
Universidade do Minho
Escola de Engenharia
Departamento de Informática

José Manuel Costa Pereira

A Web-based Social
Environment for Alloy

Dissertation

February 2017

Universidade do Minho
Escola de Engenharia
Departamento de Informática

José Manuel Costa Pereira

A Web-based Social
Environment for Alloy

Dissertation

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Professor Doutor Manuel Alcino Pereira da Cunha
Doutor Nuno Filipe Moreira Macedo

February 2017

A C K N O W L E D G E M E N T S

I would mainly like to thank Prof. Alcino Cunha for the opportunity to develop such an
interesting and fun project and also to the person that suggested it to me, my colleague and
friend Eduardo Pessoa. These two persons as well as Dr. Nuno Macedo were invaluable
contributions to the completion of this thesis trough their constant support, advice and
enthusiasm.

I would also like to thank my colleagues for all the tips and advices that so many times
helped me contour development obstacles.

Finally, i must express my profound gratitude to my parents and to my girlfriend Andreia
for their encouragement and joy throughout my academic years. Thank you all.

This work is financed by the ERDF – European Regional Development Fund through the
Operational Programme for Competitiveness and Internationalisation - COMPETE 2020

Programme and by National Funds through the Portuguese funding agency, FCT - Fun-
dação para a Ciência e a Tecnologia, within project POCI-01-0145-FEDER-016826.

i

A B S T R A C T

Alloy is a declarative specification language which describes rules and complex structural
behaviors. Alloy Analyzer is used to analyze this specifications, this tool generates con-
crete instances from the invariants specified in a model, it simulates sequences of defined
operations and verifies whether properties introduced are valid or not. Currently, the tool
is available as a runnable .jar and it contains a trivial GUI to interact with it. Being such,
it requires JAVA installed. It’s in the best interest of the community to achieve and easier
access to this tool through a web platform that shall support it in real time and also allow
sharing models developed in it by users. Formal methods of software development are
growing and they would also benefit from the constructive feedback obtained through this
platform regarding the Alloy language/tool.

ii

R E S U M O

Alloy é uma linguagem de especificação declarativa que descreve regras e comportamen-
tos de estruturas complexas. Para analisar estas especificações, utiliza-se o Alloy Analyzer,
uma ferramenta que gera instâncias concretas a partir dos invariantes especificados num
modelo, simula sequências de operações definidas e verifica se as propriedades introduzi-
das são satisfeitas. Atualmente, a ferramenta está disponível sob a forma de um .jar

executável e contém uma GUI trivial para a sua utilização, requerendo assim o respetivo
download e instalação do software adicional JAVA até estar operacional. É do interesse da
comunidade conseguir um acesso facilitado a esta ferramenta através de uma plataforma
web que a suporta em tempo real e permite a partilha simplificada de trabalhos elaborados.
Também seria uma mais valia para os métodos formais na produção de software, que se
encontram em constante crescimento, a extração de informação estatística acerca da utiliza-
ção desta plataforma. Daqui poderia obter-se um feedback positivo face aos prós e contras
da linguagem/ferramenta.

iii

C O N T E N T S

iv

L I S T O F F I G U R E S

v

L I S T O F TA B L E S

vi

L I S T O F L I S T I N G S

vii

1

I N T R O D U C T I O N

The ever-increasing dependence of society on software impacts a higher demand for its
quality. Formal methods for software development can be used as an auxiliary measure
in the attempt to build such quality software. These are a set of mathematically rigorous
techniques and tools applied to the specification, design, development and testing stages of
software construction.

This report focuses on the first stages of software development, namely its specification
and design, and on a specific formal specification language - Alloy, a language developed
by the Software Design Group at MIT.

Alloy (?) is a declarative specification language which describes rules and complex struc-
tural behaviours through a collection of constraints. Alloy Analyzer is a solver used to
analyze such specifications. This tool generates concrete instances from the constraints
specified in a model, it simulates sequences of defined operations, and verifies whether the
specified properties are valid or not. Currently, this tool is available as a runnable .jar

and it contains a simple GUI to interact with it, therefore requiring JAVA installed to be
executed.

It is in the best interest of the community to obtain an easier access to this tool through
a web platform that would support it in real time, allowing the sharing of models with
other users and introduce competition through the completion of small challenges. Formal
methods for software development are growing and they would also benefit from the con-
structive feedback obtained through the data generated from the user’s interaction with
this platform(?).

A high number of Massive Open Online Courses (MOOCs) exist nowadays as well as
web platforms that organise and manage competitive programming contests. These provide
useful information about the kind of features that a environment such as this should have
to be successful.

The main objective of this project is to develop a web framework for Alloy, supporting
most of the features currently available in the standalone Alloy Analyzer, and others specific
to the web environment, in particular:

1

• The ability to perform model analysis server-side. This implies wrapping the Alloy
API as a web-service.

• The ability to easily write and share Alloy models and instances. Features such as
syntax highlighting or the creation of permalinks to allow the sharing of models and
instances are essential towards this goal.

• An instance visualisation mechanism likewise to the one in the Alloy Analyzer, namely
supporting user-defined themes, and possibly improving some of its drawbacks.

• Additionally, this endeavour aims at understanding the behaviour of users within the
community when coding as well as their opinion regarding the Alloy notation and
tool. Hence, a statistics gathering system should be embedded on the environment to
collect information upon usage.

To accomplish this goal, several relevant technologies and related frameworks were re-
searched, in particular:

• Explore possible web development technologies capable of supporting the desired
environment in order to identify which best suit its implementation.

• Understand the relevance of the proposed features through the exploration of web-
sites and tools with similar purposes.

• Gather information on graph visualization techniques and improvements previously
proposed to the current Alloy Analyzer’s visualization facility.

This research was indispensable because not only it inspired some of the platform’s fea-
tures but also supported the development of a truly advantageous environment given the
feedback gathered from the previous usage of the Alloy Analyzer.

Chapter 2 briefly explains the Alloy notation using a model example. It also gives insight
on the Alloy Analyzer’s features and most common critics associated to its usage. Chapter
3, Related Work, presents some reviews of websites and tools that offer similar services
relevant to the framework being developed here. Furthermore, it describes some related
work regarding the improvement of the Alloy Analyzer’s graph visualisation facility, as well
as generic approaches of the sort applied on similar tools. Chapter 4 is a description of most
of the tools used to develop the environment as well as the reasons that led to their usage.
Chapter 5 explains the implementation of the platform’s components, how they connect,
and their role in the overall solution. Finally, chapter 6 presents this thesis contributions
and the work yet to be done on top of the built web environment.

2

2

B A C K G R O U N D

This chapter introduces the Alloy notation using a practical example of a puzzle’s speci-
fication. Furthermore, the Alloy Analyzer is presented, highlighting its features and some
related criticisms in order to better understand user’s needs when faced with the tool.

2.1 alloy

The Alloy (?) modeling language, first proposed in 1997, was idealised from a set of pow-
erful and fitting features of previously existing tools. It gathered the simple and intuitive
first-order logic semantics of Z notation (?) and the navigation style and type hierarchy
of object modeling languages such as Object-Modeling Technique(OMT) (?). Also, the Z
notation was adapted to ease the model analysis, featuring the usage of SAT solvers to au-
tomatically verify them within a bounded scope. Alloy was built to be a small, but powerful
notation that provides users with an easy writing and reading.

2.1.1 Applications and Framing

Alloy spread trough a wide range of applications from finding bugs in security mecha-
nisms to designing telephone switching networks, as well as used in many Formal Methods
courses, and even introductory courses to logic and mathematical reasoning to high-school
students (?). This latter usage is particularly relevant to this subject due to its feedback,
considering we want to increase the human-tool interaction via the Web, which raises the
question: What makes Alloy enticing?

Alloy can be considered a challenge because it promotes a depth of mathematical think-
ing, in fact one could sometimes consider it a puzzle as the following example will present
it. This reaction was observed on some of the students of these Formal Method’s courses
which use the notation (?). Such information leads to believe that Alloy would benefit from
a web environment where challenges could be easily created and shared.

3

2.1. Alloy

2.1.2 The Language

To better demonstrate the language procedures, the example frog.als will be presented
(.als is the extension given to Alloy notation files). This example specifies a popular puzzle
available for solving at many websites. In this puzzle there are green frogs and brown frogs,
three of each. There’s also seven stones aligned in which the first three contain each a green
frog. In the middle stands an empty stone and the three final stones all contain a brown
frog each as shown in Figure ??.

The objective is to swap sides of both green and brown frogs, leaving the same empty
stone in between them. Each frog can only move forward (green frogs to the right and
brown frogs to the left). Also, frogs can only either move to an empty stone standing
immediately next to them or jump over a single frog followed by an empty stone.

The idea is to specify all the constraints and bounds so that the Alloy Analyzer may solve
the puzzle, and display sequences of possible frog moves to achieve the required victory
conditions. The reader is not expected to fully understand the specification in Listings ??,
as only some of it will be explained in detail.

Figure 1: The frog puzzle

open util/ordering[Time]
open util/ordering[Stone]

sig Time {
position : Frog -> one Stone

}

sig Stone {}

abstract sig Frog {}
sig Green , Brown extends Frog {}

fact {

4

2.1. Alloy

all t : Time , s : Stone | lone t.position.s
}

pred start[t : Time] {
all g : Green | some g.(t.position).prev implies some (t.position).(g.(t.position).

prev) & Green
all b : Brown | some b.(t.position).next implies some (t.position).(b.(t.position).

next) & Brown
}

pred end[t : Time] {
all g : Green | some g.(t.position).next implies some (t.position).(g.(t.position).

next) & Green
all b : Brown | some b.(t.position).prev implies some (t.position).(b.(t.position).

prev) & Brown
}

pred moveG [g : Green , t,t’ : Time] {
some g.(t.position).next
t’. position = t.position - g->Stone + g->g.(t.position).next

}

pred jumpG [g : Green , t,t’ : Time] {
some (t.position).(g.(t.position).next) & Brown
some g.(t.position).next.next
t’. position = t.position - g->Stone + g->g.(t.position).next.next

}

pred moveB [b : Brown , t,t’ : Time] {
some b.(t.position).prev
t’. position = t.position - b->Stone + b->b.(t.position).prev

}

pred jumpB [b : Brown , t,t’ : Time] {
some (t.position).(b.(t.position).prev) & Green
some b.(t.position).prev.prev
t’. position = t.position - b->Stone + b->b.(t.position).prev.prev

}

fact {
start[first]

all t : Time , t’ : t.next {
(some g : Green | moveG[g,t,t’] or jumpG[g,t,t’])
or
(some b : Brown | moveB[b,t,t’] or jumpB[b,t,t’])

}
}

run {
some t : Time | end[t]

} for exactly 3 Green , exactly 3 Brown , exactly 7 Stone , 16 Time

Listing 2.1: The frog puzzle in Alloy

5

2.1. Alloy

At the top of the example, some signatures are declared using the keyword sig. These are
sets of atoms and can be seen as the model’s types or classes. The extends and abstract

tokens whom resemble object-oriented notations, allow an hierarchy between signatures
which is convenient for the matter in hand since it describes a natural order between the
concepts presented.

Within the declaration of the Time type, there is the following statement: position :

Frog -> one Stone. This declares a field named position that is a ternary relationship
between signatures Time, Frog and Stone. The one keyword is one of Alloy’s multiplicity
constraints and translates to exactly one. Hence, the former statement can be read as At each
instance of time, each frog is positioned at one stone.

Above the mentioned signatures, there are two open statements, these import an Alloy’s
core module that introduces a notion of total order in a signature. In this case the specifi-
cation states that both Time and Stone atoms have a relation of total order in their atoms.
Hence the next and prev relations that appear further down allow the navigation between
atoms of theses signatures. Additionally, the function first selects the initial atom of an
order and this is useful to state things like "The initial instant of time" or "The first stone".

Functions define a way of getting relations, sets or atoms and they can take parameters
that are used in getting its results. Although the model does not contain any, they could be
defined using the keyword fun explained in the Alloy’s documentation. The declarations of
predicates and facts can be observed instead at frog.als using the pred and fact keywords
respectively.

Predicates define formulas which can be true or false. They can also take parameters
and be invoked in facts and assertion declarations. There are six predicates declared at
frog.als.

• start takes in an instant of time and verifies if at it, all the frogs are positioned
accordingly to the initial disposition of the puzzle.

• end confirms if the puzzle has been solved by checking, analogously to start, if all
the frogs are in their required positions.

• moveG and jumpG describe valid movements of green frogs while moveB and jumpB

refer to the same movements of brown frogs.

Facts are used to describe more complex constraints which could not be expressed in the
signature declarations. Take for example the second fact declared in frog.als. It initially
states: start[first]. start is a predicate and first is the initial instance of a ordered
type (Time in this case since start is defined as such) as mentioned above. Therefore, it
specifies "At the initial instant of time, all the frogs are positioned accordingly to the initial
disposition of the puzzle". Furthermore the fact declares that some frog must move or jump
in between each instant of time assuring the liveness of the model.

6

2.2. The Alloy Analyzer

The last model’s declaration is a run and it useful to instruct the Alloy Analyzer to solve
for the given constraints and return valid instances. Given that the puzzle contains 3 green
frogs, 3 brown frogs and 7 stones, the bounds are set accordingly. The keyword exactly

forces the solver to use exactly those quantities of signature atoms. In the case of the Time
signature, here is simply specified a maximum number of atoms. If the solver can find a
solution with less than 16 distinct atoms of Time, it will be valid.

2.1.3 Dynamic Modeling

Some insight on dynamic modeling with Alloy is required in order to better understand
further concepts and user concerns. In short, a structure can either be static or have dynamic
behaviours. Considering the presented example, a static structure would be one specific
instant of time, meaning the frogs wouldn’t move from stone to another. In the Alloy
notation, every relation is static and, as such, additional ordered signatures are used to
explicitly represent states and therefore introduce dynamism. The frog.als uses the Time

class for that purpose.
There are two similar approaches to specify a dynamic model: the local state idiom and the

global state idiom. In the former all mutable fields are defined in the global state signature. In
the later, the state signature is added locally as an extra column at the end of each mutable
field. The example model is an instance of the global state idiom. Naturally dynamic models
will have higher order relations which can later compromise the readability of its instance’s
graph visualisation.

2.2 the alloy analyzer

The Alloy Analyzer is a tool that supports fully automatic analysis of Alloy models. It
translates Alloy formulas to boolean expressions which are then checked by SAT solvers.
The user can mainly opt by Simulation or Assertion checking ?. Both require bounds for each
declared signature of the specified model and a default scope is assumed if the user does not
provide such. When satisfiable constraints are declared, the Simulation generates random
instances of the model according to the specification. On the other hand, an Assertion states
a model’s requirement and the tool attempts to find contradictory examples.

Figure ?? illustrates the Alloy Analyzer’s user interface.

7

2.2. The Alloy Analyzer

Figure 2: Alloy Analyzer UI

The text editor on the left side contains the model. It possesses basic syntax highlight,
stressing Alloy’s notation most significant keywords. It also highlights syntax errors, colour-
ing red the error’s position. Simulations and Assertions are both written within the model
using the run and check statements, respectively. The user chooses which to perform on
the Execute menu option bar on top. The tool’s output is visible on the right side of the
window.

2.2.1 Visualization facility

The Analyzer includes a visualisation facility that displays the instances found. Users can
choose to inspect its textual description, a collapsible tree where the atoms and fields are
grouped under their types, or a graph visualization of the instance.

The most sophisticated and overall used visualization method is the graph view of the
instance. Examples are shown in Figures ??, ??, ?? and ?? corresponding to our previously
presented frog.als model. Users can edit the diagram’s appearance by changing its Theme.
Themes can be saved and reused on other instances, saving users some time. Within the
customisable options are: node and edge colours (limited to 7 colours), shapes of nodes
(20 different node shapes), contours of nodes and edges (solid, dashed, dotted or bold) and

8

2.2. The Alloy Analyzer

node and edge names. Users can also opt between showing relationships as node attributes
or edges and project the visualization over some type.

The most sophisticated feature on simplifying the readability of these dynamic model’s
graphs is projection. Projection over a type creates a frame (image) per each of its atoms,
reducing the arity of related fields and consequently the usage of labeled edges (ternary
relations) to represent them. This way users can navigate between frames and better under-
stand the changes occurred.

Figure ?? illustrates a simulation of the frog.als for a minimal bound of one frog of
each color and 3 stones. It is also limited to 2 Time atoms as shown. To represent the
position field of type Time→Frog→Stone, labelled edges are used and its comprehension
is not immediate. With a simple projection over the Time type, users can separate both
states (Time atoms) and easily comprehend the instance, as shown in Figure ??.

Figure 3: Frog puzzle with 1 of each Frog, 3 Stone and two Time atoms. No projection.

Figure 4: Frog puzzle with 1 of each Frog, 3 Stone and two Time atoms. With projection.

9

2.2. The Alloy Analyzer

Figure 5: Visualization facility UI, frog.als solution

Figure 3 represents the default appearance of instances in the Visualizer. Making sense of
the displayed information is not easy or fast, in fact it is very far from the kind of informal
diagram that a user would draw by hand. The negative effect scales for instances of more
complex models which may introduce higher-order relations or a much larger set of atoms.
These appear confusing and illegible by default and sometimes drive users away from the
Visualization feature, relying exclusively on the textual output of the tool. Also, many of
them are put off by the seemingly difficult customisation of the theme.

Expert users perform systematic changes on their themes to make their graphs more
intelligible. They often project over state, distinguish atom types through their colours
and shapes and choose to display relationships as labels when too many edges pollute the
viewing.

These behaviours were studied and applied in the Alloy graph visualization facility,
improving it with a Magic Layout option that automatically infers visualization settings
through a static analysis of the model, generating a theme superior to the default for most
models ?. The frog puzzle solution, for example, is highly simplified by Magic Layout as it
is visible in Figure ??.

10

2.3. Summary

Figure 6: Theme generated by the Magic Layout for the frog puzzle, projected at time 0.

Still, a few uncovered but pertinent concerns were raised like the inconsistency of node
positions between frames of the same projection, the lack of stress of the state changes over
time ?, and the impossibility of seeing multiple frames of a projection simultaneously in
dynamic models?.

Such user’s feedback is extremely valuable to this endeavour considering the new Web
Visualization feature may be built from scratch enabling the best user experience driven
implementation.

2.3 summary

This chapter introduced the Alloy notation using the frog puzzle dynamic model. Alloy
is a small language with interesting descriptive capabilities and a rigorous mathematical
background. Alloy’s graph visualization is an important feature to be implemented on this
environment and therefore it is important to consider the current user’s feedback on the
matter and possibly improve the current implementation in the Alloy Analyzer.

11

3

R E L AT E D W O R K

This chapter explores related tools and platforms in order to better understand the kind of
features the Alloy Web-based Environment should/must have to be user friendly, entertaining
and didactic. Additionally, it gives some insight on the graph visualization techniques for
the kind of data outputed by Alloy.

3.1 similar platforms

When searching for terms like competitive programming, browser based IDE or interactive
coding tutorials, many relevant and sophisticated platforms are found. Among these, a
few with some impact in their respective communities were surveyed for their core features
which, may be analogously applied in this work.

3.1.1 Pex4Fun

Pex4Fun1 is a web-based educational gaming environment created by the Microsoft Re-
search group for teaching and learning programming and software engineering using three
different mainstream programming languages: C#, Visual Basic and F#. Visitors can learn
a wide range of programming concepts from the basic to more advanced topics by solving
puzzles proposed by other users (?). Pex4Fun was released to the public in June of 2010 and
since then, the number of user attempts to solve puzzles has reached over 1.7 million as of
December 2015.

The Microsoft Research group also launched a community site named rise4fun for show-
casing software tools anywhere through a web browser in which Pex4fun is included,
among many other tools. One can publish some tool easily using their front end frame-
work simply by providing a webservice with the standard required defined services. With
it, the developer’s concerns regarding the front end implementation are removed since it is
automatically generated and populated according to the webservice’s output.

1 http://pex4fun.com/

12

http://pex4fun.com/

3.1. Similar platforms

Considering the previous, it would be reasonable to consider such framework to imple-
ment the Alloy web-based environment. In fact, it supports many useful features such as
syntax highlight, permalinks, embedded tutorials, etc. The deal breaker is in the tool’s out-
put display. It prints out static information provided by the service’s result. This might
be useful to print model interpretation’s results textually but it won’t support any kind of
graph visualization feature essential to Alloy. Hence, rise4fun’s framework is not an option
to implement a good web-based Alloy environment.

3.1.2 Hackerrank

Hackerrank2 is a company that focuses on promoting competitive programming challenges
for an online community of over a million programmers already. There are challenges over
several domains of knowledge in computer science and these can be solved on any browser
using one of many available programming languages.

A challenge is composed by a program, a set of input test cases and a detailed description
of what is expected of the implementation. Users write their solutions in-browser and the
system cross-matches their outputs against the correct program’s for each input test case.

The system scores them using the accuracy of their outputs as well as their efficiency
through means of execution time. Participants earn badges and improve their position on
the global leaderboard as they complete challenges.

Figure 7: HackerRank’s CodePair initiative for job interviews.

HackerRank attracts many programmers by offering hiring services to software compa-
nies like facebook and yahoo! among hundreds more. These companies organise hackatons

2 https://www.hackerrank.com/

13

https://www.hackerrank.com/

3.1. Similar platforms

and hire contestants through the platform based on their score. Also, interviews can be
conducted online as shown in Figure ?? were recruiters can watch applicants code in real
time.

3.1.3 Mooshack

Mooshack is a Web-based client-server application to deploy and manage programming con-
tests (?). It is available for download at https://mooshak.dcc.fc.up.pt/ and it requires a
Linux OS, Apache server and Tcl to install.

The system provides multiple views according to the type of user accessing it, which
can be contestants, judges or administrators. The contestant can access a challenge via his
browser and submit a solution which is validated trough assertions of outputs between the
submitted answer and a particular test case, both having the same input.

3.1.4 Codechef

CodeChef 3 is another competitive programming platform. It was created by Directi and it’s
aimed at education with no profit ends. It supports over 35 programming languages and
possesses a large community of programmers whom help others with their skills, both
beginners as well as more experienced users.

CodeChef hosts several contests, some rewarding the winners with cash prizes in order
to attract more programmers. They have also initiatives aimed at the youngest in India to
enable them to excel at international programming competitions.

3.1.5 CodingGround

4 TutorialsPoint offers users the opportunity to code in-browser with almost every popular
programming language. The initiative is called CodingGround and it contains online termi-
nals and simple IDEs for several languages that allow the execution and sharing of code.
Also, these environments contain in-bedded terminals which serve as input/output of the
programs.

3 https://www.codechef.com/
4 https://www.tutorialspoint.com/codingground.htm

14

https://mooshak.dcc.fc.up.pt/
https://www.codechef.com/
https://www.tutorialspoint.com/codingground.htm

3.2. Graph visualization

3.1.6 Relevant Features

Most of the previous presented platforms, among other in-browser programming websites
share a set of characteristic features. The essential functionality these contain is some sort
of code submission and further interpretation/compilation.

Furthermore these environments output information, it being the program’s direct result
or an assertion of it against the expected outcome in the case of competitive programming.

Additional features enhance the user’s experience which is essential to capture their
interest and therefore grow the community. Table ?? describes some of these functionalities
visible at first glance in the previously introduced platforms.

Sophisticated text editors, user profiles and code sharing are features present in most
of these established names in competitive programming and/or didactic programming.
Hence these would be good investments to have in the Alloy Web Environment.

Text Editor Code Sharing Competitive Programming User Profile Tutorials

Pex4Fun

It contains a basic text editor
to code in-browser. No syntax
highlighting, code folding or
suggestions included.

Users can share their code
through permalink URL.

Introduces competition through
coding duels where students
must solve puzzles according
to their teacher’s specification.

Users may sign in and
keep track of their
duel’s results and points
through their profiles.

Contains tutorials
on the subjects
involved.

HackerRank

Advanced editor with syntax
highlighting on several
programming languages.
Code folding, suggestions
and inline error display.

There is no direct way of
sharing code in this
platform. Users may share
code snippets on the site’s
discussion area for each
specific problem.

HackerRank uses leaderboards,
badges and priodic contests
with prizes to stimulate
competition.

Users have profiles that
track their solved
challenges history,
earned badges, position
on global leaderboard
and more.

Offers the basic
knowledge to solve
some challenges.

Mooshack
No editor. Users must submit
files containning the code.

User may not share their
solutions with others trhough
the platform.

Simply informs users of their
solution’s correctness.

Each contestant has an
account and their answer
submissions are linked
to it.

No tutorials offered.

CodeChef

Possesses syntax highlighting,
autocompletion, suggestion,
code folding. Errors are not
displayed inline.

Does not have permalink
mechanism. Users share
code snippets on the
platform’s general forum.

Hosts fortnight challenges with
prizes.

Users can track their
solved/on going
challenges through their
accounts.

Some specific
problem solving
oriented tutorials.

CodingGround
Offers syntax highlighting and
code folding only.

Allows code sharing trough
permalink URL.

Not aimed at competitive
programming.

No such feature.

Lots of detailed
tutorials regarding
several languages
and tools

Table 1: Platform’s features comparison

3.2 graph visualization

Graph display in-browser would be a valuable addition to the Alloy’s Web environment. To
achieve a proper functionality it is important to consider graph simplification methods to
make sense of examples like the one presented on Figure 3. An essential step is to consider
the existing work on improving the Alloy Analyzer graph visualization which is limited to
?. Furthermore, some general techniques of graph visualization ? applied by existing tools
will be presented.

15

3.2. Graph visualization

3.2.1 Improving Alloy Analyzer’s graph visualization

? suggest some improvements on the Magic Layout option described in the background by
tackling the following issues: lack of state change highlighting on dynamic models, uncon-
sidered similarities between node layouts of different but related atoms and consistency of
node positioning between frames of a projection. Automatic multiple type projection was
also explored to simplify graphs even further.

Colours were suggested to stress state changes on dynamic models as illustrated on
Figure ??. Previously (Figure ??), colours were being used simultaneously with shapes to
distinguish atom types. The idea is that shapes are distinctive enough and colours may be
used to indicate state changes instead. The default Magic Layout colouring system would
be applied on models without projection.

Figure 8: Current Magic Layout Theme appearance.

Figure 9: Suggested improvement on highlighting state changes.

? states that the previous Magic Layout could be improved by adding similarities between
nodes belonging to the same super type. Previously, both top level types and types within
the same hierarchy were being attributed shapes randomly for distinction purposes.

The new implementation introduced the term haircuts to distinguish nodes within the
same hierarchy. In short all hierarchic types are represented by rectangles, which are the
most adequate for node labelling and only the top edge shape (spiked, curvy, castle wall

16

3.2. Graph visualization

shaped, etc) varies from subtype to subtype, hence the haircuts. Figure ?? illustrates an
example by applying similar haircuts to Green frogs and Brown frogs since they both extend
the Frog super type.

Figure 10: Usage of similar shapes on types belonging to the same hierarchy.

Some users complained about the constant changes of node positions between frames of
a projection, causing a difficult tracking of the changes (?). To solve this inconvenience, a
sophisticated algorithm is used to automatically calculate the node positioning which most
reduces edge crossing. Then, those node positions are replicated in other frames. Still, some
issues emerged with node labels as they increased in size causing a nodes area overflow.
Some node’s labels were covered by other nodes due to the impossibility of repositioning
upon enlargement.

Even after projection, some graphs remain quite complex, specially if ternary or supe-
rior order relations remain. To further simplify the visualization of these, the new Magic
Layout suggests automatic projection over multiple types, identifying them through a set of
constraints.

Despite the improvement on visualization of 22 out of 24 models that come bundled
with Alloy 4.2 according to an quantitative and qualitative evaluation conducted by ?, these
features have not been applied to the current Magic Layout.

3.2.2 Graph properties

Graph visualization efficiency is highly affected by the graph’s size, therefore a good layout
can optimise the usage of the viewing platform. A good practise is to keep the edge
crossings to a minimum or if possible render a planar graph, i.e. a graph without edge
crossings at all. Inevitably this raises some algorithmic issues: is the graph planar? If so,
one must define constraints to find a planar layout for it.

Still, a low edge-crossing implementation is wise considering it has a far more positive
effect on visualization than any other graph property like symetry or a reduced number
of bends in edges according to usability studies (?). Another regular concern of graph

17

3.3. Summary

visualization tools is to preserve the "user’s mental map" or graph’s predictability The idea
is that two distinct renderings of the same graph or similar graphs must not produce radical
visual changes (?).

3.2.3 Navigation and Interaction

Simply adjusting the graph’s layout is insufficient in achieving an intelligible representation
of the information. Navigation and interaction with the graph is extremely helpful in better
understanding it (?).

A good graph visualization tool allows users to explore with zoom and pan. These
are useful to follow sequences of relations or better observe small clusters of nodes while
abstracted from others. Still it is important to keep in mind possible aliasing problems
related to excessive zooming.

Zooming can simply be an enlargement of the graph content or in the case of a more
sophisticated tool it can display additional content as the user zooms in. These techniques
are called geometric zooming and Semantic zooming (?), respectively.

Despite its obvious utility, zoom creates issues of decontextualisation. The focus+context
methods tackle this issue by offering a continuous display of the general graph context
while zooming. One of these methods is fisheye distortion and it enlarges the required
information while removing detail from the remaining, as illustrated on Figure ?? (?).

Figure 11: Fisheye distortion of a regular grid of the plane.

3.3 summary

This chapter detailed the features that the Alloy Environment should offer to stand out as
a in-browser modeling environment. Some websites were surveyed in order to understand
the detail and importance of their components to users. It was concluded that features
such as syntax highlighting, code sharing and user’s profiles were important add ups to
the platform.

Additionally, a study on graph visualization tools and possible improvements on the
Alloy graph visualization facility was conducted. Some interesting features were described
by ? which should be applied on the future browser graph visualization feature. It was

18

3.3. Summary

possible to identify the usefulness of maintaining node positions over several frames of
the same projection as a simplification on graph interpretation. The latest section of this
chapter also described features like zooming and panning as standard requirements of
graph visualization tools.

19

4

T E C H N O L O G I E S

The development of the Alloy platform involved several technologies. This chapter provides
insight on them as well as the reasons which led to these specific frameworks, libraries,
plug-ins, etc.

4.1 hosting

The web-based Alloy environment is currently online at http://ec2-52-36-177-8.us-west-2.
compute.amazonaws.com. Amazon EC21 is the virtual server hoster of this page, hence the
temporary uncanny public domain name, which follows the automatic standard naming
for their server instances addresses. The Linux t2.micro minimal package with 1 memory
gigabyte and one virtual CPU was effectively used to host the platform until now. Still,
Amazon conveniently provides their clients an easy scaling of resources if later necessary.

This hosting service is presented as inexpensive, secure and reliable, among other quali-
ties and the usage experience was indeed very pleasing. The whole instance manipulation
is accessible and well supported by manuals and an huge community’s feedback. Also,
despite allowing users complete control over their instances, Amazon constantly enforces
security measures which are extremely important for less experiences developers. SSH (Se-
cure Shell) connections using .pem key pairs and security groups acting as virtual firewalls
are examples of these demanded safety measures.

4.2 from alloy4 .2 .jar to a webservice

Alloy is currently on version 4.2 and it is distributed at http://alloy.mit.edu/alloy/ as
a platform independent .jar. Its distributors also provide well documented examples of its
application programming interface (API). One of these examples was particularly useful to
build the model’s compilation piece.

1 https://aws.amazon.com/?nc1=h_ls

20

http://ec2-52-36-177-8.us-west-2.compute.amazonaws.com
http://ec2-52-36-177-8.us-west-2.compute.amazonaws.com
http://alloy.mit.edu/alloy/
https://aws.amazon.com/?nc1=h_ls

4.3. Meteor

Conditioned by Java, Tomcat2 Java servlet container was chosen to host the webservice re-
sponsible for receiving models and returning instances of its executions. There were many
options on running JAX-WS (Java API for XML Web Services) like Glassfish or JBoss. Still,
Tomcat is described as a good approach to host small/medium applications which do not
require the full set of features (e.g. high security, business logic oriented solutions) offered
by other Java Enterprise Edition application servers.

A webservice’s description language (WSDL) is an XML format language that describes
communication endpoints abstractly allowing a platform independent data exchange.

4.2.1 Eclipse

The Eclipse Juno3 development environment complemented by the Axis2 plug-in was used
to aid in the making of the webservice as well as its deployment. Additionally to the advan-
tages of constructing java code with this environment, it provides JAX-WS related features
like the creation of Dynamic Web Projects which are specifically meant for such implementa-
tions. As mentioned above, the service contains a WSDL, in fact, it requires one to function.
Eclipse automatically generates these files from the logics implemented with Java. The op-
posite is also possible, i.e., specifying the WSDL first and then generating the Java classes in
which these webservice’s logics need to be implemented.

Once these two components are created/generated, they can be exported through the
environment into a .war single file. This file can then be automatically deployed to the
intended Tomcat server by simply copying it to the right directory.

4.2.2 WinSCP

WinSCP4 is a not only but mainly an open source, free, safe file transfer protocol (SFTP)
client for Windows. It was helpful to transfer files like the .war previously detailed to the
Amazon EC2 instance using the provided internet protocol address and .pem certificate by
Amazon. The whole connection process is nicely described in detail by both Amazon’s and
WinSCP’s documentations.

4.3 meteor

The Alloy Platform is essentially a web development effort, meaning the inevitable presence
of frequently related concepts, tools and languages like javascript, css, HTML, relational or

2 http://tomcat.apache.org/
3 https://eclipse.org/juno/
4 https://winscp.net/eng/download.php

21

http://tomcat.apache.org/
https://eclipse.org/juno/
https://winscp.net/eng/download.php

4.3. Meteor

non relational databases, etc. This is often called the full-stack development, being the stack
the whole web project, back-end and front-end.

Mastering such a variety of tools can be a challenge, hence the growing number of web
development frameworks which speed up the production by generally packaging technolo-
gies in a single, more abstract one. Javascript frameworks in particular have become very
popular of late to build web applications. This notoriety made us believe that using one of
these frameworks would be beneficial to implement the web base Alloy environment.

Meteor5 is a open-source, free, full-stack web development framework built using Node.js.
With it, both server and client sides are developed using Javascript and they share the same
APIs. In fact code runs both on client and server unless explicitly stated that it should only
run in one of them.

Under the hood, Meteor contains MongoDB6, jQuery7 and provides a long list of nicely
packaged libraries for an easy and fast integration. MongoDB is a NoSQL database, open-
source application written mostly in C++ and it’s JSON (JavaScript Object Notation) oriented.
Jquery is a cross-browser JavaScript library made to simplify client side interaction with HTML
Perhaps the most appealing resource of Meteor is its Distributed Data Protocol (DDP) used
to automatically synchronise data between the database and what’s being displayed to the
client. This feature allows the user interface to seamlessly reflect the true state of the world
with minimal development effort.

4.3.1 Why MeteorJS?

As previously mentioned, there are several popular Javascript frameworks that one might
use to build a functional web app. Meteor was chosen mostly for three reasons: it is
well documented, it possesses a shallow learning curve and it is full-stack, meaning the
same technology can be used to develop the front-end and back-end, unlike for example
AngularJs which is front-end exclusively.

4.3.2 Publish and Subscribe

Meteor does not provide a direct connection between the client and the MongoDB instance,
nor it should for obvious safety reasons. Instead, it uses the Minimongo Javascript library
as an all in-memory client side cache. Still, much of the information contained in the
databased is sensitive or redundant to the client and a filtration system is in order. Meteor
solves this issue using a publish and subscription system.

5 https://www.meteor.com/
6 https://www.mongodb.com/
7 https://jquery.com/

22

https://www.meteor.com/
https://www.mongodb.com/
https://jquery.com/

4.4. Cytoscape

In Meteor a publication is a named API on the server that constructs a set of data to send
to a client. A client initiates a subscription which connects to a publication, and receives
that data. That data consists of a first batch sent when the subscription is initialized and
then incremental updates as the published data changes thanks to the DDP. This system
ensures security and synchronisation using very simple concepts to grasp.

4.3.3 Methods

Often, web applications require some sort of mutation on their data. For example, the client
may perform an AJAX request to run some data insertion routine in a secure environment
(server side). Meteor refers to these events as Methods and additionally to the standard
process described in the previous example they also simulate that routine client-side and
reflect the results immediately. The advantage is that clients get a fast preview of the
routine’s result by avoiding the round trip delay. What if the result from the server comes
back and is inconsistent with the simulation on the client? Then the user’s interface is
patched to reflect the actual state of the server. Meteor names this feature of Optimistic UI.

4.3.4 Templating

Another great feature offered by Meteor is templating. Like many other web templating sys-
tems it allows a faster and easier construction and content manipulation of either dynamic
or static HTML pages by reusing its elements as templates. Meteor parses HTML files and
identifies three top-level tags: body, head and template. Everything inside the head and body
tags is added to the client’s final HTML head and body elements respectively. Template tags
content though is compiled into a Meteor template and can be used in other HTML files
using {{> templateName}} or referenced in the JavaScript with Template.templateName.

Also, typically when building an HTML page one should add external dependencies like
scripts or styling to the HTML document but Meteor handles this by itself linking everything
and allowing clean and simple HTML files.

4.4 cytoscape

The report’s related work chapter stressed the value of graphic instance visualisation. Hence,
options were studied to better understand the state of the art in browser based graph visu-
alisation.

Starting from scratch using technologies like HTML canvas drawing or Scalable Vector
Graphics (SVG) would be extremely time consuming given the kind of functionality re-
quired. To effectively pursue a solution, existing Javascript libraries were explored, dedi-

23

4.5. Summary

cated to the visualisation and manipulation of graphs. There are plenty of solutions on the
matter, some dedicated to displaying large clusters of relational data, some for simpler con-
cept representations. Some focused on graph creation and editing, others on visualisation
and exploration of these.

The requirements implied by the current graphic instance representation in the Alloy An-
alyzer and the possible improvements researched in the previous chapter were considered.
One concludes that ideally the technology should aim at the representation of relatively
small amounts of data because of unavoidable confusion associated with huge graphs. As
previously mentioned, users avoid this kind of instance representation in such cases. Also,
the solution should also ideally offer graph navigation features as well as enable several
kinds of aesthetic changes to make its interpretation easier.

The search of a library cross-matched with these requirements narrowed the findings to
Cytoscape8, a fully featured graph library written in pure Javascript (?). It offers selection
and dragging of one or multiple nodes in the network, pan and zoom features and its API
allows an easy manipulation and store/load of node positions which is helpful for context
preservation and graph rearrangement according to the user’s preference.

4.5 summary

This section briefly described the technologies used to build the Alloy web environment and
why they were used. The most significant ones are Meteor, Cytoscape and Tomcat as most of
the work was conducted in their respective contexts. The applied programming languages
were essentially Java and JavaScript as it will be detailed in the next chapter.

8 http://js.cytoscape.org/

24

http://js.cytoscape.org/

5

D E V E L O P M E N T

The platform’s development was focused on several key features. The priority was achiev-
ing an editor capable of basic model writing and interpretation since they’re the pillars of
the concept being developed. Another main concern was the model’s visualisation compo-
nent which would also be present in multiple functionalities throughout the project. Fol-
lowing, challenge creation, completion and sharing mechanisms were implemented and
also some improvements on the visualisation feature.

5.1 website design

Currently the website can be divided in four different views: Homepage, editor, challenge
creation and solving. Figure ?? is a screenshot of the website’s homepage and, as displayed,
it is possible to navigate through the upper menu or the links bellow to the editor and chal-
lenge creation pages. Note that there is no public list of challenges, therefore contestants
must possess a specific URL to access a solvable challenge. The composing elements of the
next figures will be explained further down this document. This section’s objective is to
give the reader a notion of the current website’s design.

25

5.1. Website design

Figure 12: The website’s homepage

Figures ?? shows the text editor’s where users can freely specify any system and share it
using a simple and intuitive interface. The design, although important to the application’s
attractiveness, was not a main concern while building the platform, hence its improvement
was delayed to future work.

Figure 13: The text editor

26

5.1. Website design

Figure ?? illustrates the platform’s visualiser that pops up after some command is suc-
cessfully executed, i.e., without any errors. The graph is rendered in an HTML canvas
placed under the text area where the model is specified.

Figure 14: The visualizer

Finally, the last views are referent to the challenge creation and solving, respectively
illustrated on Figures ?? and ??. The latter is also complemented with a visualizer (figure
??) so that contestants may observe counter-examples and better understand the challenge
requirements.

27

5.1. Website design

Figure 15: Challenge creation page

Figure 16: Challenge solving page

28

5.2. Editor architecture

Some components are reused or slightly modified from view to view to perform their
roles such as the text editor or the visualizer which are present in more than one of the
application’s pages. These individual components will be described in greater detail ahead
in this chapter.

5.2 editor architecture

The most basic action the platform must perform is the interpretation of some model. It
should be able to inform if there are any possible instances by running some simulation or
some counter-examples from an assertion check. The feedback for syntax errors is essential
as well.

Figure ?? illustrates the architecture behind the editor feature. Users are presented with a
simple interface where they may input the model’s specification that they would otherwise
write on the Alloy Analyzer. Then, an HTML combo box is dynamically filled with all the
commands defined so that the user may choose which to execute.

When the execute button is pressed, the Meteor Method
getInstance(args...)

is invoked and its arguments are:

• The inputed specification as a string.

• The ID of the client’s HTTP session which works as an identifier on the webservice’s
cached information for better performance.

• The instance number. The instance visualisation mechanism, similarly to the Alloy
Analyzer, allows users to navigate between found instances. These instances are gen-
erated deterministically, i.e., the same command executed twice over the same model
produces the exact same instances with the same order when iterated. Hence, the
instance number represents which of these instances needs to be returned.

• The name of the command to be executed.

• A flag that causes an override over the previously cached information in case the
specification changed.

29

5.2. Editor architecture

Figure 17: Editor architecture

5.2.1 Text editor’s features

To improve the usability of the model’s specification text area, syntax highlighting, syntax
error markings and aesthetic changes were introduced.

A lot of helpful Meteor packages of web development libraries are available under https:
//atmospherejs.com/. Codemirror is a versatile in-browser text editor implemented using
JavaScript and an example of these packages. Syntax highlighting was achieved by simply
writing a few regular expressions identifying the Alloy language keywords and symbols
and assigning each a css class with a specific colour. With this, the editor dynamically
colours the inputed data according to the language allowing a better reading and detection
of typos.

Additionally the library simplifies the usage of gutters which are vertical bars along side
the text area to point out the occurrence of syntax errors using characteristic symbols or
identifying line numbers.

30

https://atmospherejs.com/
https://atmospherejs.com/

5.3. Webservice

5.3 webservice

The workflow of the webservice performing the model’s interpretation is illustrated on Fig-
ure ??. Meteor uses SOAP, made available through another package, to communicate with
the service using its WSDL URL.

@WebService
public class AlloyService {

@Resource
//The answers resource is shared between instances of the webservice.
// answers represents cached solutions.
//The String is the HTTP session id and the ClientSession is the solution.
private static HashMap <String , ClientSession > answers;

public AlloyService (){
if (answers == null)

answers = new HashMap <>();
}

@WebMethod
public String getInstance(String model , final String sessionId , int

instanceNumber , String commandLabel , boolean forceInterpretation) {

if (answers.containsKey(sessionId) && !forceInterpretation) {
//Get instance with number instanceNumber from the cached solution

answers.get(sessionId).setIteration(instanceNumber);
return answers.get(sessionId).getInstance ();

} else {
//Parse , Type Check , Solve and get the indicated instance.

...
return instance;
}

}

Listing 5.1: Defining the webservice

The code snippet presented in Listing ?? illustrates the definition of the JAX-WS. Each
service call of getInstance identified by the @WebMethod tag will launch an instance of
the AlloyService class and return some result. The @Resource static answers variable is
used as a caching system associating the client’s session identifier with an interpretation
of his model. This accelerates the process of requesting a new instance of the same model
definition by avoiding re-interpretation.

The Alloy API referent to the interpretation methods is demonstrated on http://alloy.

mit.edu/alloy/code/ExampleUsingTheCompiler.java.html and something very similar is

31

http://alloy.mit.edu/alloy/code/ExampleUsingTheCompiler.java.html
http://alloy.mit.edu/alloy/code/ExampleUsingTheCompiler.java.html

5.4. Challenges

used on the AlloyService class. The major time consumer on this algorithm’s execution
relates to the parsing, type checking and solution finding rather than iterating through
the solution until the desired instance. Therefore, a great improvement was to cache the
solution so that later it may be re-iterated for a following instance. This is implemented as
follows: the webservice’s routine checks for the force interpretation flag, if it’s not true, it
then searches for solutions associated with the given HTTP session identification. If some
solution is found, it is simply iterated to the intended instance number and a response is
formed. Otherwise, the standard procedure is performed, i.e., the model is parsed, type
checked and if possible solved and additionally to responding with some instance, the
solution is cached so that it may be reused later on. If the specification suffers changes,
the solution is recalculated using the force interpretation flag as explained above on the
getInstance() arguments.

Figure 18: Webservice architecture

5.4 challenges

Challenges add great value to the website. Not only they increase the interactivity with the
community but also enable a set of interesting use case scenarios like the dissemination of
academic exercises through students by their teachers.

32

5.4. Challenges

/$
/*In this exercise , you will get some practice writing expressions and
constraints for a simple multilevel address book. Consider a set Addr of
addresses , and a set Name consisting of two disjoint subsets Alias and Group.
The mapping from names to addresses is represented by a relation address ,
but a name can map not only to an address but also to a name.*/

abstract sig Name {
address: set Addr + Name

}

sig Alias , Group extends Name {}

sig Addr {}

/*First , write the following invariants -constraints which you would expect an
address book to satisfy:*/

pred inv_A {
/* a) There are no cycles; if you resolve a name repeatedly , you never
reach the same name again. */
$/

/*type here*/
/$
}

pred inv_B {
/* b) All names eventually map to an address.*/
$/
/*type here*/
/$

}$/
/@
pred inv_a{

all n:Name | n not in n.^ address
}
check inv_a {

inv_A iff inv_a
}
pred inv_b{

all n:Name|some a:Addr | a in n.^ address
}
check inv_b {

inv_B iff inv_b
}
@/

Listing 5.2: Defining a challenge

The code in Listing ?? demonstrates how a simple challenge can be created through the
platform. The challenge creation page on the application suggests the usage of comment
blocks to provide context about the model and the challenge’s objectives. Through these

33

5.4. Challenges

example’s comments, one can understand that it specifies some address book and it asks
contestants to define two simple invariants: inv_a and inv_b.

Furthermore, two distinct block tags can be used, the /@ .. @/ and the /$.. $/ which do
not belong to the Alloy notation. The first serves to identify secret blocks of code, such as
the example’s check commands. These will serve to automatically assert the result and so
will be hidden by a password defined by the challenger. The second tag can be used to
state that some code is immutable. The contestants won’t be allowed to edit the example’s
model signatures for instance.

Once the challenger is done creating, he can then share it through an URL, that once
opened will originate something similar to Listing ??. Bear in mind that although the sig-
natures aren’t highlighted in any way in this documented, they cannot be edited according
to the creator’s placement of the /$... $/ markings. The application though, distinguishes
locked blocks with a special highlight on such code.

/*In this exercise , you willll get some practice writing expressions and
constraints for a simple multilevel address book. Consider a set Addr of
addresses , and a set Name consisting of two disjoint subsets Alias and Group.
The mapping from names to addresses is represented by a relation address ,
but a name can map not only to an address but also to a name.*/

abstract sig Name {
address: set Addr + Name

}

sig Alias , Group extends Name {}

sig Addr {}

/*First , write the following invariants -constraints which you would expect an
address book to satisfy:*/

pred inv_A {
/* a) There are no cycles; if you resolve a name repeatedly , you never
reach the same name again. */

/*type here*/

}

pred inv_B {
/* b) All names eventually map to an address.*/

/*type here*/

}

Listing 5.3: Solving a challenge

34

5.4. Challenges

Solving this particular challenge consists in adding restraining facts for each of the in-
variants. Note that the stated rules within the predicates or facts may or may not be the
same as the ones contained in the check commands. Actually something equal or equiva-
lent is expected of the contestants, hence hiding these check commands from them. Say for
instance that some contestant attempts to solve inv_A of the presented challenge on Listing
?? with a weak constraint as illustrated of Listing ??.

pred inv_A {
/* a) There are no cycles; if you resolve a name repeatedly , you never
reach the same name again. */

all n:Name | n not in n.address

}

Listing 5.4: Wrong solution

The comment blocks explain that in order for inv_A to be satisfied, it must stated that
there are no cycles when resolving a name’s address repeatedly. This means that both Alias

and Group atoms cannot be related to themselves trough multiple chaining of address re-
lations. Analysing the contestant’s specification, one can observe that he only states that
names cannot be related with themselves trough address relation. Naturally, the Alloy An-
alyzer will find counter examples and display them so that this contestant may understand
how to reinforce his constraints. One such example is illustrated on Figure ??.

Figure 19: Counter example inv_A

Another handy, helpful and implementation free feature is using run commands to sim-
ulate instances under certain constraints. Since the challenge was created using named
predicates, these can be used within the solution context to generate scenarios where the
constraints are enforced. If our contestant were to add and execute run{inv_a} on his spec-

35

5.5. Statistics

ification, he would then observe instances where there would be no cycles as specified by
the challenger. Understanding the challenge requirements would come easy once compar-
ing these simulations with the obtained counter-examples. One possible solution for the
challenge is shown on Listing ??.
pred inv_A {

/* a) There are no cycles; if you resolve a name repeatedly , you never
reach the same name again. */

no n:Name | n in n.^ address
}

pred inv_B {
/* b) All names eventually map to an address.*/
all n:Name|some a:Addr | a in n.^ address

}

Listing 5.5: A possible solution

This check mechanism provided by the Alloy Analyzer fits extremely well with the re-
quirements of a challenge, automatically asserting solutions, even if they vary in syntax.
Hence, reducing the effort related to implementing some other different solution verifying
feature. Plus, this liberty offered to contestants, allows a variety of different approaches
and coding styles, which may be interesting to analyse later on.

The system possesses a combo box for users to select which of the commands to run.
Internally, an execution takes the contestant specification, adds the selected command and
executes it. If no counter examples are found, it means the restrictions defined by the user
are equivalent to the creator’s and therefore a subheading is solved. Otherwise, i.e. if
counter examples are found, they are presented for inspection to help understand what
might be wrong.

5.5 statistics

One of this platform’s requirements is gathering useful data to produce statistics. The
majority of data harvesting is made through challenges. Challenge creators can check their
exercises regularly and understand how many attempts were made to solve their problem,
how many were successful and not.

Although contestants may share their solutions, the platform doesn’t distinguish them
from the challenges themselves. Internally, a direct solution is a replica of the original chal-
lenge with altered content and a reference to it. This system allows building a derivations
tree of an original challenge, i.e., one that does not derive from another.

This way, every time a contestant edits his solution and attempts to execute it, the whole
specification is stored. Not only this feeds the information given to the challenge creator but
also builds a good dataset to extract knowledge from. For instance, in the future one could

36

5.6. Database

try to understand how the majority of contestants progress to a solution since the solutions
are chain linked through their derivations back to the original challenge as illustrated on
Figure ??.

Figure 20: Challenges usage scenario

5.6 database

Meteor applications use MongoDB instances for backend support. Data stored in these
instances is originally shapeless, i.e. without a strict specific structure. This may be advan-
tageous, specially when there’s uncertainty about how the application uses data or when
such data can take multiple forms.

It is possible however to define a ruling schema over the database’s structure to control
what is written into it. Choosing to use schemas or not is a tradeoff between flexibility and
rigor. For documentation purposes and for an easier understanding from possible future
contributors, the usage of a schema was preferred.

Figure ?? represents part of the data’s structure currently being stored by the application.
The Model and Instance collections support the editor feature. Every time a user chooses
to share his model, it is stored and associated with an _id which concatenated with the
platform’s editor subdomain produces a valid URL displaying the specification. Further-
more, users can share instances associated with some model, hence the Instance collection
containing a reference to the respective model’s identification and a graph object to later
redraw the targeted instance.

Regarding challenges, entries are composed by an _id that analogously to the editor’s
sharing mechanism can be used to propagate them. The whole field is a string containing
the challenge as it was created with both tags and secrets. This is useful if the creator
wishes to edit his challenge. He can simply use the password to unlock and edit this con-

37

5.6. Database

tent. The immutable field holds the ranges of code containing immutable text as previously
explained. The usage of lines and characters instead of simple character indexation is due
to the text editor’s library API requirements to block out the text. The cut field contains the
challenge as it should be displayed to the contestant, without secrets or tags. Another array
contained withing the Challenge collection is challenges and it holds the parsed content of
the challenge’s secret commands. The name key of these objects holds the check command
label while the value contains the command itself. Although there’s some data replication,
this structure boosts performance and fits nicely with Meteor’s subscription/publication
mechanism, preventing contestants from accessing the challenge’s solution. Trivially, the
password field refers to the challenge password defined by its creator. derivationOf points
to another Challenge entry. There is no distinction between a solution and a challenge in
terms of stored data. This solution supports the connection described above between states
of a solution of derivations of the same. Finally, the public field is used to distinguish
between intentionally shared solutions and automatically stored derivations of it through
consecutive editing and running. This distinction dictated if the solution can be loaded
through its URL or not, i.e., if a solution is intentionally shared by the user, the generated
id can be used to access it through an URL, on the other hand, models stored after an
execution are meant for statistic usage only and can’t be reloaded by Users.

These private contents of executed models are stored in the Run collection. It only con-
tains 3 fields apart from its entries _id: sat tells if the execution produced instances or
not, i.e., if it was satisfiable. It also holds the name of the commands executed, so that
information like the most executed command or number of successful attempts to solve
a particular point of a challenge can be calculated. Lastly, the field challenge points to
the challenge itself on Challenge collection. In practise, a completely solved challenge is
a reference to some Challenge that derives from the original and has itself satisfiable en-
tries in Run for each check command in the original challenge. The remaining collection,
ChallengeInstances, allows users to share instances of some challenge’s execution simi-
larly to the editor’s feature.

38

5.7. Visualizer

Figure 21: Database schema representation

5.7 visualizer

Most of the project’s effort was dedicated to the visualizer for multiple reasons. For once
even using an existing open source graph rendering library, there are lots of essential fea-
tures that must be implemented on it to shape it as an Alloy instance visualizer. This
implied a vast search for JavaScript libraries flexible enough to fit in some of these features.
Fortunately there is a vast range of this kind of tools, many of which are well developed
and documented.

Apart from these difficulties there’s the enhancement issues. As previously stated, there
is some dissatisfaction among the community regarding some of the functionalities of the
current Alloy Analyzer’s visualizer version. Therefore, these issues had to be studied and
rethought towards friendlier functionality.

5.7.1 Data of an Alloy instance

Back in the editor’s architecture, it was demonstrated through Figure ?? how data flows
from client to server to webservice and vice versa. Step 7 or the Alloy service’s response
is a string structured as a JSON document that is then parsed by the server and returned
to the client. This document contains either details about syntax errors or a found Alloy
instance. Once transformed into a JavaScript object, the data can be easily accessed for all
the information required to build an informative graph.

{
"sigs": [{

39

5.7. Visualizer

"type": "STRING",
"isPrimSig": "BOOLEAN",
"isSubsetSig": "BOOLEAN",
"parents": ["STRING"],
"atoms": ["STRING"]

}],
"fields": [{

"fieldName": "STRING",
"arity": "INTEGER",
"tuples": [["STRING"]]

}],
"skolems": [{

"label": "STRING",
"atom": "STRING"

}]
}

Listing 5.6: Instance data representation

The JSON code listed on ?? outlines the information required to fill the visualizer. There
are as many different signatures in the model as entries in sigs. Each entry contains the
signature respective original name as stated in the specification, it informs if the signature
is a subset signature or a primary one, i.e., if its contained in some other signature or not. If
it’s a primary signature, parents may hold its father’s type name if one exist (the signature
extends it’s father). For subset signatures, parents will contain the name of the signature
or signatures in which the former is contained. Finally atoms is a set of identifiers for each
atom of a type in the given instance.

The fields attribute represents relations between the signatures described above. Each
field defined in some signature specification is stored here stating its name, its arity and
the tuples linking the involved atoms.

Skolems refer to reduced formulas without quantifiers which are equivalent to other quan-
tified formulas. This is achievable using skolem constants or functions that capture the con-
straint of the quantified formula in their values (?). These skolems are added to the rendered
instance graph’s elements as text making them more conspicuous.

5.7.2 Rendering instances with CytoscapeJs

As shown bellow on listing ?? CytoscapeJs’s initialisation mainly requires some components:
The container or HTML element to be converted into a drawable canvas, an elements

object containing all the graph’s nodes and edges with their associated data, a style object
dictating how those elements are to be drawn, i.e., colours, shapes, labels, etc. And finally
a layout object ruling over the nodes positions.

40

5.7. Visualizer

The first step towards rendering an Alloy instance using this library was converting the
previously structured data shown in Listing ?? into an elements array. Given the atoms
names unique nature, these were chosen to act as identifiers, avoiding conflicts and simpli-
fying the relations association.

Much like the Alloy Analyzer, relations with arity superior to two, i.e., involving more
than two atoms were simplified into binary relations between the first and last atoms and
the remainder atom names were concatenated with the relation name. For example a tuple
with arity four relating A$1->B$1->C$1->D$1 named relation1 would be represented as an
edge between A$1 and D$1 with the label relation1[B$1->C$1] by default. Additionally,
atoms were complemented with the corresponding skolems as additional text to their labels.

Every time a node within the rendered graph is selected or dragged its style is recalcu-
lated and the graph is rerendered. Therefore, fields defined within the style array such
as the ones referring to nodes shape, background-color and content in Listing ?? are
automatically triggered. There are two possible approaches to set values to these fields:
Store aesthetic features as data on the formerly described elements and apply them using
’data(field_name)’ or use functions to perform more complex tasks than simply accessing
the element’s data. The library is flexible enough so that node’s colours, shapes, borders
and sizes are manageable using this mechanism as well as edge’s colours, contours and
length.

Regarding the layout option object, CytoscapeJs offers six different other options as graph
layouts like the displayed ’preset’. :

• Preset - Node positions within the graph must be specified individually in its element
data.

• Random - The random layout puts nodes in random positions within the viewport.

• Grid - The grid layout puts nodes in a well-spaced grid.

• Circle - Places nodes in a circle.

• Cocentric - The concentric layout positions nodes in concentric circles, based on a
metric that you specify to segregate the nodes into levels.

• Breadthfirst - Puts nodes in a hierarchy, based on a breadthfirst traversal of the graph.

• Cose - The cose (Compound Spring Embedder) layout uses a physics simulation to
lay out graphs.

41

5.7. Visualizer

cytoscape ({
container: document.getElementById(’cy’),
elements: [

{ group: ’nodes ’, // node n1
data: {

id: ’n1’, // Mandatory for each element
optionalData1 : "blue", //Any kind of relevant associated data
optionalData2 : "rectangle"

},
},
{ group: ’nodes ’, // node n2

data: { id: ’n2’ }
},
{ group: ’edges ’, // edge e1

data: {
id: ’e1’,
source: ’n1’, // The source node id (edge comes from this node)
target: ’n2’ // The target node id (edge goes to this node)

}
}

],
layout: {name: ’preset ’},
style: [

{ // Style applied to every node
selector: ’node’,
style: {

’content ’: ’data(id)’,//Node’s label according to element data
’shape ’: ’data(optionalData2)’,//Node’s shape according to element

data
’background -color’ : function(ele){//Node’s colour using a function

return ele.data().optionalData1;
}

}
}

]

});

Listing 5.7: CytoscapeJS’s initialisation components

5.7.3 Theme settings

At first glance, keeping the atom’s individual features such as colour, shape, label, etc,
stored in its data as CytoscapeJs elements seems appealing but unfortunately it would com-

42

5.7. Visualizer

plicate supporting the current inheritance feature of Alloy Analyzer’s themes. . In practise,
atoms belonging to some type should be able to inherit their father’s appearance unless
edited in some other way. To solve this issue, data structures holding theme settings and
hierarchic information were defined and the node’s appearance is mostly being set by the
styling functions which traverse these structures and select the appropriate features as dia-
grammed on Figure ??.

Figure 22: Styling procedure

Take for example the colour of an atom D$1, the function’s behaviour is to continuously
look for a valid colour throughout its ancestors. Hence, it starts by consulting the colour
of atoms of type D and once it retrieves the "inherit" value, goes to the hierarchic tree to
look for its father. Once again it looks for the colour value of A which D extends according
to the example’s tree and acquires a valid hexadecimal triplet to render as the D$1’s colour.

This nicely packaged theme data associated with each signature facilitates its storage and
loading while sharing instances. By simply annexing these objects to their respective model
entries on the database and reloading them once that same entry is reopened in the editor,
sharing theme options is enabled.

Currently the platform supports the editing of the following theme settings:

• Atom colours using any hexadecimal colour triplet.

43

5.7. Visualizer

• Eleven kinds of atom shapes.

• Atom Borders between dotted, dashed, solid and double.

• Atom labels.

• Hiding unwanted atoms.

• Hiding unrelated atoms. Unlike the previous option, that hides all the atoms of some
type, this option hides atoms of some type that are uninvolved in any relation present
in the instance.

• Displaying atoms numbers.

• Use the original atoms names.

• Relations labels.

• Relations colours using any hexadecimal colour triplet.

• Relations edge style, i.e., either dotted, dashed or solid.

• Choosing to display relations as atom attributes or arcs(edges).

Furthermore atom positions can be automatically rearranged according to every layout
made available by CytoscapeJs as previously detailed. Some of these layouts, cose in par-
ticular, attempt to ideally distribute graph’s nodes throughout the canvas, maximising the
space usage and improving the visualisation.

5.7.4 Theme settings user interface

Tweaking all the above settings is possible through the platform’s visualizer interface. Like-
wise the Alloy Analyzer a sided tab was chosen to contain all the necessary inputs as illus-
trated on figure ??.

44

5.7. Visualizer

Figure 23: Theme settings user interface side panel

Users can open and close this panel using a top left button and scroll down through the
options. Its content changes between three different views according to which element is
selected in the CytoscapeJs canvas. Users can select elements by left clicking on them. If an
atom is clicked, the panel’s content will be referent to options about that atom’s signature.
If an edge is selected, analogously to the former, options regarding the specific relation will
fill the side panel. Finally, options about the graph’s layout and some other settings will be
displayed if the canvas background is selected.

Additionally, users can navigate between options of different signatures or relations on
the bottom of all the panel’s views. This is useful to edit previously hidden atoms (not
clickable) or to select abstract signatures not represented on the graph. Editing these signa-
tures may affect their descendants appearances if the environment is set so, which it is by
default.

Besides using the side panel to edit all these settings, users can right click nodes which
will pop open a menu to edit their colours, shapes and to project over their signature as
displayed on Figure ??.

Figure 24: Theme settings user interface with right click event

45

5.8. Projection

This option provides a faster access to three of the most significant aspect settings in an
intuitive way. Something that the Alloy Analyzer’s visualizer is not equipped with. Plus,
its worth mentioning that every aspect change or changes made in the Alloy Analyzer’s
theme editor must be manually applied (clicking an apply button) before being observable.
Our platform automatically applies every change immediately after it’s made which is
convenient.

5.8 projection

As explained in the background chapter, the Alloy Analyzer’s projection feature is a very
useful tool to mostly make dynamic model’s instances more intelligible. Still, there are some
complaints about it, specially regarding the highlight of state changes. (?) in particular
suggests the visualiser should display more than a state at a time and the positions of
the atoms should be consistent between them. This feedback was taken into account when
building the web visualiser and two possible improvements were implemented and studied.

5.8.1 Multiple frame visualisation

The first idealised solution of an improved projection functionality for the web visualizer
was representing projections as a single graph, i.e, without explicit frames representing
states. Take for example Figure ??, illustrating in practise how the solution would represent
the frog puzzle instance. Using a CytoscapeJs feature called compound nodes, state atoms
being projected over would engulf their respective frames as their parent nodes. Plus, users
would be able to adjust atom positions which would affect all the same atoms inside each
frame. Lets say the user dragged the example’s Stone$0 atom to the right. All the other
Stone$0 atoms within the Time compound nodes would move to the right as well. This
way, not only multiple frame visualisation would be possible simultaneously, but atoms
would also maintain their positions throughout the states which would facilitate immensely
identifying changes between them, thus improving the visualiser.

46

5.8. Projection

Figure 25: Multiple frame visualization projection

Once the solution was implemented though, two distinct problems arose. Although not
frequently used, its possible to project over multiple signatures simultaneously. Well, lets
say someone required projecting over Time and Stone signatures in the previous example.
Considering the instance contains fifteen Time atoms and seven of type Stone, the canvas
should render fifteen times seven compound nodes at once. The first problem was the posi-
tioning the atoms in a clear and automatic way. Eventually with complex enough instances
we would be back to the illegibility of unprojected instances. Furthermore, calculating these
huge instances would become impractical even for examples such as the one presented re-
garding execution times. Given the circumstances a different approach was attempted in
order to obtain a viable solution.

47

5.9. Summary

5.8.2 Current projection

Currently the application allows projection alike the Alloy Analyzer through frame by frame
inspection as shown on Figure ??. Still, the concerns previously explained weren’t ignored.
The issue about atom positioning was solved by storing and reapplying atom positions on
the canvas between frame navigations. The simultaneous inspection of multiple frames
though was thought of, but not implemented so far. The idea behind it is to have as many
CytoscapeJs canvases as intended by the user, allowing him to choose which frame to render
on each canvas. Given the implementation effort required, its developments was postponed
to future work.

Figure 26: Current projection feature

In case of multiple signature projection, users can choose in which type they’d like to
navigate by selecting it in a combo box between the next and previous frame buttons.

5.9 summary

This chapter described the platform workflows and most outstanding details of its function-
ality. Here, the editor, visualizer challenge creation, solving and data collection mechanisms
were explained to give the reader some insight of whats under the hood of the Alloy web
environment. The next chapter presents the conclusions taken from this project’s develop-
ment and research as well as possible future developments.

48

6

C O N C L U S I O N S A N D F U T U R E W O R K

This thesis describes the research and development carried out to build a web framework
for Alloy, supporting, among others, most of the features currently available in the stan-
dalone Alloy Analyzer. Lots of web platforms perform similar roles for other languages
either having recreational, didactic or competitive purposes. We started by studying these
platforms in order to determine the features that are fundamental for a successful tool, ca-
pable of empowering the language and growing the community. Our contributions were
essentially:

• An environment accessible through any web browser, were users can write Alloy spec-
ifications and analyse them, producing instances and inspecting them, as they would
using the Alloy Analyzer stand alone. This removes the necessity for downloading
the executable .jar and installing additional software (Java), thus providing an easier
access to it.

• A mechanism for easy sharing of models or instances in the community. Instead of
sending .als files or entire specifications, users disseminate their work through URLs.
Additionally, we implemented a similar feature to share instances, something new
in the community and that will simplify a lot the understanding of (and discussion
about) concrete models.

• Bringing the competition element to the the language through the creation of chal-
lenges with the capability of automatically verifying solutions. We expect this feature
to be a great contribution not only but mainly for academic environments. It empow-
ers contestants/students by providing immediate feedback on their solutions through
meaningful counter-examples.

• An infrastructure capable of gathering all sorts of data about the platform’s usage.
Mining such data, would enable the extraction of profitable knowledge like profiling
challenge contestants, understanding their methods and difficulties.

49

6.1. Future work

6.1 future work

Its easy to imagine many new features given the prototype stage of the platform or identify
less significant missing ones from the Alloy Analyzer stand alone. Still, some are specially
worth mentioning as they would greatly contribute to the environment’s robustness:

• Enabling the inspection of instances as text rather than using the platform’s graphical
visualiser, considering a great number of users prefers so. Even the most sophisti-
cated graph manipulation/inspection tool would be ineffective given large enough
instances leaving text as one viable option.

• Further develop the instance visualiser, enabling the inspection of multiple frames in
dynamic models.

6.2 evaluation

The greatest point in this project’s future work is its evaluation. Ideally, the platform should
be used extensively by real users in order to get some feedback on several aspects of it, as
well as understand its true potential. The most immediate requirement is the usability
experiences to better determine what features should be improved and added. Addition-
ally, the usage would help understand the true potential of the data exploration and what
complementing information should be gathered to build more valuable knowledge. Finally,
studying the application scalability will only as well be possible under such circumstances.

50

	1 Introduction
	2 Background
	2.1 Alloy
	2.1.1 Applications and Framing
	2.1.2 The Language
	2.1.3 Dynamic Modeling

	2.2 The Alloy Analyzer
	2.2.1 Visualization facility

	2.3 Summary

	3 Related work
	3.1 Similar platforms
	3.1.1 Pex4Fun
	3.1.2 Hackerrank
	3.1.3 Mooshack
	3.1.4 Codechef
	3.1.5 CodingGround
	3.1.6 Relevant Features

	3.2 Graph visualization
	3.2.1 Improving Alloy Analyzer's graph visualization
	3.2.2 Graph properties
	3.2.3 Navigation and Interaction

	3.3 Summary

	4 Technologies
	4.1 Hosting
	4.2 From Alloy4.2.jar to a webservice
	4.2.1 Eclipse
	4.2.2 WinSCP

	4.3 Meteor
	4.3.1 Why MeteorJS?
	4.3.2 Publish and Subscribe
	4.3.3 Methods
	4.3.4 Templating

	4.4 Cytoscape
	4.5 Summary

	5 Development
	5.1 Website design
	5.2 Editor architecture
	5.2.1 Text editor's features

	5.3 Webservice
	5.4 Challenges
	5.5 Statistics
	5.6 Database
	5.7 Visualizer
	5.7.1 Data of an Alloy instance
	5.7.2 Rendering instances with CytoscapeJs
	5.7.3 Theme settings
	5.7.4 Theme settings user interface

	5.8 Projection
	5.8.1 Multiple frame visualisation
	5.8.2 Current projection

	5.9 Summary

	6 Conclusions and future work
	6.1 Future work
	6.2 Evaluation

