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Abstract. Cassava genotypes (Manihot esculenta Crantz) with high pro-vitamin
A activity have been identified as a strategy to reduce the prevalence of deficiency
of this vitamin. The color variability of cassava roots, which can vary from white
to red, is related to the presence of several carotenoid pigments. The present study
has shown how CIELAB color measurement on cassava roots tissue can be used
as a non-destructive and very fast technique to quantify the levels of carotenoids
in cassava root samples, avoiding the use of more expensive analytical techniques
for compound quantification, such as UV-visible spectrophotometry and the
HPLC. For this, we used machine learning techniques, associating the colori‐
metric data (CIELAB) with the data obtained by UV-vis and HPLC, to obtain
models of prediction of carotenoids for this type of biomass. Best values of R2

(above 90%) were observed for the predictive variable TCC determined by UV-
vis spectrophotometry. When we tested the machine learning models using the
CIELAB values as inputs, for the total carotenoids contents quantified by HPLC,
the Partial Least Squares (PLS), Support Vector Machines, and Elastic Net
models presented the best values of R2 (above 40%) and Root-Mean-Square Error
(RMSE). For the carotenoid quantification by UV-vis spectrophotometry, R2

(around 60%) and RMSE values (around 6.5) are more satisfactory. Ridge regres‐
sion and Elastic Network showed the best results. It can be concluded that the use
colorimetric technique (CIELAB) associated with UV-vis/HPLC and statistical
techniques of prognostic analysis through machine learning can predict the
content of total carotenoids in these samples, with good precision and accuracy.
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1 Introduction

Carotenoids refer to the most important natural pigments, being found in all photosyn‐
thetic organisms, with colors varying between yellow and dark-red. One of the most
important trait of carotenoids is their physiological function as vitamin A precursors to
animals [1]. Vitamin A deficiency is a leading cause of morbidity and mortality, espe‐
cially in young children and pregnant and lactating women. Food-based interventions
focused on alleviating vitamin A deficiency in susceptible populations have advantages
over supplementation and fortification programs, especially in rural areas, because they
can provide a sustainable source of a variety of nutrients and other phytochemicals
without the recurring transport and administration costs of these other methods [2]. It is
estimated that among all known carotenoids, about 50 can act as precursors of vitamin
A in mammals. However, only α-carotene, β-carotene, γ-carotene, and β-cryptoxanthin
are common in fruits and vegetables [3]. Cassava genotypes with high contents of pro-
vitamin A carotenoids have been identified as a strategy to reduce the prevalence of
deficiency of this vitamin [4].

The cassava crops are characterized by the color variability of their roots, which can
vary from white to red. The color is related to the presence of several carotenoid
pigments, their associations and contents [5]. However, the possibility of adopting the
color of roots as an indirect criterion for selection of higher carotene content is ques‐
tionable, since color is a characteristic of difficult visual evaluation.

In order to standardize color measurements, the CIE (Commission Internationale de
L’Eclairage) recommended the use of the CIE L* a* b* or CIELAB color scale. It is
currently the most used system for quantitative color description of an object, due to its
uniformity, ease of acquisition, and very low cost technique [6].

Chemical extraction followed by the identification and quantification of carotenoid
pigments, especially by UV-vis spectrophotometry and high performance liquid chro‐
matography (HPLC) are very accurate, but extremely expensive, also requiring a long
time for the analysis. The CIELAB color measurement is a non-destructive and very
fast technique, which allows to obtain a series of parameters, in a few seconds. Thereby,
it facilitates performing measurement in the field, avoiding the degradation of these
compounds in consequence of their chemical extraction, for instance.

The aim of this work is to validate a quantification method for carotenoid contents
in roots of M. esculenta from colorimetric data using the CIE L* a* b* system, assuming
that the statistical techniques of prognostic analysis, as well as machine learning, can
correlate colorimetric data easily obtained in the field, with the contents obtained through
traditional techniques, e.g., UV-vis spectrophotometry and HPLC and, from this,
construct prediction models of carotenoids content for cassava roots. This study applies
analytical techniques and bioinformatics tools to detect genotypes of M. esculenta with
high levels of carotenoids. In addition, it provides tools that can support the plant-
breeding program at Epagri (Agricultural Research Company and Rural Extension of
the State of Santa Catarina- http://www.epagri.sc.gov.br/) that aims to obtain genotypes
with high levels of pro-vitamin A carotenoids and superior nutritional traits.
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2 Materials and Methods

Roots of fifty genotypes of M. esculenta (2015/2016 season) from the EPAGRI’s germ‐
plasm bank (Urussanga Experimental Station, 28º31′18′′S, 49º19 ′03′′W, Santa Catarina,
southern Brazil) were used in this study due to their economic and social importance.

Carotenoids were extracted from fresh roots as described by Rodriguez-Amaya &
Kimura (2004) [7]. The absorbances of the organosolvent extracts were recorded on an UV-
vis spectrophotometer (Gold Spectrum lab 53 UV-Vis spectrophotometer, BEL photonics,
Brazil) over a spectral window from 200 to 700 ƞm. Aliquots (10 μl) of the extracts were
also injected into a liquid chromatograph (LC-10A Shimadzu) system equipped with a C18
reversed-phase column (Vydac 201TP54, 250 mm × 4.6 mm, 5 μm Ø, 35°C) coupled to a
pre-column (C18 Vydac 201TP54, 30 mm × 4.6 mm, 5 μm Ø) and a spectrophotometric
detector (450 nm). Methanol: acetonitrile (90: 10, v/v) was used for elution at a rate of
1 ml/min.

The color attributes of the roots samples were measured by a colorimeter (CR-400,
Minolta, Japan) immediately after harvest and the results were expressed according to
the CIELAB color space scale [4]. Three readings were performed at different sites in
fifty samples. Data were collected, summarized, and submitted to analysis of variance
(ANOVA) followed by the post-hoc Tukey’s test (p < 0.05) for mean comparison.
Spectrophotometric data and the amounts of the target carotenoids determined by HPLC
were treated using multivariate statistical analysis and chemometrics techniques,
supported by scripts written in R language (v. 3.3.1) [8]. Additionally, we used prog‐
nostic tools through machine learning techniques, associating the colorimetric data
(CIELAB) with the data obtained by UV-vis and HPLC, to obtain models of prediction
of carotenoids for this type of biomass and technique.

The data analysis was supported and structured using the R specmine package [9]
developed by our research team for metabolomics studies that includes a number of
machine learning methods implemented through the package caret [10]. In supplemen‐
tary material, provided in http://darwin.di.uminho.pt/pacbb2017/cassava-carotenoids,
we include the data analysis reports automatically generated from the R scripts using
the features provided by R Markdown, as well as the respective data and metadata files.
This allows fully understanding and reproducing the computational experiments.

3 Results and Discussion

The values of the carotenoid quantification through UV-vis spectrophotometry and
HPLC are given in the metadata of the dataset. The roots white-colored pulp presented
the lowest concentrations of total carotenoids (values from 0.57 μg.g−1), while highest
concentrations were observed in genotypes with pigmented pulp (yellow and red) roots,
i.e., 54.93 μg.g−1. These results are consistent with data reported in the literature that
observe a positive relation between the color of the root pulp and the total content of
those pigments [11, 12]. The contents of the major carotenoid compounds, trans-β-
carotene and cis-β-carotene, ranged from 1.82 to 42.82 μg.g−1 for trans-β-carotene and
1.19 to 28.86 μg.g−1 for cis-β-carotene.
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The visual interpretation of the sample’s location in the CIELAB’ space is enough
to verify which samples have higher levels of carotenoids [13]. Figure 1 shows the
samples location according to the color of roots, in the CIE L* a* b* plane. Samples
105, 119 and 125 (Fig. 1 - ellipse I) contain the highest levels of total carotenoid. The
sample 74, due to its reddish color, was represented in the CIELAB space on the positive
axis (Fig. 1 - ellipse IV), mostly due to its lycopene contents, which confer reddish
coloration to the roots [14]. Samples with lower amounts of carotenoids (123, 27, 05,
AO47) shown values of b* closer to zero (ellipse III), while those with medium contents
were grouped in a* negative and b* positive (ellipse II).

Fig. 1. Location of the cassava samples in the CIE L* a* b* plane according to their root pulp
colors. The a* value characterizes the coloration in the regions of red (+a*) to green (−a*). The
b*, value b* indicates coloring in the range of yellow (+b*) to blue (−b*). The L indicates the
luminosity, varying from white (L = 100) to black (L = 0).

The next step of this work was to correlate the colorimetric data obtainable in the
field (CIELAB) with the contents found by traditional techniques, e.g., UV-vis spec‐
trophotometry and HPLC, through statistical techniques of prognostic analysis such as
machine learning. From this, we constructed a set of carotenoid concentration predictive
regression models for this type of biomass using the information from the samples’ color
values and the UV-vis spectra.

The specmine package provides a number of functions to train, use, and evaluate
machine learning methods, being mostly based in the R package caret [10], covering
both classification and regression methods. In addition, there are functions to evaluate
the importance of each variable in the models. A list of possible models and tunable
parameters can be seen in https://topepo.github.io/caret/available-models.html.
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The implemented functions enable executing model training and can be used to
predict new data posteriorly. Also, it is possible to optimize a set of model parameters
testing a set of possible values and evaluating those according to the selected validation
method and metric errors. The CIELAB data were considered as continuous variables.
In this way, regression-derived statistical data mining models (5-fold cross-validation
repeated 10 times, testing all models with feature selection with 80, 60, and 40% data
filtering) were used, such as Least Absolute Shrinkage and Selection Operator (Lasso)
[15], Ridge Regression [16], Elastic Net Regression (Enet) [17], Decision Trees/Randon
Forest (RF) [18], Partial Least Squares (PLS), Artificial Neural Net (NNs), and Support
Vector Machines (SVMs). These validation methods are available to estimate the metric
errors, and usually the decision is based on simple criteria based on the residual values.
The chosen evaluation metrics to compare model performance were the Root-Mean-
Square Error (RMSE) and the coefficient of determination (R2), since they explicitly
show how much the model predictions deviate, on average, from the actual values in
the dataset.

Table 1 shows the performance values of a set of machine learning regression models
(RMSE and R2) associating UV-vis scanning spectrophotometry in the typical region
of fingerprint for carotenoids (400–500 nm) as inputs, with the total carotenoids contents
determined by HPLC (TCC HPLC), total carotenoids contents determined by UV-vis
spectrophotometry (Lambert-Beer formula), and the majoritarian carotenoid found in
cassava roots (trans-β-carotene), each predicted as an output in distinct experiments
using the different methods (details are given in the reports in supplementary materials).

It can be verified that the best R2 values (>90%) were observed for the predictive
variable TCC, determined by UV-vis spectrophotometry. These values were higher than
the predictive variables trans-β-carotene (best model with R2 47%) and total carotenoids
contents determined by HPLC (with values of R2 around 60%). This is expected, since
they are methodologies that employ the same physical phenomenon of detection of
compounds (absorbance). When observed the values of variable importance in this
analysis (supplementary material), it can be detected that the wavelength at 450 nm
(precisely the wavelength that is used for the quantification of β-carotene through the
Lambert-Beer formula) was the most prevalent. This result is important because it attests
to the robustness of the models in predicting the contents of these compounds in these
samples.

Then we tested the machine learning models using the CIELAB values as inputs,
with the same outputs as before. For the total carotenoids contents quantified by HPLC,
the Partial Least Squares (PLS), Support Vector Machines (kernlab), and Elastic Net
models presented the best values of R2 and lower values of RMSE (Table 2). It can be
verified that these values are smaller than when the inputs are the UV-vis (400–500 nm)
data (Table 1). This is due to the fact that the colorimetric and chromatographic tech‐
niques are different in their physicochemical bases, and the UV-vis data has many more
variables measured.
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Table 1. Performance values (RMSE and R2) associating UV-vis scanning spectrophotometry
(400–500 nm) with the total carotenoids contents determined by HPLC (TCC HPLC), total
carotenoids contents determined by Lambert-Beer formula (TCC Spectrophotometry), and the
majoritarian carotenoids of cassava roots samples (trans-β-carotene).

UV-vis. 400–500 nm
TCC Spectrophotometry TCC HPLC trans-β-carotene
RMSE R2 RMSE R2 RMSE R2

Partial Least
Squares
(simpls)

3.492 0.920 5.789 0.572 4.309 0.362

Support Vector
Machines
(e1071)

3.709 0.931 5.844 0.597 4.218 0.399

PLS
(widekernelpls
)

3.732 0.923 5.779 0.570 4.324 0.453

Random Forest 3.768 0.948 7.275 0.359 5.753 0.239
Elastic Net 3.793 0.918 5.934 0.634 4.191 0.412
Partial Least
Squares (pls)

3.800 0.952 5.643 0.597 4.265 0.470

Ridge
Regression
(w/FS)

3.855 0.947 5.880 0.603 4.159 0.356

Ridge
Regression

3.877 0.928 7.282 0.616 4.407 0.316

SVM (kernlab) 3.928 0.940 5.907 0.589 4.230 0.466
PLS (kernelpls) 4.096 0.896 5.878 0.566 4.211 0.422
Linear
Regression
(Stepwise)

4.158 0.919 8.341 0.526 6.135 0.206

Linear
Regression
(Forward)

4.178 0.888 8.783 0.471 5.142 0.311

Linear
Regression
(Backwards)

4.392 0.871 6.373 0.522 5.355 0.278

K-Nearest
Neighbors

4.732 0.922 6.277 0.445 4.597 0.224

Lasso 5.207 0.817 17.508 0.249 16.145 0.189
Conditional
Inference RF

6.713 0.791 6.806 0.558 4.703 0.369

Conditional
Inference Tree

7.363 0.711 6.916 0.480 4.894 0.288

Decision Trees 7.582 0.683 6.795 0.473 5.189 0.053

When the CIELAB values were used to predict the values of carotenoid contents by
UV-vis spectrophotometry, R2 and RMSE values were more satisfactory. Ridge regres‐
sion and Elastic Network showed the best results. Observing the importance of the vari‐
ables in the prediction (supplementary material), it can be verified that the values of b*
were more relevant. In the CIELAB space, the value b* indicates coloration in the range
from yellow (+b*) to blue (−b*), an important finding since most carotenoids confer
yellowish pigmentation in foods, associating their pro-vitamin A activity.
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These results are very promising because they enable CIELAB technique as an
alternative for measuring carotenoids in cassava roots to the use of more expensive
analytical techniques such as UV-vis spectrophotometry and HPLC. Thus, it has been
shown that the concomitant use of UV-vis and color (CIELAB) techniques with statis‐
tical techniques of prognostic analysis (i.e., machine learning) can predict the content
of total carotenoids in cassava roots, with good precision and accuracy and low metrical
error.

Table 2. Performance values (RMSE and R2) associating CIELAB colorimetric data with the
total carotenoids contents determined by Lambert-Beer formula (TCC Spectrophotometry), total
carotenoids contents determined by HPLC (TCC HPLC), and the content of the majoritarian
carotenoid found in cassava roots samples (trans-β-carotene).

CIELAB Data
TCC Spectrophotometry TCC HPLC trans-β-carotene
RMSE R2 RMSE R2 RMSE R2

Partial Least
Squares
(simpls)

7.043 0.543 6.789 0.414 4.781 0.194

Support Vector
Machines
(e1071)

7.136 0.500 6.645 0.380 4.800 0.155

PLS
(widekernelpls
)

6.771 0.541 6.696 0.396 4.857 0.170

Random Forest 7.280 0.448 7.571 0.293 5.393 0.149
Elastic Net 6.515 0.573 6.534 0.412 4.690 0.212
Partial Least
Squares (pls)

7.085 0.538 6.622 0.394 4.859 0.164

Ridge
Regression
(w/FS)

6.469 0.608 6.653 0.389 4.951 0.238

Ridge
Regression

6.497 0.590 6.584 0.421 4.848 0.238

SVM (kernlab) 6.919 0.528 6.534 0.366 4.745 0.201
Partial Least
Squares
(kernelpls)

6.865 0.540 6.756 0.431 4.815 0.162

Linear
Regression

6.651 0.558 6.749 0.400 4.945 0.220

K-Nearest
Neighbors

7.267 0.525 7.278 0.256 4.956 0.153

Lasso 6.757 0.575 6.669 0.411 4.793 0.182
Conditional
Inference RF

8.021 0.454 6.930 0.408 4.782 0.223

Conditional
Inference Tree

9.636 0.339 7.307 0.384 4.929 0.130

Decision Trees 9.737 0.316 7.641 0.353 5.000 0.297
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4 Conclusions

The present study has shown how CIELAB color measurement can be used as a fast and
non-destructive method to calibrate for the total carotenoid content of cassava genotypes
roots with acceptable prediction error. In addition, the information obtained by coupling
the analysis of pro-vitamin A biochemical markers to bioinformatics tools helps
supporting the rational design of biochemically-assisted breeding programs of M. escu‐
lenta, that aims to obtain cultivars with high levels of pro-vitamin A carotenoids and
superior nutritional traits.
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