

Biomedical Text Mining (BioTM) techniques have been applied to different types of 

publications to automate the extraction of high quality and structured information from these texts, 

being in the recent years, a growing interest in patents (Cohen and Hunter, 2008).  

Patents are important sources of information since they have detailed descriptions of 

inventions rarely replicated in other publications visible to the general public, being real technological 

libraries (WIPO, 2015c). For instance, the number of registered patents by year on World Intellectual 

Property Organization (WIPO) database  increased from 1702900 in 2005 to 2680900 in 2014 

(WIPO, 2014; WIPO, 2015d). Handling these large amounts of information turns the search and 

extraction of data into a difficult and time-consuming task. So, it has become a necessity to bring up 

machine assisted knowledge techniques to this kind of sources (Oldham et al., 2013). 

There are several available patent databases such as Espacenet, that is provided by the 

European Patent Office (EPO) or PATENTSCOPE1, that is provided by the WIPO. Using only these two 

databases, it is possible to search information or to download the patent published files for more 

than 90 million patents.  

Patent databases are organized into specific areas of knowledge which make the search 

process easier. The information from these patent databases can be accessed in text format or in 

Portable Document Format (PDF) files. Those files have often encoded information on images with 

complex backgrounds or even different sizes and orientations, making text extraction a difficult task 

to do (Patel et al., 2012).  

                                                 
1 (https://patentscope.wipo.int/search/en/search.jsf) 

https://patentscope.wipo.int/search/en/search.jsf
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Optical character recognition (OCR) tools have many applications based on the conversion of 

printed text into editable text. This method mimics the human optical mechanism and the ability to 

read documents even when the words are in complex environments (Patel et al., 2012). 

BioTM techniques become necessary to automate the search for structured information in 

these natural language oriented texts since this is a task that made by hand becomes quite time-

consuming, similar to what happens with other sources of biomedical literature (Shatkay and 

Feldman, 2003).  

Over the last few years, the Biosystems research group (University of Minho) and the 

SilicoLife company have worked in the BioTM field, developing @Note2, a Java multi-platform BioTM 

Workbench which uses a relational database (as MySQL) and is based on a plug-in architecture, 

allowing the development of new tools/methodologies in the text mining field, both in information 

retrieval or information extraction (Lourenço et al., 2009). This software and its core libraries, in its 

current version @Note2, will be used as the basis for this work, once it can be upgraded and 

improved. 

1.2. Aims 

 In this work, the main goal is the development of a text mining pipeline that enables the 

search of patents for the given input keywords including the retrieval of texts from distinct patent 

databases/repositories and evaluates different options to conduct the PDF to text conversion. 

In detail, the scientific/ technological objectives are: 

 Review some available search engines that allow the searching for patents; 

 Review some tools used for patent retrieval (metadata and PDF files); 

 Develop tools using the available search engines for the patent searching process; 

 Develop tools for the retrieval of patents data from relevant databases;  

 Improve PDF to text conversion using OCR tools; 

 Build a framework named “patent pipeline” using the developed tools to search and retrieve 

patents data as well as the improved PDF to text conversion. 

 Validation with gold standard corpora and if possible in real world scenarios (e.g. BioCreative 

Challenge). 
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Figure 1 -  Growth of scientific publications. a) represents the growth of the total PubMed citations  from 
1986 to 2015 ((USNLM, 2016) and B) represents the growth of the registered patents on WIPO by year 
(WIPO, 2014; WIPO, 2015d). 

 

2. STATE OF THE ART 

2.1. Biomedical Text Mining 

Huge amounts of information are generated every day due to technology evolution (Liu et al., 

2015; Faro et al., 2012). Looking only at the life sciences, the already huge number of texts available 

on public databases increases a lot producing an exponential growth of information in the last few 

years (Figure 1) (Faro et al., 2012; Hunter and Cohen, 2006). 
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Figure 2 - Text mining, the text analytical components contribute and the knowledge gained from many external areas. 
Adapted from (Miner et al., 2012). 

For instance, the World Intellectual Property Organization (WIPO), that is one of the most 

well-known world patent databases, has an annual increasing rate around 5% and PubMed, which is 

the most used database concerning biomedical literature with almost 27 million records, has an 

annual increasing rate around 4% (Wu et al., 2015; Lu, 2011; WIPO, 2015d). However, the 

unstructured nature of that information makes impossible to analyze all the available literature 

manually (Wu et al., 2015; Zweigenbaum et al., 2007). 

To exploit this information, a field named Biomedical Text Mining emerged. That field allows 

the automation of text processing and the extraction of meaningful knowledge from it (Cohen and 

Hunter, 2008). 

2.1.1. Concepts and definitions 

Text Mining is based on many different knowledge areas such as statistics, artificial 

intelligence, computer science, management science, machine learning (ML), among others (Miner 

et al., 2012). As we can see in Figure 2, Text Mining is the combined result of these external fields of 

knowledge with numerous text analytics components as Information Retrieval (IR), Information 

Extraction (IE), Natural Language Processing (NLP), among others (Miner et al., 2012). 
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The Text Mining field applied to molecular biology or biomedical literature is named 

Biomedical Text Mining (BioTM). BioTM explores all the literature available on public repositories with 

information related to almost every gene, protein, and other molecules intervenient in biological 

processes (Mathiak and Eckstein, 2004; Shatkay and Feldman, 2003).  

BioTM can improve the research process either by the discovery of new facts, the data 

interpretation or even the design of experiments. It correlates genes or proteins with a specific 

disease, reconstructing or even predicting different pathways, finding specific biological functions for 

genes, among others (Shatkay and Feldman, 2003). 

BioTM can be segmented in information retrieval (IR), which allows obtaining relevant 

information resources (e.g. papers or patents) from an extensive collection of documents, and 

information extraction (IE) which allows the extraction of pertinent information from the documents 

on unstructured form through the use of computer processing (Krallinger and Valencia, 2005). 

As can be seen in Table 1, the scientific community has been developing several BioTM 

platforms based on the use of several programming languages using IR, and IE methodologies (Table 

1). 

 

Table 1 - Some BioTM platforms, their programming languages and a brief review on BioTM functionalities. 

BioTM platform 
Programming 

Language 
BioTM functionalities 

@note (Lourenço et 

al., 2009) 
Java 

Information retrieval and extraction of biomedical information from 

literature, detecting entities and relations between them in raw text. 

iHOP (Hoffmann and 

Valencia, 2004) 

PHP, AJAX, and 

Javascript 

Information retrieval from MEDLINE abstracts related to protein interactions 

and genes information. 

Neji (Campos et al., 

2013) 
Java Identification of bio-entities in free text (information extraction). 

ABNER (Settles, 2005) Java 
Tagging genes, proteins and other bio-entities in free text (information 

extraction). 

GATE (Cunningham et 

al., 2013) 
Java 

Identification of chemical and drug bio-entities as well as chemical formulas 

in free text (information extraction). 

MyMiner (Salgado et 

al., 2012) 

PHP, AJAX, and 

Javascript 
Web application for bio-entity tagging (information extraction). 
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2.1.2. Text retrieval (IR process) 

When handling textual data, the first thing to do is to access a database with a large 

collection of literature and extract only the relevant documents for the specific case study. Shatkay 

and Feldman (2003) classified text retrieval in four different types of searching: Boolean queries and 

index structures; similarity queries and the vector model; latent semantics indexing; and text 

categorization (Shatkay and Feldman, 2003). Using Boolean queries, the user/machine gives 

different keywords connected by a Boolean term like “and”, “or”, “not” (among others) as input. This 

type of search is supported by an index of all terms in all documents allocated on the database. 

When a given term is searched, the documents where the input keyword (or a combination of words) 

appears are organized by the query frequency (Figure 3). This type of search has several limitations 

since it returns a great number of documents that can be irrelevant and may not retrieve all relevant 

documents. 

The second search type, based on similarity queries and the vector space model, is more 

concise than the Boolean query, since each term (which can be a single word or a longer phrase like 

“blood pressure”) is introduced into a vector denoted by M. Every document is represented as a 

vector with dimension M, where each element is the weight for a given term on that document.  

 

 

 

 

 

 

 

 

 

Figure 3 - Index relating the searched terms to the documents in which they occur. Adapted from (Shatkay and 
Feldman, 2003). 
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Figure 4 - The angle between two vectors, queries (q) and documents (d). From (Shatkay and Feldman, 2003). 

The calculation is performed by term frequency or significance and normalized for document 

length, enabling the addition of small but quite informative documents to the results. The frequency 

of documents containing a specific term is also taken into account in the weight calculation, making 

possible to favor rare query terms, since they are more likely to be informative than the most 

frequent terms. After this normalization, it becomes possible to predict the distance between the 

query vector and the multiple document vectors. For that purpose, different metrics can be used, 

being the Euclidean distance the most well-known. Finally, using distance metrics, it is possible to 

achieve similarity through the cosine of the angles between two vectors (Figure 4). 

 

 

 

 

 

 

 

Latent semantics indexing type of search is used to overtake problems as polysemy and 

synonymy, where a given term can have multiple meanings or where different terms can have the 

same meaning, respectively. 

 This type of search uses also M-dimensional vectors representing the documents in relation to the 

input terms, similarly to the previously described search type. However, these vectors are aggregated 

into a matrix which is the base for the application of an algebraic operator (singular value 

decomposition (SVD)), which allows the identification of relations between the terms and documents 

using the semantic of document words. 

Finally, on the text categorization search type, the user can define a set of rules, allowing the 

classification of documents in different categories, or using machine learning to automatically 

perform this classification (Shatkay and Feldman, 2003). 
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Krallinger and Valencia (2005) rank the text retrieval search in a more simplistic way with 

only two different types of search: the document-based search and the query-based search. On 

document-based search, the input query is a document and the algorithm searches for documents 

which are similar to the input document, returning a list ordered by similarity. The query-based 

search type uses an algorithm with keywords as input query and searches the literature for 

documents with a high frequency of these keywords. It returns a list based on that frequency similar 

to the Boolean queries described above. The used keywords can be combined with Boolean 

operators turning the query more complex and precise  

Nowadays, there are several retrieval tools that implement the described search types to 

provide the requested information to the user/machine. So, to search for biomedical literature, the 

most used retrieval tool is the GQuery, a global cross-database provided by US National Center for 

Biotechnology Information (NCBI)2 which is accomplished with a text-based search mechanism and a 

retrieval system which supports the document-based and query-based search described by Krallinger 

and Valencia (2005). Similar to GQuery, Google Scholar provided by Google3 is also a widely used 

retrieval tool, while other literature search engines as CrossrefSearch4 or the Nature Publishing Group 

search engine5 are less used. These tools can be evaluated by their output in two different 

parameters: sensitivity (number of relevant documents retrieved on all relevant documents existents) 

and specificity (number of relevant documents retrieved on all documents retrieved) (Hunter and 

Cohen, 2006). 

2.1.3. Information extraction (IE process) 

After the IR process getting a machine-readable text, the next key step is to analyze it and try 

to understand the provided information. This process can be done by different techniques of IE, 

which essentially work in three stages: recognition of terms; finding the structure of the sentence; or 

finding meaning and logic relations between terms or sentences. For that, IE techniques are often 

accomplished by first applying Natural Language Processing (NLP) processes (Thessen et al., 2012). 

                                                 
2 (http://www.ncbi.nlm.nih.gov/) 
3 (http://scholar.google.com) 
4 (http://www.crossref.org/crossrefsearch.html) 
5 (http://www.nature.com/search/?sp_a=sp1001702d&sp_t=advanced&sp_x_1=ujournal&sp-p=all&sp)  

http://www.ncbi.nlm.nih.gov/
http://scholar.google.com/
http://www.crossref.org/crossrefsearch.html
http://www.nature.com/search/?sp_a=sp1001702d&sp_t=advanced&sp_x_1=ujournal&sp-p=all&sp
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NLP includes a set of computational and linguistic methods that allows the application of 

NLP on several systems as speech-to-text transcription, spelling correction, or even the indexing of 

documents on a database allowing the search process as described in the previous section. Applied 

to BioTM field, NLP processes are commonly used for the extraction of information from natural 

language texts allowing the identification of words and the true meaning of them, the assignment of 

the syntactic structure of expressions, among so many others (Clark et al., 2010). 

From the numerous NLP tasks, the more frequently used within IE methodologies are the 

sentence splitting task, which allows the delimitation of the sentences boundaries, splitting the text 

using expression rules to analyze punctuation, word capitalization or breaks (Bach and Badaskar, 

2007); the tokenization process, which breaks raw text into words (tokens) through splitting strings 

by whitespaces and then by symbols or punctuation; and the part-of-speech (POS) or the 

lemmatization processes, where each token is tagged into their lexical group (verb, adjective, noun, 

among others) or by their canonical form, respectively.  

2.2. Patents 

A patent is a validated document representing the intellectual property rights of an invention 

granted by a national government or international organization, giving to the author exclusive rights to 

use, manufacture or sell that for a determined period of time. In this kind of document, there is 

information that may not be found anywhere else, due to novelty nature implicit on patents and due 

to the fact that only a small fraction of that information is subsequently disclosed in journal articles or 

other scientific literature (WIPO, 2015a; Latimer, 2005). This fact makes patent data critical to 

understanding several technological areas (WIPO, 2015a). 

Patent documents are organized into several sections. Following a more general 

classification, patents are divided into three main sections: a Front Page with bibliographic data, 

providing the document number, the applicant (the inventor) or the person with inventor’s right (the 

assignee), the inventor itself, the filing and publication dates, the classification (scientific or 

technological area), citations and codes (e.g. country codes); a Description, providing a brief, clear 

and concise summary of the invention’s technical background and how that invention solves a 

specific problem, describing the essential features of the invention, which may be represented 
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through drawings; and a Claims section, the definition of the matter for which protection is required 

(WIPO, 2015c; WIPO, 2015a).  

Inventions from the biological field can be, for instance, kits for the manipulation or use of 

nucleic acids or proteins, diagnostic kits, chemicals for the pharmacological industry, software for 

bioinformatics analysis, production of food, medicine methodologies, among others (Latimer, 2005).  

Patents are classified into hierarchical categories by patent offices. The International Patent 

Classification (IPC) is the most common system with patents grouped into eight sections : “A” 

representing “human necessities”; “B” representing “performing operations and transporting”; “C” 

representing “chemistry and metallurgy”; “D” representing “textiles and paper”; “E” representing 

“fixed constructions”; “F” representing “mechanical engineering, lighting, heating, weapons and 

blasting”, “G” representing “physics” and “H” representing “electricity” (WIPO, 2015b). Inside each 

section, patents are divided into classes (e.g., A61 representing medical or veterinary 

science/hygiene) and each class contains subclasses (e.g., A61K representing preparations for 

medical, dental or toilet purposes). These subclasses are also grouped into main groups (e.g., A61K 

38/00 representing medicinal preparations containing peptides) and some of these main groups can 

be divided into subgroups (e.g. A61K 38/16 representing peptides having more than 20 amino 

acids) (Eisinger et al., 2013). 

2.2.1. Patent databases and retrieval systems 

There are several ways of getting patent documents since they are available in numerous 

databases. The most used databases are described in more detail in Table 2. 

There are several methods that can be used for patent extraction from the presented patent 

databases.  The webpage links provided in Table 2 can be useful for the extraction of a small number 

of patents files in an easy way, depending only on how comprehensive the research is desired. For 

localized searches, databases as j-PlatPat from JPO or as PatFT from USPTO are suitable to use but 

for searches in worldwide patent documents, databases as PATENTSCOPE from WIPO or esp@cenet 

from European Patent Office (EPO) are more appropriate (Table 2). 
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Table 2 - Some patent databases, the correspondent URL, and a brief description. Adapted from (Latimer, 2005). 

Name Description URL 

United States Patent and 

Trademark Office (USPTO) 

Patent Full-Text and Image 

Database (PatFT) 

For searching and printing full-text and full-

page image US patents and published US 

applications. 

http://www.uspto.gov/patft/index.ht

ml  

esp@cenet from European 

Patent Office (EPO) 

For searching and printing worldwide 

patents and patent publications 
http://worldwide.espacenet.com/  

j-PlatPat from Japan Patent 

Office (JPO) 

For searching and printing Japanese 

patents and patent publications 

https://www.j-

platpat.inpit.go.jp/web/all/top/BTm

TopEnglishPage 

PATENTSCOPE from World 

Intellectual Property 

Organization (WIPO) 

For searching and printing international 

Patent Cooperation Treaty (PCT) 

applications 

https://patentscope.wipo.int/search

/en/search.jsf 

Google Patents 
For searching and printing world patents 

and published applications 
https://patents.google.com/  

 

However, various authors have attempted to use alternative approaches for the extraction of 

large volumes of data due to the difficulty imposed by this process. Heifets and Jurisica (2012) built 

SCRIPDB (a chemical structure database) which used USPTO bulk download from Google servers 

available since 2010 (Heifets and Jurisica, 2012). Papadatos et al. (2016) used patent data from 

USPTO, EPO, WIPO besides titles and abstracts from the JPO processed in XML format to build 

SureChEMBL a database with compounds. For patent data processing, Papadatos et al. (2016) used 

IFI Claims6, a third-party global patent database aggregating patent information from over 40 national 

and international data sources into a single repository (Papadatos et al., 2016). 

Another alternative is using secondary databases containing only portions of all patent 

documents normally in a limited space of time (Pasche et al., 2014). A practical example of this is 

NBER7 database. 

 

                                                 
6 (http://www.ificlaims.com/index.php) 
7 (http://www.nber.org/patents/)  

http://www.uspto.gov/patft/index.html
http://www.uspto.gov/patft/index.html
http://worldwide.espacenet.com/
https://www.j-platpat.inpit.go.jp/web/all/top/BTmTopEnglishPage
https://www.j-platpat.inpit.go.jp/web/all/top/BTmTopEnglishPage
https://www.j-platpat.inpit.go.jp/web/all/top/BTmTopEnglishPage
https://patentscope.wipo.int/search/en/search.jsf
https://patentscope.wipo.int/search/en/search.jsf
https://patents.google.com/
http://www.ificlaims.com/index.php
http://www.nber.org/patents/
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2.2.2. Text mining over patents 

Given the characteristics presented by patents and the interest that their information 

awakened on the research and development branch, several studies were triggered using patent 

information. As examples, Laffleur (2016) described mucoadhesion, mucoadhesive polymers and 

mucoadhesive drug delivery systems using patent literature as one of the information sources 

(Laffleur, 2016). Chen and colleagues (2015) presented a search strategy for the identification and 

classification of a vaccine to Influenza Virus using EPO patents information (Chen et al., 2015). 

Although the great informative capacity of patents, processing all the information available on 

them manually becomes a quite time-consuming task (Jeong and Kim, 2014). To work around that 

situation, text mining tools have been applied to texts from patents in the same way as for the 

biomedical literature in scientific fields such as biology and chemistry. Oldham et al. (2013) used text 

mining tools to find Latin species names of a 6 million terms list on 11 million patents published 

between 1976 and 2010 in WIPO and EPO (Oldham et al., 2013).  

The information described in the free text about chemical compounds, drugs, and other 

chemical entities have been the target of interest by the scientific community, both from the 

academic and industrial points of view (Xu et al., 2015). That information allows the identification of 

unique chemicals, indexing bibliographic chemical databases or even the discovery of which 

chemical compounds are related to a given biological processes. Due to this growing interest, there 

are an increasing number of publications addressing patent text mining in the chemical field.  

To validate the performance of patent text mining methods, there is an increased interest in 

manually annotated patent corpora and in suitable training/test data (Akhondi et al., 2014). 

Therefore, to achieve that goal, the BioCreative CHEMDNER tasks were created (Campos et al., 

2015; Krallinger et al., 2015; Krallinger et al., 2013).  

The BioCreative CHEMDNER tasks are based on the implementation of IE processes to 

several chemical publications, finding chemical mentions on papers or even, more recently, on 

patent documents. In these new CHEMDNER approaches there are three possible tasks: the 

recognition of chemical named entities in patents (Chemical Entity Mentions in Patents task (CEMP)); 

the classification of chemical-related patent titles and abstracts (Chemical Passage Detection task 

(CPD)); and the recognition of genes and proteins in patent abstracts (Gene and Protein Related 
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Object task (GPRO)). These tasks are run using a development, a training, and a test corpus, which 

were created previously by domain experts and classified by recall (r), precision (p) and F1 measures 

(Krallinger et al., 2013). 

Recall, also named sensitivity or coverage, the percentage of correctly classified positive 

results (True Positive (TP)) over all positive set (True Positive + False Negative (TP+FN)) is defined by 

the equation: 

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Precision, also named Positive Predictive Value (PPV), is the percentage of correctly labeled 

positive results over all examples classified as positive (True Positive + False Positive (TP+FP)): 

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The F1 measure is the harmonic mean between precision and recall and is used as overall 

classifier: 

𝐹1 = 2 ∗
𝑝 ∗ 𝑟

𝑝 + 𝑟
 

 

For these tasks, some contributions were made by Akhondi et al. (2015) which presented a 

system able to recognize chemical entities in patents and classify chemical-related patent titles and 

abstracts using an ensemble system combining dictionaries with some improvements to tmChem, a 

ML-based system for chemicals developed by Leaman et al. (2015). (Akhondi et al., 2015; Leaman et al., 2015) 

Concerning the manually annotated patent corpora creation, some contributions also have 

been made. Akhondi et al. (2014) developed a large gold standard chemical patent corpus using 200 

full-text patents from WIPO and EPO, annotating chemicals and all their sub-entities like diseases, 

targets or modes of action of compounds.  

Similarly, Kiss et al. (2012) developed a chemical patent corpus using the claims section of 

313 patents from the class A61K, which includes preparations for medical, dental or toilet purposes. 

The subsequent analysis was restricted to 62 claims (Kiss et al., 2012).  

These curated corpora can then be used to test the text mining tools enforced on patents as 

the tool described by Papadatos et al. (2016) (the SureChEMBL). In this system, after getting patent 

information, the full text is tokenized and analyzed for named chemical entities using IE classifiers. 
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After the IE process, the system submits the chemical entities to name-to-structure tools to get the 

structure of each individual chemical. That allows the users to search for chemicals using a chemical 

structure or substructure as a query or even a combination of both, allowing the retrieval of the 

relevant patent literature (Papadatos et al., 2016). Developing a system like that requires that the 

entire process has to be tested. That is why gold standard corpora are so important. 

Other related works were conducted. Kemp and Lynch (1998) described a system which is 

capable of extracting generic structure descriptions from the text of patent abstracts in an 

autonomous way using a dictionary matching system after tokenizing and then a series of heuristics 

to fulfill the rules of nomenclature systems as the International Union of Pure and Applied Chemistry 

(IUPAC), created to simplify the writing process and standardize all chemical names  (Kemp and 

Lynch, 1998; Campos et al., 2015). 

 Sayle et al. (2012) applied text mining techniques in patents with pharmacological interest 

getting over typographical problems (human spelling errors, hyphenation or even line breaking) 

associated with compounds as IUPAC names. After the IE process, chemical names are used as 

input in a name-to-structure software similar to SureChEMBL (Sayle et al., 2012).  

Heifets and Jurisica presented SCRIPDB, a portal which allows the extraction of chemical 

structures from patents using text mining without losing important information, as chemical 

relationships (Heifets and Jurisica, 2012). Jessop et al. (2011) developed a system named 

PatentEye. Although this system is a prototype, it allows the extraction of chemical reactions from the 

patent literature creating representations able to be understandable by any machine. Initially, patents 

are identified from EPO online archive depending on user’s search and downloaded in XML format 

type. After that, these documents are semantically enhanced and reactions were extracted using 

OSCAR3 (Open-Source Chemistry Analysis Routines 3), a tool for chemistry-specific parsing of 

chemical documents (Jessop et al., 2011).  

Not always the information extracted from the patent sections comes in natural language 

format. Frequently, this information comes from encrypted file formats, usually images in BMP, TIFF, 

PNG or GIF. When it is wanted to extract any kind of information from this type of file such as 

chemical structures, it is necessary to convert these images into structured representations of 

standard chemical files format (such as Simplified Molecular Input Line Entry System (SMILE) 
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strings) (Park et al., 2009). To convert that encrypted text to machine-readable text, methodologies 

as Optical Character Recognition (OCR) can be used.  

2.3. OCR 

OCR is a computer science technology that mimics the human capacity of seeing things, 

associating the image of a character to its symbolic identity. OCR uses pattern recognition, artificial 

intelligence and computer vision to the conversion of encrypted file formats as images, printed text or 

even handwritten text into machine-coded, readable, editable and searchable data widening the 

content of these files. These data can be stored in a more compact way and used in processes as 

machine translation, text-to-speech or even text mining (Asif et al., 2014). 

One of the first OCR approaches was developed in 1914 by Emanuel Goldberg. He created a 

device for blind people that read characters and converted them into standard telegraph code (text-to-

speech method) (Asif et al., 2014). More recently, with the same concern, Cutter and Manduchi 

(2015) developed an experimental software to analyze the acquisition of OCR-readable images by a 

blind person using her smartphone’s camera. That software gives inferences to the user about 

camera position, proximity to paper and other variables that can inhibit a successfully taken well-

framed image (Cutter and Manduchi, 2015).  

The character recognition may be done in two different ways (online and offline), being OCR a 

system which uses an offline approach, in which the recognition is done after the completion of 

writing or printing and not done when characters are draws (Álvarez et al., 2015). 

2.3.1. OCR Methods 

OCR systems are based on patterns. Patterns can be numbers, letters or any punctuation 

character. The first thing to do is teach the machine about these patterns. For that, there are training 

sets with all characters grouped into classes. These classes are then used by the machine to analyze 

and compare new examples, assigning them to the best-scored class (Eikvil, 1993).  
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Figure 5 – Representation of degraded symbols. Adapted from (Eikvil, 1993). 

The complete process can be resumed to two main processes: the character extraction 

where the learned patterns are applied to delimit words or individual letters that are then identified by 

the character recognition process (Holley, 2009). 

OCR Character extraction 

After getting the document ready to be used as input, it is necessary to locate the words or 

characters inside the document and distinguish them from figures or other page sections without any 

information. This process is called segmentation (Eikvil, 1993). Most of the times, in a first approach, 

segmentation algorithms identify words which are then fragmented into single characters (Eikvil, 

1993). However, there are several problems associated with this recognition process since single 

characters can be linked to each other; background noise can be identified as dots or accents; 

figures or graphics can be identified as text, among others (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

After segmentation and correspondent text extraction, the resulting image of each character 

may contain some noise. So, a preprocessing phase is required. For that, small gaps are filled and 

the width of lines is reduced allowing the increase of each character intelligibility.  In addition, 

normalization can be applied to make size, slant and rotation uniform. After this, the feature 
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extraction step is applied. In this process, the information that is more relevant for classification 

purposes is extracted from the preprocessed images. This allows minimizing the variability between 

the different created classes (Trier et al., 1996). This is a very complex process since there is a great 

variability in the extracted features due to the variability of the available data or even due to 

recognition problems (Hossain et al., 2012).  

As evidenced by Eikvil (1993), there are several techniques for feature extraction that are 

evaluated by their robustness (sensitivity to noise, distortions, style variation and translation or 

rotation movements) and practical use (speed of recognition, the complexity of implementation and 

independence of other supplementary techniques). 

Some feature extraction techniques as template matching and correlation, the statistical 

distribution of points, transformations, and structural analysis will be described. 

In template matching and correlation techniques there is no true feature extraction. In this 

method, a matrix containing the image of the input character is used as “feature vector”. Then, it is 

compared with the training examples used to represent each possible class, allowing the calculation 

of a distance or a similarity value. The character is assigned to the class where the distance value is 

lowest and below a specific threshold or where the similarity value is the greatest and above a 

specific threshold (Trier et al., 1996). 

Based on statistical distributions of points there is a feature selection using different 

statistical approaches. The features can be related to the density of the black points within some 

regions resultant from the specific division of the rectangle that delimits the character; with the 

density of black points surrounding a selected center; with the vectors in different directions (rows 

and columns), with different lengths (when distance is in use) created by the number of transitions 

from the character background to foreground, and vice-versa; with the relative joint occurrence of 

black and white points; or even with the number of intersections of the vectors created for each 

character point (Hossain et al., 2012; Eikvil, 1993). 

The complexity of these two previous described techniques allows some tolerance to 

distortions and style variations. 

Other techniques as transformations and series expansions use the curve that describes the 

delineation of the characters through Fourier domain frequency, allowing the tolerance to the 
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background noise of this approach (Granlund, 1972). When the character has finer details, the 

Fourier domain frequency is high and for the basic shape the Fourier domain is low (Hossain et al., 

2012).  

Finally, there are structural analysis techniques, where the input character is partitioned. In 

these techniques, for each partition, all the features extracted are the geometric and topological 

structures of characters, allowing the extraction of features with high tolerance to noise and style 

variations but weakly tolerant to rotation or translations. 

OCR Character Recognition 

After feature extraction, the next step is the assignment of each character to the 

correspondent class. Two approaches can be made: the first includes all methods that use a 

numerical vector as a feature to achieve the similarity value for each class and the second includes 

the methods that compute the similarity function using the physical structure of the character, 

comparing it with the physical structure of the class (Eikvil, 1993). 

On the first approach, there are several classifiers: minimum distance, neural networks, and 

the statistical classifiers. Minimum distance classifiers use different metrics to calculate the distance 

value between each class and a specific character, being the Euclidean distance the most common 

one. A practical example of this classifier is the k-Nearest Neighbor classifier which allows obtaining 

competitive results depending on the k value and on the used metric to the distance calculation 

(Hossain et al., 2012). 

Neural network classifiers are made by layers of interconnected elements whereby the 

feature vector can be used as input. In every element of a given layer, a new value is calculated to 

the input vector through a non-linear function adjusted in the training phase. A practical example of 

this classifier is the feed forward back propagation neural network (FBPN) (Eikvil, 1993; Hossain et 

al., 2012). 

Statistical classifiers use Bayesian methods that calculate the probabilities of a given 

character belongs to any class. Then, that input character is assigned to a class with higher 

probability. To optimize the classification results, the Normal distribution is used as density function 

and it is assumed that all classes have the same occurrence probability. This classification scheme 
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Figure 6 – Components of an OCR-system. Adapted from (Eikvil, 1993). 

gives the lowest probability of making classification errors, in terms of average. A practical example 

of this classifier is the probabilistic neural network (PNN) (Eikvil, 1993; Hossain et al., 2012).  

The second approach uses structural methods, being the methods that use syntactic 

analysis the most used ones (Eikvil, 1993). On these methods, the grammar of each class is 

compared with structural components from an unknown character in a practical way.  

After all characters being classified into their respective classes, a post-processing phase is 

required. In this phase, the individual characters are associated into words or numbers based on 

their location within the document. In the post-processing phase, the context is used to find errors 

from the classification process and correct them. This process can be done by analyzing the 

probability of a given sequence of characters appearing together (e.g. a “k” after an “h” is an error, 

in the English language) or using dictionaries for all words that must appear in the text (Eikvil, 1993). 

The steps of the overall OCR process regarding the character extraction and recognition 

processes are presented in Figure 6. 
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2.3.2. Available OCR systems 

There are several types of OCR software available in the market depending on the users’ 

needs. Generally, OCR tools can be divided into two different types – online services and desktop 

software. However, only a few of them are open source and available for free use. Some of the most 

used OCR software were represented in Table 3. 

 

Table 3 – Some of the most used OCR systems and respective URL, type and the programming language used to apply 
the system. 

OCR software 
Programming 

Language 
Type URL 

Tesseract C++ 
Desktop (open 

source) 
https://github.com/Tesseract-ocr  

OCRopus Python 
Desktop (open 

source) 
https://github.com/tmbdev/ocropy  

GOCR (JOCR) JavaScript 
Desktop (open 

source) 
http://jocr.sourceforge.net/  

ABBYY Finereader Not applicable Online/Desktop http://www.abbyy.com/  

Adobe Acrobat 

Professional 

version 

Not applicable Desktop http://www.adobe.com/products/acrobatpro.html  

 

Tesseract is a free and open source software, written in the C++, so it is platform 

independent and can be applied to other languages as Java. Tesseract works in a step by step 

manner following the steps presented earlier with some particularities. First, the image is converted 

into binary images. The character outlines are extracted and converted into blobs. These blobs are 

analyzed and divided, by the spaces (even the little-fuzzed ones), into words. In a first attempt, these 

words are used as input and the recognized ones are used as training data for the adaptive classifier. 

After this training phase, the classifier is used to identify and classify the other words (Patel et al., 

2012; Smith, 2007). 

OCRopus is another open source OCR system (Breuel, 2008). This system is written in the 

Python programming language and has three major components: the physical layout analysis, text 

https://github.com/Tesseract-ocr
https://github.com/tmbdev/ocropy
http://jocr.sourceforge.net/
http://www.abbyy.com/
http://www.adobe.com/products/acrobatpro.html
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line recognition, and statistical language modeling. In physical layout analysis text columns, text 

blocks, text lines and reading order are identified to allow the recognition on each text line for 

posterior recognition of sentence text. To do that, a prior knowledge of the language, vocabulary, 

grammar, and the domain of the document is previously created.  As a statistical method, the 

OCRopus software uses Bayesian classifiers for the classification process (Breuel, 2008). 

There are more available systems but less used such as GOCR (JOCR) or paid ones, as 

ABBYY Finereader software or Adobe Acrobat Professional version. 

2.4. @note2 

The @note project (www.anote-project.com) is a Biomedical Text Mining platform created by the 

Centre of Biological Engineering at the University of Minho, in collaboration with the company 

SilicoLife8 that currently maintains it. The first version of this project has been released in 2009 

(Lourenço et al., 2009), being now on the version 2.0. 

The @note2 platform is totally written in Java which gives portability, programming facilities and 

robustness to the system, allowing run the code on any computer, catch runtime exception for the 

errors that may occur and even use several application programming interfaces (API) easily 

configurable and user-friendly (Hugunin, 1997).  

Structurally, @Note2 is organized into core libraries and GUI tools. The core libraries are 

organized mainly in three main functional modules: the Publication Manager Module (PMM), the 

Resources Module (RM) and the Corpora Module (CM) (Figure 7).  

The PMM module is subdivided into two different processes: the IR Search and the IR 

Crawling processes. The IR Search process allows searching documents in online repositories: 

PubMed and Springer. From this process, a list of documents is retrieved according to some 

configurable parameters for each online repository. The obtained list is a data structure designated 

as Query.  

 

 

                                                 
8 (http://www.silicolife.com/) 

http://www.silicolife.com/
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Figure 7 - @note2 structure. 

 

The IR Crawling process is used to try to complete the documents information previously 

downloaded by the IR Search process with the respective full-text content. For that, specific database 

IDs are used. On @note2, there are two ways to achieve full-text documents: using PMCIDs from 

PubMed Central database or using PMIDs from PubMed database (Figure 7). 

The CM allows the corpora management, being responsible for the corpora creation. That 

corpora can be obtained from the publications retrieved by the PMM on the IR Search process, from 

PDF files imported from a folder or from the evaluation corpora loading process. To each corpus, can 

be applied several IE processes allowing the identification and extraction of biological entities and 

their relationships, creating an IE schema with all the obtained results that is associated with the 

respective corpus were IE process was applied. The applied IE schema depends only on the IE 

process applied: Named Entity Recognition (NER) processes give origin to NER schemas and Relation 

Extraction (RE) processes give origin to RE schemas. CM also encompasses the Curator process, a 

powerful environment which allows the manual curation of the produced IE schemas by the addition, 

edition or removal of entities or relations generated previously.  

RM comprises several interfaces that allow the creation and management of dictionaries, 

rules, lookup tables, ontologies or lexical words that are the lexical resources that can be used in IE 

processes by CM. 
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@note2 uses a relational database (as the MySQL database) and is built over the AIBench 

framework (Lourenço et al., 2009). Consequently, it presents specific characteristics of this 

framework: interoperability, by allowing the model-view-controller (MVC) design pattern with different 

functionalities, which may come from the integration of components of other open-source platforms 

wrapping that content into standardized formats; flexibility, by allowing new arrangements and 

different configurations to get distinct applications; and, modularity, by promoting a plugin-based 

platform, allowing the development and integration of new components by establishing dependencies 

between them. 

For developers, @note2 can be the base for the development of new services, algorithms or 

graphical components following the clear separation between core libraries and the GUI tools, the 

graphical section of @note. Therefore, developers can create new @note2 functionalities which can 

be applied to BioTM field. At the same time, the components of @note2 can be used in the 

development of other applications.  
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3. PATENT PIPELINE DEVELOPMENT 

This chapter comprises all conceptual structure as well as the Java implementation of the 

developed pipeline. 

All development process can be organized into several components that were introduced on 

several components integrated on the @note2 as part of the PMM and CM modules. Alongside with 

the patent pipeline description, this chapter encompasses several information about every used 

component, such as its operability and configuration. 

3.1. Overview 

Taking into account the proposed objectives for this project, a pipeline encompassing several 

steps was designed. That pipeline is referred as “patent pipeline” and can be organized into four 

different tasks. The first task is related to patent ID searching, being followed by patent metadata 

retrieval, while the third encompasses the published patent PDF file downloading, and, finally, the 

fourth deals with the application of PDF to text conversion methodologies to the PDF files.  

The patent metadata is related to its bibliographic data, comprising the invention title, 

authors, publication date, an external link to a patent database entry (if available), the abstract and a 

short patent description (sometimes these are merged).  

The patent pipeline uses different information sources grouped by their purpose. Sources to 

search and retrieve patent IDs, sources to search for metadata about each patent and sources 

capable of returning the patent file(s) in PDF format were put in the search sources module, 

metainformation sources module and retrieval sources module, respectively. The used PDF to text 

conversion methodologies were organized in the PDF conversion module. With that approach, on the 

patent ID searching process, the total number of patents is the result of the sum of all used 

components while for the other implemented processes, the patents that were not processed by a 

given component are used as input on the next component and so on until all patents being 

processed or all the components were used. The overall view of the conceptual architecture is 

provided in Figure 8. 
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As seen in Figure 8, to start the search process, input keyword(s) are needed. Those 

keywords can be biomedical entities as chemicals, genes, diseases, among others.  

After the input definition, the keywords are processed by the search sources module. In this 

project, this module is constituted by several APIs of popular search engines, namely the Custom 

Search API from Google, the Bing Search API from Microsoft and the Open Patent Services (OPS) 

web services API from EPO. Each one of these module components requires specific access keys 

resulting from the respective services registration. These access keys along with the given input 

keywords are the base for getting access to the server and returning a set of patent IDs (Figure 8). 

Figure 8 - Graphical summary of the designed patent pipeline. The numbers represent the pipeline flow. 
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The metainformation sources module uses the returned patent IDs from the search sources 

module and the component specific access keys as input, returning metadata related to bibliographic 

information for the given patents. In this project, two different APIs were chosen to be the 

constituents of this module: the PATENTSCOPE web service API and the OPS web service API. 

The first two modules of the patent pipeline (metainformation sources module and the 

search sources module) can be grouped, leading to the query creation. The query is a data structure 

implemented on @note2 used to store information about documents resulting from a search 

process.  

The retrieval sources module takes the patent IDs from the query generated by the two 

previous modules of the patent pipeline (or a list of patent IDs added manually) and the component 

specific access keys as input, returning the PDF files of the published patents, which are added to 

the query data. In this project, that module is constituted by the same APIs used on metainformation 

sources module (the PATENTSCOPE web service API and the OPS web service API) using different 

configurations. 

The PDF conversion module takes all the PDF files returned from the retrieval sources 

module or from the manual adding, extracting all printed text from these patent files and 

transforming it into a machine-readable and editable text. That text allows the creation of a corpus 

data structure, allowing to run IE methods, for instance, NER or RE (Figure 9).  

Figure 9  - Graphical summary of patent pipeline’s necessary and alternative steps to get a patent corpus to be 
annotated. 
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Due to the patent pipeline modules aggregation, the patent ID searching, as well as patent 

metadata retrieval, are integrated on “Patent Search”, a new @note2 IR Search process. The 

modules responsible for these tasks are detailed below in sections 3.2 and 3.3.  

The patent PDF file downloading is integrated on @note core libraries as an IR Crawling 

process (Figure 10). 

 

The PDF to text conversion methodologies are incorporated into the corpora module as a pre-

process to the corpus creation process using a query from PMM or whenever PDF files are loaded 

from a folder. 

The modules relative to patent retrieval and PDF to text conversion tasks are described in 

sections 3.4 and 3.5. 

3.2. Patent IDs search process  

The first stage of the patent pipeline corresponds to the input of different keywords on the 

search sources module, the respective processing and the consecutive returning of patents IDs 

associated with the given terms.  

Figure 10 - @note structure with patent pipeline implementations. The orange boxes represent the new components 
added.  
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The given input can be simple with only a search term or comprising several terms. As an 

example, to search all patent IDs associated with polyhydroxybutyrate (PHB), a polymer with 

interesting biodegradable properties for application in the industry (Reddy et al., 2003), the input can 

be simple, with terms such as "polyhydroxybutyrate" or just "PHB". However, since PHB is a 

polyhydroxyalkanoate (PHA) (polyesters synthesized by bacteria of various hydroxyalkanoates) 

another possible search can be all PHA who were not PHB, such as polyhydroxyhexanoate (PHH) 

polymers. In this case, the input must be expressed in more than one term combined by search 

operators (e.g. “PHA NOT PHB”). 

It is also possible to search for patent IDs using different PHA polyesters in combination with 

the search operators AND or OR. The AND operator is used only when patents containing references 

to both searched terms are required (e.g. “PHH AND PHB”); the OR operator is used to return patent 

IDs of patents containing at least one of the search terms (e.g. “PHH OR PHB”). To differentiate the 

search operators from other search words, they should always be entered in upper case. 

All components of the search sources module are based on information exchanges through 

the internet using different Uniform Resource Identifiers (URI), a compact sequence of characters 

that identifies an internet resource (Berners-Lee et al., 2005). A well-known subset of URIs are the 

Uniform Resource Locators (URLs), which give the resource location along with the resource 

identification.  

The keywords are introduced on the specific part of the component URI. Since any URI is 

composed by a limited set of characters, an encoding step is needed to convert the invalid input 

characters to a valid ASCII or UTF-8 format. That encoding process is called percent-encoding or 

URL-encoding. So, after input expression definition, the invalid characters are replaced by the 

correspondent numerical value of character’s binary code (details about the percent-encoding 

process applied to the search sources module components are available in Appendix 1). 

Each component of the search sources module has specific invalid characters. For the 

Custom Search API and Bing Search API, almost all modifications are applied using the 

URLEncoder9, a Java utility class for the HTML form encoding. For the OPS web services API only 

some modifications are required (EPO, 2015).  

                                                 
9 (https://docs.oracle.com/javase/7/docs/api/java/net/URLEncoder.html)  

https://docs.oracle.com/javase/7/docs/api/java/net/URLEncoder.html
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3.2.1. Custom Search API 

The Custom Search API is provided by Google and returns the same results of Google’s web 

search through code implementation. This API works through a Representational State Transfer 

(REST) architecture (Google, 2015). As mentioned by Fielding (2000), REST systems consist of a 

coordinated set of components, connectors, and data elements, being the underlying architectural 

principle of the web. It allows complex interactions between server and client without exposing 

server’s information besides what was requested and without the server having or saving any 

information about the client. This allows returning the same results for two different requests from 

the same client asking for the same server’s information. 

Systems using REST architecture and agreeing with its principles are designated as RESTful 

systems. Those systems communicate with the server over Hypertext Transfer Protocol (HTTP) calls, 

as GET (to obtain information), POST (to create a new entry with new information), PUT (to replace 

an entry information), and DELETE (to delete information) (Fielding, 2000). 

The Custom Search API can retrieve results including the URL, result’s title, text snippets, 

information about the requested search (e.g. the time that the server took to return the results or the 

number of results) and some information about the used Custom Search engine (Google, 2015).  

The results can be returned in two different formats: JavaScript Object Notation (JSON) or Atom. The 

JSON format assembles all the data about results in a collection of name-value pairs or in an ordered 

list of values using a language-independent data interchange format (international standard ECMA-

404) (ECMA, 2013). The Atom format is an XML-based document format that contains all results 

grouped in lists of information, known as “feeds”. Every “feed” illustrates a different result 

constituted by different data grouped on different “entries” (Nottingham and Sayre, 2005).  

To use this API, Google requires two different access tokens: search engine ID and API key. 

The search engine ID allows the control of daily queries and the number of the returned results, while 

the API key allows the client identification (Figure 8). To get access to the server, the API uses a GET 

command through a URI allowing the access to resources (Figure 11). 
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The protocol used to communicate with the server, the host name, the Google’s service and 

version part of URI are invariable (Figure 11). The “parameters” section is replaced by different 

available parameters that can be used to improve and filter results being always separated by the 

“&” symbol on the URI (Google, 2013). The “q”, the “key” and the “cx” parameters are mandatory, 

while the others are optional (Table 4). 

 

Table 4 - The most important and the most used parameters of the Custom Search API (Google, 2013). 

Parameters Description 

q= Defines the input expression to search for. 

key= Identifies the API key. 

cx= Defines the used Custom Search engine ID. 

exactTerms= Defines words that all results must contain. 

excludeTerms= Defines words that exclude results containing them. 

orTerms= 
Defines additional terms to search. Results with at least one of the defined additional 
terms are returned. 

relatedSite= Defines a site which filters the results for only those that have relationships with it. 

siteSearch= Defines a site to search returning only the results within that domain. 

num= 
Defines how many results per page will be returned. The maximum allowed number is 
10. 

start= Defines the index of the first result presented on a given page. 

alt= Defines the response data format. It can be represented as “JSON” or “Atom”. 

cr= Restricts results to documents originated on client country. 

dateRestrict= 
Restricts results by choosing a number of days (d[number]), weeks (w[number]), months 
(m[number]) or years (y[number]) for results’ date. 

Figure 11 - Example of the used URI on Custom Search API to retrieve patent IDs from the server related to PHBs. 
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Besides the API parameters shown in Table 4, the input expression can be a combination of 

keywords and symbols, designated as search operators. The API uses the same search operators as 

Google’s search engine (Table 5).   

 

Table 5 - Brief description of the most important Custom Search API search operators (Google, 2016). 

 

After the search process, the obtained results are URL addresses to patent pages from the 

Google Patents database. To get only the patent IDs, a result transformation is required (Figure 12). 

All patent IDs are composed of one or two letters followed by a sequence of numbers, ending with 

the kind code (one letter, in many cases, followed by a number). So, a regular expression is applied 

to every result removing all unnecessary URL parts (Figure 12). 

 

 

Symbol Description 

+ It allows adding new mandatory keywords, returning only results that contain all of them. 

OR Return results that contain at least one of the given terms. 

- Allows adding new terms that exclude results containing them. 

“” Defines a filter returning only results containing the exact words within the marks. 

* It is used as a placeholder of unknown terms on a phrase. 

.. It is used to get results with numbers in a range. 

~ Returns synonyms for a given term. 

site: Defines a domain for which all results must be included. 

define: Returns only definitions for the given term. 

filetype: Defines a file extension for results. 
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Figure 12 - Post-process applied to search process results. 

3.2.2. Bing Search API  

The Bing Search API programmatically allows obtaining the same results provided by Bing 

Search engine from Microsoft through the same output formats of the Custom Search API: JSON or 

Atom. Using this API, it is possible to search on many different information types using the same 

input keywords: the web, images, news, video or even related searches and spelling suggestions 

(Microsoft, 2012). 

To communicate with the server, this API uses a Hypertext Transfer Protocol Secure (HTTPS) 

which is an encrypted communication protocol which combines HTTP with Secure Sockets Layer 

(SSL) certificate, preventing non-authorized access to information (Singh and Kumar, 2016). 

Similar to the Custom Search API, the Bing Search API allows the introduction of some 

parameters/filters as URI parts (Figure 13) and search operators applicable to the keywords.  
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 The most used API parameters and query search operators are presented in Table 6 

alongside a brief description for each one.    

 

Table 6 – The description of the most relevant URI parameters and the most used search operators of Bing Search API 
(Microsoft, 2012). The API parameters in italic are presented through the exact URI representation. 

 Parameter Description 

AP
I p

ar
am

et
er

s 
(U

R
I m

od
ifi

ca
tio

ns
) query Defines the input keywords to the search process. 

source-type 
Allows the selection of the type of results to be retrieved. The predefined value is “Web” but 
it can be also “Image”, “Video”, “News”, “Spell” and “RelatedSearch”. 

$format= Defines the server’s response format. It can be in Atom or JSON. 

$top= Defines the number of results to return per page. The maximum number allowed is 50. 

$skip= Defines the index of the first result returned. 

market= Defines the language and the country to focus results on. 

Se
ar

ch
 o

pe
ra

to
rs

 (
ke

yw
or

ds
 m

od
ifi

ca
tio

ns
) 

AND or & Add terms to query, returning only results that contain all terms. 

NOT or – Exclude results that contain the given terms. 

OR or | Return results that contains one of the given words. 

site: Return only web pages inside the given domain. 

“” 
Returns only the results which contain the exact words within speech marks on the 
webpage content. 

+ Return webpages which contain all given terms preceded by this symbol. 

prefer: 
Help to give emphasis to a given term. The first results returned are those containing the 
defined term. 

filetype: or ext: Returns only the results with the extension given. 

Figure 13 – Example of the used URI on Bing Search API to search for 10 patent IDs related with PHBs. 
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Although the API has the ability to return results with several information types (Table 6), 

only web results are considered here. Each result provides a title, a brief description and the specific 

patent external URL which redirects to the invention’s web page from the Google Patents database, 

similarly to the Custom Search API (Microsoft, 2012). After getting that URL, a post-processing step 

is required to extract only the patent ID. Since the web pages have the same URL structure than the 

obtained on Custom Search API, the result modifications are the same for the two APIs (Figure 12). 

3.2.3. OPS web service API  

The OPS web service API, as the name implies, is a web service accessed by programming 

in a machine-to-machine service based requests. OPS web services provide access to EPO’s raw 

data from the same sources as Espacenet (EPO, 2015). 

The results are obtained in the XML format, but can also be obtained in JSON and the 

communication with the server is made using a RESTful architecture similar to Google’s Custom 

Search API. Contrarily to the previously discussed APIs, the OPS web service API allows obtaining 

directly patent IDs avoiding the further processing of the results. This API allows returning other 

patent information as metadata (bibliographic information, legal status data, EPO's register, patent 

classification date, among others) or even page images of the published patent document (EPO, 

2015). Due to that diversity, the URI used to the server’s request can be represented in different 

manners allowing the use of this API on different patent pipeline modules (Table 7).  

For patent ID searches, the used URI is a simple variation of what is shown in Figure 14. 

  

Figure 14 – Example of the used URI on OPS web service API to retrieve patent IDs related with PHBs.  
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As seen in Figure 14, the protocol, authority, version, prefix and service parts are invariable. 

The constituents part can be “biblio” for bibliographic data searches, “abstract” for abstract 

searches or “full-cycle” for getting all possible information about each result (bibliographic data 

and/or abstract). 

 

Table 7 -  Description of URI parts of OPS web service API for search and retrieval operations (EPO, 2015). 

 OPS URI part Description 

C
om

m
on

 to
 b

ot
h 

op
er

at
io

ns
 

In
va

ria
bl

e 

protocol Communication protocol 

authority The host name 

version OPS version 

prefix The distinguishing of OPS RESTful services 

service OPS service responsible for retrieving data 

Va
ria

bl
e 

reference-type 
Type of request made to the server to define which documents associated with 
a given patent ID the server must return. 

Se
ar

ch
 

op
er

at
io

n constituents 
Type of patent information that will be returned from the server for each search 
result 

query 
Input definition. It can be simple (with a simple keyword) or composed by 
different keywords coupled with AND/OR connectors. 

R
et

rie
va

l 
op

er
at

io
n input-format Represents the input patent ID number format. 

endpoint Defines the information that must be returned. 

 

The query is introduced after the “?q=” designation. To filter results, alongside with the API 

parameter (Range=), search operators can be used (Table 8).  
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Table 8 – Brief description of the API parameters and search operators that can be used on OPS web services API to 
search for patent IDs (EPO, 2016). The API parameters are presented in italic since that is the exact URI representation. 

Parameter Type Description 

?q= API parameter Defines the input expression. 

Range= API parameter 
Defines the range for the returned results. The maximum range value 
between the given values is 100. 

AND Search Operator Add terms to query, returning only the results that contain all terms. 

OR Search Operator Return results that contains one of the given words. 

NOT Search Operator Exclude results that contain the given terms. 

“” Search Operator Returns only the results which contain the exact words within speech marks. 

= Search Operator 
Allows the relation definition between two terms, returning only the patent 
IDs where this relation is implicit. 

All Search Operator 
Defines that all terms entered within quotes after it will be found on retrieved 
patents. 

Any Search Operator 
Defines that at least one of the terms entered within quotes after it will be 
found on retrieved patents. 

within Search Operator 
Allows the definition of the date range (years) for patent publication. The 
date must be inside quotes after parameter, separated by a comma. 

>= Search Operator Allows the definition of a lower limit to the year of patent publication. 

<= Search Operator Allows the definition of an upper limit to the year of patent publication. 

 

3.3. Patent metadata download process  

The second step of the patent pipeline is the metadata retrieval process done by the 

metainformation sources module. On that process, a data structure containing bibliographic 

information about every patent ID is obtained, related to the patent title, publication date, authors, 

abstract and description, if available. The data structure is created within the framework of @note2 

for all the patent IDs retrieved, being called “query”. 

There are two different components on the metainformation sources module: PATENTSCOPE 

web service and OPS web service. 
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3.3.1. PATENTSCOPE web service API 

The PATENTSCOPE web service API is a data service provided by WIPO, integrating the 

PATENTSCOPE search engine and PATENTSCOPE database, through a Java API using Simple Object 

Access Protocol (SOAP) protocol (WIPO, 2016). That protocol, similar to REST, is used to exchange 

structured information with WIPO servers in a machine-to-machine communication system (Curbera 

et al., 2002). As a platform-independent and secure system, the SOAP protocol requires the use of 

XML as the source for messaging and HTTP or Simple Mail Transfer Protocol (SMTP) for message 

transmission through application layer protocols (Curbera et al., 2002).  

The PATENTSCOPE web service API can access bibliographic data for all published patent 

applications through the WIPO server, returning information in the XML format. Also, this web service 

allows the retrieval of the published patent file. There are several predefined methods available for 

use on this API depending on what information is required (Table 9). 

 

Table 9 – Different PATENTSCOPE web service API predefined methods and respective description (Waring, 2012). The 
necessary parameters for each method are presented in bold. 

PATENTSCOPE web service 
method 

Description 

getAvailableDocuments 
Returns a list of document IDs of all available documents on 
PATENTSCOPE database for a given application number (patent ID). 

getDocumentContent Returns the binary content of a given document ID. 

getDocumentOcrContent 
Returns the binary content of a given document ID in text-based PDF 
format. 

getDocumentTableOfContents Returns all the page IDs for a given document ID. 

getDocumentContentPage 
Returns the binary content of a given a page ID of a patent document and 
the respective document ID. The document pages can be in TIFF or XML 
format. 

getIASR 
Returns the bibliographic data of a given application number in XML 
format. 

 

To retrieve patent metadata using the PATENTSCOPE web service, there are two possible 

methodologies. The first is obtaining an XML file through the application of the method getIASR giving 

a patent ID as input. Another methodology can be used through the use of the 

getAvailableDocuments method, followed by the getDocumentTableOfContents method, and finally, 
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the getDocumentContentPage method applied only to the XML file returned by 

getDocumentTableOfContents method. After getting the XML file, a parser can be used to get the 

metadata associated with the patent (Figure 15). 

 

 

Figure 15 – Schema about the possible alternatives for PATENTSCOPE web service patent metadata retrieval 

process. 

3.3.2. OPS web services API 

The other component of the metainformation sources module is used to retrieve metadata is 

the OPS web services API. As described previously, there are many requests that can be made 

through this web service allowing the patent IDs searching process and the patent data retrieving 

(Table 7). However, a different URI is needed for every request type. In the metadata retrieval 

process, the used URI parts refer to patent data retrieving request type: the reference-type, the input-

format and the endpoint (Table 7).  

The reference-type part of the URI used on the OPS web service refers to the different 

documents that can be available for the same patent ID. This is due to the fact that obtaining a 
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public patent document is a slow process, and there are modifications throughout different stages of 

that process. It can be “publication”, for the published patent application with all bibliographic data 

updated at the time of publication; “application”, for the “middle-stage” documents representing the 

formalities filled by the applicant to obtain the patent (description and claims are included); or 

“priority”, for the data filled by applicant on the first filling of their patent application (EPO, 2015).  

The input-format represents the format of the input application number. It can be either 

“epodoc” for country code, number and kind code concatenated (e.g. DE200720016308U), 

“docdb” for all application number parts separated with dots being the country code, number and 

kind code mandatory (e.g. DE.202007016308.U) or “original” for  unformatted patent ID number as 

found on original patent document (e.g. DE.(20 2007 016,308.8)) (EPO, 2015). The search source 

module components only return patent IDs through “epodoc” format, so all OPS retrieval services 

use that format as input. 

Finally, the endpoint part of the URI in published-data request structure defines the access to 

the worldwide patent data and what information should be downloaded. The endpoint has a default 

value and if not defined, “biblio” is automatically the chosen value. The “biblio” value allows 

downloading all patent metadata but some other options are available to download only parts of the 

bibliographic data: “abstract” to get only the patent abstract; “description” to get only patents 

description; “claims” to download only the patent claims; and “fulltext” to download patent claims 

and description, if both are available (EPO, 2015). 

Taking advantage on that variability of options, the reference-type used on our patent pipeline 

for metadata retrieval is defined as “publication”, the input-format as “epodoc” and the endpoint as 

“biblio” (Figure 16). 
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Figure 16 – Representation of the used URI to retrieve metadata on OPS web service API, given a patent ID on 

“epodoc” format. 

 

As seen in Figure 16, after replacing the URI part, noted by “patentID” for the respective 

patent ID of interest, this URI can be used to communicate with the server, returning an XML or 

JSON file that can be easily parsed to extract available bibliographic information. 

3.4. Patent PDF file retrieval process 

The third step of the patent pipeline is the patent retrieval using the components of retrieval 

sources module. For each patent ID, a PDF file with all pages as seen in the published patent 

application is returned. There are two web services that can be used to download that PDF files: 

PATENTSCOPE and OPS. Similar to patent metadata retrieval, these two act together, allowing the 

download of a great number of patents. The patent PDF retrieval process, although being a corpus 

creation process component is interlinked with the @note query data structure, previously generated, 

since the absolute path to the PDF file is added to the query in the process. That allows correctly 

getting PDF files. 

3.4.1. PATENTSCOPE web services 

As previously described, the PATENTSCOPE web service has several Java methods which 

can be combined to request patent data. After searching for available documents using the 

getAvailableDocuments method, the PDF file can be obtained using two different methodologies. The 

first and the quickest way is the direct returning of the PDF file with the use of 
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getDocumentOcrContent method providing a patent text file with high quality (Figure 17). The other 

way is downloading every page separately. For that purpose, with the use of 

getDocumentTableOfContents after getAvailableDocuments method, a list of all page IDs for a patent 

document ID is provided being the patent pages downloaded using the getDocumentContentPage 

method iteratively for every page (Figure 17). That alternative method requires a posterior merge of 

all pages into a single PDF file, with tools as PDFMergerUtility class from PDFBox10 API, whose 

version 2.0.1 was used in this work.  

 

Figure 17 - Schematic view of the used PATENTSCOPE web service methods to patent PDF file downloading given a 

patent ID. 

  

                                                 
10 (https://pdfbox.apache.org/docs/2.0.1/javadocs/org/apache/pdfbox/multipdf/PDFMergerUtility.html) 

https://pdfbox.apache.org/docs/2.0.1/javadocs/org/apache/pdfbox/multipdf/PDFMergerUtility.html
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3.4.2. OPS web services 

Using the OPS web service, to retrieve patent images from the server, the request is made 

using a URI similar to the used for patent metadata download. However, although reference-type and 

input-format parts have no variation, the endpoint part must be defined as “images” (Figure 18).  

Figure 18 - Representation of the used URI for retrieve patent images on OPS web service. 

 

To return a complete PDF, after replacing the URI part notated as “patentID” on the model 

represented on Figure 18 by the ID of the wanted patent, the request to server must be made 

iteratively to each page, downloading and merging them into a file using the PDFMergerUtility class, 

similarly to PATENTSCOPE web services API. 

3.5. Text extraction from PDF files 

The last step of the patent pipeline is relative to the parsing of PDF files, obtained from 

retrieval sources module components using the PDF conversion module. The components of this 

module allow the extraction of the text that is printed on the PDF pages into an editable and 

searchable text format. Since PDF files can have several encoding formats, different methodologies 

were used to achieve the main goal of this patent pipeline step (Figure 19). 

The first approach tried on the PDF conversion module was using the version 2.0.0 of the 

Apache PDFBox library11. That library is an open source Java tool that allows the PDF documents 

manipulation. When patent PDF files have Unicode text, this tool allows the content extraction. 

However, the most of patent PDF files have all text printed into images, which are not detected by the 

Apache PDFBox tool requiring a more accurate method. 

                                                 
11 (https://pdfbox.apache.org/index.html) 

https://pdfbox.apache.org/index.html
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Tesseract, as previously described in the previous chapter, is an OCR tool with great 

capabilities. Despite being coded in C++, it is the ideal tool to be used on PDF to text conversion due 

to platform independency and to the existence of Java wrappers (Smith, 2007). The wrapper used on 

this pipeline was the Tess4J12 version 3.2.1 developed by Quan Nguyen and published on May 29, 

2016. 

The Tesseract system is a flexible system with many configurations that allow the algorithm 

behavior changing. Those parameters can be related to the loading step made by API at the 

resources level or even at the image processing level (init only parameters); to mathematical and 

algorithmic aspects which have an influence on algorithm application (general parameters); or even 

to debugging options (debug parameters), which allow the text printing or the algorithm’s graphical 

output for the used Tesseract configurations or for the bugs founded (Details about Tesseract 

parameters for the three type of configurations can be accessed on Appendix II). 

Using the Tesseract capabilities by the Tess4J wrapper, OCR can be successfully applied to 

patent PDF files. When the OCR process returns a null or an insufficient result, another approach 

must be used. So, using a hybrid process combining PDFBox and Tess4J, it is possible to extract all 

PDF pages and iteratively convert them into images that can be then processed using OCR algorithm 

(Figure 19).  

                                                 
12 (http://tess4j.sourceforge.net/) 

Figure 19 – Flowchart for PDF to text conversion process using PDF conversion module components. 

http://tess4j.sourceforge.net/
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3.5.1. OCR evaluation through Dynamic Programming (DP) 

A good way to get an OCR evaluation metric is using Dynamic Programming (DP) algorithms, 

which allow comparing the result of an OCR with a known result used as a gold standard (e.g. an 

abstract of a paper kept in a database such as PubMed).  

DP is a mathematical algorithm that can be used to solve computational optimization 

problems commonly used in sequence analysis (Reiners, 2008). As described by Parberry and 

Gasarch (2002), DP uses a sequential approach, calculating the solution for all the possible sub 

problems and storing their values in a matrix. (Parberry and Gasarch, 2002)  

Applied to computational biology, the most practical and well-known examples of this type of 

problem that can be solved used DP algorithms are the local or global alignments of two different 

DNA (or protein) sequences.  There are two different algorithms that can be used for this purpose: 

Needleman-Wunsch, for global alignments and the Smith-Waterman for local alignments. Both 

algorithms represent an optimization problem with a processing time defined by 𝑂(𝑚 ∗ 𝑛) (Reiners, 

2008).  

The objective function which describes both algorithms is represented by the following 

equation: 

 

𝑆𝑖,𝑗 = 𝑚𝑎𝑥[𝑆𝑖−1,𝑗−1 + 𝑠(𝑎𝑖𝑏𝑗), 𝑆𝑖,𝑗−1 + 𝑤, 𝑆𝑖−1,𝑗 + 𝑤]  

 

where 𝑆𝑖,𝑗  is the cell with the (𝑖, 𝑗)  coordinates on the matrix S; 𝑠(𝑎𝑖𝑏𝑗) represents the 

match/mismatch score of a given cell in the matrix; and 𝑤 represents the score assigned to the gap 

penalty. The gap represents a "space" in the alignment between the two sequences that in biological 

terms can be relative to a mutation by a nucleotide insertion or deletion in one of the sequences 

(Edgar, 2004). 

To solve DP algorithms, it is important to define which values will be used for the match, 

mismatch and gap penalty. For the given examples, the value 1 is assigned to match, the value -1 to 

mismatch and the value -2 to the gap penalty (Reiners, 2008). Using that values, the array of 

m+1,n+1 dimensions can be built. The m and n characters correspond to the size of the two 
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sequences that are going to be aligned (Figure 20). Using the Smith-Waterman algorithm, negative 

values are not allowed in the array, being automatically replaced by 0 (Reiners, 2008).  

To obtain an alignment, after array values assignment,  the main goal is searching for all 

possible local alignments and then selecting the one with the highest score as the best possible 

alignment (Reiners, 2008). The best local alignment is the one that ends with the highest scored cell 

which is the beginning of a process called traceback. The traceback process consists on the array 

iteration starting on that array cell and ending with a cell with 0 as a value representing the beginning 

of the alignment (Figure 20). 

 

For each iteration, starting from the cell (𝑆𝑚,𝑛) and looking then at the 𝑆𝑚−1,𝑛−1 cell value, 

if it corresponds to a match or mismatch value transition, the traceback process continues through 

this cell. Otherwise, it is necessary to look at the above (𝑆𝑚−1,𝑛) and the left cell (𝑆𝑚,𝑛−1) searching 

for a gap penalty value transition. This iterative process is performed until reaching the alignments 

initial cell. 

As can be seen in Figure 20, the best local alignment of the sequences ABBBCDABA and 

ABABDDCA has a total score of 3 corresponding to the sum of 3 matches (3 times the value 1). 

Figure 20 - Local alignment results of two sequences (ABBBCDABA and ABABDDCA). a) represents the traceback process on 

alignment array; b) is the alignment’s schematic view.   
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In the given example, the comparison is made for the individual letters of two different 

sequences but it can be applied to numbers, words or something that can be compared iteratively. 

Applying this process to OCR texts, each matrix row and column can be represented by tokens that 

constitute the texts from OCR and a curated corpus, respectively. After building the array with these 

tokens, DP algorithms can be applied, evaluating the OCR performance thought the number of 

tokens that match exactly on the two texts (Figure 21). 

 

Figure 21 – Smith-Waterman algorithm applied to OCR texts and the correspondent curated text. The example was 

taken from US7417064 patent text. 
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As it can be seen in Figure 21, the OCR evaluation verifies the exact match between each 

token. In the given example, two fragmented words were introduced on the alignment which leads to 

an alignment with 9 as score representing nine matches of the eleven possible ones. 

3.6. Java Implementation 

The patent pipeline is divided into four different modules representing the developed IR 

Search process (represented by the search sources module and the metainformation sources 

module), the IR Crawling process (represented by the retrieval sources module) and PDF to text 

conversion, represented by the PDF conversion module.  

The IR Search process and the IR Crawling process modules have specific interfaces that 

combined with abstract classes, turns mandatory the implementation of several methods for all the 

components (Figure 22). That approach allows the correct implementation of all the used 

components into their respective modules and using that architecture, new components are able to 

be added posteriorly into the designed system. 

The components used in the PDF conversion module use specific configurations without any 

interface representing it. That approach was made since that module is viewed as a multi-option 

module that is able to convert PDF files with several encryption modes. So, although new conversion 

modules can be added, the designed architecture was not built to that as in the other modules. 

At the implementation level, the search sources module encompasses a patent ID retrieval 

configurator (IRPatentIDRecoverConfigurationImpl) that allows the configuration of patent ID retrieval 

step through a keywords definition to the posterior search process; an abstract class 

(AIRPatentIDRecoverSource) that turns the patent ID retrieval configuration and the respective 

validation mandatory to the use of any component of this module; a class 

(WrongIRPatentIDRecoverConfigurationException) that handles all exceptions that can be returned 

from the search sources module simplifying eventual error cases resulting from input errors from the 

user; and, three packages representing the used components. Linked to the search sources module 

are the Custom Search API, the Bing Search API, and the OPS web services API packages. All 

components of this module must have a similar implementation with a configurator that extends to 

the patent ID retrieval configurator, allowing the introduction of the component-specific access 
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credentials, alongside with the input keywords and with a data access class extending the abstract 

class of the search sources module and taking a patent ID retrieval configuration 

(IIRPatentIDRecoverConfiguration) as input. That class has the methods responsible for searching 

and returning a set of the patent IDs that satisfy the introduced keywords. 

Figure 22 – The implemented interfaces and the respective abstract classes used to implement the components of each 

module. a) represents the architecture of the search sources module; b) represents the architecture of the retrieval 
sources module; and c) represents the architecture of the metainformation sources module.  
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The Custom Search API encompasses also a package (googleEntities) beyond the 

configurator (IRPatentIDRecoverGoogleSearchConfigurationImpl) and the data access class 

(GoogleSearchPatentIDRecoverSource). That package contains the API data structures, as the class 

(GoogleResults) responsible for saving all results information obtained from the server after the 

search process.  

Similar to the Custom Search API, the Bing Search API encompasses a package 

(bingEntities) with API data structures. The other components are the expected ones for all search 

sources module components: a configurator (IRPatentIDRecoverBingSearchConfigurationImpl), and a 

data access class (BingSearchPatentIDRecoverSource). 

The OPS web services API package alongside with a configurator class 

(IRPatentIDRecoverEPOSearchConfigurationImpl) and a data access class 

(EPOSearchPatentIDRecoverSource) encompasses a class (OPSUtils) with static methods that allow 

many different requests to EPO’s server to get different information as patent IDs, and a package 

(opshandler) that allows the XML parsing for every possible result type.  

The metainformation sources module encompasses several structures that define the 

module and build a pattern that must be followed by any component. A patent metadata retrieval 

configurator (IRPatentMetaInformationRetrievalConfigurationImpl) allows the proxy definition for each 

component which, when defined, allows the existence of an intermediary server for client requests 

seeking resources from other servers and makes easier the information exchanges. A patent 

metadata report implementer (IRPatentMetaInformationRetrievalReportImpl) allows the creation or 

the temporary storing of a hash map with the patent IDs and the respective scientific document data 

implementation (IPublication), a data structure from @note2 that is then used to store the obtained 

metadata. An abstract class (AIRPatentMetaInformationRetrieval), similar to the abstract class of 

search sources module, turns the use of a patent metadata retrieval configuration, and the respective 

validation, mandatory to any metainformation sources module component.  

To handle any error resulting from the input parameters defined, a class 

(WrongIRPatentMetaInformationRetrievalConfigurationException) was also implemented.  
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Along with all described classes, there are also two different packages on metainformation 

sources module, representing the two components used: PATENTSCOPE web services API and OPS 

web services API. 

All components of metainformation sources module must encompass a configurator class 

that extends the patent metadata retrieval configurator, allowing the input of component’s access 

credentials, alongside with the proxy and a data access class that takes a patent meta data retrieval 

configuration (IIRPatentMetaInformationRetrievalConfiguration) as input. After patent meta data 

retrieval configuration validation, that data access class retrieves all available metadata for each 

patent ID. All retrieved data are inserted into a @note data structure (IPublication) of a given hash 

map earlier generated. 

Similar to the search sources module, each component can have other implemented 

structures specially designed for that system. The PATENTSCOPE web services API package, besides 

the configurator class (IRWIPOPatentMetaInformationRetrievalConfigurationImpl) and the data access 

class ((WIPOPatentMetaInformationRetrieval), encompasses a package (wipoEntities) that contains 

the classes used by this API to client authentication and to request information to WIPO servers 

alongside with a handler (WIPOXMLSAXPHandler) created to parse the XML files obtained from 

server, extracting the available metadata.  

The same happens with the OPS web services API package, which encompasses a 

configurator class (IROPSPatentMetaInformationRetrievalConfigurationImpl), a data access class 

(OPSPatentMetaInformationRetrieval), but also a class (OPSUtils) with static methods responsible for 

getting authorization from the server and returning metadata from the EPO server for a given patent 

ID, and a package (opshandler) that contains handlers for the parsing of XML files obtained from the 

EPO server. 

The retrieval sources module, similarly to the metainformation sources module, is linked to 

the same two different components represented by two different packages inside the module: the 

PATENTSCOPE web services API and OPS web services API. Alongside with component packages, 

there are also: a patent retrieval process configurator (IRPatentRetrievalConfigurationImpl), that 

allows the proxy and the output directory definition; a patent retrieval process report 

(IRPatentRetrievalReport), that allows the existence of a report to give information about which patent 
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IDs were retrieved and those that were not, allowing a general assessment of the success of the 

retrieval process and preventing that an already downloaded patent can be processed two times; an 

abstract class (AIRPatentRetrieval) that turns the patent retrieval process configuration mandatory; 

and a class (WrongIRPatentRetrievalConfigurationException) that handles input errors evidenced on 

patent retrieval configuration. 

All retrieval sources module instances must encompass a configurator class that extends the 

patent retrieval process configurator and, similarly to other module configurator classes, allows the 

input of components access credentials alongside with proxy and the output directory.  

The PATENTSCOPE web services API package encompasses also the same package 

(wipoEntities) that were used to retrieve patents metadata on metainformation sources module to 

grant the access to WIPO server, retrieving data along with the configurator class 

(IIRWIPOPatentRetrievalConfigurationImpl), and the data access class (WIPOPatentRetrieval). 

The OPS web services package encompasses a class (OPSUtils) with the static methods 

available to the authentication process and to deal with the data requested and returned from the 

server, and a package (opshandler) with XML parsers to deal with the returned data, allowing the 

downloading of the patent pages. As expected, the OPS web services package also contains the 

configurator class (IROPSPatentRetrievalConfigurationImpl) and the data access class 

(OPSPatentRetrieval). 

The last step of the patent pipeline is relative to the PDF to text framework. The PDF to text 

package encompasses the main class (PDFtoText) with a public method that allows the PDF to text 

conversion, alongside with private methods that are used to apply the different conversion techniques 

separately or to validate the conversion helping to realize if the use of another conversion technique 

is required. 

We also implemented a control class (TesseractManager) that turns the Tesseract instance 

into a singleton, avoiding time losses and memory overload opening the trained models for every 

PDF that is converted using OCR methodologies. The control class is also used to manage the 

Tesseract parameters that were previously described in section 3.5 allowing the results improvement 

if necessary. Alongside with these classes, a package (tessdata) is necessary, containing all 
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dictionaries and models previously trained, for the required languages. In this project, only English 

models were considered. 

The class diagram of the patent pipeline, with all the implemented interfaces that were used 

to build the designed architecture, is represented in Figure 23. 

To engage the entire pipeline, a class (PatentPipeline) was created, which allows adding 

different module components configurations that are then used to run the entire pipeline, using a 

single Java method. Some variations can be made using that class since each patent pipeline 

module can be run separately. 

The patent pipeline has a great interconnection with the @note2 structure, sharing some 

data structures that allow an approach to other systems already implemented. Among these data 

structures is the final content of each pipeline sections: a query (IQuery) or a corpus (ICorpus). That 

interconnection allowed the insertion of the designed IR Crawling process and the IR Search process 

to PMM and a pre-processing step on CM, as described at the beginning of this chapter (section 3.1).  
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Figure 23 – Class Diagram for the designed patent pipeline. The numbers represent the patent pipeline flow. 
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4. CASE STUDY  

4.1. BioCreative V CHEMDNER task 

 

BioCreative is a text mining event/community oriented to the implementation of IE systems 

on texts from the biological domain. The BioCreative V event, in particular, was designed to the 

development of systems to solve several BioTM problems. Being composed of several tasks, the 

BioCreative V CHEMDNER was the one that was directed to the implementation of automatic IE 

processes in patents related to chemicals.   

For the detection of mentions to chemical entities within patents (CEMP task), the 

BioCreative organizing committee provides three different corpora with manual annotations by 

domain experts: a training, a development and a test set of patent documents. The training and 

development sets are used to build the systems that are then validated using the test set. That allows 

the evaluation of every participating team by their system prediction capabilities.  

All the used corpora are constituted by 7000 patent IDs, titles and respective abstracts of 

patent documents related to medicinal chemistry applications. However, to avoid manual curation, 

the test set is distributed with 40000 patents, from which 33000 were added as background noise. 

All patents from the used datasets were published between 2005 and 2014, in English, 

obtained from several patent databases as WIPO, EPO or USPTO. Those patents have assigned at 

least one of the following IPC codes: A61P and one A61K31, being the A61P IPC code related to 

patents with the specific therapeutic activity of chemical compounds or medical preparations and the 

A61K31 IPC code to patents related to medicinal preparations containing organic active ingredients. 

To get a comprehensive number of patents to be used as a study case, these three patent 

sets were grouped into a single set for which a loader was developed (54000 patents). This loader 

was implemented with a text length evaluator for the abstract section, allowing the creation of a map 

with the 1000 longest abstracts and the respective patent IDs. On Table 10, the 10 patents with the 

longest abstract section are represented for illustration purposes, alongside with the title and the total 

length, in single characters. 
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Table 10 – The patent Ids and respective title for the patents with the biggest abstract size of all BioCreative V 
CHEMDNER task datasets. 

 

4.2. Patent pipeline validation process 

 

The map obtained as described in the previous section was used as input to the designed 

patent pipeline described in the previous chapter. The patent IDs are processed by the developed IR 

process, creating the query data structure and extracting all the available metadata for each patent. 

This procedure eliminates the patent ID retrieval process on the patent pipeline flow. Indeed, the 

validation of the patent ID search process is not viable, since it uses several search engines with 

results that change every day by the emergence of new publications. So, instead of using the patent 

ID search task, it was replaced for the case study patent IDs. This approach allowed the IR Search 

process validation, surpassing the keywords introduction, resorting to patent ID pre-selection. The 

Patent ID Title Abstract length 

CA2633585A1 Treatments for any and all mental/brain neuron/spinal cord illness 12390 

US20110124626 Benzazepine derivatives and their use as histamine h3 antagonists 4072 

US20110123468 
Use of benzotropolone derivatives as UV absorbers and antioxidants 

and their use in sunscreens and/or cosmetic compositions 
4298 

US20050033051 
 

Nucleosides preparation thereof and use as inhibitors of RNA viral 
polymerases 

2837 

US20050038069 Substituted azabicyclic compounds 2534 

US20100233083 Microparticles comprising a crosslinked polymer 2508 

US20100137405 
RNA Interference Mediated Inhibition of Cyclic Nucleotide Type 4 

Phosphodiesterase (PDE4B) Gene Expression Using Short Interfering 
Nucleic Acid (siNA) 

2451 

CA2662538A1 Azabicyclic compounds as inhibitors of monoamines reuptake 2450 

US20080167245 Novel metastasis suppressor gene on human chromosome 8 2446 

US20100124537 Medical applications of alpha-ketoglutarate 2431 
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advantage of this approach is that all the components used to build the IR Search process (relative to 

the metadata retrieval process), the IR Crawling process or the PDF to text conversion system can be 

validated since a well-known number of patents is used, working as a gold standard to benchmark 

our system.  

Using the two components that constitute the metainformation sources module on this 

project (the PATENTSCOPE web services API and the OPS web services API), complete patent meta-

information was extracted for 917 patents from the 1000 that were previously given, corresponding 

to a success rate of 91,7%. That information is relative to all the publication fields that can be filled 

with patent data on the @note2 IPublication data structure: the invention title, the abstract section 

(that for some cases is merged with the description and claims section), authors, publication date 

and external link. 

From the remaining 83 patents, 76 were filled with partial data that is relative to invention 

title, authors, publication, and external link. For some patents, these fields are all filled but to others, 

only some of this information is obtained. The others 7 patents do not return any information from 

any component server. This can be related to the use of free access credentials to the data obtaining 

from the servers since not all the requested information is available through the use of web services 

without paying; or, probably, they are not registered on the used databases or they are assigned to 

other patent ID.  

The use of free credentials is a great disadvantage since the obtained results are dependent 

on the used components. To improve that result, decreasing the number of limitations on the 

amount of retrieved data, the best solution besides using paid credentials is the implementation of 

new components on metainformation sources module. 

After all available metadata is retrieved, a @note2 query data structure is built using that 

information. A brief preview of the obtained query for our study case is represented in Figure 24.   

After that metadata retrieval process, the patent PDF files were downloaded for the 

respective patent IDs. Using the PATENTSCOPE web services API and the OPS web services API, the 

two components of the retrieval sources module, 993 patents were downloaded, which corresponds 

to a success rate of 99,3%. The success rate was not 100% due to the inexistence of some patents 
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on the database but, as before, can be also related to restrictions imposed by the use of free 

credentials to access server information. 

 

Figure 24 – The @note2 query data structure obtained from the patent pipeline study case using the implemented IR Search 
process. All metadata extracted is evidenced through red boxes. a) represents a general view of the query data structure; b) 
represents the detailed description of a single patent from the obtained query data structure.  
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The results for the developed IR Search process relative to the metadata retrieval system and 

the IR Crawling process are shown in Table 11.  

 

Table 11 – Number of processed patents for the metadata and the patent retrieval process, using the IR Search and the 
IR Crawling modules, respectively. 

  
IR Search (metadata 

retrieval) 
IR Crawling 

E
va

lu
a

ti
o

n
 

p
a

ra
m

e
te

rs
 

Number of processed patents 1000 1000 

Number of patents (Total) 
917 (or 993, with partial data 

included) 
993 

Success rate (%) 91,7% 99,3% 

 

The query data structure, after the PDF retrieval process, is updated with the obtained PDF 

file for the corresponding patent, as previously seen in Figure 9 (section 3.1). The resulting @note2 

query can be seen in Figure 25, with the PDF file section evidenced. 

 

 

Figura 25 - The @note2 query data structure obtained from the patent pipeline study case implementing the IR Search 
process, including the patent pipeline PDF retrieval task. 
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Regarding the fourth patent pipeline task (PDF to text conversion process), the PDF to text 

conversion module is constituted by three different methods, and the entire process can be seen as 

multiple sequential sub-processes, where if one approach is not capable of returning good results, 

the next one is used. 

So, since the entire patent PDF files are constituted by patent images aggregated into a 

single file, the Tess4J method is applied. Since all PDF files have the same structure, this approach 

is used to convert all the files and the PDFBox or the hybrid method are never used in this case 

study. Taking advantage of this feature, since Tesseract has several parameters that can change the 

algorithm behavior, several alternative values for these parameters have been tried to find the better 

PDF to text conversion (Table 12). 

The 1st approach uses the default values for Tesseract algorithm. It was used to start the 

evaluation of the PDF to text conversion and to be the basis to compare against any modification of 

Tesseract parameters.  

The 2nd approach is based on two different modifications: one on the init only and the other 

on the general parameters. The init only parameter changed refers to the given resolution to the 

patent PDF pages on the loading process (image_default_resolution parameter) which was changed 

to 400 DPI. The general parameter changed was the “tessedit_pageseg_mode”. Previously defined 

as “0”, this parameter represents the page segmentation mode. The default value refers to the 

assumption that the text is represented by a single uniform block of text. On patent PDF files, in 

many situations, the text is printed in two different columns. So, this value must be defined as “1”, 

representing an automatic page segmentation process with the detection of text blocks, orientation, 

fonts and language scripts, ignoring other languages and characters besides the used on English 

(e.g. Chinese symbols).  

The 3rd approach uses the same two modifications made on the 2nd approach alongside with 

two new modifications on Tesseract general parameters. The heuristic_segcost_rating_base 

parameter, related to the segmentation cost, when bigger, allows the exclusion of some unrecognized 

characters from results and the inclusion of entire words that were broken with a lower value. In this 

approach, it was defined as 1.5. The textord_min_linesize parameter was changed to 2.5, 
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representing the minimum line size. Since it was increased, the text from very tiny lines that is 

frequently converted into background noise on the conversion process was excluded.  

 

Table 12 – The used values for some Tesseract parameters using three different approaches.  

 

Applying the latter approach to PDF files with good classification metrics, obtained without 

those changes, can be an error, since some correctly extracted text will be ignored. To surpass that 

particularity, the 3rd approach was applied only to the documents where the 2nd approach results had 

a recall value under 80%. The recall was the chosen metric to decide the inclusion or the exclusion of 

the 2nd approach results, since most of the times, although the local alignment being smaller due to 

Tesseract parameters 

Used values 

1st approach 2nd approach 3rd approach 

image_default_resolution 300 400 400 

editor_image_blob_bb_color 4 4 4 

editor_image_xpos 590 590 590 

tessedit_image_border 2 2 2 

load_system_dawg 1 1 1 

load_punc_dawg 1 1 1 

tessedit_pageseg_mode 0 1 1 

matcher_good_threshold 2 2 1,5 

heuristic_segcost_rating_base 1,25 1,25 1,5 

language_model_penalty_punc 0,2 0,2 0,2 

textord_linespace_iqrlimit 0,2 0,2 0,2 

textord_min_linesize 1,25 1,25 2,5 

language_model_ngram_space_deli
mited_language 

1 1 1 
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background noise removal, it represents high precision values and extremely low recall values. That 

is caused by the small fraction of the total abstract that is present on the alignment. 

To get the evaluation metrics and validate the task, a Dynamic Programming algorithm was 

used for the comparison of the tokens in the obtained PDF text with the known abstract, available on 

the case study patent dataset, properly tokenized.  

It is noteworthy that all full-texts and abstracts are pre-processed before being tokenized in a 

process where spaces are added to words that are linked with commas (“,”), semicolon (“;”), plus 

sign (“+”), asterisk (“*”), hyphen (“-“), parenthesis (“(“ or “)”) and other similar symbols. This allows 

the correct detection of chemical names/structures, special words or simply to separate words from 

punctuation symbols. The common word breaks, tabulations, excessive line breakers, as well as 

invalid characters are also removed on this pre-processing. That normalization process allows 

surpassing several PDF to text conversion errors, allowing a correct comparison between the two 

texts.  

Taking into account that the abstract section covers only a short section of the entire patent 

full text, to apply the DP algorithm, the best approach that can be made is by a local alignment of the 

two sequences of tokens, similar to the example presented in section 3.5. It is assumed that errors 

in the abstract alignment can be extrapolated to the whole patent text.   

Most of the times, the abstract section is printed into two different columns and uses several 

chemical formulas. That makes possible testing if the different columns were detected and if 

chemical formulas were correctly converted. As an example, in Figure 26 the first page of a patent 

(US20060211755) is represented, where the abstract section is printed in two different columns. 
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Figure 26 – First page of the patent US20060211755. The abstract section is evidenced by the red box. 

 

 

So, analyzing the conversion of this full-text section, the obtained values for the precision, 

recall and F1 measure can be generalized to the entire patent. The used DP values for the match, 

mismatch and gap penalty were the same as used by Reiners (2008) on his work. The results for the 

three made approaches are presented in Table 13. 
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Table 13 – Precision, recall and F1 values for the three PDF to text conversion approaches applied to the 993 patents 
downloaded using the components of the retrieval sources module.   

 

The 1st approach, with 93,07% of precision, 21,09% of recall and 34,45% for the F1 score, is 

the worst approach, as can be seen in Table 13. It was expected since only the default Tesseract 

parameters were used, which allows the conversion of more simplistic PDF files in less time but not 

the conversion of complex patent PDF structure. Although the precision value being high, the recall 

value shows that the obtained alignments are very short comparing to the respective entire abstract 

sections. This can be related with the text columns identification being the text recognized line by line 

as if it were only a single block of text.   

The best PDF to Text conversion was made using the 3rd approach with a precision of 

94,95%, a recall of 78,42% and an F1 of 85,90%. Although being less discrepant than any approach 

with the 1st one, the differences between the evaluation metrics for the 3rd and the 2nd approaches are 

evident. The precision value is close for the two approaches (94,72% to the 2nd approach and 94,95% 

to de 3rd one) but the recall value increased from 72,93% to 78,53%. That increase is due to the fact 

that only the worst results from the 2nd approach were reconverted with the 3rd approach. 

Even using the 3rd approach, the recall value was not bigger than 78,53% since there are 

several patents with chemical structures printed on the abstract that are converted with PDF to text 

methodologies to background noise but in the curated texts are omitted by the use of several spaces. 

Alongside that, there are many chemical formulas and chemical designations on the patent abstracts 

with special characters that sometimes lead to misunderstandings resulting on wrong character 

identification.  

Even though the best approach being the 3rd one, it cannot be applied to all patents since for 

most of them, the recall value decreased a lot comparing with the use of the 2nd approach. So, 

applied to real scenarios where curated patent sections may not be available, the best Tesseract 

Approach Precision Recall F1 

1st 93,07% 21,09% 34,45% 

2nd 94,72% 72,85% 82,35% 

3rd 94,95% 78,42% 85,90% 
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configuration that can be applied is using the 2nd approach parameters. However, since the abstract 

section can be obtained with the metadata retrieval process to almost all the processed patents, the 

3rd approach, combined with DP evaluation metrics, still is a possible solution to improve PDF to text 

conversion methodologies and achieve as well as possible, the better identification and consequent 

extraction of patent texts. 

The @note2 corpus created after the PDF to text conversion using the 3rd approach can be 

seen in Figure 27. 

 

After the analysis of all approaches results and the corresponding parameter changes, it 

seems that changes in general Tesseract parameters have more influence on PDF to text conversion 

that the init only ones. That can be related to the algorithmic changes that these parameter changes 

leads to. However, conjugated with changes on the loading process, a more generalized and 

successful PDF to text conversion system can be achieved.   

 

  

Figure 27 – The corpus obtained from the application of all the steps designed on the patent pipeline. 
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CONCLUSIONS AND FURTHER WORK 

Biomedical text mining is a research field that has grown in the last years in biomedical 

research. Information retrieval is one of the BioTM fields with major importance since it is 

responsible for getting all the necessary information to be applied to the research field. Recently, 

patents have been the target of the scientific community to the application of BioTM techniques since 

they are a great information source for most knowledge areas.  

Based on the @note2 structure, IR Search, and IR Crawling processes were designed and 

implemented in this thesis. Both processes allow the search and retrieval of patent information and 

respective documents based on keyword terms. Alongside those two processes, a pre-processing 

approach was made for the @note2 Corpora Module allowing the PDF to text conversion, obtaining 

machine-readable text.  

These implemented processes were tested using a set of 1000 patents from the BioCreative 

V CHEMDNER task. This allowed testing the success rate for the PDF retrieval process, as well as the 

success rate for the patent metadata retrieval processes. 

Since every patent PDF file uses the Tess4J API in the PDF to text conversion process, to test 

that process three approaches were made based on the configuration of the Tesseract application. 

We selected a configuration which allowed for over 85% of F-score, raising the recall to nearly 80%.  

The main innovation of this work was the creation of new IR processes applied to patent 

texts surpassing several common problems related to searching and retrieving of that documents. 

With this work, it is now possible getting, with great facility, several patent documents related 

to specific search terms in an extremely fast way and without the need to expend large amounts of 

time surfing on the several patent databases trying to find the desirable information. So, this 

framework opens several doors to the approximation of the scientific community to all the patent 

information with biological relevance using all sections of the published patent data, something that 

is not made until now.  

Although the achieved system results were promising, the necessity of access keys to almost 

all the used components, all limitations imposed by using free versions of these credentials and the 

necessary processing time still are problems that can be appointed to this system. 
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However, some improvements can be done. All the designed tasks on this pipeline are 

composed of several components which follow an implementation pattern imposed by specific 

interfaces for each module. That modular architecture allows the integration of new module 

components, introducing other components on the patent pipeline improving the patent ID search, 

the metadata, and the PDF retrieval or the PDF to text conversion processes.  

In the PDF to text conversion process, several post-processing modifications can be made to 

the returned text, removing all background noise that can influence the text integrity. Although some 

modifications are already implemented, there are some conversion errors that still remain on the 

converted text and new post-processing modifications could fix that. 

The implemented system can be applied graphically into the @note2 platform by a GUI 

implementation. That will allow the quick input and configuration of each module without the 

necessity of Java programming or use a command line interface.  

Technologically, the integration of these methods within @note2 allows developing an 

extensive set of possible text mining pipeline over patents, which were only accessible to scientific 

articles so far. The possibility of having quickly a large number of patents related to given keywords 

accomplished with several important information (including the respective full texts), allows the 

application of several BioTM approaches to patent texts. Among these approaches, several IE tools 

can use these texts to identify and annotate different biological entities, as well as relations between 

them, automating the search of structured information on patents and taking advantage of all the 

great informative capacity applied on these documents.  



69 

 

REFERENCES 

Akhondi, S.A.; Klenner, A.G.; Tyrchan, C.; Manchala, A.K.; Boppana, K.; Lowe, D.; Zimmermann, M.; 
Jagarlapudi, S.A.; Sayle, R.; Kors, J.A.; Muresan, S. (2014) Annotated chemical patent corpus: a gold 
standard for text mining. PLoS One.9:e107477. 

Akhondi, S.A.; Pons, E.; Afzal, Z.; Haagen, H.; Becker, B.; Hettne, K.M.; Mulligen, E.M.; Kors, J.A. 
(2015) Patent mining: combining dictionary-based and machine-learning approaches. Proceedings of 
the fifth BioCreative challenge evaluation workshop. 

Álvarez, D.; Fernández, R.; Sánchez, L. (2015) Stroke-based intelligent character recognition using a 
deterministic finite automaton. Logic Journal of the IGPL.23:463-471. 

Asif, A.M.A.M.; Hannan, S.A.; Perwej, Y.; Vithalrao, M.A. (2014) An Overview and Applications of 
Optical Character Recognition. International Journal of Advance Research In Science And 
Engineering.3. 

Bach, N.; Badaskar, S. (2007) A review of relation extraction. Literature review for Language and 
Statistics II  

Berners-Lee, T.; Fielding, R.; Masinter, L.  (2005) Uniform Resource Identifier (URI): Generic Syntax. 
Acessed on: September 1, 2016. Available from: https://tools.ietf.org/html/rfc3986#section-1.1.1. 

Breuel, T.M. (2008) The OCRopus open source OCR system. IS&T/SPIE 20th Annual Symposium. 

Campos, D.; Matos, S.; Oliveira, J.L. (2013) A modular framework for biomedical concept 
recognition. BMC Bioinformatics.14:281. 

Campos, D.; Matos, S.; Oliveira, J.L. (2015) A document processing pipeline for annotating chemical 
entities in scientific documents. J Cheminform.7:S7. 

Chen, N.; Liu, Y.; Cheng, Y.; Liu, L.; Yan, Z.; Tao, L.; Guo, X.; Luo, Y.; Yan, A. (2015) Technology 
Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent 
Bibliometric Analysis. PLoS One.10:e0136953. 

Clark, A.; Fox, C.; Lappin, S. (2010) The Handbook of Computational Linguistics and Natural 
Language Processing.  Wiley-Blackwell. 

Cohen, K.B.; Hunter, L. (2008) Getting started in text mining. PLoS Comput Biol.4:e20. 

Cunningham, H.; Tablan, V.; Roberts, A.; Bontcheva, K. (2013) Getting more out of biomedical 
documents with GATE's full lifecycle open source text analytics. PLoS Comput Biol.9:e1002854. 

Curbera, F.; Duftler, M.; Khalaf, R.; Nagy, W.; Mukhi, N.; Weerawarana, S. (2002) Unraveling the 
Web Services Web: An Introduction to SOAP, WSDL, and UDDI. IEEE Internet Computing.6:86-93. 

Cutter, M.; Manduchi, R. (2015) Towards Mobile OCR: How To Take a Good Picture of a Document 
Without Sight. Proc ACM Symp Doc Eng.2015:75-84. 

ECMA. (2013) Standard ECMA-404, The JSON Data Interchange Format. 1st edition. 

https://tools.ietf.org/html/rfc3986#section-1.1.1


70 

 

Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space 
complexity. BMC Bioinformatics.5:113. 

Eikvil, L. (1993) Optical Character Recognition. 

Eisinger, D.; Tsatsaronis, G.; Bundschus, M.; Wieneke, U.; Schroeder, M. (2013) Automated Patent 
Categorization and Guided Patent Search using IPC as Inspired by MeSH and PubMed. J Biomed 
Semantics.4 Suppl 1:S3. 

EPO. (2015) Open Patent Services RESTful Web Services. Reference Guide. European Patent 
Office.Version 1.2.14. 

EPO. Smart search - operators (2016) [Accessed on: September, 11,2016]. Available from: 
https://worldwide.espacenet.com/help?locale=en_EP&method=handleHelpTopic&topic=operators. 

Faro, A.; Giordano, D.; Spampinato, C. (2012) Combining literature text mining with microarray data: 
advances for system biology modeling. Brief Bioinform.13:61-82. 

Fielding, R.T. (2000) Architectural styles and the design of network-based software architectures: 
University of California, Irvine. 

Google. JSON/Atom API Reference (2013) [Accessed on: August, 20,2016]. Available from: 
https://developers.google.com/custom-search/json-api/v1/reference/cse/list. 

Google. Custom Search JSON/Atom API (2015) [Accessed on: August 8,2016]. Available from: 
https://developers.google.com/custom-search/json-api/v1/using_rest. 

Google. Search Help (2016) [Accessed on: September, 1,2016]. Available from: 
https://support.google.com/websearch/answer/2466433?hl=en&ref_topic=3081620. 

Granlund, G.H. (1972) Fourier Preprocessing for Hand Print Character Recognition. Computers, IEEE 
Transactions on.C-21:195-201. 

Heifets, A.; Jurisica, I. (2012) SCRIPDB: a portal for easy access to syntheses, chemicals and 
reactions in patents. Nucleic Acids Res.40:D428-433. 

Hoffmann, R.; Valencia, A. (2004) A gene network for navigating the literature. Nat Genet.36:664. 

Holley, R. (2009) How Good Can It Get? Analysing and Improving OCR Accuracy in Large Scale 
Historic Newspaper Digitisation Programs D-Lib Magazine.15. 

Hossain, M.Z.; Amin, M.A.; Yan, H. (2012) Rapid Feature Extraction for Optical Character 
Recognition. CoRR.abs/1206.0238. 

Hugunin, J. (1997) Python and Java: The best of both worlds. 6th international Python conference. 

Hunter, L.; Cohen, K.B. (2006) Biomedical language processing: what's beyond PubMed? Mol 
Cell.21:589-594. 

Jeong, C.; Kim, K. (2014) Creating patents on the new technology using analogy-based patent 
mining. Expert Systems with Application.41:3605–3614. 

https://worldwide.espacenet.com/help?locale=en_EP&method=handleHelpTopic&topic=operators
https://developers.google.com/custom-search/json-api/v1/reference/cse/list
https://developers.google.com/custom-search/json-api/v1/using_rest
https://support.google.com/websearch/answer/2466433?hl=en&ref_topic=3081620


71 

 

Jessop, D.M.; Adams, S.E.; Willighagen, E.L.; Hawizy, L.; Murray-Rust, P. (2011) OSCAR4: a flexible 
architecture for chemical text-mining. J Cheminform.3:41. 

Kemp, N.; Lynch, M. (1998) Extraction of Information from the Text of Chemical Patents. 1. 
Identification of Specific Chemical Names. Journal of Chemical Information and Computer 
Sciences.38:544-551. 

Kiss, M.; Nagy, Á.; Vincze, V.; Almási, A.; Alexin, Z.; Csirik, J. (2012) A Manuall Annotated Corpus of 
Pharmaceutical Patents. Springer Berlin Heidelberg\.135–142. 

Klinger, R.; Kolarik, C.; Fluck, J.; Hofmann-Apitius, M.; Friedrich, C.M. (2008) Detection of IUPAC 
and IUPAC-like chemical names. Bioinformatics.24:i268-276. 

Krallinger, M.; Leitner, F.; Rabal, O.; Vazquez, M.; Oyarzabal, J.; Valencia, A. (2013) Overview of the 
chemical compound and drug name recognition (CHEMDNER) task. Proceedings of the fourth 
BioCreative challenge evaluation workshop.2. 

Krallinger, M.; Leitner, F.; Rabal, O.; Vazquez, M.; Oyarzabal, J.; Valencia, A. (2015) CHEMDNER: 
The drugs and chemical names extraction challenge. J Cheminform.7:S1. 

Krallinger, M.; Valencia, A. (2005) Text-mining and information-retrieval services for molecular 
biology. Genome Biol.6:224. 

Laffleur, F. (2016) Mucoadhesive therapeutic compositions: a patent review (2011-2014). Expert 
Opin Ther Pat. 

Latimer, M.T. (2005) Patenting inventions arising from biological research. Genome Biol.6:203. 

Leaman, R.; Wei, C.H.; Lu, Z. (2015) tmChem: a high performance approach for chemical named 
entity recognition and normalization. J Cheminform.7:S3. 

Liu, X.; Bordes, A.; Grandvalet, Y. (2015) Extracting biomedical events from pairs of text entities. 
BMC Bioinformatics.16 Suppl 10:S8. 

Lourenço, A.; Carreira, R.; Carneiro, S.; Maia, P.; Glez-Peña, D.; Fdez-Riverola, F.; Ferreira, E.C.; 
Rocha, I.; Rocha, M. (2009) @Note: A workbench for Biomedical Text Mining. Journal of Biomedical 
Informatics.42:710-720. 

Lu, Z. (2011) PubMed and beyond: a survey of web tools for searching biomedical literature. 
Database (Oxford).2011:baq036. 

Mathiak, B.; Eckstein, S. (2004) Five Steps to Text Mining in Biomedical Literature. Proceedings of 
the Second European Workshop on Data Mining and Text Mining in Bioinformatics. 

Microsoft. Bing Search API (2012) [Accessed on: September 1,2016]. Available from: 
https://datamarket.azure.com/dataset/bing/search#schema. 

Miner, G.; Elder, J.; Hill, T.; Nisbet, R.; Delen, D.; A., F. (2012) Practical text mining and statistical 
analysis for non-structured text data applications.  Academic Press. 

https://datamarket.azure.com/dataset/bing/search#schema


72 

 

Nottingham, M.; Sayre, R.  (2005) The Atom Syndication Format RFC 4287. Acessed on: August 15, 
2016. Available from: https://tools.ietf.org/html/rfc4287. 

Oldham, P.; Hall, S.; Forero, O. (2013) Biological diversity in the patent system. PLoS 
One.8:e78737. 

Papadatos, G.; Davies, M.; Dedman, N.; Chambers, J.; Gaulton, A.; Siddle, J.; Koks, R.; Irvine, S.A.; 
Pettersson, J.; Goncharoff, N.; Hersey, A.; Overington, J.P. (2016) SureChEMBL: a large-scale, 
chemically annotated patent document database. Nucleic Acids Res.44:D1220-1228. 

Parberry, I.; Gasarch, W. (2002) Problems on Algorithms, Second Edition. Englewood Cliffs, N.J.  
Prentice Hall. 179 p. p. 

Park, J.; Rosania, G.R.; Shedden, K.A.; Nguyen, M.; Lyu, N.; Saitou, K. (2009) Automated extraction 
of chemical structure information from digital raster images. Chem Cent J.3:4. 

Pasche, E.; Gobeill, J.; Kreim, O.; Oezdemir-Zaech, F.; Vachon, T.; Lovis, C.; Ruch, P. (2014) 
Development and tuning of an original search engine for patent libraries in medicinal chemistry. BMC 
Bioinformatics.15 Suppl 1:S15. 

Patel, C.; Patel, A.; Patel, D. (2012) Optical Character Recognition by Open Source OCR Tool 
Tesseract: A Case Study. International Journal of Computer Applications.55. 

Reddy, C.S.; Ghai, R.; Rashmi; Kalia, V.C. (2003) Polyhydroxyalkanoates: an overview. Bioresour 
Technol.87:137-146. 

Reiners, P.D.  (2008) Dynamic programming and sequence alignment. Acessed on: September 12, 
2016. Available from: http://www.ibm.com/developerworks/library/j-seqalign/. 

Salgado, D.; Krallinger, M.; Depaule, M.; Drula, E.; Tendulkar, A.V.; Leitner, F.; Valencia, A.; Marcelle, 
C. (2012) MyMiner: a web application for computer-assisted biocuration and text annotation. 
Bioinformatics.28:2285-2287. 

Sayle, R.; Xie, P.H.; Muresan, S. (2012) Improved chemical text mining of patents with infinite 
dictionaries and automatic spelling correction. J Chem Inf Model.52:51-62. 

Settles, B. (2005) ABNER: an open source tool for automatically tagging genes, proteins and other 
entity names in text. Bioinformatics.21:3191-3192. 

Shatkay, H.; Feldman, R. (2003) Mining the biomedical literature in the genomic era: an overview. J 
Comput Biol.10:821-855. 

Singh, R.; Kumar, S. (2016) An Overview of World Wide Web Protocol (Hypertext Transfer Protocol 
and Hypertext Transfer Protocol Secure. International Journal of Advanced Research in Computer 
Science and Software Engineering.6:396-399. 

Smith, R. (2007) An Overview of the Tesseract OCR Engine. IEEE Ninth International Conference. 

Thessen, A.E.; Cui, H.; Mozzherin, D. (2012) Applications of natural language processing in 
biodiversity science. Adv Bioinformatics.2012:391574. 

https://tools.ietf.org/html/rfc4287
http://www.ibm.com/developerworks/library/j-seqalign/


73 

 

Trier, Ø.D.; Jain, A.K.; Taxt, T. (1996) Feature extraction methods for character recognition-A survey. 
Pattern Recognition.29:641-662. 

USNLM. (2016) [Accessed on: September, 21,2016]. Available from: 
https://www.nlm.nih.gov/bsd/medline_cit_counts_yr_pub.html. 

Waring, P.  (2012) PCT PATENTSCOPE Web-services for Offices. Acessed on: August 18, 2016. 
Available from: 
http://www.wipo.int/edocs/mdocs/pct/en/wipo_pct_mow_12/wipo_pct_mow_12_ref_pctpatentsc
ope.pdf. 

WIPO. WIPO IP Statistics (2014) [Accessed on: July, 24,2016]. Available from: 
http://ipstats.wipo.int/ipstatv2/keysearch.htm?keyId=201. 

WIPO. (2015a) Guidelines for Preparing Patent Landscape Reports. 

WIPO. (2015b) Internation Patent Classification  

WIPO. (2015c) WIPO Guide to Using Patent Information. 

WIPO. (2015d) World Intellectual Property Indicators, 2015 edition.  World Intellectual Property 
Organization - Economics and Statistics Division. 

WIPO. PATENTSCOPE Data Services (2016) [Accessed on: August 19,2016]. Available from: 
http://www.wipo.int/patentscope/en/data/. 

Wu, C.; Schwartz, J.M.; Brabant, G.; Peng, S.L.; Nenadic, G. (2015) Constructing a molecular 
interaction network for thyroid cancer via large-scale text mining of gene and pathway events. BMC 
Syst Biol.9 Suppl 6:S5. 

Xu, S.; An, X.; Zhu, L.; Zhang, Y.; Zhang, H. (2015) A CRF-based system for recognizing chemical 
entity mentions (CEMs) in biomedical literature. J Cheminform.7:S11. 

Zweigenbaum, P.; Demner-Fushman, D.; Yu, H.; Cohen, K.B. (2007) Frontiers of biomedical text 
mining: current progress. Brief Bioinform.8:358-375. 

 

  

https://www.nlm.nih.gov/bsd/medline_cit_counts_yr_pub.html
http://www.wipo.int/edocs/mdocs/pct/en/wipo_pct_mow_12/wipo_pct_mow_12_ref_pctpatentscope.pdf
http://www.wipo.int/edocs/mdocs/pct/en/wipo_pct_mow_12/wipo_pct_mow_12_ref_pctpatentscope.pdf
http://ipstats.wipo.int/ipstatv2/keysearch.htm?keyId=201
http://www.wipo.int/patentscope/en/data/


74 

 

  



75 

 

APPENDIX I – PERCENT-ENCODING PROCESS APPLIED TO THE SEARCH SOURCES 

MODULE COMPONENTS. THE RESERVED CHARACTERS REPRESENT THE URI SPECIFIC 

CHARACTERS WITH SPECIAL FUNCTIONS AND THE UNSECURE CHARACTERS ARE THOSE 

WHO CAN BE EASILY CONFUSED WITH OTHER CHARACTERS INSIDE THE URI. 
 

Character 

type 

Invalid 

character 

Percent-encoding 

replacement 

search sources module components 

Custom 
Search API 

Bing Search 

API 

OPS web 
services API 

R
es

er
ve

d 
ch

ar
ac

te
rs

 

? %3F • • • 

@ %40 • • • 

# %23 • • • 

! %21 • •  

‘ %27 • •  

( %28 • •  

) %29 • •  

; %3B • • • 

: %3A • • • 

& %26 • • • 

= %3D • • • 

+ %2B • • • 

$ %24 • • • 

, %2C • • • 

/ %2F • •  

[ %5B • • • 

] %5D • • • 

U
ns

ec
ur

e 
C

ha
ra

ct
er

s 

% %25 • • • 

SPACE %20   • 

\ %5C • •  

“ %22 • • • 

> %3E • • • 

< %3C • • • 

{ %7B • • • 

} %7D • • • 

^ %5E • • • 

~ %7E • • • 
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APPENDIX II – SOME TESSERACT PARAMETERS THAT CAN BE USED TO CHANGE THE 

ALGORITHM BEHAVIOR AND RESPECTIVE DESCRIPTION. 

Type Tesseract parameters Description 

In
it 

on
ly

 p
ar

am
et

er
s 

image_default_resolution 
Allows rescaling the PDF images by changing the dots per inch (DPI). It 
must be defined to 300DPI or better. 

editor_image_blob_bb_color 
Allows a random variation on image parameters as brightness or color to 
make the text easier to read. 

editor_image_xpos Allows the page rotation getting the text lines presented horizontally. 

tessedit_image_border Allows the definition of border limits from which blobs are ignored. 

load_system_dawg Allows the dictionary correction enabling or disabling. 

user_words_suffix 
Allows the introduction of user words on the used dictionary for a given 
language. 

load_punc_dawg Allows the definition of several rules for punctuation. 

G
en

er
al

 p
ar

am
et

er
s 

tessedit_pageseg_mode 
Defines the page segmentation mode allowing the OCR application only 
in a few page sections. 

matcher_good_threshold 
Defines a threshold for a good match between the founded words and 
the dictionary words previously loaded (lower the better). 

heuristic_segcost_rating_base 
Defines the multiplying factor to calculate the segmentation cost, adding 
it to word rating. 

language_model_penalty_punc Defines the penalty value for the founded inconsistent punctuation. 

textord_linespace_iqrlimit Defines the maximum value for the median of line space. 

textord_min_linesize Allows the minimum line size value from which lines are ignored. 

language_model_ngram_space_de
limited_language 

Defines if words are delimited by space or not. 

D
eb

ug
 p

ar
am

et
er

s 

textord_debug_bugs 
Allows the returning of the output related to founded bugs related with 
text lines. 

textord_tabfind_show_reject_blobs Allows the printing of the blobs that were considered as noise. 

textord_debug_images 
Allows the use of a greyed image background to debug the text lines 
identification process. 

dawg_debug_level 
Allows controlling the quantity of the debug messages (general debug 
info, detailed debug info or all the debug messages). 

tessdata_manager_debug_level 
Allows control the debugging process related with functions that manage 
the tesseract data (e.g. language dictionaries). 


