
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Damien da Silva Vaz

Implementing an Integrated Syntax
Directed Editor for LISS.

December 2016

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Damien da Silva Vaz

Implementing an Integrated Syntax
Directed Editor for LISS.

Master dissertation
Master Degree in Computer Science

Dissertation supervised by
Professor Pedro Rangel Henriques
Professor Daniela da Cruz

December 2016

A C K N O W L E D G E M E N T S

First, I would like to thank my supervisor Pedro Rangel Henriques and co-supervisor
Daniela da Cruz. They are the most who supported me throw this ambitious project and
took me to the final stage of my university career.
Thank you also to my family (particularly, my brother Joël and my father Celestino) and
friends (Ranim, Bruno, Chloé, Tiago, Saozita, Nuno, David, Juliette, Jessica) for supporting
me.
And last but not least, I would like to dedicate this thesis to my, particularly, most beautiful
mother. Despite you couldn’t be here to watch me conclude my studies. Wherever you
are, I hope that you are proud of me. None of this could have been made without their
unconditional help.

i

A B S T R A C T

The aim of this master work is to implement LISS language in ANTLR compiler generator
system using an attribute grammar which create an abstract syntax tree (AST) and generate
MIPS assembly code for MARS (MIPS Assembler and Runtime Simulator) . Using that AST,
it is possible to create a Syntax Directed Editor (SDE) in order to provide the typical help
of a structured editor which controls the writing according to language syntax as defined
by the underlying context free grammar.

ii

R E S U M O

O tema desta dissertação é implementar a linguagem LISS em ANTLR com um gramática
de atributos e no qual, irá criar uma árvore sintática abstrata e gerar MIPS assembly código
para MARS (MIPS Assembler and Runtime Simulator). Usando esta árvore sintática ab-
strata, criaremos uma SDE (Editor Dirigido a Sintaxe) no qual fornecerá toda a ajuda tı́pica
de um editor estruturado que controlará a escrita de acordo com a gramática.

iii

C O N T E N T S

1 introduction 1

1.1 Objectives 1

1.2 Research Hypothesis 2

1.3 Document Structure 2

2 liss language 3

2.1 Formal languages and grammar 3

2.2 LISS Data types 5

2.2.1 LISS lexical conventions 11

2.3 LISS blocks and statements 12

2.3.1 LISS declarations 13

2.3.2 LISS statements 13

2.3.3 LISS control statements 17

2.3.4 Other statements 21

2.4 LISS subprograms 22

2.5 Evolution of LISS syntax 24

3 target machine : mips 26

3.1 MIPS coprocessors 27

3.2 MIPS cpu data formats 28

3.3 MIPS registers usage 28

3.4 MIPS instruction formats 31

3.4.1 MIPS R-Type 31

3.4.2 MIPS I-Type 33

3.4.3 MIPS J-Type 35

3.5 MIPS assembly language 36

3.5.1 MIPS data declarations 36

3.5.2 MIPS text declarations 37

3.6 MIPS instructions 39

3.7 MIPS Memory Management 42

3.7.1 MIPS stack 42

3.7.2 MIPS heap 43

3.8 MIPS simulator 43

3.8.1 MARS at a glance 44

4 compiler development 47

4.1 Compiler generation with ANTLR 48

iv

Contents

4.2 Lexical and syntatical analysis 49

4.3 Semantic Analysis 50

4.3.1 Symbol Table 50

4.3.2 Error table in LISS 57

4.3.3 Types of error message 59

4.3.4 Validations Implemented 61

4.4 Code Generation 75

4.4.1 Strategy used for the code generation 75

4.4.2 LISS language code generation 84

4.4.3 Creating a variable in LISS 84

4.4.4 Loading a variable or a value 100

4.4.5 Assigning in LISS 101

4.4.6 Set operations 108

4.4.7 Sequence operations 109

4.4.8 Implementing Function calls 111

4.4.9 Implementing Input/Output 112

4.4.10 Implementing Conditional statements 114

4.4.11 Implementing Iterative statements 116

4.4.12 Implementing increment or decrement operators 121

5 sde : development 123

5.1 What is a template? 124

5.2 Conception of the SDE 125

5.2.1 Toolbar meaning 127

5.2.2 Creating a program 129

5.2.3 Executing a program 139

5.2.4 Error System in liss|SDE 139

6 conclusion 141

6.1 Future Work 143

a liss context free grammar 147

v

L I S T O F F I G U R E S

Figure 1 CFG example 1
4

Figure 2 MIPS architecture 27

Figure 3 MIPS register 30

Figure 4 MARS GUI 44

Figure 5 MARS GUI (Execution mode) 45

Figure 6 Traditional compiler 48

Figure 7 AST representation 50

Figure 8 Example of hierarchical symbol table 51

Figure 9 Global symbol table in LISS 52

Figure 10 InfoIdentifiersTable structure 56

Figure 11 ErrorTable structure 58

Figure 12 ErrorTable structure instantiated for example in Listing 4.5 59

Figure 13 Stack structure 81

Figure 14 Structure for saving information of each value declared in a array 87

Figure 15 Array structure with size 2,2,3. 89

Figure 16 Set structure in JAVA 92

Figure 17 Set structure in JAVA 92

Figure 18 Architecture of the stack relatively to a function in LISS 96

Figure 19 Schema of the conditional statements in LISS 114

Figure 20 Schema of the for-loop statement using the condition ’in’ 117

Figure 21 Schema of the for-loop statement using the condition ’inArray’ 119

Figure 22 Schema of the while-loop statement 120

Figure 23 Example of an IDE visual interface (XCode) 2
123

Figure 24 SDE example 125

Figure 25 liss|SDE 126

Figure 26 liss|SDE structure 127

Figure 27 Toolbar of liss|SDE 127

Figure 28 File option of toolbar in liss|SDE 128

Figure 29 Run option of toolbar in liss|SDE 128

Figure 30 Help option of toolbar in liss|SDE 128

Figure 31 About option of toolbar in liss|SDE 129

1 http://www.biiet.org/blog/wp-content/uploads/2013/07/img028.jpg
2 http://www.alauda.ro/wp-content/uploads/2011/04/XCode-interface-e1302035068112.png

vi

List of Figures

Figure 32 Creating a LISS program (1/17) 130

Figure 33 Creating a LISS program (2/17) 130

Figure 34 Creating a LISS program (3/17) 130

Figure 35 Creating a LISS program (4/17) 131

Figure 36 Creating a LISS program (5/17) 131

Figure 37 Creating a LISS program (6/17) 131

Figure 38 Creating a LISS program (7/17) 132

Figure 39 Creating a LISS program (8/17) 133

Figure 40 Creating a LISS program (9/17) 133

Figure 41 Creating a LISS program (10/17) 134

Figure 42 Creating a LISS program (11/17) 134

Figure 43 Creating a LISS program (12/17) 135

Figure 44 Creating a LISS program (13/17) 135

Figure 45 Creating a LISS program (14/17) 136

Figure 46 Creating a LISS program (15/17) 136

Figure 47 Creating a LISS program (16/17) 137

Figure 48 Creating a LISS program (17/17) 137

Figure 49 Flow of the execution of a liss code in the liss|SDE 139

Figure 50 Output of the execution of the HelloWorld program 139

vii

L I S T O F TA B L E S

Table 1 LISS data types 6

Table 2 Operations and signatures in LISS 7

Table 3 MIPS registers 28

Table 4 R-Type binary machine code 32

Table 5 Transformation of R-Type instruction to machine code 33

Table 6 Distinct I-Type instruction formats 34

Table 7 Immediate (I-Type) Imm16 instruction format 34

Table 8 Immediate (I-Type) Off21 instruction format 34

Table 9 Immediate (I-Type) Off26 instruction format 35

Table 10 Immediate (I-Type) Off11 instruction format 35

Table 11 Immediate (I-type) Off9 instruction format 35

Table 12 J-Type instruction format 35

Table 13 Example of Data transfer instruction in MIPS 39

Table 14 Example of Arithmetic instruction in MIPS 40

Table 15 Example of Logical instruction in MIPS 40

Table 16 Example of Bitwise Shift instruction in MIPS 40

Table 17 Example of Conditional Branch instruction in MIPS 41

Table 18 Example of Unconditional Branch instruction in MIPS 41

Table 19 Example of Pseudo Instructions in MIPS 41

Table 20 Example of SYSCALL instruction in MIPS 42

Table 21 TYPE category information 53

Table 22 ST information for an integer variable 53

Table 23 ST information for a boolean variable 54

Table 24 ST information for an array variable 54

Table 25 ST information for a set variable 54

Table 26 ST information for a sequence variable 55

Table 27 ST information for a function 55

Table 28 Types of error message in LISS 60

Table 29 Sequence predefined operations 109

viii

List of Tables

ix

1

I N T R O D U C T I O N

In informatics, solving problems with computers is related to the necessity of helping the
end-users, facilitating their life. And all these necessities pass through developers who
creates programs for this purpose.

However, developing programs is a difficult task; analyzing problems, and debugging
software takes effort and time.

And this is why we must find a solution for these problems.
Developing a software package requires tools to help the developers to maximize their

programming productivity. These tools are: on one hand, compilers to generate lower-level
code (machine code) from the high-level source code (the input program written in an high-
level programming language); on the other hand, editors to create that source code. And
to make easier and safer the programmers work, high-level programming languages were
created for facilitating their work.

This is not enough to overcome all the difficulties for creating a program in a safety way
and having a high level productivity!

This is why we need to have fresh ideas and to implement more features to help on
solving these problems.

1.1 objectives

In this work, this project aims to develop an editor with the concept of a SDE (Syntax
Directed Editor).

It is intended that the editor works with language designed by the members of the Lan-
guage Processing group at UM which is called LISS.

LISS language will be specified by an attribute grammar that will be passed, as input, to
ANTLR. The compiler generated by ANTLR will generate MIPS assembly code (lower-level
source code).

The front-end and the back-end of that compiler will be explained and detailed along the
next pages.

1

1.2. Research Hypothesis

1.2 research hypothesis

It is possible to synthesize a complete source program, ready to be compiled and executed,
selecting the appropriate alternative language constructors and writing literals in the right
positions in a special editor guided by the source language structure, or syntax.

1.3 document structure

In this section, the project planned for this master thesis will be explained.
First, create an ANTLR version of the CFG grammar for LISS language.
Second, extend the LISS CFG to an AG in order to specify throw it the generation of MIPS

assembly code. Then verify the correctness of the assembly code generated with a simple
MIPS simulator, named MARS, that will be selected to provide all the tools for checking it.

Third, the desired Structure-Editor, SDE, will be developed based on ANTLR. It will
be implemented with Java (JAVAFX) because ANTLR has always been implemented via
Java and it is said, also, to use Java target as a reference implementation mirrored by other
targets. At this phase, we will create an IDE similar to other platforms but with the capacity
of being a syntax-directed editor.

Finally, exhaustive and relevant tests will be made with the tool created and, the out-
comes will be analyzed and discussed.

2

2

L I S S L A N G U A G E

LISS (da Cruz and Henriques, 2007a) -that stands for Language of Integers, Sequences
and Sets- is an imperative programming language, defined by the Language Processing
members (Pedro Henriques and Leonor Barroca) at UM for teaching purposes (compiler
course).

The idea behind the design of LISS language was to create a simplified version of the
more usual imperative languages although combining functionalities from various lan-
guages.

It is designed to have atomic or structured integer values, as well as, control statements
and block structure statements.

Before explaining the basic statements of the language and its data types using a context
free grammar, let’s remember briefly the basilar concepts related to formal programming
languages and their definition using grammars (context free and attribute grammars).

2.1 formal languages and grammar

A grammar (Chomsky, 1962; Gaudel, 1983; Waite and Goos, 1984; Aho et al., 1986; Kastens,
1991b; Muchnick, 1997; Hopcroft et al., 2006; Grune et al., 2012) is a set of derivation rules
(or production) that explains how words are used to build the sentences of a language.

A grammar (Deransart et al., 1988; Alblas, 1991; Kastens, 1991a; Swierstra and Vogt, 1991;
Deransart and Jourdan, 1990; Räihä, 1980; Filè, 1983; Oliveira et al., 2010) is considered to
be a language generator and also a language recognizer (checking if a sentence is correctly
derived from the grammar).

The rules describe how a string is formed using the language alphabet, defining the
sentences that are valid according to the language syntax.

One of the most important researchers in this area was Noam Chomsky. He defined the
notion of grammar in computer science’s field.

He described that a formal grammar is composed by a finite set of production rules
(left hand side 7→ right hand side)

where each side is composed by a sequence of symbols.

3

2.1. Formal languages and grammar

These symbols are split into two sets : non terminals, terminals; the start symbol is a
special non-terminal.

There is, always, at least one rule for the start symbol (see Figure 1) followed by other
rules to derive each non-terminal. The non terminals are symbols which can be replaced
and terminals are symbols which cannot be.

Figure 1.: CFG example 1

One valid sentences (Example in Figure 1), could be : bbebee .
In the compilers area two major classes of grammars are used : CFG (Context-free gram-

mar) and AG (Attribute Grammar).
The difference between these two grammars are that a CFG is directed to define the

syntax (only) and, AG contains semantic and syntax rules.
An AG is , basically, a GFC grammar extended with semantic definitions. It is a formal

way to define attributes for the symbols that occur in each production of the underlying
grammar. We can associate values to these attributes later, after processed with a parser; the
evaluation will occur applying those semantic definition to any node of the abstract syntax
tree. These attributes are divided into two groups: synthesized attributes and inherited
attributes.

The synthesized attributes are the result of the attribute evaluation rules for the root sym-
bol of each subtree, and may also use the values of the inherited attributes. The inherited
attributes are passed down from parent nodes to children or between siblings.

Like that it is possible to transport information anywhere in the abstract syntax tree
which is one of the strength for using an AG.

4

2.2. LISS Data types

2.2 liss data types

There are 5 types available. From atomic to structured types, they are known as : integer,
boolean, array, set and sequence.

Used for declaring a variable in a program, the data type gives us vital information for
understanding what kind of value we are dealing with.

Let’s obverse a LISS code example:

1 a −> i n t e g e r ;
2 b −> boolean ;
3 c −> array s i z e 5 , 4 ;
4 d −> s e t ;
5 e −> sequence ;

Listing 2.1: Declaring a variable in LISS

As we can see in Listing 2.1, some variables (’a’,’b’,’c’,’d’ and ’e’) are being declared each
one associated to a type (’integer’, ’boolean’, ’array’, ’set’ and ’sequence’). Syntactically, in
LISS, this is done by writing the variable name followed by an arrow and the type of the
variable (see Listing 2.2).

1 v a r i a b l e d e c l a r a t i o n : vars ’−> ’ type ’ ; ’
2 ;
3 vars : var (’ , ’ var) ∗
4 ;
5 var : i d e n t i f i e r value var
6 ;
7 value var :
8 | ’= ’ i n i c v a r
9 ;

10 type : ’ i n t e g e r ’
11 | ’ boolean ’
12 | ’ s e t ’
13 | ’ sequence ’
14 | ’ array ’ ’ s i z e ’ dimension
15 ;
16 dimension : number (’ , ’ number) ∗
17 ;
18 i n i c v a r : constant
19 | a r r a y d e f i n i t i o n
20 | s e t d e f i n i t i o n
21 | s e q u e n c e d e f i n i t i o n
22 ;
23 constant : s ign number

5

2.2. LISS Data types

Table 1.: LISS data types
Type Default Value

boolean false
integer 0

array [0,...,0]
set {}

sequence nil

24 | ’ t rue ’
25 | ’ f a l s e ’
26 ;
27 s ign :
28 | ’+ ’
29 | ’− ’
30 ;

Listing 2.2: CFG for declaring a variable in LISS

Variables that are not initialized, have a default value (according to Table 1).

6

2.2. LISS Data types

Table 2.: Operations and signatures in LISS
Operators && Functions Signatures

+ (add) integer x integer -> integer
- (subtract) integer x integer -> integer
|| (or) boolean x boolean -> boolean

++ (union) set x set -> set
/ (division) integer x integer -> integer
* (multiply) integer x integer -> integer
&& (and) boolean x boolean -> boolean

** (intersection) set x set -> set
== (equal) integer x integer -> integer; boolean x boolean -> boolean

!= (not equal) integer x integer -> integer; boolean x boolean -> boolean
<(less than) integer x integer -> boolean

>(greater than) integer x integer -> boolean
<= (less than or equal to) integer x integer -> boolean
>= (great than or equal to) integer x integer -> boolean

in (contains) integer x set -> boolean
tail sequence -> sequence

head sequence -> integer
cons integer x sequence -> sequence

delete integer x sequence -> sequence
copy sequence x sequence -> void
cat sequence x sequence -> void

isEmpty sequence -> boolean
length sequence -> integer

isMember integer x sequence -> boolean

Additionally, we may change the default values of the variables by initializing them with
a different value (see an example in Listing 2.3). This can be made by writing an equal
symbol after the variable name and, then, inserting the right value according to the type
(see example in Listing 2.2).

1 a = 4 , b −> i n t e g e r ;
2 t = t rue −> boolean ;
3 vector1 = [1 , 2 , 3] , vec tor2 −> array s i z e 5 ;
4 a = { x | x<10} −> s e t ;
5 seq1 = <<10 ,20 ,30 ,40 ,50>> , seq3 = <<1,2>>, seq2 −> sequence ;

Listing 2.3: Initialize a variable

Now, let’s define which types are, correctly, associated with the arithmetic operators and
functions in LISS (see Table 2).

7

2.2. LISS Data types

So, in Table 2, we list the operators and functions, available in LISS, and their signa-
ture. In order to understand the table better, we will explain how to read the table and its
signature with one example.

Consider the symbol ’+’ (Table 2), indicates that both operands must be of type integer.
The result of that operation, indicated by the symbol ’->’, will be an integer. Semantically,
operations must be valid according to Table 2; otherwise the operations would be incorrect
and throw an error.

Arrays. LISS supports a way of indexing a collection of integer values such that each
value is uniquely addressed. LISS also supports an important property of multidimension-
ality.

Called as ’array’, it is considered to be a static structured type due to the fact that its
dimensions and maximum size of elements in each dimension is fixed at the declaration
time.

The operations defined over arrays are:

1. indexing

2. assignment

Arrays can be initialized, in the declaration section, partially or completely in each di-
mension. For example, consider an array of dimension 3x2 declared in the following way:

1 array1 = [[1 , 2] , [5]] −> array s i z e 3 , 2 ;

Thi is equivalent to the initialization below:

1 array1 = [[1 , 2] , [5 , 0] , [0 , 0]] −> array s i z e 3 , 2 ;

Notice that the elements that are not explicitly assigned, are initialized with the value 0

(see Table 1).
The grammar for array declaration and initialization is shown below.

1 a r r a y d e f i n i t i o n : ’ [’ a r r a y i n i t i a l i z a t i o n ’] ’
2 ;
3

4 a r r a y i n i t i a l i z a t i o n : elem (’ , ’ elem) ∗
5 ;
6

7 elem : number

8

2.2. LISS Data types

8 | a r r a y d e f i n i t i o n
9 ;

Sets. The type set, in LISS, is a collection of integers with no repeated numbers.
It is defined by an expression, in a comprehension, instead of by enumeration of its

element. A set variable can have an empty value and, syntactically, this is done by writing
’{}’.

To define a set by comprehension, the free variable and the expression shall be return
between curly brackets. The ’identifier’ (free variable) is separated from the expression by
an explicit symbol ’|’.

The expression is built up from relational and boolean operators to define an integer
interval.

The operations defined for sets are :

1. union

2. intersection

3. in (membership)

Let’s see an example of its syntax below:

1 s e t 1 = {x | x < 6 && x > −7} −> s e t ;

This declaration defines a set including all the integers from -7 to 6 (open interval) and
other numbers are not included in the set.

The syntax for set declaration and initialization is :

1 s e t d e f i n i t i o n : ’ { ’ s e t i n i t i a l i z a t i o n ’ } ’
2 ;
3

4 s e t i n i t i a l i z a t i o n :
5 | i d e n t i f i e r ’ | ’ express ion
6 ;

9

2.2. LISS Data types

Sequences. Considered as a dynamic array of one dimension, the type sequence is a
list of ordered integers. But, in opposition to the concept of an array, its size is not fixed;
this means that it grows dinamicallly at run time like a linked list. A sequence can have
the empty value (syntactically done by writing ’<<>>’). If not empty, the sequence value is
defined by enumerating its components (integers) in the right order. Let’s see deeper with
one example:

1 c=<<1,2,3>> −> sequence ;

Listing 2.4: Example of valid operations using sequence on LISS

In the example of Listing 2.4 the sequence is defined by three numbers (3,2,1).
The operations defined for the sequence are:

1. tail (all the elements but the first)

2. head (the first element of the sequence)

3. cons (adds an element in the head of the sequence)

4. delete (remove a given element from the sequence)

5. copy (copies all the elements to another sequence)

6. cat (concatenates the second sequence at the end of the first sequence)

7. isEmpty (true if the sequence is empty)

8. length (number of elements of the sequence)

9. isMember (true if the number is an element of the sequence)

Those operations will be explained further and deeper.
The grammar below defines how to declare a sequence:

1 s e q u e n c e d e f i n i t i o n : ’<< ’ s e q u e n c e i n i t i a l i z a t i o n ’>> ’
2 ;
3

4 s e q u e n c e i n i t i a l i z a t i o n :
5 | values
6 ;
7

8 values : number (’ , ’ number) ∗
9 ;

10

2.2. LISS Data types

2.2.1 LISS lexical conventions

Once you’ve declared a variable of a certain type, you cannot redeclare it again with the
same name.

The variable name must be unique (see Listing 2.5).

1 program s i ng l e v ar i ab l e n am e {
2 d e c l a r a t i o n s
3 i n t =1 −> i n t e g e r ;
4 i n t =true −> boolean ; / / c anno t d e c l a r e t h i s v a r i a b l e wi th t h i s name

(a l r e a d y e x i s t s)
5 s tatements
6 }

Listing 2.5: Conflicts with variable names

Keywords cannot be used as variable names.
For example, you cannot declare a variable with the name array due to the fact that array

is a keyword in LISS (in this case, a type).
See the example in Listing 2.6.

1 array −> array s i z e 3 , 4 ; / / v a r i a b l e ’ a r r a y ’ canno t be d e c l a r e d as a
name

2 i n t e g e r −> i n t e g e r ;

Listing 2.6: Conflicts with keyword names

Variable names contain only letters and numbers, or the underscore sign. However the
first character of the variable name must be a letter (lower or upper case). See the example
below:

1 My variable 1

2 MyVariable1

Numbers are composed of digits (one or more). Nothing more is allowed.
See example below:

1 1562

2 1

A string is a sequence of n-characters enclosed by double quotes.
See example below:

1 ” This i s a s t r i n g ”

11

2.3. LISS blocks and statements

2.3 liss blocks and statements

A LISS program is always composed of two parts: declarations and statements (a program
block). LISS language is structured with a simple hierarchy. And this is done by structuring
LISS code as a block.

Any program begins with a name then appear the declaration of variables and subpro-
grams. After that appear the flow of the program by writing statements.

Let’s see one example (see Listing 2.7).

1 program sum{
2 d e c l a r a t i o n s
3 i n t =2 −> i n t e g e r ;
4 s tatements
5 wr i te l n (i n t +3) ;
6 }

Listing 2.7: The structure of a LISS program (example)

So a program in LISS begins by, syntactically, writing ’program’ and then the name of
the program (in this case, the name is ’sum’). A pair of curly braces delimits the contents
of the program; that is done by opening it after the name of the program and closing it at
the end of the program. After the left brace, appear the declaration and statement blocks.

As in a traditional imperative language (let’s compare ’C language’), if we don’t take the
habit of declaring the variable always in a certain part of the code, it becomes confusing.
This makes the programmer’s life harder to understand the code when the code is quite
long.

So, in LISS, we always declare variables first (syntactically written by ’declarations’) and
then the statements (syntactically written by ’statements’). This is due to the fact that LISS
wants to help the user to create solid and correct code. And in this case, the user will
always know that all the variable declarations will be always at the top of the statements
and not randomly everywhere (see grammar in Listing 2.8).

1 l i s s : ’ program ’ i d e n t i f i e r body
2 ;
3

4 body : ’ { ’
5 ’ d e c l a r a t i o n s ’ d e c l a r a t i o n s
6 ’ s ta tements ’ s tatements
7 ’ } ’
8 ;

Listing 2.8: CFG for program in LISS

12

2.3. LISS blocks and statements

2.3.1 LISS declarations

The declaration part is divided into two other parts: variable declarations and subprogram
declarations, both optional.

The first part is explained in section 2.2; the subprogram part will be discussed later in
section 2.4.

This part is specified by the following grammar (see Listing 2.9).

1 d e c l a r a t i o n s : v a r i a b l e d e c l a r a t i o n ∗ subprogram def ini t ion ∗
2 ;

Listing 2.9: CFG for declarations in LISS

2.3.2 LISS statements

As said previously, under the statements part, we control and implement the flow of a LISS
program. In LISS, we may write none or, one or more statements consecutively.

Every statement ends with a semicolon, unless two type of statements (conditional and
cyclic statements) as shown in Listing 2.10.

1 s tatements : s tatement ∗
2 ;
3 statement : assignment ’ ; ’
4 | wri te s ta tement ’ ; ’
5 | read statement ’ ; ’
6 | f u n c t i o n c a l l ’ ; ’
7 | c o n d i t i o n a l s t a t e m e n t
8 | i t e r a t i v e s t a t e m e n t
9 | succ or pred ’ ; ’

10 | copy statement ’ ; ’
11 | c a t s t a t e m e n t ’ ; ’
12 ;

Listing 2.10: CFG for statements in LISS

Let’s see one example of a LISS program which shows how the language shall be used
(see Listing 2.11).

1 program f a c t o r i a l {
2 d e c l a r a t i o n s
3 re s =1 , i −> i n t e g e r ;
4 s tatements
5 read (i) ;

13

2.3. LISS blocks and statements

6 f o r (j in 1 . . i) {
7 r es=r es ∗ j ;
8 }
9 wr i te l n (r es) ;

10 }

Listing 2.11: Example of using statements in LISS

Assignment. This statement assigns, as it is called, values to a variable and it is defined
for every type available on LISS. This operation is done by writing the symbol ”=” in which
a variable is assigned to the left side of the symbol and a value to the right side of the
symbol.

Notice that an assignment requires that the variable on the left and the expression on the
right must agree in type.

Let’s see in Listing 2.12 an example.

1 program assignment1{
2 d e c l a r a t i o n s
3 intA −> i n t e g e r ;
4 bool −> boolean ;
5 s tatements
6 intA = −3 + 5 ∗ 9 ;
7 bool = 2 < 8 ;
8 }

Listing 2.12: Example of assignment in LISS

In Listing 2.12, we can see assignment statements of integers and boolean types. Those
assignments are correct, as noticed in the previous paragraphs, because they have the same
type on the left and right side of the symbol equals (operations of integers assigned to a
variable of integer type and operation of booleans assigned to a variable of boolean type).

The grammar that rules the assignment is shown at Listing 2.13.

1 assignment : des ignator ’= ’ express ion
2 ;

Listing 2.13: CFG for assignment in LISS

I/O. The input and output statements are also available in LISS.
The read operations, called syntactically as ’input’ in LISS, assign a value to a variable

obtained from the standard input and require to be an atomic value (in this case, only an
integer value).

1 program input1{

14

2.3. LISS blocks and statements

2 d e c l a r a t i o n s
3 myInteger −> i n t e g e r ;
4 s tatements
5 input (myInteger) ;
6 }

Listing 2.14: Example of input operation in LISS

Notice that, in Listing 2.14, the variable myInteger must be declared and must be integer
otherwise the operations fails. The grammar that rules the input statement, is shown in
Listing 2.15.

1 read statement : ’ input ’ ’ (’ i d e n t i f i e r ’) ’
2 ;

Listing 2.15: CFG for input operation in LISS

The write operations, called syntactically as ’write’ or ’writeln’ in LISS, print an integer
value in the standard output. Notice that ’write’ operation only prints the value and doesn’t
move to a new line; instead, ’writeln’ moves to a new line at the end.

Listing 2.16 shows some more examples.

1 wr i te l n (4∗3) ;
2 wr i te l n (2) ;
3 wr i te l n () ;

Listing 2.16: Example of output operations in LISS

Note that the write statement may have as assignment, an atomic value as well as an
empty value or some complex arithmetic expression (see grammar in 2.17).

1 wri te s ta tement : wr i te expr ’ (’ pr int what ’) ’
2 ;
3

4 wri te expr : ’ wri te ’
5 | ’ wr i t e ln ’
6 ;
7

8 print what :
9 | express ion

10 ;

Listing 2.17: CFG for output operation in LISS

15

2.3. LISS blocks and statements

Function call. The function call is a statement that is available for using the functions
created in the program under the section ’declarations’ (as described in Section 2.3.1). This
will allow reusing functions that were created by calling them instead of creating duplicated
code.

See Listing 2.18 for a complete example.

1 program SubPrg {
2

3 d e c l a r a t i o n s
4

5 a = 4 , b= 5 , c= 5 −> i n t e g e r ;
6 d = [1 0 , 2 0 , 3 0 , 4 0] , ev −> array s i z e 4 ;
7

8

9 subprogram c a l c u l a t e () −> i n t e g e r
10 {
11 d e c l a r a t i o n s
12 f a c = 6 −> i n t e g e r ;
13 r es = −16 −> i n t e g e r ;
14

15 subprogram f a c t o r i a l (n −> i n t e g e r ; m −> array s i z e 4) −> i n t e g e r
16 {
17 d e c l a r a t i o n s
18 r es = 1 −> i n t e g e r ;
19 s tatements
20 while (n > 0)
21 {
22 r es = r es ∗ n ;
23 n = n −1;
24 }
25

26 f o r (a in 0 . . 3) stepUp 1

27 {
28 d [a] = a∗ re s ;
29 }
30 re turn r es ;
31 }
32 s tatements
33 r es = f a c t o r i a l (fac , d) ;
34 re turn r es /2 ;
35 }
36

37

38 s tatements

16

2.3. LISS blocks and statements

39

40 a = c a l c u l a t e () ;
41 wri te l n (a) ;
42 wri te l n (d) ;
43 }

Listing 2.18: Example of call function in LISS

In Listing 2.18, we can see that the function calculate(), called in the main program, and
that is created under the declarations section.

The grammar who rules the function call is shown in Listing 2.19.

1 f u n c t i o n c a l l : i d e n t i f i e r ’ (’ sub prg args ’) ’
2 ;
3 sub prg args :
4 | args
5 ;
6 args : express ion (’ , ’ express ion) ∗
7 ;

Listing 2.19: CFG for call function in LISS

2.3.3 LISS control statements

LISS language includes some statements for controlling the execution flow at runtime with
two different kind of behaviour.

The first one is called conditional statement and it has only one variant in LISS language
(see Listing 2.20).

The second one is called cyclic statement or iterative statement, and it has two variants
(see Listing 2.20).

1 c o n d i t i o n a l s t a t e m e n t : i f t h e n e l s e s t a t
2 ;
3 i t e r a t i v e s t a t e m e n t : f o r s t a t
4 | w h i l e s t a t
5 ;

Listing 2.20: CFG for control statement in LISS

These control statements, mimics the syntax and the behaviour of other modern impera-
tive language.

17

2.3. LISS blocks and statements

conditional The if-statement, which is common across many modern programming
languages, performs different actions according to decision depending on the truth value
of a control conditional expression: an alternative ’else’ block is also allowed (optional).

If the conditional expression evaluates ’true’, the content of ’then’ block will be executed.
Otherwise, if the condition is ’false’, the ’then’ block is ignored; and if an ’else’ block is
provided it will be executed alternatively.

Let’s see an example in Listing 2.21.

1 i f (y==x)
2 then{
3 x=x +1 ;
4 } e l s e {
5 x=x +2 ;
6 }

Listing 2.21: LISS syntax of a if statement

The code shown in Listing 2.21, means that the if-statement evaluates the conditional
expression ’y==x’. If the expression, which must be boolean, is true, then every action in
the ’then’ block will be executed and the block ’else’ will be ignored. Otherwise, if the
condition is false, every action in the ’else’ block is executed ignoring the ’then’ block.

If the else-statement is not provided, the if-statement will finish and do not perform any
actions.

The syntax of the if-statement in LISS is shown in Listing 2.22.

1 i f t h e n e l s e s t a t : ’ i f ’ ’ (’ express ion ’) ’
2 ’ then ’ ’ { ’ s ta tements ’ } ’
3 e l s e e x p r e s s i o n
4 ;
5

6 e l s e e x p r e s s i o n :
7 | ’ e l s e ’ ’ { ’ s ta tements ’ } ’
8 ;

Listing 2.22: CFG for iterative statement in LISS

iterative We should take a look at the behaviour of each iterative control statement to
understand it deeper.

The for-statement offers two variants to control the repetition. Normally, in a conven-
tional way, the for-loop has a control variable which takes a value in a given range and step
up or step down by a default or an explicit value.

18

2.3. LISS blocks and statements

In LISS, the control variable is set in a given integer interval defined by the lower and
upper bounds. By default, the step is one, which means that the control variable is incre-
mented by one at the end of each iteration but it is possible to increment or decrement it by
a different value, setting it explicitly. Additionally, we may write a condition for filtering
the values in the interval. This can be done as shown in the following example:

1 f o r (a in 1 . . 1 0) stepUp 2 s a t i s f y i n g elems [a]==1{
2 . . .
3 }

Listing 2.23: LISS syntax of a for-loop statement

In Listing 2.23, the control variable ’a’ is set to a range 1 to 10 and would be increased
(due to the ’stepUp’ constructor) by 2. Also there is a filter condition (after the ’satisfying’
keyword) that restricts the values of ’a’ to those that makes the condition ’elems[a]==1’ true.
Notice that the filter expression must be boolean.

After each cycle, the control variable will be incremented with value 2 and the filter
condition tested again.

This is the first way of expressing the control in a for-loop statement. Let’s see the second
way in the sequel.

There is also the possibility to assign to the control variable the values in an array, like
illustrated in the following example:

1 f o r (b inArray elems) {
2 . . .
3 }

Listing 2.24: LISS syntax of a for-each statement on array

In Listing 2.24, the control variable ’b’ is assigned with all of the elements of the array and
begins with his lower index (zero) until his upper index (size of the array minus one). No-
tice that, in this case, we cannot apply an increment or decrement neither a filter condition.

The next grammar fragment describes the cycle ’for’ in LISS:

1 f o r s t a t : ’ f o r ’ ’ (’ i n t e r v a l ’) ’ s tep s a t i s f y
2 ’ { ’ s ta tements ’ } ’
3 ;
4 i n t e r v a l : i d e n t i f i e r t y p e i n t e r v a l
5 ;
6 t y p e i n t e r v a l : ’ in ’ range
7 | ’ inArray ’ i d e n t i f i e r
8 ;
9 range : minimum ’ . . ’ maximum

10 ;

19

2.3. LISS blocks and statements

11 minimum : number
12 | i d e n t i f i e r
13 ;
14 maximum : number
15 | i d e n t i f i e r
16 ;
17 s tep :
18 | up down number
19 ;
20 up down : ’ stepUp ’
21 | ’ stepDown ’
22 ;
23 s a t i s f y :
24 | ’ s a t i s f y i n g ’ express ion
25 ;

Listing 2.25: CFG for for-statement in LISS

Finally, the while-statement consists in a block of code that is executed repeatly until the
control condition evaluates ’false’.

Each time that the ’while’ block is performed, the conditional expression associated will
be evaluated again to decide whether to repeat the execution of the statements in the block
or to continue the normal program flow.

Let’s see an example in Listing 2.26.

1 while (n > 0)
2 {
3 r es = r es ∗ n ;
4 pred n ;
5 }

Listing 2.26: LISS syntax of a while-statement in LISS

In Listing 2.26, the while-statement is controled by the conditional expression ’n>0’ that
is evaluated at the beginning. If the condition is true, then all the actions that are inside
the braces will be performed. Later, after executing all the actions, the condition will be
evaluated again. If the condition remains ’true’, then those actions would be executed again
otherwise if the condition is false, the while-statement will be exited.

The syntax that rule the while-statement is shown below:

1 w h i l e s t a t : ’ while ’ ’ (’ express ion ’) ’
2 ’ { ’ s ta tements ’ } ’
3 ;

20

2.3. LISS blocks and statements

Listing 2.27: CFG for while-statement in LISS

2.3.4 Other statements

LISS language offers other statements to make it more expressive easing the codification of
any imperative algorithm.

Succ/Pred. Those statements are available for incrementing or decrementing a variable.
This is a common situation in modern programming languages, making life easier for the
developers.

The keyword ’succ’ means increment (successor) and the syntax ’pred’ means decrease
(predecessor). Only integer variables can be used with those constructors.

Listing 2.28 illustrates both statements.

1 succ i n t 1 ;
2 pred i n t 1 ;

Listing 2.28: Example of using succ/pred in LISS

As we can see in Listing 2.28, variable ’int1’ is, first, incremented by 1 and then it is
decremented also by 1.

Grammar of ’succ’ and ’pred’ in LISS is shown in Listing 2.29.

1 succ or pred : succ pred i d e n t i f i e r
2 ;
3 succ pred : ’ succ ’
4 | ’ pred ’
5 ;

Listing 2.29: CFG for succ and pred in LISS

Copy statement. This statement is applied only to variables of type sequence. Basically,
it copies one sequence to another sequence. Let’s see an example in Listing 2.30.

1 copy (seq1 , seq2) ;

Listing 2.30: Example of copy statement in LISS

Notice that ’copy’ is a statement and not a function: it modifies the arguments but does
not return any value.

In Listing 2.30, the statement ’copy’ copies the content of the variable seq1 to seq2.
The grammar for ’copy’ statement is in Listing 2.31.

21

2.4. LISS subprograms

1 copy statement : ’ copy ’ ’ (’ i d e n t i f i e r ’ , ’ i d e n t i f i e r ’) ’
2 ;

Listing 2.31: CFG for copy statement in LISS

Cat statement.
’Cat’ statement is simular to ’copy’, it only operates with variables of type sequence. The

behaviour of this statement is to concatenate a sequence to another sequence. Let’s see an
example in Listing 2.32).

1 c a t (seq1 , seq2) ;

Listing 2.32: Example of cat statement in LISS

In Listing 2.32, ’cat’ concatenates the content of seq2 to seq1. Again, ’cat’ is not a function;
it modifies the arguments instead of returning a value.

The grammar for cat-statement is shown in Listing 2.33.

1 c a t s t a t e m e n t : ’ c a t ’ ’ (’ i d e n t i f i e r ’ , ’ i d e n t i f i e r ’) ’
2 ;

Listing 2.33: CFG for cat statement in LISS

2.4 liss subprograms

In LISS, it is possible to organize the code by splitting the general block of statements into
sub-programs. This allows the programmer to reuse or to give more clarity to his code
by creating functions or procedures. Also, it is possible to create sub-programs inside sub-
programs by using a nesting strategy.

The syntax that defines a sub-program in LISS is shown in Listing 2.34.

1 subprogram def ini t ion : ’ subprogram ’ i d e n t i f i e r ’ (’ formal args ’) ’
re turn type f body

2 ;
3 f body : ’ { ’
4 ’ d e c l a r a t i o n s ’ d e c l a r a t i o n s
5 ’ s ta tements ’ s tatements
6 returnSubPrg
7 ’ } ’
8 ;
9 formal args :

10 | f a r g s

22

2.4. LISS subprograms

11 ;
12 f a r g s : formal arg (’ , ’ formal arg) ∗
13 ;
14 formal arg : i d e n t i f i e r ’−> ’ type
15 ;
16 re turn type :
17 | ’−> ’ typeReturnSubProgram
18 ;
19 returnSubPrg :
20 | ’ re turn ’ express ion ’ ; ’
21 ;

Listing 2.34: CFG for block structure in LISS

Note that every variable declared inside of a sub-program is local, and it can be accessed
only by other nested sub-programs. However, variables declared in the program (not in a
sub-program) are considered global and can be accessed by any sub-program. The usual
scope rules are applied to LISS.

As can be inferred from the syntax above (Listing 2.34), the body of a sub-program
is identical to the body of a program — the same declarations can be made and similar
statements can be used.

23

2.5. Evolution of LISS syntax

2.5 evolution of liss syntax

Due to the maturity of the language already done along the years, we have added some
few but extra changes for a better experience of the programming language.

One of the first changes was concerned with declarations in order to avoid mixing func-
tions and variable declarations. We, indirectly, teach the programmer by doing it in the
right way. So we declare, first, the variables and then the functions.

1 d e c l a r a t i o n : v a r i a b l e d e c l a r a t i o n ∗ subprogram def ini t ion ∗
2 ;

Another change was to add punctuation after each statement (see Figure 2.35).

1 statement : assignment ’ ; ’
2 | wri te s ta tement ’ ; ’
3 | read statement ’ ; ’
4 | c o n d i t i o n a l s t a t e m e n t
5 | i t e r a t i v e s t a t e m e n t
6 | f u n c t i o n c a l l ’ ; ’
7 | succ or pred ’ ; ’
8 | copy statement ’ ; ’
9 | c a t s t a t e m e n t ’ ; ’

10 ;

Listing 2.35: Function statement

Another change was adding also a ’cat statement’ rule which works with only sequences.
It concatenates a sequence with another sequence.

Regarding arrays, it was previously possible to use any expression to access elements of
the array. So it was possible to index with a boolean expression what does not make any
sense. Now only integers are allowed (see in Listing 2.36).

1 elem array : s i n g l e e x p r e s s i o n (’ , ’ s2= s i n g l e e x p r e s s i o n) ∗
2 ;

Listing 2.36: Rule element of array

In the previous version of LISS, it was allowed to create a boolean expression associating
relational operators, but we decided to change that and not permit associativity; only able
to create one boolean expression (see Listing 2.37). It does not make sense to have an
expression like that : ’3 == 4 == 5 != 6’.

1 express ion : s i n g l e e x p r e s s i o n (r e l o p s i n g l e e x p r e s s i o n) ?
2 ;

24

2.5. Evolution of LISS syntax

Listing 2.37: Rule for Boolean expression

We added the possibility of using parenthesis on expressions (see Listing 2.38).

1 f a c t o r : ’ (’ express ion ’) ’
2 ;

Listing 2.38: Rule factor

We changed the rules of two pre-defined functions: ’cons’ and ’del’. These functions
were working both in the same way. Waiting for an expression and a variable as arguments.
Now, we decide to change that allowing to expression as arguments giving more expressive
power to those functions (see Listing 2.39).

1 cons / / i n t e g e r x s e q u e n c e −> s e q u e n c e
2 : ’ cons ’ ’ (’ express ion ’ , ’ express ion ’) ’
3 ;
4

5 d e l e t e / / d e l : i n t e g e r x s e q u e n c e −> s e q u e n c e
6 : ’ del ’ ’ (’ express ion ’ , ’ express ion ’) ’
7 ;

Listing 2.39: Rule cons and delete

Besides adding some improvements to the grammar, we additionally deleted a rule which
we thought not necessary to control the for-statement (see Listing 2.40).

1 t y p e i n t e r v a l : ’ in ’ range
2 | ’ inArray ’ i d e n t i f i e r
3 / / | ’ i n F u n c t i o n ’ i d e n t i f i e r
4 ;

Listing 2.40: Rule type interval

Last but not least, we also added comments to the programming language, giving more
power to the programmer.

1 fragment
2 COMMENT
3 : ’ /∗ ’ . ∗ ? ’∗/ ’ /∗ m u l t i p l e l i n e s comment ∗ /
4 | ’// ’ ˜ (’ \ r ’ | ’ \n ’) ∗ /∗ s i n g l e l i n e comment ∗ /
5 ;

Listing 2.41: Lexical rule for Comment

25

3

TA R G E T M A C H I N E : M I P S

MIPS, from Microprocessor without Interlocked Pipeline Stages, is a Reduced Instruction
Set Computer (RISC) developed by MIPS Technologies. Born in 1981, a team led by John L.
Hennessy at Stanford University began to work on the first MIPS processor.

The main objective for creating MIPS, was to increase performance with deep pipelines,
a main problem back to the 80’s. Some instructions, as division, take a longer time to com-
plete; if the CPU needs to wait that the division ends before passing to the next instruction
into the pipeline, the total time is greater. If it can be done without that waiting time, the
total process will be faster.

As MIPS solved those problems, it was primarly used for embedded systems and video
games consoles (which requires a lot of arithmetic computation).

Now, the architecture of MIPS, along the years, has gained maturity and provides differ-
ent versions of it (MIPS32, MIPS64....) 1.

Figure 2
2 illustrate the architecture of MIPS.

1 according to https://imgtec.com/mips/architectures (See also wikipedia https://en.wikipedia.org/

wiki/MIPS_instruction_set)
2 from https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/MIPS_Architecture_(Pipelined)

.svg/300px-MIPS_Architecture_(Pipelined).svg.png

26

https://imgtec.com/mips/architectures
https://en.wikipedia.org/wiki/MIPS_instruction_set
https://en.wikipedia.org/wiki/MIPS_instruction_set
https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/MIPS_Architecture_(Pipelined).svg/300px-MIPS_Architecture_(Pipelined).svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/ea/MIPS_Architecture_(Pipelined).svg/300px-MIPS_Architecture_(Pipelined).svg.png

3.1. MIPS coprocessors

Figure 2.: MIPS architecture

In this chapter, we will talk about the architecture components and assembly of MIPS
32-bit version.

3.1 mips coprocessors

MIPS was born for solving complex arithmetic problems by reducing the time consumed
in those operations. This is attained through the implementation of coprocessors within
MIPS.

MIPS architecture includes four coprocessors respectively, CP0, CP1, CP2 and CP3:

1. Coprocessor 0, denoted by CP0, is incorporated in the CPU chip; it supports the
virtual memory system and exception handling (also known as the System Control
Coprocessor).

2. Coprocessor 1, denoted by CP1, is reserved for floating point coprocessor.

3. Coprocessor 2, denoted by CP2, is reserved for specific implementations.

4. Coprocessor 3, denoted by CP3, is reserved for the implementations of the architec-
ture.

27

3.2. MIPS cpu data formats

Notice that coprocessor CP0, translates virtual addresses into physical addresses, man-
ages exceptions, and handles switch between kernel, supervisor and user modes.

3.2 mips cpu data formats

The CPU of MIPS defines four differents formats:

• Bit (1 bit, b)

• Byte (8 bits, B)

• Halfword (16 bits, H)

• Word (32 bits, W)

3.3 mips registers usage

MIPS architecture has 32 registers dedicated and there are some conventions to use those
registers correctly. Table 3 summarizes those registers, and their usage.

Table 3.: MIPS registers

Name Number Use
Callee must

preserve?
$zero $0 has constant 0 No

$at $1 register reserved for assembler (temporary) No

$v0 - $v1 $2 - $3

register reserved for returning values of functions,
and expression evaluation

No

$a0 - $a3 $4 - $7 registers reserved for function arguments No
$t0 - $t7 $8 - $15 temporary registers No
$s0 - $s7 $16 - $23 saved temporary registers Yes
$t8 - $t9 $24 - $25 temporary registers No
$k0 - $k1 $26 - $27 register reserved for OS kernel N/A

$gp $28 global pointer Yes
$sp $29 stack pointer Yes
$fp $30 frame pointer Yes
$ra $31 return address N/A

Note: N/A (Not applicable)

Table 3 is composed of 4 columns:

1. Name displays the identifier of the registers available in MIPS. Those identifiers will
be used as operands of MIPS instructions.

28

3.3. MIPS registers usage

2. Number column defines the number of each register. This number can also be used to
refer to the register in an instruction.

3. Use column refers to the meaning/definition of each register.

4. Callee must preserve? column provides information about the volatility of the register
(used when a function is called).

Beside those 32 registers, 3 more registers are dedicated to the CPU.
And they are known by:

• PC - Program Counter register

• HI - Multiply and Divide register higher result

• LO - Multiply and Divide register lower result

PC is the register which holds the address of the instruction that is being executed at the
current time; HI and LO registers have different usage according to the instruction that is
being executed. In this case, let’s see what context they have:

• when there is a multiply (mul instruction) operation, the HI and LO registers store
the result of integer multiply.

• when there is a multiply-add (madd instruction) or multiply-subtract (msub instruc-
tion) operation, the HI and LO register store the result of integer multiply-add or
multiply-subtract.

• when there is a division (div instruction) operation, the HI register store the remain-
der of the division and the LO register store the quotient of the division operation.

• when there is a multiply-accumulate (instruction) operation, the HI and LO registers
store the accumulated result of the operation.

See an overview of the MIPS registers in Figure 3.

29

3.3. MIPS registers usage

Figure 3.: MIPS register

30

3.4. MIPS instruction formats

3.4 mips instruction formats

Instructions, in MIPS, are divided into three types:

• R-Type

• I-Type

• J-Type

Each instruction is denoted by an unique mnemonic that represents the correspondent
low-level machine instruction or operation.

Next sections provide the necessary details.

3.4.1 MIPS R-Type

R-Type instruction refers a register type instruction (it is the most complex type in MIPS).
The idea behind that instruction is to operate with registers only.

This type has the following format in MIPS (see Listing 3.1).

1 OP rd , rs , r t

Listing 3.1: R-Type instruction format

In Listing 3.1, the instruction is composed of one mnemonic, denoted by OP, and three
operands, denoted by rd (destination register), rs (source register), rt (another source
register).

The R-Type instruction format as the following mathematical semantics:

1 rd = r s OP r t

To understand better this instruction, let’s see an example of one R-Type instruction in
MIPS (see Listing 3.2).

1 add $t1 , $t1 , $ t2

Listing 3.2: Example of a R-Type instruction

The instruction shown in Listing 3.2 means that register $t1 shall be added (due to add
mnemonic) to register $t2 and their sum (the result) stored in register $t1.

The following equivalence explains that meaning.

31

3.4. MIPS instruction formats

OP rd, rs, rt ⇐⇒ rd = rs OP rt

⇓

add $t1, $t1, $t2 ⇐⇒ $t1 = $t1 add $t2

⇓

$t1 = $t1 + $t2

Table 4 defines the bit-structure of a R-Type instruction in a 32-bit machine.

Table 4.: R-Type binary machine code
opcode rs rt rd shift (shamt) funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Let’s explain each of the columns in Table 4.

• opcode defines the instruction type. For every R-Type instruction, opcode is set to the
value 0. The opcode field is 6 bits long (bit 31 to bit 26).

• rs this is the first source register; it is the register where it will load the content of the
register to the operation.The rs field is 5 bits long (bit 25 to bit 21).

• rt this is the second source register (same behaviour as rs register). The rt field is 5

bits long (bit 20 to bit 16).

• rd this is the destination register; it is the register where the results of the operation
will be stored. The rd field is 5 bits long (bit 15 to bit 11).

• shift amount the amount of bits to shift for shift instructions. The shift field is 5 bits
long (bit 10 to bit 6).

• function specify the operation in addition to the opcode field. The function field is 6

bits long (bit 5 to bit 0).

Let’s see an example of a R-Type instruction and its transformation to machine code in
Table 5.

32

3.4. MIPS instruction formats

add $t0, $t0, $t1

⇓

add $8, $8, $9

⇓

(8)10 = (01000)2

(9)10 = (01001)2

add instruction (f unct f ield) = (100000)2

⇓

opcode (6bits) rs (5bits) rt (5bits) rd (5bits) shift (shamt) (5bits) funct (6bits)
000000 01000 01001 01000 00000 100000

Table 5.: Transformation of R-Type instruction to machine code

In Table 5, the instruction ’add $t0, $t0, $t1’ will be normalized with the name of the
register according to the number associated for the register in MIPS (see Table 3). Then a
conversion operation is applied to the two register numbers (8 and 9), translating them into
their binary number with 5 bits long. Also we give the information for the add instruction,
which is set for the MIPS architecture (not predictable).

After that, we complete the table for R-Type instruction according to Table 4 with the
informations available and the restriction/rules associated to R-Type instruction in MIPS.

Notice that the opcode field for R-Type instruction are set to the value 0 (according to the
explanation in Table 4).

3.4.2 MIPS I-Type

I-Type instruction is a set of instructions which operate with an immediate value and a
register value.

Several different Immediate (I-Type) instructions formats are available.
Let’s see those diferents formats for this type in Table 6.

33

3.4. MIPS instruction formats

31 – 26 25 —- 21 20 – 16 15 ——– 11 10 ——- 6 5 —– 0

opcode rs rt immediate
opcode rd offset
opcode offset
opcode rs rt rd offset
opcode base rt offset function

Table 6.: Distinct I-Type instruction formats

In Table 6, there are 5 differents instruction formats which corresponds to different bit
structures as illustrated.

The most frequent MIPS I-Type instruction is the first one, denoted as Imm16 (Imme-
diate instruction with 16 bits immediate value), is used for logical operands, arithmetic
signed operands, load/store address byte offsets and PC-relative branch signed instruction
displacements (see Table 7).

31 — 26 25 — 21 20 — 16 15 —————– 0

opcode rs rt immediate

Table 7.: Immediate (I-Type) Imm16 instruction format

Let’s see examples of Imm16 instruction:

1 addi $t0 , $t0 , 10 / / A r i t h m e t i c o p e r a t i o n
2 o r i $t0 , $t1 , 5 / / L o g i c a l o p e r a t i o n
3 beq $t0 , $t1 , 1 / / C o n d i t i o n a l branch o p e r a t i o n
4 lw $t0 , array1 ($ t0) / / Data t r a n s f e r o p e r a t i o n

The second instruction, denoted as Immediate Off21 instruction (Immediate instruction
with 21bits offset), is used for comparing a register against zero and branch (offset field
is larger than the usual 16-bit field (immediate field of the first instruction from the table
above)). See Table 8.

31 — 26 25 — 21 20 ——————— 0

opcode rd offset

Table 8.: Immediate (I-Type) Off21 instruction format

The third instruction, denoted as Immediate Off26 instruction (Immediate instruction
with 26 bits offset), is used for PC-relative branches with very large displacements (uncon-
ditional branches (BC mnemonic instruction) & branch-and-link (BALC mnemonic instruc-
tion) with a 26-bit offset,). See Table 9.

34

3.4. MIPS instruction formats

31 — 26 25 ———————————— 0

opcode offset

Table 9.: Immediate (I-Type) Off26 instruction format

The fourth instruction, denoted as Immediate Off11 instruction (Immediate instruction
with 11 bits offset), is used for the newest encodings of coprocessor 2 load and store instruc-
tions (LWC2, SWC2, LDC2, SWC2). See Table 10.

31 — 26 25 —– 21 20 ——— 16 15 ———– 11 10 ——————- 0

opcode rs rt rd offset

Table 10.: Immediate (I-Type) Off11 instruction format

Finally, the last one (fifth instruction), denoted as Immediate Off9 instruction (Immediate
instruction with 9 bits offset), is used for SPECIAL3 instructions such as EVA memory
access (LBE mnemonic). Also this is primarly used for instruction encodings that have
been moved, such as LL menmonic and SC mnemonic instruction. See Table 11.

31 — 26 25 —– 21 20 ——— 16 15 —————— 7 6 5 ——————- 0

opcode base rt offset 0 function

Table 11.: Immediate (I-type) Off9 instruction format

Notice that, for the project related to the thesis, only the first instruction type (Immediate
(I-Type) Imm16 instruction format) was used. The other instruction formats are not really
important for this project.

3.4.3 MIPS J-Type

J-Type instructions are instructions which jump to a certain address. Let’s see his format in
Table 12.

31 — 26 25 —————————————————————– 0

opcode address

Table 12.: J-Type instruction format

In Table 12, 6 bits are associated to the opcode field and 26 bits for the address field. But
notice that in MIPS, addresses are 32 bits long.

For solving that, MIPS use a technique which leads to shift the address left by 2 bits and
then combine 4 bits with the 4 high-order bits of the PC in front of the address.

Examples of J-Type formats can be seen in Listing 3.3.

1 j a l wr i t e ln / / Jump and l i n k i n s t r u c t i o n

35

3.5. MIPS assembly language

2 j r $ra / / Jump r e g i s t e r i n s t r u c t i o n
3 j wr i t e ln / / Jump i n s t r u c t i o n

Listing 3.3: Examples of J-Type instruction

In Listing 3.3, we see three different types of jump instruction. The first one example, is
a jal instruction and it means ’jump and link’ in an extensive way. Basically, it jump to the
branch written in front of the jal nomenclature and stores the return address (instantly) to
the return address register ($ra; $31). In this way, the programmer don’t need to use some
instructions for saving the return address and continue the flow of the execution code.

The second example, is a jr instruction and it means ’jump to an address stored in a
register’. Notice that registers are available in the MIPS architecture.

The third and last example is a j instruction and this is a ’jump instruction’. Summing it
up, it jumps to the branch written in front of the letter j, which is in this case writeln.

3.5 mips assembly language

MIPS language is divided into 2 parts (Data and Text parts).

3.5.1 MIPS data declarations

This section is used for declaring variable names used in the program. Variables declared
are allocated in the main memory (RAM) and must be identified with a particular nomen-
clature denoted as .data. It is used for declaring global variables, principally.

Then comes the part when the variable names are declared.
Let’s see the format for declaring a variable name in Listing 3.4.

1 name : s t o r a g e t y p e value (s)

Listing 3.4: Syntax format of data declarations in MIPS

In Listing 3.4, the name field refers to the name of the variable.
The storage type refers to the type of the variable that can be:

• .ascii store a string in memory without a null terminator.

• .asciiz store a string in memory with the null terminator.

• .byte store ’n’ bytes contiguously in memory.

• .halfword store ’n’ 16-bit halfwords contiguously in memory.

• .word store ’n’ 32-bit words contiguously in memory.

36

3.5. MIPS assembly language

• .space store a certain number of bytes of space in memory.

Last, the value(s) field refers to the value of the type associated.
Let’s see some example for declaring some variables in MIPS in Listing 3.5.

1 . data # T e l l s a s s e m b l e r we ’ r e in t h e d a t a segment
2 val : . word 10

3 s t r : . a s c i i ” Hello , world”
4 num: . byte 0x01 , 0x02

5 a r r : . space 100

Listing 3.5: Examples for declaring variables in MIPS

In Listing 3.5, there are 4 different types under the data section.
The variable val contains the value ’10’ and the size of the variable is 32 bits.
The variable str contains the string ’Hello World’ and the size of the variable is the same

size as the string.
The variable num stores the listed value(s) (which appears after the .byte nomenclature)

as 8 bit bytes. In this example, it will be ’0x00000201’.
The variable arr reserves the next specified number of bytes in the memory, which will

be 100 bytes reserved for that variable.

3.5.2 MIPS text declarations

This section contains the program code and follows a specific syntax starting with the
keyword .text.

As all programming languages, there is a starting point in the code that must be desig-
nated as main:. Each of the assembly language statements in MIPS (written after the main:
field) are executed sequentially (excepted loop and conditional statements).

Let’s see an example in Listing 3.6.

1 . t e x t
2 main :
3 l i $t0 , 5

4 l i $t1 , 10

5 mul $t0 , $t0 , $ t1

Listing 3.6: Example of Text declarations in MIPS

In Listing 3.6, we see the .text which begins the code of the program and the main:
which shows where the code execution must start.

Below the keyword main: appears all the instruction of the program code.

37

3.5. MIPS assembly language

In this case, it will load two numbers in different registers and multiply them (see Section
3.6 to understand those instructions).

Notice that the code will execute sequentially.
Also, in the text part beside of the code execution flow, we can write the name of branches

for executing some jump instructions. This means that every jump instruction with a name
associated, will see if that name is under the text part. Like that when a jump instruction is
available it can jump to the name associated.

And for this purpose, we need to add some context to the MIPS jump instruction code
and understand it better.

In this case, we need to replicate the same syntax as the main: field but with the correct
name of the condition or the loop (also inside of the text declarations parts). Like that,
MIPS knows where it must jump for the next instruction. Let’s look an example in Listing
3.7.

1 . data
2 . t e x t
3 main :
4 l i $t0 , 5

5 l i $t1 , 5

6 mul $t0 , $t0 , $ t1

7 j a l jump condition # n e e d s t o jump t o t h e f i e l d j u m p c o n d i t i o n
8 l i $t0 , 4

9 l i $v0 , 10

10 s y s c a l l
11 jump condition : # s yn ta x f o r jump and c o n d i t i o n a l i n s t r u c t i o n in mips
12 l i $t1 , 5

13 j r $ra

Listing 3.7: Example of a loop declaration in MIPS

As we can see in Listing 3.7, we have a jal instruction available and a name associated
next to the instruction. This name must be included under the .text section, because the
name is the name of the branch from where the jump instruction will jump. If the name
isn’t in the MIPS assembly code, then the program cannot execute the assembly code. But
in the example case, we can see that the name is available below as jump condition:. So this
means that the jal instruction will jump to that line and continue the code execution flow
there.

Also, in MIPS, there is the possibility to include inline comments in the code using the
symbol # on a line (see Listing 3.8).

1 var1 : . word 3 # c r e a t e a s i n g l e i n t e g e r v a r i a b l e wi th i n i t i a l v a l u e 3

38

3.6. MIPS instructions

Listing 3.8: Example of a comment in MIPS

Let’s see the template for a MIPS assembly language program in Listing 3.9.

1 # Comment g i v i n g name o f program and d e s c r i p t i o n o f f u n c t i o n
2 # Templa t e . s
3 # Bare−b o n e s o u t l i n e o f MIPS a s s e m b l y l an g u a g e program
4

5 . data # v a r i a b l e d e c l a r a t i o n s f o l l o w t h i s l i n e
6 # . . .
7

8 . t e x t # i n s t r u c t i o n s f o l l o w t h i s l i n e
9

10 main : # i n d i c a t e s s t a r t o f c o d e (f i r s t i n s t r u c t i o n t o e x e c u t e)
11 # . . .

Listing 3.9: Template of a MIPS assembly language

3.6 mips instructions

MIPS has 6 type of instructions :

• instructions for data transfer

• instructions for arithmetic operations

• instructions for logical operations

• instructions for bitwise shift

• instructions for conditional branch

• instructions for unconditional branch

Let’s see some examples of those instructions and their meanings.

Table 13.: Example of Data transfer instruction in MIPS

Name
Instruction

Syntax
Meaning Format Opcode Funct

Store word sw $t,C($s) Memory[$s + C] = $t I 0x2B N/A
Load word lw $t,C($s) $t = Memory[$s + C] I 0x23 N/A
Load immediate li $t, C $t = C I 0x9 N/A

39

3.6. MIPS instructions

Table 14.: Example of Arithmetic instruction in MIPS

Name
Instruction

Syntax
Meaning Type Opcode Funct

Add add $d, $s, $t $d = $s + $t R 0x0 0x20

Add
immediate

addi $t, $s, C $t = $s + C (signed) I 0x8 N/A

Subtract sub $d, $s, $t $d = $s - $t R 0x0 0x22

Move move $t0, $t1 $t0 = $t1 R 0x0 0x21

Multiply mul $s, $t, $d
$s = $t * $d
LO = $t * $d (upper 32bits)
HI = $t * $d (lower 32bits)

R 0x0 0x19

Divide div $s, $t, $d
$s = $t / $d
LO = $t / $d
HI = $t % $d

R 0x0 0x1A

Table 15.: Example of Logical instruction in MIPS

Name
Instruction

Syntax
Meaning Format Opcode Funct

Set on less than slt $d,$s,$t $d = ($s <$t) R 0x0 0x2A

Or or $d,$s,$t $d = $s ‖ $t R 0x0 0x25

And and $d,$s,$t $d = $s & $t R 0x0 0x24

Set on less than unsigned sltu $d,$s,$t $d = ($s <$t) R 0x0 0x2B

Exclusive or immediate xori $d,$s,C $d = $s ˆC I 0xE N/A

Table 16.: Example of Bitwise Shift instruction in MIPS

Name
Instruction

Syntax
Meaning Format Opcode Funct

Shift left logical
immediate

sll $d,$t,shamt $d = $t <<shamt R 0x0 0x0

Shift right logical
immediate

srl $d,$t,shamt $d = $t >>shamt R 0x0 0x2

Shift left logical sllv $d,$t,$s $d = $t <<$s R 0x0 0x4

Shift right logical srlv $d,$t,$s $d = $t >>$s R 0x0 0x6

Some explanation must be provided for understanding the tables shown previously:

• PC means Program Counter.

• target means the name of the target (used for jump instructions).

• C means constants.

• 0x.. means a hexadecimal format number.

• N/A means Not Applicable.

40

3.6. MIPS instructions

Table 17.: Example of Conditional Branch instruction in MIPS

Name
Instruction

Syntax
Meaning Format Opcode Funct

Branch if equal
zero

beqz $s, jump
if($s==0) go to
jump address

I 0x4 N/A

Branch on not
equal

bne $s, $t, C
if ($s != $t) go to
PC+4+4*C

I 0x5 N/A

Branch on equal beq $s, $t,C
if ($s == $t) go to
PC+4+4*C

I 0x4 N/A

Table 18.: Example of Unconditional Branch instruction in MIPS

Name
Instruction

Syntax
Meaning Format Opcode Funct

Jump j target PC = PC+4[31:28] . target*4 J 0x2 N/A
Jump register jr $s goto address $s R 0x0 0x8

Jump and link jal target
$31 ($ra) = PC + 4;
PC = PC+4[31:28] . target*4

J 0x3 N/A

• shamt means the number to shift (used in shift instructions).

Note that the Format, Opcode and Funct are the information of each field for each format
instruction as explained in Section 3.4.

Beside those instructions, some other instructions are sequences of instructions and they
are called as pseudo instructions (see in Table 19).

Table 19.: Example of Pseudo Instructions in MIPS

Name
Instruction

Syntax
Real instruction translation Meaning

Move move $d, $s add $d, $s, $zero $d=$s

Load Address la $d, LabelAddr
lui $d, LabelAddr[31:16]
ori $d, $d, LabelAddr[15:0]

$d = Label Address

Multiplies and
returns only first
32 bits

mul $d, $s, $t
mult $s, $t
mflo $d

$d = $s * $t

Divides and
returns quotient

div $d, $s, $t
div $s, $t
mflo $d

$d = $s / $t

Branch if equal
to zero

beqz $s, Label beq $s, $zero, Label if ($s==0) PC=Label

Additionally, MIPS includes a number of system services for input and output interaction,
denoted as SYSCALL. Let’s see an example of those services in Table 20.

To understand better Table 20, we need to give some explanation of it. The service
column gives us the context of the service; the code column explains which value must be

41

3.7. MIPS Memory Management

Table 20.: Example of SYSCALL instruction in MIPS

Service
Code in

$v0
Arguments Result

print integer 1 $a0 = integer to print

print string 4

$a0 = address of null-
terminated string to print

read integer 5 $v0 contains integer read
sbrk (allocate
heap memory)

9

$a0 = number of bytes to
allocate

$v0 contains address of
allocated memory

exit (terminate
execution)

10

set into register $v0 (associated to the service wished); the arguments column specify the
argument values that must be loaded depending on the service and last; the result column
gives some informations about the return value of the service (if available or not).

Let’s see an example of one service in Listing 3.10.

1 l i $t0 , 3 # add ing t h e number 3 t o r e g i s t e r t0
2 l i $v0 , 1 # l o a d i n g t h e s e r v i c e number 1 (p r i n t i n t e g e r) t o

r e g i s t e r v0
3 add $a0 , $t0 , $zero # l o a d i n g t h e argument v a l u e t o r e g i s t e r a0
4 s y s c a l l # c a l l i n g t h e s y s c a l l f o r p r i n t i n g t h e i n t e g e r .

Listing 3.10: Example of printing integer in MIPS

Notice that every instructions shown in the tables, are instructions which were used for
the project.

3.7 mips memory management

MIPS has the possibility to control and coordinate the computer memory by two ways:

1. L’Isle-Adam

2. heap

3.7.1 MIPS stack

When a program is being executed, a portion of memory is set aside for the program and
it is called the stack.

The stack is used for functions and it set some spaces for local variables of the functions.

42

3.8. MIPS simulator

Internally, MIPS doesn’t have real instructions for pushing or popping the stack. But this
can be made with a sequences of instructions and using the stack pointer register.

Let’s see an example in Listing 3.11.

1 push : addi $sp , $sp , −4 # Decrement s t a c k p o i n t e r by 4
2 sw $v0 , 0 ($sp) # Save r e g i s t e r v0 t o s t a c k
3

4 pop : lw $v0 , 0 ($sp) # Copy from s t a c k t o r e g i s t e r v0
5 addi $sp , $sp , 4 # I n c r e m e n t s t a c k p o i n t e r by 4

Listing 3.11: Example of push and pop instructions in MIPS

3.7.2 MIPS heap

Beside a stack, we might need to allocate some dynamic memory. And this can be done by
using a Heap.

For this purpose, in MIPS, we only need to say how much bytes we want to allocate in
the heap.

Let’s see an example in Listing 3.12.

1 . t e x t
2 main :
3 l i $a0 , 4 #we want t o a l l o c a t e 4 b y t e s in t h e heap .
4 l i $v0 , 9 # we l o a d t h e v a l u e 9 in r e g i s t e r v0 f o r c a l l i n g t h e heap

i n s t r u c t i o n .
5 s y s c a l l # c a l l i n g t h e sys t em c a l l i n s t r u c t i o n f o r a l l o c a t i n g 4

b y t e s i n t o t h e heap . The r e g i s t e r v0 c o n t a i n s t h e a d d r e s s o f
a l l o c a t e d memory .

Listing 3.12: Example of code for allocating in the heap

3.8 mips simulator

Several simulators are available in the market for executing MIPS assembly code, and some
are free.

For this project, we considered two nice free simulators:

• MARS simulator 3

• SPIM simulator 4

3 http://courses.missouristate.edu/KenVollmar/MARS/

4 http://spimsimulator.sourceforge.net

43

http://courses.missouristate.edu/KenVollmar/MARS/
http://spimsimulator.sourceforge.net

3.8. MIPS simulator

Both simulators are for education purposes and built with a GUI.
They execute and debug MIPS assembly code but only MARS simulator has the possi-

bility to write some live-code MIPS assembly code. This explains why MARS was the one
selected for this project.

3.8.1 MARS at a glance

MARS from Mips Assembly and Runtime Simulator, assembles and simulates the execution
of MIPS assembly language programs. The strength of MARS comes from the interaction
between the user and the program through its integrated development environment (IDE)
and the tools available there (program editing, assembling code, interactive debugging...).

Let’s see MARS IDE in Figure 4.

Figure 4.: MARS GUI

In Figure 4, we have 3 different boxes. The red box offers two possible views (two
different perspective by switching between the tabs available at the top). In this case, the
view is opened for programing some live MIPS assembly code (MIPS assembly code is
colored along the left part of the window). But if we open the second tab view, then it will
change to the execution mode of the MIPS assembly code (if no syntatic or semantic errors
are found).

44

3.8. MIPS simulator

The orange box also has two possible views (Mars Messages or Run I/O tabs). It is used
to display error messages regarding the syntax and semantic of MIPS assembly code, or
error messages regarding the execution of the MIPS assembly code.

Last, the blue box has three different views: Registers, Co-processor1 and Co-processor
2. In the Figure above, it shows the states of the registers available in MIPS architecture
but if we change the view it can show the states of each co-processor (related to division,
multiplication).

If the MIPS assembly code typed in (or loaded from a file) is correct (no errors detected),
we can assemble it and execute it.

Figure 5 illustrates the new view offered by the IDE after assembling the source program.

Figure 5.: MARS GUI (Execution mode)

In Figure 5, it is possible to identify the main window (the red one in Figure 4) now
split into three subwindows: orange, red and green.

Notice that above the main red window, a small blue box contains buttons to activate
tools for assembling MIPS assembly code, executing MIPS assembly code totally or step by
step (one instruction at a time) and also the possibility to change the speed execution of the
MIPS assembly code if we want to run it completely.

The orange box contains the MIPS assembly code assembled and ready to execute. It
shows the MIPS assembly code instructions, the correspondent code in hexadecimal, the
respective address in the memory, and eventually some breakpoints associated with cer-

45

3.8. MIPS simulator

tain MIPS assembly instructions. Also notice that MIPS assembly code has some pseudo-
instructions; and in the orange box, there is a part where we can see the translation of the
MIPS assembly code to another lower MIPS assembly code (with no pseudo-instruction).
The yellow bar, or cursor, displayed in the figure above enhances the next instruction to be
executed.

The red box is the identifier table for the MIPS assembly code. It contains the variables
existing in the MIPS assembly code and displays their respective address in the memory.

The green box represents the virtual memory of the MIPS architecture. It displays the
stack and the heap memory, as well as other informations not relevant in this context.
Basically, we see the value being changed throw the iteration of the MIPS assembly code
being executed. This mean that if there is a store instruction for a certain variable, it will
look up for the identifer table (red box), search the address associated to the variable and
store to that address the value associated to the variable.

46

4

C O M P I L E R D E V E L O P M E N T

Earlier in the history of computers, software was primarily written in assembly language.
Due to the low productivity of programming assembly code, researchers invented a way
that add some more productivity and flexibility for programmers; they created the compiler
allowing to wire programs in high level programming languages.

A compiler is a software program which converts a high-level programming language
(source code) into a lower level programing language for the target machine (known as
machine code or assembly language).

The compiler task is divided into several steps (see Figure 6):

1. Lexical analysis

2. Syntactic analysis or parsing

3. Semantic analysis

4. Optimization

5. Code generation

First, the lexical analysis must recognize words; these words are a string of symbols each
of which is a letter, a digit or a special character. The Lexical analysis divides program
text into ”words” or ”tokens” and once words are identified, the next step is to understand
sentence structure (role of the parser). We can think the parsing as an analogy of our world
by constructing phrases which requires a subject, verb and object. So, basically, the parser
do a diagramming of sentences.

Once the sentence structure is understood, we must extract the ”meaning” with the se-
mantic analyzer. The duty of the semantic analyzer is to perform some contextual checks to
catch language inconsistencies and build an intermediate representation to store the mean-
ing of the source text. After that, it may or may not have some optimization regarding the
source code.

Finally, the code generator translates the intermediate representation of the high-level
programming into assembly code (lower level programming). At this stage, a new opti-

47

4.1. Compiler generation with ANTLR

Figure 6.: Traditional compiler

mization phase can occur to deliver an object code shorter and faster than the original
one.

Notice that the task of constructing a compiler for a particular source language is complex.
To simplify this task, it is usual to resort to a compiler generator that is a system able
to build automatically a language processor from the language grammar. In this master
project, the compiler generator ANTLR was used, as we will be described in section 4.1.

The first tool steps, lexical and syntatical analysis, will be briefly discussed in section 4.2.
Then section 4.3 explains in detail the implementation of LISS semantic analyzer. To con-
clude the chapter, section 4.4 provides also details about the implementation of the LISS
code generator.

4.1 compiler generation with antlr

Terence Parr, the man who is behind ANTLR (ANother Tool for Language Recognition
(Parr, 2007, 2005)) made a parser (or more precisely, a compiler) generator that reads a
context free grammar, a translation grammar, or an attribute grammar and produces auto-
matically a processor (based on a LL(k) recursive-descent parser) for the language defined
by the input grammar.

An ANTLR specification is composed by two parts : the one with all the grammar rules
and the other one with lexer grammar.

48

4.2. Lexical and syntatical analysis

Listing 4.1 is the one with the grammar rules; in that case it is an example of an AG
(Attribute Grammar).

1 f a c t u r a s : f a t u r a +
2 ;
3 f a t u r a : ’FATURA ’ cabec ’VENDAS’ corpo
4 ;
5 cabec : numFat idForn ’CLIENTE ’ i d C l i e
6 { System . out . p r i n t l n (”FATURA num: ” + $numFat . t e x t) ; }
7 ;
8 numFat : ID
9 ;

10 idForn : nome morada ’ NIF : ’ n i f ’NIB : ’ nib

Listing 4.1: AG representation on ANTLR

On the other hand, the lexer grammar defines the lexical rules which are regular expres-
sions as can be seen in Listing 4.2. They define the set of possible character sequences that
are used to form individual tokens. A lexer recognizes strings and for each string found, it
produces the respective tokens.

1 /∗−−−−−−−−−−−−−−− L e x e r −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /
2

3 ID : (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ ’) (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’ | ’ ’ | ’− ’) ∗
4 ;
5

6 NUM : ’ 0 ’ . . ’ 9 ’+

Listing 4.2: Lexer representation

4.2 lexical and syntatical analysis

The parser generator by ANTLR will be able to create an abstract syntax tree (AST) which
is a tree representation of the abstract syntactic structure of source code written in a pro-
gramming language (see Figure 7).

ANTLR will be used to generate MIPS assembly code according to the semantic rule
specified in the AG for LISS language.

49

4.3. Semantic Analysis

Figure 7.: AST representation

4.3 semantic analysis

In programming language theory, the word semantics is concerned by the field of studying
the meaning of programming languages. And in this field, it concerns about a lot of area.

For our project, every time that we see an inconsistency, we use some structures that
helps the compiler for getting those inconsistencies and also informs the user about those
inconsistencies.

And the kind of inconsistency that can be found in the project are listed above:

1. Finding inconsistency in types and their related specifications.

2. Finding inconsistency in variables declared or not.

3. Finding inconsistency regarding to the use of multiple expressions.

4. Finding inconsistency for returning types of functions created.

Now, let’s talk about the structures that were made for the project.

4.3.1 Symbol Table

A symbol table is a data structure used for the compiler, which helps to store some valuable
informations for identifiers in a program’s source code. Basically, it helps the compiler for

50

4.3. Semantic Analysis

finding some semantic errors regarding to the translation of the program which will be
done later.

There are a lot of types of data structure for creating a symbol table. From one large
symbol table for all symbols or separated, hierarchical symbol tables for different scopes.

Figure 8.: Example of hierarchical symbol table

51

4.3. Semantic Analysis

Symbol Table in LISS

For this project, we used only one symbol table (ST) for all symbols.
Let’s explain throw Figure 9, the usage of the symbol table in LISS.

Figure 9.: Global symbol table in LISS

For our project we implemented the symbol table with a HashMap where the key is
an identifier and the value is a LinkedList of variables information associated with the
identifier.

1 HashMap<Str ing , LinkedList<I n f o I d e n t i f i e r s T a b l e >>

Listing 4.3: Data structure of the symbol table in LISS

The identifier (of type String, as shown in Listing 4.3) must be unique (concept of using
a HashMap) and the LinkedList must be an ordered list.

Basically, the identifier is associated to a LinkedList of information related to the identifier
that explains among other things the category and type of the identifier.

For our project, we have 3 different categories:

1. TYPE

52

4.3. Semantic Analysis

2. VAR

3. FUNCTION

TYPE category

The TYPE category aggregates all the identifiers that denote the primitive (or pre-defined)
types available in LISS. In our language, they are: set, integer, sequence and boolean. In this
case, the ST contains information about the fixed size of each type in MIPS representation,
as well as their scope level as summarized in Table 21.

Table 21.: TYPE category information
Identifier Category Level Space (Bytes)
set TYPE 0 0

integer TYPE 0 4

boolean TYPE 0 4

sequence TYPE 0 4

VAR category

The VAR category aggregates all the identifiers that denote the variables declared in LISS
(in the program declarations part). The variable type may be integer, boolean, array, set or
sequence. The information associated with each variable depends on its type.

Let’s see and explain in detail the information per type.

Table 22.: ST information for an integer variable
Identifier Category Level Type Address
x VAR 0 integer 0

In Table 22, we can see the information stored in ST for an integer variable:

• Identifier - name of the variable.

• Category - the category of the identifier: VAR.

• Level - the scope level of the variable.

• Type - the type of the variable (integer).

• Address - the address of the variable in the stack memory.

53

4.3. Semantic Analysis

Table 23.: ST information for a boolean variable
Identifier Category Level Type Address
bool VAR 1 boolean 4

In Table 23, it can be seen the information stored in ST for a boolean variable:

• Identifier - name of the variable.

• Category - the category of the identifier: VAR.

• Level - the scope level of the variable.

• Type - the type of the variable (boolean).

• Address - the address of the variable in the stack memory.

Table 24.: ST information for an array variable
Identifier Category Level Type Address Dimension Limits
array 1 VAR 0 array 8 2 [2|3]

In Table 24, it can be seen information stored in ST for an array.

• Identifier - name of the variable.

• Category - the category of the identifier: VAR.

• Level - the scope level of the variable.

• Type - the type of the variable (array).

• Address - the address of the variable in the stack memory.

• Dimension - the number of dimension for the array.

• Limits - the limits of each dimension of the array.

Table 25.: ST information for a set variable
Identifier Category Level Type Address Tree Allocated
set 1 VAR 0 set NULL [x]

In Table 25, it can be seen the information stored in ST for a set.

• Identifier - name of the variable.

• Category - the category of the identifier: VAR.

54

4.3. Semantic Analysis

• Level - the scope level of the variable.

• Type - the type of the variable (set).

• Address - not used (no memory address).

• Tree Allocated - indicates if the set has an initiate value associated. Letter ’X’ means
that the set was initialized.

Table 26.: ST information for a sequence variable
Identifier Category Level Type Address Elements type

sequence 1 VAR 0 sequence 32 integer

In Table 26, it can be seen the information stored in ST for a set.

• Identifier - name of the variable.

• Category - the category of the identifier: VAR.

• Level - the scope level of the variable.

• Type - the type of the variable (sequence).

• Address - address in the stack memory.

• Elements type - indicates the type of the elements.

FUNCTION category

The FUNCTION category contains informations about the subprograms created in a LISS
code.

Table 27.: ST information for a function
Identifier Category Level Type Address No Arguments Type List Arguments
calculate FUNCTION 0 NULL 32 2 [integer, boolean]

In Table 27, it can be seen the information stored in ST for a function.

• Identifier - name of the function.

• Category - the category of the identifier: FUNCTION.

• Level - the scope level of the function.

• Type - field not used.

55

4.3. Semantic Analysis

• Address - size of the function stack in the stack memory (includes the arguments list,
the variables declared in the subprogram and the return value).

• No Arguments - indicates how many arguments the function does have.

• Type List Arguments - indicates the type of each argument.

Let’s see in Figure 10, the abstract data structure of InfoIdentifiersTable implemented.

Figure 10.: InfoIdentifiersTable structure

Each time that an identifier is inserted into the HashMap, the information described
related to that identifier is inserted according to its category.

The usage of a LinkedList<InfoIdentifiersTable> has the notion of being an ordered list,
and this is very important due to the fact that it reveals the level of a given identifier found.

In Figure 9, the identifier b was found in two differents scope level.

• Level 0 - Identifier b found with type integer

• Level 1 - Identifier b found with type boolean

Notice that every time, we look for an identifier and its respective info in the symbol
table, the most recent (the one that was the latest inserted) info in the LinkedList will be
inserted.

56

4.3. Semantic Analysis

In the case of the identifier b in Figure 9, it will be the boolean info.
Every time that a function (subprogram in LISS) is exited, we remove every information

associated with the scope level of the function from the symbol table.
The JAVA functions created and available in the project, regarding the symbol table han-

dling.

• getSymbolTable - gets the symbol table.

• doesExist - checks whether a certain identifier is in ST.

• getInfoIdentifier - gets the most recent information associated with a certain identifier.

• removeLevel - removes from the symbol table every information related to a given
scope level.

• getAddress - gets the most recent address (this address is related to the next position
of an identifier that will be added to the symbol table).

• setAddress - sets a new address.

• add - adds an identifier into the symbol table.

• toString - gets the representation of the symbol table as a string.

4.3.2 Error table in LISS

The error table let the user to understand the problems that he is having with the code
when he is trying to create (write) a LISS program. In this way, it will facilitate the user to
fix the errors found in his code.

Figure 11 shows the structure of the error table built for our project.
We managed to create a data structure which can handle some error messages and also

store some information related to the error message (line and column number).
This was done by creating the following data structure in JAVA:

1 TreeMap<Integer , TreeMap<Integer , ArrayList<Str ing>>>

Listing 4.4: Data structure of the error table in LISS

Basically, this data structure is divided into two TreeMaps (as can be seen in Figure 11,
black and white) and a list (ArrayList data structure) of some error messages.

We chose the TreeMap data structure for one reason, the map is sorted according to the
natural ordering of its keys. This means that each time we insert a pair <key, value> in the
TreeMap data structure, the information is ordered by the unique key. In this case, the first

57

4.3. Semantic Analysis

Figure 11.: ErrorTable structure

TreeMap is intended for ordering the line number of the error message (black tree in Figure
11).

Then when the line number is added and ordered, we add some information linked to
the line number and this is the column number of the line (white tree in Figure 11).

Finally, we add the error messages to the list related to a certain line and column.
With that data structure, we are sure that it can have a list of error messages for a certain

line and column numbers and that the line and the column number are ordered for an easy
reading.

Listing 4.5 shows some error message issued after processing a LISS program.

1 ERROR TABLE :
2 l i n e : 5 : 1 8 Expression ’ b ’ has type ’ boolean ’ ,when I t should be ’

i n t e g e r ’ .
3 l i n e : 6 : 1 1 Expression ’ f l a g ’ has type ’ i n t e g e r ’ ,when I t should be ’

boolean ’ .
4 l i n e : 7 : 1 Expression ’ array1 = [[1 , 2] , [2 , 3 , 4 , 5]] , vec tor ’ has a problem

with h i s l i m i t s .
5 l i n e : 8 : 1 Expression ’ vec tor ’ a lready e x i s t s .

58

4.3. Semantic Analysis

6 l i n e : 1 0 : 4 Expression ’ seq1 ’ a lready e x i s t s .
7 l i n e : 1 4 : 4 Expression ’ b ’ already e x i s t s .

Listing 4.5: Example of an error table

Regarding the data structure explained above, Figure 12 shows an example of how the
error messages are being handled, displaying the storage of the first two messages in Listing
4.5.

Figure 12.: ErrorTable structure instantiated for example in Listing 4.5

4.3.3 Types of error message

As said, previously, we have different kinds of error messages, that can be seen in Table 28.
Notice that in Table 28, we have all the messages used and thrown (when necessary) by

the compiler that we need to explain the notation used. For example, the mark:

1 < . . .>

represents a placeholder; it means that it must be replaced by the correct name according
to the environment where the error was found.

To understand better the usage of the mark, let’s consider the program example in Listing
4.6.

59

4.3. Semantic Analysis

Table 28.: Types of error message in LISS
Error type number Error message

1 Variable <name of variable >isn’t declared
2 Variable <name of the variable >already exists.
3 Variable <name of the array variable >must be an ’array’.
4 Variable <name of the array variable >has a problem with his limits.

5

Variable <name of the variable >has type <type found >, when it
should be <type expected >.

6 Incompatible types in Assignment.

7

Expression <expression string >has type <type found >, when it
should be <type expected >.

8

Function <name of the function >has return type <type found >,
when it should be <type expected >.

9 Variable <name of the function >is not a function.

10

Expression <expression string >has type <left type found >
<operator string ><right type found >, required type
<left type required ><operator string ><right type required >.

11

Expression <name of the array variable >has dimension
<dimension found >, when it should be equal to
<dimension required >.

12 ’stepUp’ or ’stepDown’ expression, not valid with ”inArray” operation.
13 ’satisfying’ expression, not valid with ”inArray” operation.
14 Function <name of the function >does not exist.

15

Expression <name of the array variable >doesn’t have the same
limits or dimensions.

1 program Errors {
2 d e c l a r a t i o n s
3 seq1 =<<1,2,3,4>> −> sequence ;
4 seq1 = <<1,4,7>> −> sequence ;
5 s tatements
6 }

Listing 4.6: Partial Listing

The LISS program in Listing 4.6 declares two variables with the same name in the dec-
larations part. As in all programming language, in LISS it is not allowed to declare two
variables in the same scope level. So the compiler must throw an error, printing the mes-
sage in Listing 4.7.

1 ERROR TABLE :
2 l i n e : 4 : 2 Variab le ’ seq1 ’ a lready e x i s t s .

60

4.3. Semantic Analysis

Listing 4.7: Error table related to Listing 4.6

The error message in Listing 4.7 has a type with the number 2 message in Table 28. We
can see that the mark was replaced by the name of the variable. The same exactly happens
regarding the other messages in the Table 28.

Now, let’s explain Table 28 for an easy interpretation of those messages.

1. Message for a variable not declared.

2. Message for a variable already declared.

3. Message for a variable that must be an array and is not.

4. Message for a variable that is of type array and its limits that doesn’t match.

5. Message for a variable that has a certain type, but should have another type.

6. Message regarding an assignment found with different types. For example : ’integer’
= ’boolean’.

7. Message for an expression that contains operand with different types.

8. Message for a function when the return type must be different.

9. Message for a function where the name of the function doesn’t have the type function
and does have another type.

10. Message for expressions which has different types according to the operator who is
being used. For example: ’integer’ + ’boolean’.

11. Message for an array that has a different number of dimensions, according to its
declaration.

12. Message for an unconditional loop that use ’stepUp’ or ’stepDown’ expression.

13. Message for an unconditional loop that use ’satisfying’ expression.

14. Message for a function when its name do not exist.

15. Message for an array where the limits or the dimension do not agree with it.

4.3.4 Validations Implemented

In this section, we are going to report where the error message will be thrown by the
compiler according to contextual conditions expressed in the attribute grammar that we
have.

61

4.3. Semantic Analysis

Variable declaration

1 v a r i a b l e d e c l a r a t i o n : vars ’−> ’ type ’ ; ’

Listing 4.8: Variable declaration rule in LISS

Listing 4.8, shows the declaration part where the programmer declares variables with
the respective type. Processing this part, the compiler adds the information into the symbol
table. As variable can be initialized at this stage, before adding the information into the
symbol table, we need to check if every variable has the correct type regarding the type of
literal value assigned. If not, error message 5 (see Table 28) must be printed.

Let’s see in Listing 4.9, an error that may happen in this case.

1 b = boolean −> i n t e g e r ;

Listing 4.9: Example of an error message in variable declaration

While processing this section, the compiler creates the mips code for each variable. There
is one type which can throw an error message too in this section, it is called the array type.
For this type, we need to check if the index respects the limits (the index value is in bounds);
if not then error message number 4 must be issued (see Table 28).

Regarding to the other types, we don’t check values in this section. Notice that the array
type is the hardest one to deal (needs to calculate the position of the array) for creating the
mips code instruction.

Let’s see an example of an array type error message regarding to this case in Listing 4.10.

1 array1 = [[1 , 2] , [2 , 3 , 4 , 5]] , vec tor −> array s i z e 4 , 3 ;

Listing 4.10: Example of an error message in variable declaration for the array type

In the left side of a declaration, before the type name the programmer can define one or
more variables. Listing 4.11 shows the grammar rule for Vars.

Vars

1 vars : v1 (’ , ’ v2) ∗

Listing 4.11: Vars rule in LISS

The grammar rule in Listing 4.11 refers to the declaration of multiple variables of the
same type.

In this case, the compiler needs to check if the variables that will be added to the symbol
table have been already declared. If one variable has been previously declared, then an

62

4.3. Semantic Analysis

error message type number 2 will be thrown (see Table 28). Let’s see an example of a LISS
program that illustrates this error in Listing 4.12.

1 a = 4 , a = 5 −> i n t e g e r ;

Listing 4.12: Example of an error message in LISS for vars non-terminal

In Listing 4.12, there is a problem regarding that two variables with the same name are
being created. This must throw an error as we said previously, and an error message related
to the second variable.

Set initialization

1 s e t d e f i n i t i o n : ’ { ’ s e t i n i t i a l i z a t i o n ’ } ’
2 ;
3 s e t i n i t i a l i z a t i o n :
4 | i d e n t i f i e r ’ | ’ express ion

Listing 4.13: Set initialization rule in LISS

In Listing 4.13, we can see how to declare a set under the declarations section in LISS.
And it has two choices for declaring a set: empty set or some content in the set. If there
is some content available, this content must be defined by a boolean expression. In case
the expression is not a boolean, an error message with the number 7 (see Table 28) will
be thrown. Let’s see an example of this error with a piece of LISS code related to set
initialization in Listing 4.14.

1 s e t 6 = { z | (z+ t a i l (z)) < 5} −> s e t ;

Listing 4.14: Example of an error in LISS for set initialization

In Listing 4.14, we can see that the variable won’t be declared due to the fact that the
content isn’t correct. The function tail is a function for sequence and it needs a sequence
variable as an argument, not an integer variable (as we can see). The compiler will return
the type of that operation as ’null’ because he can’t execute that operation.

Moreover, there is another error concerned with the add operator that defines both
operands of type integer. But, due to the previous statements made, the types that the
add operator will see: integer (from z variable) and a null (from tail(z)). The compiler
can’t execute it too, so the error is being spread throw the entire operation of the set con-
tent.

In the end, after calculating the content of the set initialization, an error message will be
printed out, as can be seen in Listing 4.15.

63

4.3. Semantic Analysis

1 l i n e : 20 : 18 Expression ’ (z+ t a i l (z))<5 ’ has type ’ n u l l ’ ,when I t should
be ’ boolean ’ .

Listing 4.15: Error message for the set initialization

Subprogram definition

1 subprogram def ini t ion : ’ subprogram ’ i d e n t i f i e r ’ (’ formal args ’) ’
re turn type f body

Listing 4.16: Subprogram definition rule in LISS

In Listing 4.16, we can see how to declare subprogram (function) under the declaration
section in LISS. In this case, we need to check the return type of the subprogram.

If the type of the returned expression is different from the type declared (for example,
the return expression is of type boolean, but the return type declared is integer) then an
error message number 7 (see Table 28) is thrown.

Let’s see an example of this case in Listing 4.17.

1 subprogram f (amen−>boolean)−>i n t e g e r {
2 d e c l a r a t i o n s
3 b −> boolean ;
4 s tatements
5 re turn b ;
6 }

Listing 4.17: Example of error message in LISS for subprogram definition non terminal

In Listing 4.17, we can see that the return type declared is integer. However in this
example, the subprogram returns a variable called ’b’ that has boolean type. In this case,
an error message will be reported due to the incompatible types.

Assignment

1 assignment : des ignator ’= ’ express ion

Listing 4.18: Assignment rule in LISS

In Listing 4.18, we can see the syntax for assigning some content to a variable or an array
under the statement section in LISS. For this part we need to check some possible error
regarding to the context available. Let’s explain those differents contexts below.

64

4.3. Semantic Analysis

Suppose the designator non-terminal in Listing 4.18, is a variable of type array; In that
case, the content that we can assign to that variable is restricted (see an example in Listing
4.19).

1 array1 = [1 , 2 , 3] ;

Listing 4.19: Example of assigning a constant value to an array variable

In Listing 4.19, we see a variable named array1 with the type array and it will be
assigned to some values shown in the example, [1,2,3]. For this example, we need to check
if the value has the correct dimensions and limits regarding the variable declaration. In this
case, if it isn’t correct then the number 15 error message will be outputed (see Table 28).

Also the same error message is reported for the case of the next example in Listing 4.20.

1 array [3] = 1 ;

Listing 4.20: Example of storing a value to a certain position in the array

In Listing 4.20, suppose that the variable array has one dimension with only two position
available. In this case, the access to the fourth position (index 3, as shown in the example),
is behind the limits regarding to the specification of the variable. And, in this case, it must
thrown the number 15 error message too (see Table 28).

The last case for this part concerns in general the types of designator and expression that
must be equal. The compiler can’t generate code for the assignment operation.

If they do not conform this general rules, then this will throw the number 6 error message
(see Table 28).

Let’s see an example of this case in Listing 4.21.

1 boolean1 = i n t e g e r 1 ;

Listing 4.21: Example of assignment with differents types

In Listing 4.21, the example shows us that assignment operation is trying to store an
integer value in boolean1 variable (which has boolean type). As we know, if the types aren’t
equal then the operations cannot be executed and an error must be reported.

Designator

1 des ignator : i d e n t i f i e r a r r a y a c c e s s

Listing 4.22: Designator rule in LISS

65

4.3. Semantic Analysis

In Listing 4.22, we can see the syntax to refer to an atomic variable or an array variable
under the statement section in LISS. In this case, we need to check some errors depending
on the context: atomic variable or array variable.

Let’s explain first the case of a simple variable.
Every variable used must be declared and so it must be in the symbol table. If it doesn’t

exist in the symbol table, it means that variable doesn’t exist and we need to throw an error
number 1 (see Table 28).

We need to check if the name of the identifier isn’t the same as the name of a type in LISS
(see Table 21). If it is, then an error message number 1 must throw (see Table 28).

Now regarding the array variable context, we need to check a lot of conditions.
First, we need to check if the identifier is in the symbol table; otherwise the compiler will

throw the number 1 error message (see Table 28).
Second, we need to check if the name of the identifier isn’t the same name of another

type variable in LISS (see Table 21). If it is, then the compiler must throw the number 1

error message (see Table 28).
Third, we need to check the type of identifier. If the type isn’t an array then we need to

throw the error message number 3 (see Table 28).
And finally, we need to check if the identifier and the array access agreed in number of

dimensions. If not, then it must be thrown the number 11 error message (see Table 28).

Elem array

1 elem array : s i n g l e e x p r e s s i o n (’ , ’ s i n g l e e x p r e s s i o n) ∗

Listing 4.23: Elem array rule in LISS

In Listing 4.23, we can see how to handle an element of an array. For this part we need
to check if every element (represented by the single expression non-terminal) has the correct
type.

In an array context, the type of each element must be an integer. If it isn’t then the
compiler must throw the number 7 error message (see Table 28).

Function call

1 f u n c t i o n c a l l : i d e n t i f i e r ’ (’ sub prg args ’) ’

Listing 4.24: Function call rule in LISS

In Listing 4.24, we can see the syntax to call a function under the statement section in
LISS. In this context, we need to check two error situations.

66

4.3. Semantic Analysis

First, we need to check if the identifier (function name) is in the symbol table. If it isn’t
then it must throw the number 14 error message (see Table 28).

Last, the compiler checks if the identifier has the correct category (it must belong to the
category Function). If it doesn’t have then it must throw the number 9 error message (see
Table 28).

Expression

1 express ion : s i n g l e e x p r e s s i o n (r e l o p s i n g l e e x p r e s s i o n) ?

Listing 4.25: Expression rule in LISS

Listing 4.25, defines the syntax to write an expression, that can be used in many dif-
ferent contexts in LISS. In this case, we need to check the type of both operands (the sin-
gle expression are correct regarding the type required by rel op). If they are not, then we
throw the number 10 error message (see Table 28).

Notice that it is the rel op non-terminal that determines the type that the left and right
single expression must have.

Let’s see an example in Listing 4.26.

1 2 < t rue

Listing 4.26: Example of an error message in expression rule

In Listing 4.26, we can see the number two (left single expression) then the less-than sign
(the rel op) and finally the true value (the right single expression annotation). We can see
immediately that the operand types doesn’t match. In that case the less-than sign requires
both expressions (left and right) of type integer, and actually one is integer and the other is
boolean — an error number 10 will be generated.

Single expression

1 s i n g l e e x p r e s s i o n : term (add op term) ∗

Listing 4.27: Single expresion rule in LISS

Listing 4.27 defines how to expand a single expression non-terminal in LISS. In a similar
way, we need to check the types of the operands required by the add op. If the terms type
don’t agree with the required type regarding to the add op, then the compiler must throw
the number 10 error message.

67

4.3. Semantic Analysis

Term

1 term : f a c t o r (mul op f a c t o r) ∗

Listing 4.28: Term rule in LISS

In Listing 4.28 is specified the syntax to expand a term in LISS. In a similar way, we need
to check the types of the operands required by the mul op. If the factors type don’t agree
with the required type regarding mul op, then it must throw the number 10 error message.

Factor

1 f a c t o r : i n i c v a r
2 | des ignator
3 | ’ (’ express ion ’) ’
4 | ’ ! ’ f a c t o r
5 | f u n c t i o n c a l l
6 | s p e c i a l F u n c t i o n s

Listing 4.29: Factor rule in LISS

In Listing 4.29, we can see the syntax to expand a factor in LISS. As it can be seen, there
are a lot of alternative rules; however the majority do not require any special check.

We will only discuss a particular one:

1 ’ ! ’ f a c t o r

In this option there is an exclamation mark sign and then a factor non-terminal. In
programming languages, the exclamation mark represents the negation of the expression.
So, the negation operation requires an operand of boolean type in order to work correctly.
If the type of the factor is not a boolean, then the number 7 error message will be added to
the error table.

Print what

1 print what :
2 | express ion
3 | s t r i n g

Listing 4.30: Print what rule in LISS

68

4.3. Semantic Analysis

In Listing 4.30, it is shown the syntax for printing a value (numeric or alphanumeric) in
the output in LISS language.

In this case, we need to check the type of the expression in the context of the first al-
ternative. If the type is a set then it must throw the number 7 error message (see Table
28).

Notice that the type allowed for the expression are :

• integer

• boolean

• sequence

• array

Read

1 read statement : ’ input ’ ’ (’ i d e n t i f i e r ’) ’

Listing 4.31: Read rule in LISS

In Listing 4.31, it is shown the syntax for reading the input to get the value from the
user to be stored in the given identifier in LISS. In this case, we need to check some possible
errors.

If the identifier doesn’t exist in the symbol table, then we must thrown the number 1

error message (see Table 28). If the identifier exists in the symbol table, we must check the
type of it. If the type isn’t an integer, then we must throw the number 5 error message (see
Table 28).

If then else stat

1 i f t h e n e l s e s t a t : ’ i f ’ ’ (’ express ion ’) ’
2 ’ then ’ ’ { ’ s ta tements ’ } ’
3 e l s e e x p r e s s i o n

Listing 4.32: If then else stat rule in LISS

Listing 4.32 defines the syntax of a conditional statement, in particular, for the ’if’ state-
ment.

As for all programming languages, the behaviour of an ’if’ statement is the same. It
means that the expression non-terminal must be of boolean type, in order to be possible to
decide if it will enter to the next branch (then) or has to jump to the else branch. If the

69

4.3. Semantic Analysis

expression type isn’t a boolean, then it must throw the number 7 error message (see Table
28).

For stat

1 f o r s t a t : ’ f o r ’ ’ (’ i n t e r v a l ’) ’ s tep s a t i s f y
2 {
3 s tatements
4 }
5 i n t e r v a l : i d e n t i f i e r t y p e i n t e r v a l
6 ;
7 t y p e i n t e r v a l : ’ in ’ range
8 | ’ inArray ’ i d e n t i f i e r
9 ;

10 range : minimum ’ . . ’ maximum
11 ;
12 minimum : number
13 | i d e n t i f i e r
14 ;
15 maximum : number
16 | i d e n t i f i e r
17 ;
18 s a t i s f y :
19 | ’ s a t i s f y i n g ’ express ion
20 ;

Listing 4.33: For stat rule in LISS

Listing 4.33 defines the use of a ’for-loop’ statement in LISS.
A particular case of this statement is the use of ’for-each’ interval which is denoted with

the keyword inArray.
In LISS, we are able to use a ’for-loop’ which can access all the elements of an array, also

called ’for-each’. In that ’for-each’ context, we cannot use step non-terminal nor satisfy
non-terminal.

Let’s see an example of that case in Listing 4.34.

1 f o r (b inArray vector) stepDown 1 s a t i s f y i n g vec tor [0] == a

Listing 4.34: Example of an error message in for stat rule

In Listing 4.34, the fact that there is an inArray keyword means that the statement is a
’for-each’ loop and for this case we cannot use step or satisfying construct.

70

4.3. Semantic Analysis

If the step non-terminal is present then we must throw the number 12 error message (see
Table 28); if the satisfy non-terminal is present then we must throw the number 13 error
message (see Table 28).

However, if the ’for-each’ statement isn’t used, we can use the known and normal be-
haviour of a ’for-loop’ statement by using the in keyword instead of inArray.

Range

Listing 4.33 is specified how to expand the interval non-terminal in the context of the
for stat in LISS.

We need to check if the identifier is in the symbol table, If it isn’t then it must throw the
number 1 error message (see Table 28).

If the identifier is in the symbol table, we need to check its type. If it isn’t a variable of
type integer, then it must throw the number 5 error message (see Table 28).

The type interval non-terminal of the interval rule in LISS (Listing 4.33) tells us which
kind of operation can be a ’for-loop’ in LISS. As we can see there are two choices, the normal
behaviour of the ’for-loop’ statement (represented by in range) and the ’for-each’ statement
(represented by inArray identifier). In the case of the constructor, we need to check if the
identifier variable is in the symbol table and if it isn’t, the number 1 error message will be
thrown (see Table 28). Then we need to check the type that identifier variable has. If the
variable isn’t an array then it must throw the number 5 error message (see Table 28).

The range rule indicates us the limit bounds of a ’for-loop’ statement and it is syntatically
represented by: a limit inferior (minimum), two dots and a limit superior (maximum).

Minimum rule have two options; the first one is to write a constant number, the second
one is to write a variable. Regarding the variable, we need to check if it is in the symbol
table. If it isn’t then it means that it isn’t declared and must be thrown the number 1 error
message (see Table 28). But if the variable is in the symbol table, we need to check its type.
If the type isn’t an integer then it must throw the number 5 error message (see Table 28).

In a similar way, maximum rule has the same behaviour as minimum rule. This means
that we need to check if the identifier (variable) is in the symbol table. If it isn’t then it
means that the variable isn’t declared and the compiler must throw the number 1 error
message (see Table 28). However if the variable exists, we need to check its type. If the
type isn’t an integer then it must throw the number 5 error message (see Table 28).

Satisfy

Listing 4.33 is shown the syntax to define a condition satisfy in the context of the for stat
in LISS. Basically, the satisfying keyword means that there is a condition that must be
evaluated and should be ’true’ in order to proceed.

71

4.3. Semantic Analysis

In this case, the expression is the condition and it must have a boolean type. If the
expression type isn’t a boolean then it must throw the number 7 error message (see Table
28).

While stat

1 w h i l e s t a t : ’ while ’ ’ (’ express ion ’) ’
2 ’ { ’ s ta tements ’ } ’

Listing 4.35: While stat rule in LISS

In Listing 4.35 is shown the syntax to write the interation control flow statement while.
For this case, we need to check if the condition (represented above by the non-terminal

expression) has the correct type. Notice that a condition must be an expression with boolean
type. If it isn’t then it must throw the number 7 error message (see Table 28).

Succ or pred

1 succ or pred : succ pred i d e n t i f i e r

Listing 4.36: Succ or pred rule in LISS

Listing 4.36 defines the syntax of the increment or decrement statement in LISS. In this
case, we need to check two things.

First, we need to check if the identifier (also known as variable) is in the symbol table. If
it isn’t then it must throw the number 1 error message (see Table 28).

In case that the variable is in the symbol table, we need to check its type. If the type isn’t
an integer, then it must throw the number 5 error message (see Table 28).

Tail

1 t a i l : ’ t a i l ’ ’ (’ express ion ’) ’

Listing 4.37: Tail rule in LISS

Concerning the operations of sequences, Listing 4.37 defines the syntax for the tail func-
tion for sequences.

For this case, we need to see if the expression type has the correct type. If the expression
doesn’t have sequence type, then it must throw the number 7 error message (see Table 28).

72

4.3. Semantic Analysis

Head

1 head : ’ head ’ ’ (’ express ion ’) ’

Listing 4.38: Head rule in LISS

Similarly, Listing 4.38 defines the syntax for the Head function for sequences.
For this case, we need to see if the expression type has the correct type. If the expression

doesn’t have sequence type, then it must throw the number 7 error message (see Table 28).

Cons

1 cons : ’ cons ’ ’ (’ express ion ’ , ’ express ion ’) ’

Listing 4.39: Cons rule in LISS

In Listing 4.39, we can see how to write the Cons function for sequences.
For this case, we need to see if both expression have the correct type. If the first expression

(the left one) doesn’t have integer type, then it must throw the number 7 error message (see
Table 28). If the second expression (the right one) doesn’t have sequence type, then it must
throw the number 7 error message (see Table 28).

Delete

1 d e l e t e : ’ del ’ ’ (’ express ion ’ , ’ express ion ’) ’

Listing 4.40: Delete rule in LISS

In Listing 4.40 is presented the syntax for the delete function for sequences.
For this case, we need to see if both expressions have the correct type. If the first expression

(the left one) doesn’t have integer type, then it must throw the number 7 error message (see
Table 28). If the second expression (the right one) doesn’t have sequence type, then it must
throw the number 7 error message (see Table 28).

Copy statement

1 copy : ’ copy ’ ’ (’ i d e n t i f i e r ’ , ’ i d e n t i f i e r ’) ’

Listing 4.41: Copy statement rule in LISS

In Listing 4.41 is presented the syntax for the copy statement. For this case, we need to
see if both the identifiers are in the symbol table and have the correct type. If one of the

73

4.3. Semantic Analysis

identifier is not in the symbol table, then it must throw the number 1 error message (see
Table 28). After checking the availability of both identifiers in the symbol table, we need
to check their type. If a variable is not of sequence type, then it must throw the number 5

error message (see Table 28).

Cat statement

1 c a t s t a t e m e n t : ’ c a t ’ ’ (’ i d e n t i f i e r ’ , ’ i d e n t i f i e r ’) ’

Listing 4.42: Cat statement rule in LISS

In Listing 4.42 is shown the syntax for cat statement and it has the same behaviour as
the copy statement.

This means that we need to check if both identifiers are in the symbol table and have
the correct type. If one of the identifiers is not in the symbol table, then it must throw
the number 1 error message (see Table 28). Then, after checking the availability of both
identifiers in the symbol table, we need to check their type. If a variable is not of sequence
type, then it must throw the number 5 error message (see Table 28).

Is empty

1 is empty : ’ isEmpty ’ ’ (’ express ion ’) ’

Listing 4.43: Is empty rule in LISS

In Listing 4.43, we can see the syntax for function is empty for sequences. In this case,
we need to check, only, the type of expression that must be a sequence. If it isn’t, then it
must throw the number 7 error message (see Table 28).

Length

1 length : ’ length ’ ’ (’ express ion ’) ’

Listing 4.44: Length rule in LISS

In Listing 4.44 is shown the syntax for function length, that is the same behaviour as
is empty function.

We need to check, only, the type of expression that must be sequence type. If it isn’t, then
it must throw the number 7 error message (see Table 28).

74

4.4. Code Generation

Member

1 member : ’ isMember ’ ’ (’ express ion ’ , ’ i d e n t i f i e r ’) ’

Listing 4.45: Member rule in LISS

At last, Listing 4.45 defines the function member sequences. For this case, we need to
check first the identifier and then the expression. If the identifier terminal is not in the
symbol table, then we must throw the number 1 error message (see Table 28). Otherwise,
if the variable is in the symbol table, we need to check the type of both (identifier and
expression). Identifier must be an sequence, if it isn’t then it must throw the number 5 error
message (see Table 28). If expression isn’t an integer, then it must throw the number 7 error
message (see Table 28).

4.4 code generation

In the compiler process, after adding informations to the symbol table and searching some
inconsistencies to the LISS language (semantic). It is now time to convert the LISS language
representation (higher level language) to MIPS assembly code (lower level language).

In the process of converting the language, there is a lot of tasks that will be executed:

• Instruction selection : choosing which type of instruction to use.

• Register allocation : choosing the right register to use for a certain instruction.

• Instruction scheduling : choosing the right time for the instruction to be added in the
code.

Let’s discuss along this section about strategy and operations used for the code genera-
tion.

4.4.1 Strategy used for the code generation

In chapter 3, we talked about the MIPS architecture. In this section we will talk about
the strategy used for generating the MIPS assembly code regarding the processor’s specific
architecture.

Data and text part

The compiler creates two variables called data and text and those two variables have type
String. Each time that it is needed to generate a new assembly code fragment, it will be

75

4.4. Code Generation

added to one of those variables depending on the context. Each variable created at scope
level 0 (corresponding to a declaration) will be added to the data variable. Similarly, each
statement is transformed into MIPS code that is added to text variable.

Notice that a subprogram declaration (also known as function) is the only thing that is
not added to the data variable string.

Compiler register strategy

The MIPS architecture has a limited number of registers and it is a necessity to use it wisely
for generating the code.

So we created, in our project, an array structure with 8 positions which tells us which
registers are free (array type is boolean). From 0 to 7, it will represent the state of each
MIPS register.

In this case, the association of the registers with the array component is:

• Position 0 : register $t0

• Position 1 : register $t1

• Position 2 : register $t2

• Position 3 : register $t3

• Position 4 : register $t4

• Position 5 : register $t5

• Position 6 : register $t6

• Position 7 : register $t7

Each time that the compiler needs to occupy a register, it will always check the state of
each register by ascending order. Like that, the compiler knows that the next register to be
allocated will always be the latest and not in a random order.

Then we need to apply a strategy to avoid an overflow of registers being used. Let’s
explain this situation with an example in Listing 4.46:

1 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12

Listing 4.46: Example of a sum operation with some numbers

In Listing 4.46, we see a long addition with 9 numbers as operands. If we wanted to store
the 9 numbers in the available registers, it will be impossible due to the limitation of the
MIPS architecture (only 8 temporary register). So we need to apply a strategy for solving

76

4.4. Code Generation

this situation, and it passes by removing information when it is no more needed. For this
case, we can move value 4 to the first register ($t0) and move value 5 to the second register
($t1). Then we add the values, stored in the two registers, and store the result in register $t0.
Notice that by doing that, we set position 1 of the control array to false (because register $t1
is free) and $t1 will be available for storing the next value 6; after that we apply the same
strategy to continue the sum. By using this strategy, we won’t have an overflow of registers.

Also, notice that the MIPS architecture has some other registers available (saved tem-
porary registers (reserved across call)) and we could use them to increase the number of
registers. But even if we increase the number of registers, the problem is still there and that
is why we need to apply a strategy to handle properly the registers allocation task.

Additionally, those saved temporary registers are reserved for jump instructions and in
our case we use them for sequence operations only. Regarding to calling functions, which
uses also jump instruction, we use a different algorithm. We use the stack for storing the
information about the function and that is why we don’t need to use the saved temporary
registers.

Finally, concerning the usage of temporary registers, we have a law that dictate that when
a statement is finished (a statement ends with a semicolon), the state of those temporary
registers must be set to false. This means that each temporary register is free to be used
again.

Address size

In MIPS architecture, we have the ability to optimize the instruction that will be used. But
in our case, we won’t optimize anything and we will use a fixed address size. So, we
created an integer variable that tells us how many bytes does have an address in the MIPS
architecture (4 bytes).

The size of the address will be used to allocate variables in the heap or in the stack.
Notice that MIPS architecture does a fetch with address alignment of the instructions be-

ing executed. And that is why we set up a fixed size address and we don’t do optimizations
for ease debugging and code generation.

Conditional statement

In LISS language, there are different kinds of conditional statements (if-statement, while-
statement and for-statement) that will be implemented in MIPS assembly code, using some
jump instructions.

As said previously in Chapter 3 (MIPS assembly), there is a code pattern to adopt when
a jump instruction is being used. So we need to define a strategy for those conditional
statements.

77

4.4. Code Generation

It is created two variables, one of type LinkedList<Integer> named as counterJumpStack
and another one of type Integer named as counterJump.

Each time that a conditional statement is new, the variable counterJump will be concate-
nated to the name of the condition statement and then it is incremented. This is done
because in MIPS architecture code label: name must be unique so that inconditional jump
instructions are not ambiguous. If the name was the same then MIPS won’t be able to
know to which code label it should jump. So, when we concatenate the number with the
name of the conditional statement (and then it increments), the assembly code labels will
be unambiguous.

Regarding counterJumpStack (the LinkedList<integer> variable), this is a stack for saving
informations about the conditional statements when there are nested control statements.
The stack uses a LIFO (Last In First Out) system.

Let’s see an example in Listing 4.47.

1 program t e s t {
2 d e c l a r a t i o n s
3 i −> i n t e g e r ;
4 array1 = [1 , 2 , 3] −> array s i z e 3 ;
5 s tatements
6 i f (t rue)
7 then{
8 f o r (i inArray array1) {
9 wri te l n (i) ;

10 }
11 }
12 }

Listing 4.47: Example of conditional statements in LISS language

In Listing 4.47, we can see that we use a lot of nested conditional statement. So we need
to save the information of each conditional statement anywhere and that is why we use a
stack. Each time that a conditional statement appears, the compiler pushes the counterJump
value (associated to the conditional statement) to the stack counterJumpStack. If inside of the
conditional statement, there is another conditional statement, then its counterJump value,
meanwhile incremented, will be added to the top of the stack.

Like that we don’t loose the information and we have traceability regarding to the condi-
tional statement that the compiler has passed throw. Following this strategy, MIPS assembly
code generation will be easier and correct.

Notice that each time the compiler exits from a conditional statement, it removes the
information from the stack but the counterJump variable won’t be decremented.

78

4.4. Code Generation

Subprogram

To handle appropriately subprograms in LISS, we created three structure:

1. LinkedList<String> functionName

2. HashMap<String,String> mipsCodeFunctionCache

3. String functionMipsCode

The variable functionName is a LinkedList<String> structure that stores the name of each
subprogram that the compiler finds. It uses a FILO system and acts as a stack.

Basically, we created the same system as the one used for conditional statements. To
implement subprograms it is necessary to use also a jump instruction and so the name of
the function must be also unique to avoid ambiguity in the MIPS assembly code.

Each time, that the compiler finds a subprogram name in the LISS code, it pushes it
to the LinkedList structure. If there is, also, the nesting effect by having a multiplicity of
subprograms inside each one, then it will add all those informations to the stack.

When we need to add some MIPS assembly code, we just need to take the entire string
available in the stack by using the concatenate method and associate the MIPS assembly
code to that name.

The variable mipsCodeFunctionCache is a HashMap<String,String> structure and the key
of the HashMap refers to the name of a subprogram (it is the name that is catched in the
LinkedList structure explained before) and the value is the MIPS assembly code associated
to the name of the function.

Basically, that structure saves the information of each subprogram with their MIPS as-
sembly code associated. The fact that we use a HashMap structure is to comply with the
requirement that the name of a subprogram must be unique, and this constraint is perfect
with a HashMap because the keys are always unique.

Finally, the variable functionMipsCode is a String which hold the MIPS assembly code of
a subprogram. When the compiler is creating the MIPS assembly code of a subprogram, it
will add to that variable. At the end, it will be added to the HashMap structure whenever
it is necessary.

Notice that when the compiler finishes to pass the entire LISS code, it will remove all
the informations available in the HashMap structure and add it to the string variable text
(referred previously in the subsection Data and text part).

State of functions

In LISS language, some statements or operators are not translated directly into MIPS as-
sembly code. Instead, they are already predefined. It happens with:

79

4.4. Code Generation

• Sequence operations (tail, head, etc...)

• Printing statement (write, writeln)

• Read statement (input)

• Index out of bound check on validation (related to the array type)

Instead of translanting those functions to MIPS assembly code, the predefined code is
invoked. So when they are not used in the LISS code, it is not necessary to add that code to
the target file. We created a structure which tells us if those functions will be used or not.

• HashMap<String, Integer> functionStateUsedOrNot

Basically, the idea behind that structure is that if a function was used, it will set the
function entry (available in the HashMap structure) to 1(1 means true). When the compiler
finishs the code generation, it will check the variable functionStateUsedOrNot and see if
some functions are set to 1. If it is the case, then it will add at the end of the generated MIPS
assembly code, the appropriated and defined MIPS assembly code for that function. Notice
that the variable functionStateUsedOrNot is always initialized with 0 before the compiler
begins the code generation.

Stack

To complement the Symbol Table and deal easily with variables declared in scopes with
level greater than 0 (inside a function) we use a stack depicted in Figure 13, where we can
see two components: levelStackSP and stackSP.

1. ArrayList<Integer> levelStackSP

2. ArrayList<Integer> stackSP

levelStackSP is a stack where the index is associated with the scope level of a LISS sub-
program. The value stored in each index corresponds to the information about the index of
the stackSP array. Meanwhile the value in each index of the stackSP array store informa-
tion about the space that the compiler required when a stack operation was used in a LISS
program to deal with function calls as explained in the next section.

By creating that structure, the compiler will use an algorithm for finding a specific po-
sition relatively to a variable in the stack faster, instead of creating multiple lines of MIPS
assembly code for finding that position. In this case, it is done an optimization aimed at
executing a LISS program faster.

For example, in Figure 13, if the compiler needs to figure out the address of a variable
in scope level 2, it will use levelStackSP, access to its index 2 and get the value 4. Then with
the value 4, it will access index 4 of the stackSP array and get the address number 64.

80

4.4. Code Generation

Figure 13.: Stack structure

With that address, we can calculate the position of that variable with a specific algorithm
which will generate only one MIPS assembly code.

Calling a function

Calling a function requires some jump instruction. Those jump instructions may or may
not loose the information available in the registers before processing the function.

That is why we need to create a mechanism to avoid loosing that information before
processing a function in MIPS assembly code.

Let’s first explain the use of the stack regarding to function call in expression. But before
starting the explanation, notice that the arguments in function call doesn’t allow the use of
functions.

If a function call is used in an expression, it needs to check first the availability of the
temporary registers.

If a temporary register contains a value (isn’t empty) then it must be saved into the stack
before calling the function (example can be seen in Listing 4.49).

1 i = 2 + c a l c u l a t e () ;

81

4.4. Code Generation

Listing 4.48: Example of a function call in an expression statement

In Listing 4.49, the information that is stored into stack is the number 2. This is a valuable
information that needs to be stored in order to continue and generate the correct code. At
the end, after return from the function, it will be restored into the register.

Let’s see the code generated in Listing 4.49.

1 l i $t0 , 2

2 addi $sp , $sp , −4

3 sw $t0 , 0 ($sp)
4 j a l c a l c u l a t e
5 lw $t0 , 0 ($sp)
6 addi $sp , $sp , 4

7 move $t1 , $v0

8 add $t0 , $t0 , $ t1

9 sw $t0 , i

Listing 4.49: Code generated for the Listing 4.49

In Listing 4.49, the value 2 is loaded to register $t0 (line 1); then, the compiler knows
that a function call will occur so it needs to save the number two into the stack (line 2 and
3); the next instruction calls function calculate() (line 4); after the return (when the function
ends), the state saved previously into the stack (actually, number two) is loaded again to
the register $t0 (line 5 and 6); then it loads the result of the function to the next register
available, $t1 (line 7); and finally, it executes the arithmetic operation, addition (line 8), and
the result is in variable i (line 9).

However, if the temporary registers are empty before the function call, then this save
mechanism will not be applied.

Let’s see an example in Listing 4.50.

1 i = c a l c u l a t e () ;

Listing 4.50: Example of a function call in an assignment

As we can seen, in Listing 4.50, no information is stored in the temporary registers
before the call of function calculate(); this means that the mechanism for saving valuable
information won’t be applied (see the code generated for example 4.51).

1 j a l c a l c u l a t e
2 move $t0 , $v0

3 sw $t0 , i

82

4.4. Code Generation

Listing 4.51: Code generated for Listing 4.51

Concerning the functions to operate with sequences, the function call mechanism is ap-
plied in the same way. The difference is that with sequence functions this mechanism can
also be applied to arguments that have an expression.

For example, let’s consider the function cons() to operate with sequences (see Listing
4.52).

1 sequence2 = cons (3+ head (sequence2) , sequence2) ;

Listing 4.52: Example of using a sequence function in LISS

In Listing 4.52, the mechanism will be applied to both of the arguments passed to cons
function. The second argument of function cons(), it must be a sequence and can be an
expression (this means that we can nest more sequence functions in this argument). The
first argument must be an integer and can be an expression too (this mean that it can nest
sequence functions in there (if they return an integer)).

To cope with this situation, the compiler needs to store all the values into the stack to
avoid loosing them.

Let’s see and explain the code generated from the example in Listing 4.52 (see Listing
4.53).

1 lw $t0 , sequence2

2 addi $sp , $sp , −4

3 sw $t0 , 0 ($sp)
4 l i $t0 , 3

5 addi $sp , $sp , −4

6 sw $t0 , 0 ($sp)
7 lw $t0 , sequence2

8 move $s0 , $ t0

9 j a l head sequence
10 lw $t0 , 0 ($sp)
11 addi $sp , $sp , 4

12 move $t1 , $v0

13 add $t0 , $t0 , $ t1

14 move $s1 , $ t0

15 lw $t0 , 0 ($sp)
16 addi $sp , $sp , 4

17 move $s0 , $ t0

18 j a l cons sequence
19 move $t0 , $v0

20 sw $t0 , sequence2

83

4.4. Code Generation

Listing 4.53: Example of code generated for Listing 4.52

In Listing 4.53, we load the variable sequence2 corresponding to the second argument
of function cons() (line 1); then we store that information to the stack (line 2 to 3); then,
we process the first argument of the cons() function (loading the number 3 to a temporary
register $t0)(line 4); now, the compiler knows that it must add that number with the result
of head() function (which will use a jump instruction), it will save the number 3 to the
stack before calling that function (line 5 to 6); then the compiler will generate the calling
function (line 7 to 9); after return from the function, the compiler knows that it needs to
load the previous state stored before calling the function, so it gets back the number 3 from
the stack into $t0 (line 10 to 11); then the result of the head() function is stored in the next
register available $t1 and executes the addition (line 12 to 13); finally, the compiler will
move the sum to the appropriated register to call the cons() function (line 14) and reload
the information that he stored previously to the stack (related with the second argument of
the cons() function) (line 15 to 17); last, it will process the call of the cons() function and
store the result into the variable sequence2 (line 18 to 20).

4.4.2 LISS language code generation

This part will discuss the code generation implemented for every statements in LISS lan-
guage. It is divided by paragraphs, one for each statements; when appropriate, it is again
subdivided to discuss the process for scope level 0 and for scope level greater than 0.

4.4.3 Creating a variable in LISS

Scope level equals to zero

Let’s see an example of LISS code in Listing 4.54.

1 program l i s s {
2 d e c l a r a t i o n s
3 a , b = 4 , c = −1, d = +2 −> i n t e g e r ;
4 f lag , f l a g 1 = f a l s e , f l a g 2 = true −> boolean ;
5 array1 , array2 = [2 , 1 , 1] , array3 = [1] −> array s i z e 3 ;
6 array4 = [[1 , 2] , [3]] −> array s i z e 3 , 3 ;
7 set1 , s e t 2 = { y | y+1 < y+4} , s e t 3 = {} −> s e t ;
8 seq1 , seq2 = <<1,2>> −> sequence ;
9 s tatements

10 }

84

4.4. Code Generation

Listing 4.54: Declaration block in LISS, to illustrate the creation of variables

In Listing 4.54, we can see some variables being declared in a LISS program in the level
0 (global scope). In this case, the compiler needs to identify the name and type of each
variable and its initial values that will generate respective MIPS assembly code. Let’s go
line by line and explain each one.

In line 3 of Listing 4.54, we see 4 different named variables being declared with the type
integer. The compiler adds them to the symbol table and does some checkings according
to the semantic system implemented. Then, if everything is all right, it associates each
variable with a certain address. Remember that the type integer requires 4 bytes in the
memory as explained before. So, in this case, it will generate the address 0, 4, 8 and 12 for
those variables.

Later, we need to generate the assembly code if everything worked as planned. And this
is done by declaring them in the data section of the MIPS assembly code (see in Listing
4.55).

1 . data
2 a : . word 0

3 b : . word 4

4 c : . word −1

5 d : . word +2

Listing 4.55: Code generation of integer variables in MIPS assembly code

So creating variables in the level 0, means to add them to the data section (otherwise
it will be in the stack) associating the name of the variables (a) with their size (.word (4
bytes)) and the value that the variable will store. Notice that a variable not initialized store
the value 0.

In line 4 of Listing 4.54, we declare boolean variables and this is processed in the same
way as we did for integer variables. Remember that boolean types cost 4 bytes in the
memory. So we just need to do the same as if it was of integer type.

We add the name of the variable (flag), then its size (.word (4 bytes)) and then we write
the value of the boolean (true is 1, false is 0) (see in Listing 4.56).

1 f l a g : . word 0

2 f l a g 2 : . word 1

3 f l a g 1 : . word 0

Listing 4.56: Code generation of boolean variables in MIPS assembly code

Notice that a boolean variable not initialized has the default value false.

85

4.4. Code Generation

Arrays

In lines 5 and 6 of Listing 4.54, we declare some array type variables. The idea of array
type is a fixed-size sequential collection of elements with the same type. In MIPS assembly
code, there is a specific way of creating this type by doing as follows (see in Listing 4.57).

1 array2 : . space 12

2 array1 : . space 12

3 array3 : . space 12

4 array4 : . space 36

Listing 4.57: Code generation of array variables in MIPS assembly code

In Listing 4.57, we declare the name of the variable, then its size (sequence of memory,
.space) (due to the fact that it is an array type) and finally, how much space that the array
will store. Notice that array type in LISS, only stores integer values and for calculating the
space required by the array variable, we need to do some calculation.

The calculation is done by multiplying all the limits of each dimension of the array
variable and with that result we multiply by the number 4 (space of an integer variable).
Regarding to the line 5 in Listing 4.54, the calculation for the variables array1, array2 and
array3 is done by taking the limit 3 (they are a one-dimension array) and multiply it by 4

(space of an integer), which is equal to 12. However regarding to line 6 in Listing 4.54, the
calculation for the variable array4 (that is a bi-dimensional array) is done by multiplying
all the limits associated to the variable (3x3 which is 9) and then, multiplying by 4 (space
of an integer), which is equal to 36. And the strategy is the same if the dimension of the
array variable is greater.

Now that we declared the space of those variables in MIPS assembly code, we need to
declare the values associated to those variables.

So we implemented a system which takes the information of each position of the array
regarding to the value that was declared in the array.

For example, if we have a multidimensional array with 3 dimensions like that :

1 array1 = [[[1 2]] , [[5 , 6] , [7]]] −> array s i z e 2 , 2 , 3 ;

Listing 4.58: Example of an array with 3 dimensions

We need to create a system which will take the information regarding the array initial-
ization to generate the appropriated code (see Figure 14). So we created the following
structure (see in Listing 4.59).

1 ArrayList<ArrayList<Integer>> accessArray

Listing 4.59: Structure of saving informations of each index in JAVA

86

4.4. Code Generation

Figure 14.: Structure for saving information of each value declared in a array

Basically, it is a structure where one ArrayList holds the information of one index of the
array processed and add it to the other ArrayList whenever it completes to process the
information (it behaves like a stack).

So, in Figure 14, we can see clearly that the left rectangle is the stack where each position
of it holds information (a ArrayList of integers) regarding each dimension declared in the
array. This LinkedList has a certain architecture which must be explained. The size of that
ArrayList is equal to the dimension of the array plus one (refers to the value available in the
index processed). Then, the first positions of the ArrayList are reserved for each dimension
of the array and the last position of the ArrayList is the value which needs to be stored in
that index of the array. Each dimension will inform us which position has the value. For
example, in Figure 14, the first information available in the stack is in the position 0 and
this information is telling us that there is a value (12) to be stored at the position [0,0,0]. The
second information, available in the index 1 of the stack, is telling us that there is another
value (7) to be stored at the position [1,1,0]. After getting all those informations, we need to
generate the instructions and for that we need to calculate the right position of each value

87

4.4. Code Generation

with the information that it was processed. The calculation is done with the formula in
Equation 1.

p(l, a) =
n−2

∑
i=0, i 6=n−1

(a[i]×
n−1

∏
j=i+1

l[j]) + a[n− 1] (1)

Equation 1 needs two inputs:

• l - array variable which has the informations about the bounds of the array in ques-
tion.

• a - array variable with the indexes of the position of the array that need to be accessed.

Notice that the variable n, in the equation, is equal to the number of dimensions of the
array.

Then after getting those inputs variables, it calculates the position of an element for any
n-dimensional array size. If the dimension of the array is 1, the equation doesn’t compute
the first part (due to the restriction of the equation).

And to understand the formula, let’s explain it with an example supposing that we need
to access a[1,1,0] of an array tridimensional with 2,2,3 boundaries.

In that case, the input variables for the formula (examples taken from Figure 14 and
Listing 4.58) are:

By using the equation above with that example, let’s unfold it.

p(l, a) = a[0]× l[1]× l[2] + a[1]× l[2] + a[2]

p(l, a) = 1× 2× 3 + 1× 3 + 0

p(l, a) = 6 + 3 + 0

p(l, a) = 9

(2)

So, with that calculation we can see that the memory sequential position for the array
component selected (0,1,0) is the offset 9.

Using Figure 15 let’s check if the calculation was done correctly.
Using the positions of the variable array l and using them to find the right position in the

array structure in Figure 15, we go first to the right position of the first dimension (number
1 (l[0] = 1)). Then, we go to the second dimension of the part that belongs the number 1

in the first dimension, in this case it is the number 1 (l[1] = 1). Finally, we go to the last

88

4.4. Code Generation

Figure 15.: Array structure with size 2,2,3.

dimension and go to the number 0 (l[2] = 0). As we can see, it goes directly to the index
number 9 of the array.

This proves that the algorithm works properly and explains how it calculates the memory
position for any array component given its index.

Back to the analysis of line 5 and line 6 in Listing 4.54, and after creating the space for
the variables array2, array3 and array4, we need to initialize them.

Let’s see in Listing 4.60 an example of the code generation for the initialization of array2

1 . t e x t
2 main :
3 # #### I n i t i a l i z e Value Array : a r r a y 2 #####
4 l i $t0 , 2 # 5 : 1 2
5 l i $t1 , 0 # 5 : 1 2
6 sw $t0 , array2 ($ t1)
7 l i $t0 , 1 # 5 : 1 2
8 l i $t1 , 4 # 5 : 1 2
9 sw $t0 , array2 ($ t1)

10 l i $t0 , 1 # 5 : 1 2
11 l i $t1 , 8 # 5 : 1 2
12 sw $t0 , array2 ($ t1)
13 # ######################################

Listing 4.60: MIPS assembly code generated for the variable array2

In MIPS architecture, it is impossible to declare the array with the values associated in
the declaration part. So, we need to overcome this problem and this is done by creating
MIPS assembly code in the text part to be added to the flow of the program execution.

89

4.4. Code Generation

In this case, we can see in Listing 4.60 that the MIPS assembly code for the initialization
of array2 comes first in the flow of the program execution. Then after that code fragment
for initialization of arrays, comes the mark fragment to control the flow of the program
execution.

Let’s explain how the code generated in Listing 4.60 works.

• line 4 - Loading the value 2, this is the value to be stored in the array.

• line 5 - Loading the position 0, this is the position which the value will be stored (use
the algorithm for calculating the position).

• line 6 - Store the value 2 to the position 0 in the array2 memory.

• line 7.... - Continue to use the same strategy with the next values that needs to be
added.

Storing one value in an array needs three MIPS instructions.
Notice that the position calculated is always multiplied, at the end, by the size of an

integer (number 4).
As we can see in Listing 4.60, the positions are :

• line 5 - the value is 0 => position 0 (0/4 = 0)

• line 8 - the value is 4 => position 1 (4/4 = 1)

• line 11 - the value is 8 => position 2 (8/4 = 2)

The other array elements (on components) have the initial value 0 and that is why we
don’t need to create MIPS instructions for them, because the default value is 0 in an array
non-initialized (the story changes when those arrays are created in a level scope greater
than 0, but it will be discussed further).

Sets

In line 7 of Listing 4.54, we see two different named variables being declared with the type
set.

That type basically doesn’t create any informations in the MIPS assembly code for the
declarations parts. Instead it saves the information in a specific structure created for that
purpose. The structure is made with the concept of a Tree structure where there are some
nodes with branches or not, associated to other nodes.

And this structure is made by two JAVA class:

• Node Class

90

4.4. Code Generation

• Set Class

The Node JAVA class is a class that represents the concept of a node structure in a tree,
with three components:

1. String data

2. Node left

3. Node right

The variable data refers to the value associated with that node, the variables left and
right refers to a node who might be to the left or right side of the present node.

Now, the Set class is a class that saves the information of the set in a tree structure and
the free variable associated with that set declaration. The Set class uses the Node class.

1. ArrayList<Node> identifier

2. Node head

The variable identifer refers to a list of occurencies of the set free variable in the tree
nodes. This is done for one particularly reason, instead of browsing the entire tree and
looking for those free variable occurences, we can change their state along the list and
directly, it changes also in the tree. The advantage of that structure is that we don’t need to
execute a tree search to look for and change those free variable occurences, who will be a
time consuming by doing that operation.

Then we have the variable head which points to the root node of the tree structure.
Let’s see the Set structure in Figure 16.
We implemented that list for free variables for one reason and this reason comes with

the fact that we can join multiple sets. Notice that each set has its own free variable which
means that each free variable is distinct from set to set when trees are merged in a set
operation.

Let’s see an example of joining two sets in Figure 17.
In Figure 17, we can see that the root of the Set is connected with two sets (left and

right). This means that we are joining two sets (Set1 and Set2).
Doing this change to upgrade the complexity of the tree structure will need some atten-

tion to fix the free variables of each set. This is why we have created the set class with a list
of free variables. Like that, we can get the free variables from the other sets and add them
to the list of the Set.

The compiler creates a Set class for each set variable declared, and it will associate that
structure to the variable added in the symbol table.

91

4.4. Code Generation

Figure 16.: Set structure in JAVA

Figure 17.: Set structure in JAVA

Notice that the compiler will generate some assembly code only when it will be needed
to implement a set logical expression in the statements part of the LISS program.

Last, we need to talk about the different states that a set can have regarding to the
declaration part.

Set variable can have three different states:

92

4.4. Code Generation

• Universe set

• Empty set

• Defined set

The universe set is a set which represents the whole number system and it is declared
in a LISS program as follows:

1 s e t 1 −> s e t ;

The empty set is a set which represents a collection without any number. It is declared
a LISS program as follows:

1 s e t 1 = {} −> s e t ;

The defined set is a set which represents a collection containing the numbers generated
by the logical expression associated with the set. It is declared in a LISS program as follows:

1 s e t 1 = {y | y+1 < y+4} −> s e t ;

Sequences

Let’s talk finally about the last line 8 in Listing 4.54 that represents the declaration of
variables of type sequence. The idea of generating the code for that type, is almost the same
as for the type array.

Basically, the type sequence creates one position of memory for each variable declared
and will store the value -1 in there (value -1 is equal to NULL). By setting the value to -1,
it means that the variable sequence is empty, no values are associated to that variable (the
same as saying that the sequence wasn’t intialized).

Let’s see the code generated for the example available on line 8 of Listing 4.54:

1 seq2 : . word −1

2 seq1 : . word −1

93

4.4. Code Generation

As we can see, we write the name of the variable first, then the space needed to store that
variable (.word) and the initial value associated to that variable (NULL value (-1)). Notice
that for that type of variables we allocate 4 bytes, for one main raison. The sequence type
is a linkedlist of integer numbers and those numbers will be stored in the heap section. So,
in this case, we need to know in which address the first element of the sequence is stored.
This initial address must be stored at one place that can be known and this goes by storing
that address to the variable name associated. Because the size of an address in the MIPS
architecture is 4 bytes, so in this case the variable must be 4 bytes long and that is why we
chose the type .word.

After creating the variables, we need to check if the sequence is initialized or not. If it is
initialized, we need to generate MIPS assembly code.

For generating the code, we need to insert the values defined in the sequence writing the
appropriate MIPS assembly code for each value.

Notice also, that the MIPS assembly code that will be generated, will also be placed in the
same area as the initialization of an array (before the code corresponding to the statement
in the program body).

Let’s analyze in Listing 4.61, the code generated for the variable seq2 declared in Listing
4.54.

1 lw $s0 , seq2

2 l i $s1 , 1

3 j a l cons sequence
4 move $s0 , $v0

5 l i $s1 , 2

6 j a l cons sequence
7 sw $v0 , seq2

Listing 4.61: Code generated for the sequence variable

Basically, we need some inputs in order to add some values to a sequence and those
informations are:

1. the name of the sequence variable.

2. the value that needs to be added to the sequence.

3. the function that will add the number to the heap and link it to the sequence.

So, regarding to the variable seq2 in Listing 4.54, the compiler needs to take the value 1

and 2 and generate code to insert them in the sequence.
In Listing 4.61, the compiler first creates an instruction which puts the address of the

sequence variable to a saved register ($ s0), then it loads the value 1 (first number that must

94

4.4. Code Generation

be added to the sequence) to the next saved register ($ s1) and finally it calls the function
that will insert in the sequence (cons sequence).

Notice that those steps are always the same; regarding the use of those saved registers,
the reason is that we don’t need to use the stack for storing the information. Instead we
take profit of the MIPS architecture, and we use those saved registers.

Normally we use the saved registers for calling some functions due to the fact that those
registers won’t be modified during the jumping to those functions, and in that case, we call
the function that will add the number to the sequence.

cons sequence function will return and set register $v0 to the return value that is the
address of the first element of the sequence. Then in line 5, it will move the address in
register $v0 to the register $s0, due to the fact that it needs to add the second number
(number 2) to the sequence. Finally, at the end it will store the address of the first element
in the sequence variable (line 8).

Level scope greater than zero

Creating variables in an inner scope (with a level greater than 0) is necessary when those
variables are declared inside of a function, like the one exemplified in Listing 4.62.

1 program l i s s {
2 d e c l a r a t i o n s
3 subprogram t e s t () {
4 d e c l a r a t i o n s
5 a , b = 4 , c = −1, d = +2 −> i n t e g e r ;
6 f lag , f l a g 1 = f a l s e , f l a g 2 = true −> boolean ;
7 array1 , array2 = [2 , 1 , 1] , array3 = [1] −> array s i z e 3 ;
8 array4 = [[1 , 2] , [3]] −> array s i z e 3 , 3 ;
9 set1 , s e t 2 = { y | y+1 < y+4} , s e t 3 = {} −> s e t ;

10 seq1 , seq2 = <<1,2>> −> sequence ;
11 s tatements
12 }
13 s tatements
14 }

Listing 4.62: Example of declaring variables in a level greater than 0 in a subprogram

As we can see in Listing 4.62, variables are declared in the same way as they are at level
0 (program code). The only thing that is different is that they are created in a different area
(subprogram area) and this means that those variables need to be allocated in the stack
memory.

95

4.4. Code Generation

When the compiler processes a function, it will process first the arguments and then,
every variable declared in the declarations part.

After adding the arguments and the variables to the symbol table, it will also calculate
the total size that needs to be allocated in the runtime stack.

Figure 18.: Architecture of the stack relatively to a function in LISS

As can be seen in Figure 18, the stack is organized as follows:

• First, a position for the return address is allocated;

• Then, the local variables are allocated;

• At the top, we allocate space for the arguments of the function.

Notice that the stack grows from the highest address to the lowest one and that there
is also a reason for this choice. The variables that the compiler finds and needs to add to
the symbol table have an address automatically generated by incrementing a global space
counter. When the compiler enters a function (a subprogram in LISS), this address counter
is reset to zero.

So, if we want to access a variable in that stack, we just need to get the address of the
variable from the symbol table and add it to the new stack pointer.

96

4.4. Code Generation

Notice that, in Figure 18, it is possible that the arguments section, or the local variables
section, does not appear in the stack (if the function in the LISS program does not have
arguments, or does not declare variable).

Now, let’s explain the code generated in MIPS relatively to the Listing 4.62.
The fact that it is a subprogram (function) implies that the code generated will be added

to the branch associated with the function name in MIPS and the first thing that must be
done under that branch is to increase the stack relatively to the size of data that needs to be
allocated (see in Listing 4.63).

1 t e s t :
2 addi $sp , $sp , −160

3 sw $ra , 156 ($sp)

Listing 4.63: Initialization of MIPS code generated for a function branch

In Listing 4.63, we see in the first line a code label that is the name of the branch
associated with that function. Then appears the instruction for adding to the stack-pointer
the stack size that the function needs. In this case, we have one instruction add (line
2) which explains us that the function needs to allocate 160 bytes in the stack memory
regarding to the stack pointer and updating the value of the new stack pointer. Finally, we
save the return address of the function into the stack (line 3).

This example follows the general MIPS schema that is always used for the initialization of
a function code branch. After that, comes the MIPS assembly code relative to the variables
declared under the declarations part of the function; notice that local variables are allocated
in the top of the runtime stack instead of being allocated in the global static memory. So
these initialization requires the generation of proper instructions.

In line 5 of Listing 4.62, we are declaring integer variables and the code generated for
those variables is shown in Listing 4.64.

1 l i $t0 , 0

2 sw $t0 , 0 ($sp)
3 l i $t0 , 4

4 sw $t0 , 4 ($sp)
5 l i $t0 ,−1

6 sw $t0 , 8 ($sp)
7 l i $t0 ,+2

8 sw $t0 , 12 ($sp)

Listing 4.64: Declaring integer variables in level scope greater than 0 on MIPS.

In Listing 4.64, lines 1 and 2 are related with the declaration of the variable a. Basically,
the idea is:

97

4.4. Code Generation

1. load the value to store in the variable to a temporary register.

2. store that value in that register to the position allocated to the variable in the stack.

Notice that the position is given by the algorithm that we explained in a previous section
(stack structure).

Lines 3 and 4 are the code generated for the variable b; lines 5 and 6 are the code
generated for the variable c; lines 7 and 8 are the code generated for the variable d.

Line 6 of Listing 4.62, refers to variables declared with type boolean and the code gener-
ated for that type can be seen in Listing 4.65.

1 l i $t0 , 0

2 sw $t0 , 16 ($sp)
3 l i $t0 , 1

4 sw $t0 , 20 ($sp)
5 l i $t0 , 0

6 sw $t0 , 24 ($sp)

Listing 4.65: Declaring boolean variables in scope level greater than 0

In Listing 4.65, the methodology for creating boolean variables at a level greater than 0

is the same used for level zero. The only thing that differs, is the instruction for storing the
value that is associated to the variable.

Lines 1 and 2 of Listing 4.65 refers to the declaration of the variable flag; lines 3 and 4

corresponds to the declaration of the variable flag2; and lines 5 and 6 corresponds to the
declaration of the variable flag1.

Lines 7 and 8 of Listing 4.62, declare variables of type array; the code generated for the
variable array2 is shown in Listing 4.66.

1 # #### I n i t i a l i z e Array : a r r a y 2 #####
2 l i $t0 , 0

3 sw $t0 , 28 ($sp)
4 l i $t0 , 0

5 sw $t0 , 32 ($sp)
6 l i $t0 , 0

7 sw $t0 , 36 ($sp)
8 # #### I n i t i a l i z e Value Array : a r r a y 2 #####
9 l i $t0 , 2

10 l i $t1 , 0

11 l i $t2 , 2 8

12 add $t1 , $t1 , $ t2

13 add $t1 , $t1 , $sp
14 sw $t0 , ($ t1)
15 l i $t0 , 1

98

4.4. Code Generation

16 l i $t1 , 4

17 l i $t2 , 2 8

18 add $t1 , $t1 , $ t2

19 add $t1 , $t1 , $sp
20 sw $t0 , ($ t1)
21 l i $t0 , 1

22 l i $t1 , 8

23 l i $t2 , 2 8

24 add $t1 , $t1 , $ t2

25 add $t1 , $t1 , $sp
26 sw $t0 , ($ t1)

Listing 4.66: Declaring array variables in a level greater than 0

The creation of a variable of type array is done almost in the same way as if it was a
variable declared at level zero. But it differs in some points explained below.

Regarding variables of type array, we need to set to zero all the position of the array in
the stack (done on line 2 to 7 of Listing 4.66). Then, we need to store the values that were
declared in the array into their right position. Let’s explain how this is done for value 2 of
array2, considering the program in Listing 4.66:

1. line 10 : Store value 2 in register $t0.

2. line 11 : Store index of value 2 regarding to the array declared to register $t1.

3. line 12 : Store address of the array to register $t2.

4. line 13 : Add the index with the address of the array for getting the relative address
of the component.

5. line 14 : Add that address with the stack pointer, for getting the final address in the
stack.

6. line 15 : Store the value 2 into that computed address in the stack.

Repeat the same algorithm for the next values that need to be stored. Also notice that
the index of the array is calculated throw the algorithm mentioned previously and that the
address of the array is associated to the variable and caught from the symbol table.

Line 9 of Listing 4.62, declares variables of type set and it only creates the tree structure
which will be associated to each variable in the compiler’s Symbol Table. Nothing more
will be generated as code, unless if it is used in the statements section.

Line 10 of Listing 4.62 declares variables of type sequence and the code generated for
the variable seq2 is shown in Listing 4.67.

99

4.4. Code Generation

1 l i $t2 ,−1

2 sw $t2 , 148 ($sp)
3 lw $s0 , 148 ($sp)
4 l i $s1 , 1

5 j a l cons sequence
6 move $s0 , $v0

7 l i $s1 , 2

8 j a l cons sequence
9 sw $v0 , 148 ($sp)

Listing 4.67: Declaring sequence variable in level scope greater than 0

The idea of generating the code for a sequence is the same used for an array variable.
First, we need store the value NULL in the stack memory (lines 2 and 3 of Listing 4.67)
and then, if some initiate values are associated to the variable, we need to generate the code
(which is almost the same as the one generated for a sequence in level 0).

So, first we get the address of the sequence (line 4 of Listing 4.67), then we load the value
to a register (line 5 of Listing 4.67) and finally, we call the function that will process the
concatenation of the value to the sequence.

Notice that after creating the code corresponding to those variable declarations, appears
the MIPS code for the body of the subprogram. Finally, at the end of the execution, we
need to remove the stack allocated to the function and return, as shown in Listing 4.68.

1 lw $ra , 156 ($sp)
2 addi $sp , $sp , 160

3 j r $ra

Listing 4.68: Exiting the function in MIPS assembly code

In Listing 4.68, line 1 will get the return address of the function; then at line 2 it will
remove the stack allocated to the function and finally at line 3, it will prepare to exit the
function with the return address.

4.4.4 Loading a variable or a value

Loading a variable depends only on one factor, the level of the variable.
If the level of the variable is zero then it will load the value of the variable by using its

name (see in Listing 4.69).

1 lw $t0 , b

Listing 4.69: Loading a variable with level scope equals to zero

100

4.4. Code Generation

Otherwise if the level is greater than zero, then it must use the algorithm which will find
the position in the stack and then load the value at that position in the stack (see in Listing
4.70).

1 lw $t0 , 4 ($sp)

Listing 4.70: Loading a variable with level scope greater than zero

To load a value, the only possible values that can be loaded are of integer and boolean
types; this operation doesn’t depend on the level. The instruction for loading is the same,
it just depends on the type that will be used. If it is a boolean type, the value true will be
loaded as one; otherwise the value false will be loaded as zero (see in Listing 4.71).

1 l i $t0 , 1 # t r u e v a l u e b e i n g l o a d e d
2 l i $t0 , 0 # f a l s e v a l u e b e i n g l o a d e d

Listing 4.71: Loading a boolean value

If it is an integer type, then it will load the value that it will be declared (see in Listing
4.72).

1 l i $t0 , 5 # l o a d i n g t h e number 5

Listing 4.72: Loading an integer value

4.4.5 Assigning in LISS

An assignment in LISS has three parts: the sign equals, the left operands and the right
expression.

In order to make the operations consistant (coherent), the types in the left and right sides
must be equal. Let’s show, in Listing 4.73, some cases of assignment statements in LISS.

1 i = 1 + 2 + 3 ;
2 f l a g 1 = 1 < 3 ;
3 array1 [1] = 1 0 ;
4 array1 = array2 ;
5 array1 = [2] ;
6 s e t 1 = s e t 2 ;
7 sequence1 = sequence2 ;

Listing 4.73: Examples of assignment for different types in LISS

101

4.4. Code Generation

Assignment for integer

In Listing 4.73, lines 1 and 3 are statement that deal with integer type; however the process
for generating MIPS assembly code is distinct and needs to be discussed. The normal and
general way consists in assigning the content to an integer variable. Let’s explain it by
analyzing the code generated for both lines 1 and 3.

1 l i $t0 , 1

2 l i $t1 , 2

3 add $t0 , $t0 , $ t1

4 l i $t1 , 3

5 add $t0 , $t0 , $ t1

6 sw $t0 , i

Listing 4.74: Code generated for line 1 in Listing 4.73

For example, to translate an arithmetic operations of type integer variable, it must create
the code for the arithmetic operation (lines 1 to 5 of Listing 4.74) and then store it into the
variable (line 6 of Listing 4.74).

If we want to assign a value to an array, the code generated can be seen in Listing 4.75.

1 l i $t0 , 1

2 #### V e r i f y l i m i t s o f t h e a r r a y ####
3 l i $t1 , 0

4 s l t $t2 , $t0 , $ t1

5 s l t u $t2 , $zero , $ t2

6 x o r i $t2 , $t2 , 1

7 l i $s0 , 7

8 beqz $t2 , indexoutofboundError
9 l i $t1 , 4

10 s l t $t2 , $t0 , $ t1

11 l i $s0 , 7

12 beqz $t2 , indexoutofboundError
13 ####End o f t h e v e r i f i c a t i o n ####
14 l i $t1 , 4

15 mul $t0 , $t0 , $ t1

16 l i $t1 , 1 0

17 sw $t1 , array1 ($ t0)

Listing 4.75: Code generated for line 3 in Listing 4.73

First, it loads the position where the value will be stored (in this case, it loads the number
1 (line 1 of Listing 4.75). Then some code is included for checking if the position is inside
the boundaries of the array (line 3 to 12 of Listing 4.75). Basically, it tests if the position

102

4.4. Code Generation

value is between 0 and 4; if it is not, then it will raise an index out of bounds error and
will stop the program. Though, if the position is inside the limits then it will multiply the
position by four (line 14 to 15 of Listing 4.75) and after, it will load the respective content
(line 16 of Listing 4.75). Finally, it will store the content to the position of the array (line 17

of Listing 4.75).
Notice that the right side of assignment statement can be an expression. This means that

it can use some operators to build a complex arithmetic expression (only integer operators);
below is a list of those operators:

• + (plus sign)

• - (minus sign)

• * (multiply sign)

• / (division sign)

Concerning those operators, each one has one corresponding instruction in MIPS as can
be seen in Listing 4.76.

1 add $t0 , $t0 , $ t1 # p l u s i n s t r u c t i o n
2 sub $t0 , $t0 , $ t1 # minus i n s t r u c t i o n
3 mul $t0 , $t0 , $ t1 # m u l t i p l y i n s t r u c t i o n
4 div $t0 , $t0 , $ t1 # d i v i s i o n i n s t r u c t i o n

Listing 4.76: Code generated for arithmetic operators

So, the mechanism of generating the code for an expression is always the same: generate
the code for the left operand of the operator, then generate the code for the right operand,
and finally generate the appropriate operator instruction.

Assignment for boolean

In Listing 4.73, line 2 is a statement that deals with boolean type.
The method for processing the values of their type is simular to the one followed for

arithmetic operations with integer variables: first it generate the code for the right side and
then generate the code for the left side.

Let’s see the code generated for a boolean assignment (see in Listing 4.77).

1 l i $t0 , 1

2 l i $t1 , 3

3 s l t $t0 , $t0 , $ t1

4 sw $t0 , f l a g 1

Listing 4.77: Code generated for line 2 of Listing 4.73

103

4.4. Code Generation

In Listing 4.77, it is processed the expression on the right side (lines 1 to 3), and then
store the result in the variable associated to the assignment statement (line 4).

As explained before, some operators are available for boolean expressions which are
listed below:

• == (double equal sign)

• != (different sign)

• < (less sign)

• > (greater sign)

• <= (less or equal sign)

• >= (greater or equal sign)

• || (or sign)

• ! (negation sign)

Concerning those operators, only three of them have one corresponding instruction(<, >,
||), and the other require a logic mechanism with more than one instruction. Notice that this
is due to the fact that MIPS architecture doesn’t have all the logic instruction implemented.
Let’s see the code generated for each one.

1 s l t $t2 , $t0 , $ t1

2 s l t u $t2 , $zero , $ t2

3 x o r i $t2 , $t2 , 1

4 s l t $t3 , $t1 , $ t0

5 s l t u $t3 , $zero , $ t3

6 x o r i $t3 , $t3 , 1

7 and $t2 , $t2 , $ t3

Listing 4.78: Code generated for ’equal’ operator in MIPS

In Listing 4.78, we translate the behaviour of the equal operator according to the equation
below:

x == y ⇐⇒ (¬(x < y)) ∧ (¬(x > y)) (3)

1 s l t $t2 , $t0 , $ t1

2 s l t $t3 , $t1 , $ t0

3 or $t2 , $t2 , $ t3

Listing 4.79: Code generated for ’not equal’ operator in MIPS

104

4.4. Code Generation

In Listing 4.79, we translate the semantics of the ’not equal’ operator according to the
equation below:

x! = y ⇐⇒ (x < y ∨ x > y) (4)

1 s l t $t0 , $t1 , $ t0

2 s l t u $t0 , $zero , $ t0

3 x o r i $t0 , $t0 , 1

Listing 4.80: Code generated for ’less or equal’ operator in MIPS

In Listing 4.80, we translate the semantics of the ’less or equal’ operator according to the
following equation:

x <= y ⇐⇒ ¬(x > y) (5)

1 s l t $t0 , $t0 , $ t1

2 s l t u $t0 , $zero , $ t0

3 x o r i $t0 , $t0 , 1

Listing 4.81: Code generated for ’greater or equal’ operator in MIPS

In Listing 4.81, we translate the semantics of the ’greater or equal’ operator according to
the equation below:

x >= y ⇐⇒ ¬(x < y) (6)

Now, let’s see the code generated for the ’not’ operator (see Listing 4.82).

1 s l t u $t0 , $zero , $ t0

2 x o r i $t0 , $t0 , 1

Listing 4.82: Code generated for ’not’ operator in MIPS

And finally, the three operators which are translated directly to MIPS:

1 s l t $t0 , $t0 , $ t1 # l e s s i n s t r u c t i o n
2 s l t $t0 , $t1 , $ t0 # g r e a t e r i n s t r u c t i o n
3 or $t0 , $t0 , $ t1 # or i n s t r u c t i o n

Notice that the difference between a ’less’ and a ’greater’ instruction is only in the use of
the registers. The mechanism for generating MIPS code for the boolean assignment follows

105

4.4. Code Generation

the pattern introduced above for the integer assignment: first, generate the code for the left
side of the operator; second, generate the code for the right side and third, generate the
code for the operator involved.

Assignment for array

Assigning arrays in LISS can be made in two ways (see lines 4 and 5 in Listing 4.73).
One way is to assign an array variable to another array variable with the purpose of

copying the entire array to the other array. The MIPS code for that case can be seen in
Listing 4.83.

1 l i $t0 , 0

2 lw $t1 , array2 ($ t0)
3 sw $t1 , array1 ($ t0)
4 l i $t0 , 4

5 lw $t1 , array2 ($ t0)
6 sw $t1 , array1 ($ t0)

Listing 4.83: Code generated for line 4 in Listing 4.73

In Listing 4.83, an array with size two is copied to another array. Before to begin the
process of copying, it is necessary to check if the boundaries and the size are the same.
Otherwise, the copy will not be executed and an error will be raised.

Basically, the idea is to copy the content of each position in array2 to the same position in
array1. First, it loads the position (line 1 of Listing 4.83), then it loads the value available
at that position in array2 (line 2 of Listing 4.83) and finally it stores the value to the same
position in array1 (line 3 of Listing 4.83). The same process will be repeated for the next
remaining positions of the array in order to complete the copy process.

The other way for assign an array is by declaring the content of each position of the array
(line 5 of Listing 4.73). And the process is different because it needs to do some calculations
for knowing the position of each value that needs to be stored. Notice that the calculation to
determine the position of an array component is the same one explained in the declarations
part for initialization. Once again the array limits (dimensions and boundaries) must be
checked.

The code generated for that situation can be seen in Listing 4.84.

1 l i $t0 , 2

2 l i $t1 , 0

3 sw $t0 , array1 ($ t1)
4 l i $t0 , 0

5 l i $t1 , 4

6 sw $t0 , array1 ($ t1)

106

4.4. Code Generation

Listing 4.84: Code generated for line 5 of Listing 4.73

In Listing 4.84, we first load the value that needs to be stored (line 1), then comes the
position of the array (line 2) and finally, the storage of that value to the required position in
array1 (line 3). If some positions weren’t declared or missed then it will put them with the
value zero. For instance, the case of the last position (line 4 to 6) of array1 because his size
is equal to two and it was declared only one value in the assignment statement.

Assignment for set

Assigning sets is a little different from the other assignments (see line 6 of Listing 4.73).
Basically, in this case the compiler generate any instructions but, instead, it reorganize the

JAVA tree structure associated with the set variable, available in the symbol table, changing
it to the correct structure according to the expression. The operators available for the set
type are listed below:

• ++ (union sign)

• ** (intersection sign)

Using those operators with sets doesn’t imply to generate any instructions but instead
reorganize the tree structure for the set, according to the mathematical meaning of each one
(see equations below).

A ∪ B = {x : x ∈ A or x ∈ B} (7)

A ∩ B = {x : x ∈ A and x ∈ B} (8)

Assignment for sequence

The idea of assigning two sequences is to change the pointer of one sequence to the other
sequence and, in this case, the sequence on the left side will change the address (where it
is pointing to in the heap memory) to the address of the sequence on the right side of the
assignment.

Let’s see the code generated to assign a sequence to another one in Listing 4.85.

1 lw $t0 , sequence2

2 sw $t0 , sequence1

Listing 4.85: Code generated for line 7 of Listing 4.73

107

4.4. Code Generation

In Listing 4.85, we load the address that the variable sequence2 is pointing to in the heap
memory (line 1) and then, it stores that address to the variable sequence1 (line 2).

Notice that assigning sequences, doesn’t copy every elements of one sequence to the
other one. To do that (sequence cloning), there is a function in LISS which does that (copy
function).

4.4.6 Set operations

Variables of type sets can be assigned and used as operands in expression made out of union
and intersections operators. Moreover there is a special operator that takes an integer and
a set, and returns a boolean: the ’in’ operator (allows to test if a value is contained in the
set). See Listing 4.86 for an example.

1 program t e s t {
2 d e c l a r a t i o n s
3 f l a g −> boolean ;
4 s e t 1 = {x | x>1} −> s e t ;
5 s tatements
6 f l a g = 4 in s e t 1 ;
7 }

Listing 4.86: Example of using a set in LISS

The example in line 6 of Listing 4.86 will test if the number 4 is contained in the elements
of the set named set1.

This is the only situation that requires the generation of MIPS code to implement the
referred test (check the truth of that expression). The idea is to create a boolean expression
replacing the free variable, in the set tree, by the value that we want to check.

Let’s look the code generated in Listing 4.87.

1 l i $t0 , 4

2 l i $t1 , 1

3 s l t $t0 , $t1 , $ t0

4 sw $t0 , f l a g

Listing 4.87: Code generated for line 6 of Listing 4.86

The compiler traverses the tree associated to the free variable set1 and replaces each
occurences of the free variable ’x’ by the value 4, then it generates code for that boolean
expression. Lines 1 to 3 in Listing 4.87 correspond to that code produced (boolean expres-
sion), the result of the boolean operator (great) is then stored in the variable ’flag’ (line 4 in
Listing 4.87).

108

4.4. Code Generation

4.4.7 Sequence operations

To operate with variables of type sequence, LISS language offers a set of predefined:

1. statements

2. functions

that are summarized in Table 29:

Table 29.: Sequence predefined operations

Mode
Name of the sequence

operator in LISS
Name of the sequence

operator in MIPS

expression

tail tail sequence
head head sequence
cons cons sequence

isMember member sequence
isEmpty is empty sequence
length length sequence

del delete sequence

statement
copy copy sequence
cat cat sequence

Each operator listed in Table 29 is implemented as a predefined function in MIPS assem-
bly code. This means that each time the compiler recognizes a sequence operator it needs
to use a jump instruction for processing the sequence. Notice that it uses the name of the
sequence function in MIPS (available in Table 29) for generating the appropriated sequence
jump instruction (see an example in Listing 4.88).

1 j a l head sequence

Listing 4.88: Example of processing a head function in MIPS

Before invoking the jump instruction; it is necessary to load the respective argument of
type sequence. This process for loading the arguments, follows the schema below:

1. load the register $s0 with the name of the sequence variable.

2. load, in a sequential way, the rest of the arguments (depending on the sequence oper-
ator) into the next saved temporary registers ($s1, $s2,...).

For example, cons function has two arguments. Let’s see how is the code generated for
the case cons(3,sequence2) in Listing 4.89.

109

4.4. Code Generation

1 lw $t0 , sequence2

2 addi $sp , $sp , −4

3 sw $t0 , 0 ($sp)
4 l i $t0 , 3

5 move $s1 , $ t0

6 lw $t0 , 0 ($sp)
7 addi $sp , $sp , 4

8 move $s0 , $ t0

9 j a l cons sequence

Listing 4.89: Example of a code generated for the function cons

In Listing 4.89, we load the sequence2 variable (line 1) in a first step; then we push that
information into the stack (line 2 to 3); after, we process the other argument (second one)
and we move to the correct register (register $s1) (line 4 and 5); then, we get back the value
that we stored earlier in the stack and we put it to the register $s0 (line 6 and 8). Last, we
call the function cons sequence to execute the function (line 9).

Let’s see an example of a function that receives arguments that are other sequence func-
tions for understanding it better (see Listing 4.90).

1 head (cons (3 , cons (4 , cons (5 , sequence2)))) ;

Listing 4.90: Example of using a function call as argument

We must process the information for the inner function in Listing 4.90, in this case
cons(5,sequence2), and then getting back and process the other functions. Let’s see how it is
done below:

1. cons(5,sequence2)

2. cons(4,cons(5,sequence2))

3. cons(3,cons(4,cons(5,sequence2)))

4. head(cons(3,cons(4,cons(5,sequence2))))

Concerning copy and cat operations, as they are not used in an expression but as a
statement. To generate code for them we use a simple mechanism that consists in loading
the sequence variable to the respective saved temporary register before calling the respective
predefined function.

Let’s see the code generated for those two operators (copy(sequence1,sequence2) and
cat(sequence1,sequence2)) in Listing 4.91.

110

4.4. Code Generation

1 lw $s0 , sequence1

2 l i $s1 , −1

3 j a l copy sequence
4 sw $v0 , sequence2

5 l i $v0 , 0

6 lw $s0 , sequence1

7 lw $s1 , sequence2

8 j a l ca t sequence
9 sw $v0 , sequence1

10 l i $v0 , 0

Listing 4.91: Example of code generated for copy and cat statement

Concerning the translation of copy statement (from lines 1 to 4 of Listing 4.91): load the
first argument (line 1); load an empty sequence (line 2) (remind that an empty sequence
holds the value NULL which is minus one); call the copy sequence function (line 3); store
the new address into the variable sequence2 (line 4). Finally, we reset the content of the
register $v0 for internal reasons (line 5).

Remember that the copy statement copies every element of a sequence to another se-
quence.

Concerning the translation of cat statement (from lines 6 to 10 of Listing 4.91), it is
applied the same schema as the one used for copy. But instead of loading an empty
sequence as second argument, it loads the appropriated sequence (line 7).

4.4.8 Implementing Function calls

Calling a function, which code was already created by the compiler, requires some appro-
priated mechanism.

As we know, functions deal with the stack available in MIPS architecture and the stack
will hold information about the function arguments, local variables and return adress.

This means that if a function has one or more arguments, it is necessary to use a certain
strategy for passing that information to the stack.

Listing 4.92 shows the code for passing parameters.

1 lw $t0 , a
2 sw $t0 , −12($sp)
3 j a l f a c t o r i a l

Listing 4.92: Code generated for calling a function in MIPS

111

4.4. Code Generation

The idea of calling a function is: if there are arguments, then it is needed to generate
code to store them in the right position of the stack and finally, call the function. Otherwise
if there are no arguments, then the code must only call the function.

In Listing 4.92, lines 1 and 2 load the variable a and then stores it in the right position
of the stack. Finally, it calls the function with a jump instruction (line 3).

4.4.9 Implementing Input/Output

Let’s see in Listing 4.93 an example of a fragment of a LISS program to write and read data
from/to the console device.

1 write () ;
2 write (a) ;
3 write (” h e l l o ”) ;
4 wr i te l n () ;
5 wr i te l n (a) ;
6 wr i te l n (” h e l l o ”) ;
7 input (a) ;

Listing 4.93: Example of I/O statements in LISS

First, let’s talk about the output statements: write and writeln.
Write statement prints the content of its arguments but doesn’t add the return carriage.

However writeln statement is similar, it prints the content of its arguments and add the
carriage return at the end of the output string.

The arguments of the output statement can be:

1. empty (lines 1 and 4 of Listing 4.93)

2. an integer expression (lines 2 and 5 of Listing 4.93)

3. a string (lines 3 and 6 of Listing 4.93)

To translate the ’write()’ statement, we need to generate first the code to process the
arguments and then the code to call the appropriate output instruction.

If the output statement is write, then the code will be :

1 j a l wri te

Otherwise if the output statement is writeln, then the code will be :

112

4.4. Code Generation

1 j a l wr i t e ln

Notice that the translation of the output statement, writeln, reuses the code for write
statement and adds the instruction to print the new line (see Listing 4.94).

1 l a $a0 , w r i t e s t r i n g 0

2 l i $v0 , 4

3 j a l wri te
4 j a l wr i t e ln

Listing 4.94: Code generated for line 6 in Listing 4.93

The predefined code corresponding to the print action is shown in Listing 4.95.

1 write :
2 s y s c a l l
3 j r $ra
4 wr i te l n :
5 l i $v0 , 4

6 l a $a0 , newline
7 s y s c a l l
8 j r $ra

Listing 4.95: MIPS assembly code for write and writeln

Now, let’s talk about the input statement.
To translate it, the idea is to call the MIPS function to read a value and then store this

value into the variable that is referenced in the input statment, inside the parentheses.
Let’s see below the code generated for line 7 in Listing 4.93:

1 j a l read
2 move $t0 , $v0

3 sw $t0 , a

As we can see, after processing the read statement, we need to move the return value
to another register and finally, store it the value to the respective variable. Below is the
predefined code for the read statement (see in Listing 4.96).

1 read :
2 l i $v0 , 4

3 l a $a0 , messagereadvalue

113

4.4. Code Generation

4 s y s c a l l
5 l i $v0 , 5

6 s y s c a l l
7 j r $ra

Listing 4.96: Read statement code in MIPS

4.4.10 Implementing Conditional statements

The syntax to write a conditional statement in LISS has been introduced in Chapter 2,
however it is illustrated again in Listing 4.97 to refresh the memory. The schema of Figure
19 depicts its semantics.

Figure 19.: Schema of the conditional statements in LISS

Basically we have, in Listing 4.97, a conditional statement with an if and an else state-
ment.

1 i f (f l a g)
2 then{

114

4.4. Code Generation

3 wri te l n (”Then content . ”) ;
4 } e l s e {
5 wri te l n (” Else content . ”) ;
6 }

Listing 4.97: Example of conditional statement in LISS

Now let’s see how the conditional code is generated in Listing 4.98.

1 lw $t0 , f l a g
2 bne $t0 , 1 , e l s e 1

3 l a $a0 , w r i t e s t r i n g 0

4 l i $v0 , 4

5 j a l wri te
6 j a l wr i t e ln
7 j l 1

8 e l s e 1 :
9 l a $a0 , w r i t e s t r i n g 1

10 l i $v0 , 4

11 j a l wri te
12 j a l wr i t e ln
13 l 1 :

Listing 4.98: Code generated for conditional statement in MIPS

In Listing 4.98, line 1 is the piece of code that translates the boolean expression of the
conditional statement: line 2 contains the instruction which compares the value of that with
the value True. If the values are different then it must jump to the else-condition. Other-
wise if the values are equal, then the program execution continues in the next instruction
available in line 3 which is the code that translates the content of the then-statment. At
the end of the then-statement, the program exits the conditional statement (line 7) jumping
over the else part to line 13.

If the boolean expression evaluates to False, then it will jump to the branch of the else-
statement (line 8) and execute every instruction available from that line on; the code execu-
tion will flow to the end of the if-statement (line 13) wihtout any extra jump.

Let’s consider now the case that in the LISS program, no else-statement is used. Then the
only thing that disappears is the whole code corresponding to the else branch in Listing
4.98.

Let’s see in Listing 4.99 an example of the code above (Listing 4.98) without the else-
statement.

1 lw $t0 , f l a g
2 bne $t0 , 1 , l 1

115

4.4. Code Generation

3 l a $a0 , w r i t e s t r i n g 0

4 l i $v0 , 4

5 j a l wri te
6 j a l wr i t e ln
7 l 1 :

Listing 4.99: Code generated for conditional statements without an else-statement in MIPS

4.4.11 Implementing Iterative statements

As already introduced in Chapter 2, in LISS, we have three different to wrote an iterative
statement:

1. For-loop with ’in’ condition.

2. For-loop with ’inArray’ condition.

3. While-loop.

In Figure 20, we can see the diagrammatic schema of a for-loop with an ’in’ condition.
Notice that the black circle is where the flow of the for-loop statement begins and that

the double circle is where it finishs executing the for-loop statement.
Let’s see in Listing 4.100 a fragment of s LISS program containing a for-loop statement

with an ’in’ condition.

1 f o r (a in 1 . . 5) stepUp 1 s a t i s f y i n g f l a g ==true {
2 wri te l n (a) ;
3 }

Listing 4.100: Example of a for-loop statement with ’in’ condition in LISS

We can see in Listing 4.100, a for-loop statement controlled by an ’in’ condition to test
the inclusion in a given range (1 to 5) and also by a logical expression that must be sat-
isfied. Moreover the control flow statement listed also defines explicitly the method for
incrementing (stepUp) the control variable (by one) after each iteration.

Let’s see in Listing 4.101 the iterative code generated for that piece of LISS program.

1 l i $t0 , 1

2 sw $t0 , a
3 f o r l o o p 1 :
4 lw $t0 , a
5 l i $t1 , 5

6 s l t $t0 , $t1 , $ t0

116

4.4. Code Generation

Figure 20.: Schema of the for-loop statement using the condition ’in’

7 s l t u $t0 , $zero , $ t0

8 x o r i $t0 , $t0 , 1

9 bne $t0 , 1 , f o r e x i t 1

10 lw $t0 , f l a g
11 l i $t1 , 1

12 s l t $t2 , $t0 , $ t1

13 s l t u $t2 , $zero , $ t2

14 x o r i $t2 , $t2 , 1

15 s l t $t3 , $t1 , $ t0

16 s l t u $t3 , $zero , $ t3

17 x o r i $t3 , $t3 , 1

18 and $t2 , $t2 , $ t3

19 move $t0 , $ t2

20 bne $t0 , 1 , s a t i s f y i n g e x i t 1

21 lw $t0 , a

117

4.4. Code Generation

22 move $a0 , $ t0

23 l i $v0 , 1

24 j a l wri te
25 j a l wr i t e ln
26 s a t i s f y i n g e x i t 1 :
27 lw $t1 , a
28 l i $t2 , 1

29 add $t1 , $t1 , $ t2

30 sw $t1 , a
31 j f o r l o o p 1

32 f o r e x i t 1 :

Listing 4.101: Iterative code generated for the LISS program in Listing 4.100

In Listing 4.101, lines 1 to 2 creates the variable a; line 3 creates the for-loop branch;
lines 4 to 9 tests if the value of the variable a is in the range of the for-loop condition. If
the variable is not in the range, the program exits the for-loop flow by going to the branch
named for exit1(line 32); otherwise it continues the flow of the for-loop execution by going
to line 10. Lines 10 to 20 refers to the satisfying condition. If the condition isn’t satisfied then
it goes to the branch named satisfying exit1, otherwise it continues the flow of the execution
in line 21. Lines 21 to 25 is the code contained in the block of the for-loop statement. Notice
that lines 27 to 30 is the piece of code who will increment the variable a relatively to stepUp.
At the end (line 31), it jumps to the branch of the for-loop statement for loop1(line 3).

Notice also, that stepUp and satisfying information are optional statement. If the satisfy-
ing statement is not available then the lines from 10 to 20 and line 26 of Listing 4.101 will be
removed. Regarding to the step statement, even if the information is not available, by defi-
nition a for-loop statement needs to have a step by step iteraction. So, by omission, it will
increment the variable by one; otherwise if the information is available, it will increment or
decrease relatively to the information shown.

In Figure 22, we can see the routine of a for-loop with an ’inArray’ condition.
The idea of that for-loop statement is to have some kind of a foreach statement in LISS.

Basically, the for-loop statement will pass to every positions of the array. Notice that when
it is used, the for-loop statement disables the user by declaring any step or satisfying
statement.

Let’s see in Listing 4.102 a piece of a LISS program containing a for-loop statement with
an ’inArray’ condition.

1 f o r (a inArray array1) {
2 wr i te l n (a) ;
3 }

Listing 4.102: Example of a for-loop statement with ’inArray’ condition in LISS

118

4.4. Code Generation

Figure 21.: Schema of the for-loop statement using the condition ’inArray’

We can see in Listing 4.102, a for-loop statement where the array1 is the variable of type
array and the variable a will have the value of each position of the variable array1.

By doing a writeln(a) in line 2 of Listing 4.102, it will output the value of each position
of the array named array1.

Let’s see in Listing 4.103 the iterative code generated for the piece of LISS program in
Listing 4.102.

1 l i $t0 , 0

2 sw $t0 , f o r v a r 4

3 f o r l o o p 4 :
4 lw $t0 , f o r v a r 4

5 l i $t1 , 1 6

6 s l t $t0 , $t1 , $ t0

7 s l t u $t0 , $zero , $ t0

8 x o r i $t0 , $t0 , 1

9 bne $t0 , 1 , f o r e x i t 4

10 lw $t0 , f o r v a r 4

11 lw $t0 , array1 ($ t0)
12 sw $t0 , a
13 lw $t0 , a
14 move $a0 , $ t0

15 l i $v0 , 1

16 j a l wri te
17 j a l wr i t e ln

119

4.4. Code Generation

18 lw $t1 , f o r v a r 4

19 l i $t2 , 4

20 add $t1 , $t1 , $ t2

21 sw $t1 , f o r v a r 4

22 j f o r l o o p 4

23 f o r e x i t 4 :

Listing 4.103: Iterative code generated for the LISS program in Listing 4.102

In Listing 4.103, lines 1 to 2 creates a variable named for var4 which will be used for
accessing each index of the array; line 3 creates the branch name relatively to the for-loop
statement; lines 4 to 9 test the variable for var4 with the bounds associated to the variable.
If it does not agree then it must exit the for-loop statement by going to the branch named
for exit4 (line 23), otherwise it continues the flow of the execution of the code to line 10.
Lines 10 to 12, the program refreshes the value of the variable a by getting the value throw
the index (variable for var4) of the array. Lines 13 to 17, contains the code relative to the
content in the body of the for-loop statement. In this case, it is the code instruction for
writing to the output, the variable a. Lines 18 to 21, refreshes the variable for var4 to
the next position of the array by summing up with 4 bytes relatively to the old value of
the variable. Finally, line 22 jumps to the branch for loop4 and continue the flow of the
execution of the for-loop statement.

In Figure 22, we can see the diagrammatic schema that depicts the semantics of a while-
loop.

Figure 22.: Schema of the while-loop statement

Basically, behind the idea of being the most simple iterative statement, the behavior of
the while-loop statement is to check the truth of the condition on every iteraction. If it is
True, then the content who is inside will be executed otherwise it will be exited.

Let’s see in Listing 4.104 a fragment of a LISS program containing a while-loop statement.

120

4.4. Code Generation

1 while (f l a g) {
2 wr i te l n (” Hello ”) ;
3 }

Listing 4.104: Example of a while-loop statement in LISS

In Listing 4.104, the program has a variable flag with the value set to True. With that
case, the condition will be True and should proceed to the content available inside of the
parentheses. Otherwise if the condition is False, the program will exit.

Let’s see in Listing 4.105 the iterative code generated for the fragment of LISS program
of Listing 4.104.

1 while5 :
2 lw $t0 , f l a g
3 bne $t0 , 1 , w h i l e e x i t 5

4 l a $a0 , w r i t e s t r i n g 0

5 l i $v0 , 4

6 j a l wri te
7 j a l wr i t e ln
8 j while5

9 w h i l e e x i t 5 :

Listing 4.105: Iterative code generated for the LISS program in Listing 4.104

In Listing 4.105, line 1 is created for the branch name of the while-loop statement. First,
we incorporate the code of the condition associated to the while-loop statement (line 2),
then we test the truth of the condition in line 3. If the condition is False, it will jump to the
branch while exit5 (line 9) for exiting the while-loop statement; otherwise, it will continue
the flow of the execution proceeding to line 4. In this part, it is included all the code relative
to the content in the body of the while-loop statement (lines 4 to 7). Finally, at line 8, it will
jump back to the branch while5 and repeat all the process.

4.4.12 Implementing increment or decrement operators

Listing 4.106 shows the LISS statements to increment a variable (’i’).

1 succ i ;

Listing 4.106: Increment variable in LISS

In Listing 4.107, it is shown the code generated for ’succ’ statement.

1 lw $t0 , i

121

4.4. Code Generation

2 l i $t1 , 1

3 add $t0 , $t0 , $ t1

4 sw $t0 , i

Listing 4.107: Code generated for the LISS code in Listing 4.106

In Listing 4.107, line 1 load the variable i to register $t0; line 2 load the constant value
1 to register $t1; line 3 sums both registers (value of the variable and the value 1); line 4

refresh and store the result into variable i.
Similarly, in Listing 4.108 shows the LISS statement to decrement a variable (’i’).

1 pred i ;

Listing 4.108: Decrement variable in LISS

The MIPS assembly code to implement the statement ’pred’ is shown in Listing 4.109.

1 lw $t0 , i
2 l i $t1 , 1

3 sub $t0 , $t0 , $ t1

4 sw $t0 , i

Listing 4.109: Code generated for the LISS code in Listing 4.109

In Listing 4.109, line 1 loads the variable i to register $t0; line 2 loads the value 1 to
register $t1; line 3 subtract both registers (value of the variable and the value 1); line 4

refresh and store the result into variable i.

122

5

S D E : D E V E L O P M E N T

Before we try to explain the concept of a Syntax-Directed Editor (SDE) (Reps and Teit-
elbaum, 1989b; Ko et al., 2005; MI-students et al., 2010; Teitelbaum and Reps, 1981; Reps
et al., 1986; Reps and Teitelbaum, 1989a; Arefi et al., 1989), let’s start defining what is an
Integrated Development Environment (IDE).

An IDE is described as a software application that provides facilities to computer pro-
grammers for software development. It consists , normally, of a source code editor, a
compiler or interpreter, a debugger, and other tools. IDEs are designed for maximizing the
productivity of programmers with visual interface (see Figure 23).

Figure 23.: Example of an IDE visual interface (XCode) 1

123

5.1. What is a template?

Programs are created top down in the editor window by inserting statements and expres-
sions at the right cursor position of the current syntactic template and we can, by the cursor,
change simply from one line of text to another one.

A SDE has the same approach of an IDE which is (as said above) an interactive program-
ming environment with integrated facilities to create, edit, execute and debug programs.
The difference between them is that SDE encourages the program writing at a high level
of abstraction, and promotes the programming based on a step by step refinement process
guided by the language syntax.

It liberates the user from knowing the language syntactic details while editing programs.
SDE is basically guided by the syntactic structure of a programming language. It is a

hybrid system between a tree editor and a text editor.
The notion of cursor is really important in the context of SDE because, when the editing

mode is on, the cursor is always located in a placeholder of a correct template (see next sec-
tion) and the programmer may only change to another correct template at that placeholder
or to its constituents.

It reinforces the idea that the program is a hierarchical composition of syntactic objects,
rather than a sequence of characters.

5.1 what is a template?

The grammar of a programming language is a collection of production (or derivation rules)
that state how a non-terminal symbol (LHS) is decomposed in a sequence of other symbols
(RHS). A template is just the RHS of a grammar rule. Templates cannot be altered, they
have placeholders for inserting a value (word, number, or string) or another template and
they are generated by editor commands, according to the grammar production.

1 IF (condi t ion)
2 THEN statement
3 ELSE statement

Listing 5.1: Example of a IF Conditional template

In Listing 5.1 we can see the editor template for the if-statement, where condition and
statement are placeholders.

The notion of template is very important because templates are always syntactically cor-
rect for two reasons:

1. First, the command is validated to guarantee that it inserts a template permitted.

2. Second, the template is not typed, so it contains no lexical errors.

124

5.2. Conception of the SDE

So a correct program (i.e., a valid sentence of the programming language) is created by
choosing templates and replacing placeholders by other templates or by concrete values
(numeric or string constants or identifiers).

To clarify the definition of SDE, we will explain it with the help of an example.

Figure 24.: SDE example

Figure 24 shows the main window of a standard Syntax-Directed Editor. In this figure,
two boxes are displayed. The left one is the editor window where we code the program,
and the right one exhibits template choices.

Every <...> tag represents a placeholder, and [...] represents the actual cursor position.
As the cursor changes its position, moving from one placeholder to another placeholder,

the right box will be updated according to the grammar rules in the context of the new
cursor position. In this example, the cursor in Figure 24 is placed at the placeholder
corresponding to a statement; at the same time, the right box was updated to show all the
possible next templates according to the statement derivation rules (RHS).

To sum up, this is how a SDE works.

5.2 conception of the sde

By taking the ideas explained in the previous section, we managed to create a simple and
easy to use Syntax Directed Editor based on the principles:

• having a window for visualization of the rules of the language grammar and the
templates associated to the ”LISS” program under development.

125

5.2. Conception of the SDE

• showing the source code produced until the moment by choosing templates and ful-
filling placeholder according to the rules generated.

• displaying semantic or runtime errors, and outputing the results of the execution.

These guidelines led the creation of the program called liss|SDE (see Figure 25).

Figure 25.: liss|SDE

liss|SDE system interface is divided in three main areas (see Figure 26).
The number 1, in Figure 26, is where the templates, or the rules of the language LISS,

are displayed. This part was implemented with the technology called HTML and Javascript,
and the main reason of implementing that part with that technology was the fact that we
needed to implement a tree visualization structure.

Creating some visualization content within the JAVA context is really hard. For that
reason we decided to use another technology where JAVA could handle it; HTML and
Javascript were the perfect key for creating those contents, due to their powerful and easy
use to create some visualization content.

Also, notice that, we implemented a tree visualization structure for one simple reason: a
programming language is represented by a tree structure. So we decided to adapt it and
create a tree visualization structure.

126

5.2. Conception of the SDE

Figure 26.: liss|SDE structure

The number 2, in Figure 26, is where the code of the language is processed regarding to
the rules generated to the view number 1. Each time, the user selects a rule, the view in the
window number 2 will be represented to reflect the new program code synthesized.

Last, the window number 3 is related to every syntax and semantic errors, as well as, the
output of the execution.

5.2.1 Toolbar meaning

The toolbar in liss|SDE is available at the top of the program and it control various functions
of the program.

It is divided in four boxes (see Figure 27).

Figure 27.: Toolbar of liss|SDE

The File button shows the commands for creating new projects, saving/loading projects
and exiting the application (see Figure 28).

127

5.2. Conception of the SDE

Figure 28.: File option of toolbar in liss|SDE

The Run button activates the compiler (this means that the semantic system will be run
and if everything is correct, the code is generated, getting the MIPS assembly code) and
executes the code created (see Figure 29).

Figure 29.: Run option of toolbar in liss|SDE

The Help button shows information about the use of the editor and about a LISS program
structure (see Figure 30).

Figure 30.: Help option of toolbar in liss|SDE

About button displays information about the program: which technology and plugins
were used; the name of the program creator; etc.. (see Figure 31).

Notice that some shortcuts for the most used functions were implemented in the toolbar,
as can be seen in Figures 28 and 29.

128

5.2. Conception of the SDE

Figure 31.: About option of toolbar in liss|SDE

5.2.2 Creating a program

For a better understanding of this section, let’s see a simple piece of LISS code in Listing
5.2.

1 program helloWorld{
2 d e c l a r a t i o n s
3 s tatements
4 wr i te l n (” Hello World ! ”) ;
5 }

Listing 5.2: LISS code

In Listing 5.2, we created a ’hello world’ program in LISS which basically outputs the
string ”Hello World!”.

Now, let’s try and create the same LISS program using liss|SDE.
In Figure 32, we left click on the non-terminal liss; this selects the liss rule and expands

the non-terminal with three branches:

• program

• name

• body

program is a terminal of type keyword: this can be seen by its bold and blurry visual;
the other branches are non-terminal (name and body) and they are not bolded nor blurried.
Those visual effects are really important for the user because it means that terminals aren’t
clickable and non-terminal are clickable.

Notice, also, that by selecting the liss rule, the right window is refreshed with the code
that is possible to synthesize until that moment the keyword is printed correctly and the
label ’undefined’ is displayed in red for each non-terminal not yet expanded. This means
that the non-terminal must be selected and derived and that the code isn’t valid in this
state.

129

5.2. Conception of the SDE

Figure 32.: Creating a LISS program (1/17)

So, in this case, we need to expand those two non-terminal rules and we will do it by
clicking with the left mouse button on the name branch. This generates a rectanglular box
with a name inside (IDENTIFIER), see Figure 33.

Basically, a rectangle as the one shown in Figure 33 means that this is a placeholder
of that kind ”input interaction” and the label IDENTIFIER informs the kind of value that
must be typed.

In this case, the IDENTIFIER label specifies that it must be typed a text matching the
following pattern:

1 (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’) (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’ | ’ ’) ∗

Figure 33.: Creating a LISS program (2/17)

If the text typed in by the user does not match the pattern, then the box will change the
color to red (see Figure 34).

Red color means that there is a lexical error in the input; instead, green color means that
the input is correct.

Figure 34.: Creating a LISS program (3/17)

If the color of the box is green (see Figure 35) then the input is correct and the undefined
word seen in the right window previously (see Figure 34), will change to the value of the
input.

Now, let’s proceed with the other branch body by clicking it with the left mouse button.

130

5.2. Conception of the SDE

Figure 35.: Creating a LISS program (4/17)

As can be seen, in Figure 36, this non-terminal symbol expands to more rules and notice,
that in the right windows, the code is changed. The next step is always the same, generating
the rules in order to synthesize a correct program (no undefined must be displayed in the
right window).

Figure 36.: Creating a LISS program (5/17)

By clicking with the left mouse button over the rule called declarations in Figure 36, it
will generate more branches (see Figure 37). Notice that, in the right window, the first
undefined word disappeared and that in the left window, two branches were created (the
two possible kind of declarations) with a star at the end of their names. That star means
that the non-terminal symbol can be expanded to zero or more elements.

Figure 37.: Creating a LISS program (6/17)

131

5.2. Conception of the SDE

The program created until this stage is similar to the first part of the one in Listing 5.2;
let’s now work out the rules for the statements part by left clicking on that symbol (see
Figure 38).

At this moment, no undefined label is displayed in the right window which means that
the code can be compiled. But the problem is that it is not yet finished relatively to the
program in Listing 5.2.

Figure 38.: Creating a LISS program (7/17)

So, we need to expand the statement* rule by left clicking it. Then a pop-up menu will
appear (see Figure 39).

This pop-up menu (that exhibits just one option ”Add” at the beginning) is available for
one reason: if the user creates a lot of branches under the statement*, after the second branch
created that pop-up box will show another option for deleting all the branches created. And
this is why we needed to create a menu for adding those two options (thinking on the easy
use of the program).

Each time a statement is added, it will be appended to the previous ones, at the bottom
place of the program.

Regarding the code in Listing 5.2, we just need to create one statement (writeln state-
ment); so we only need to add one statement to the program (see Figure 40).

By adding that statement, we see that in the right window, the program becomes incorrect
(an undefined label appears aggain).

By left clicking on the statement rule, a pop-up menu appears and we can see the rules
that a statement can expand to (see Figure 41).

So, left click on the option of adding the write statement to expand to the appropriate
rule (see Figure 42).

After left clicking over the write statement rule, the content of that rule is generated and
the right window is refreshed accordingly (see Figure 43).

132

5.2. Conception of the SDE

Figure 39.: Creating a LISS program (8/17)

Figure 40.: Creating a LISS program (9/17)

First it is necessary to expand the write expr rule by left clicking on it; it will open another
pop-up menu to choose the desired output statment (Figure 44).

To clone the program in Listing 5.2, we must choose the Writeln option.
So, left clicking on that option, the right part will be refreshed accordingly to the terminal

keyword. Then it is needed to process the rule print what for finishing the code (see Figure
45).

The print what non-terminal shows a pop-up menu with three options (see Figure 46);
for our case, we need to choose the option of adding a string.

By clicking on that option, a rectangle with the label STRING appears below (see Figure
47), following the same idea talked previously for the IDENTIFIER box. The only thing
that differs is the pattern that now is:

1 ’ ” ’ (ESC SEQ | ˜ (’ ” ’)) ∗ ’ ” ’

133

5.2. Conception of the SDE

Figure 41.: Creating a LISS program (10/17)

Figure 42.: Creating a LISS program (11/17)

134

5.2. Conception of the SDE

Figure 43.: Creating a LISS program (12/17)

Figure 44.: Creating a LISS program (13/17)

Basically the idea of that pattern is that the string must be a sequence of any characters
inside quotation marks.

135

5.2. Conception of the SDE

Figure 45.: Creating a LISS program (14/17)

Figure 46.: Creating a LISS program (15/17)

And so, for the last step, we manage to write the string ”Hello World!” in that rectangular
box for finishing the creation of the program in Listing 5.2.

136

5.2. Conception of the SDE

Figure 47.: Creating a LISS program (16/17)

Notice that in the right window of Figure 48, no undefined label is shown, what means
that the code can be compiled and executed.

Figure 48.: Creating a LISS program (17/17)

137

5.2. Conception of the SDE

Finally, notice that the user can at any time delete rules by clicking on every non-terminal
in the tree structure.

And this is how the user can interact and create a program in liss|SDE.

138

5.2. Conception of the SDE

5.2.3 Executing a program

For executing a program in liss|SDE, we just need to go to the toolbar, press the Run
button and then choose the Compile and Run option (remember Figure 29).

By doing that, it will pass throw a lot of steps (see Figure 49).

Figure 49.: Flow of the execution of a liss code in the liss|SDE

The first step is to take the liss program and pass it to the compiler. In this moment, the
compiler will check the consistency of the code (semantic system); then, if everything is fine,
it will pass the MIPS assembly code generated (at the end of the process of the compiler) to
the simulator (Mars Simulator) and execute the code. Finally, it will print the output of the
execution of the liss code to the window number 3 (see Figure 26).

For a visual example, let’s execute the program created above with the liss|SDE tool.

Figure 50.: Output of the execution of the HelloWorld program

In Figure 50, we can see that the string ”Hello World!” is printed and that the program
was executed and terminates successfully.

5.2.4 Error System in liss|SDE

Each time a LISS program is compiled, an error table is built. All the semantic error that
are found in the LISS program, will be added to that error table.

139

5.2. Conception of the SDE

If the error table is empty, then the code can be executed. Otherwise, if the error table
contains some errors, then those errors must be outputed in the tab Errors at the window
number 3 (see Figure 26).

Let’s see an example of the error system in liss|SDE.
Consider the program below created with liss|SDE environment:

1 program t e s t {
2 d e c l a r a t i o n s
3 i n t=2−>boolean ;
4 s tatements
5 wr i te l n (i n t +3) ;
6 }

Listing 5.3: Example of a liss code that isn’t semantically correct

Now, if we try to run the compiler in liss|SDE, the compiler will throw error messages
due to the inconsistencies that were found (see in Listing 5.4).

1 [1 6 : 1 0 : 4 0] Semantics e r r o r s found :
2 [1 6 : 1 0 : 4 0] l i n e : 3 : 8 Variab le ’ i n t ’ has type ’ i n t e g e r ’ ,when I t should

be ’ boolean ’ .
3 [1 6 : 1 0 : 4 0] l i n e : 5 : 1 6 Expression ’ i n t + 3 ’ has type ’ boolean +

i n t e g e r ’ , required type ’ i n t e g e r + i n t e g e r ’ .
4 [1 6 : 1 0 : 4 0] l i n e : 5 : 1 6 Expression ’ i n t +3 ’ has type ’ n u l l ’ ,when I t

should be ’ i n t e g e r | boolean | sequence | array ’ .

Listing 5.4: Error messages in liss|SDE

The notation conventions used for those messages, in Listing 5.4, is as follows: first, is
shown the time that the error was found (embraced by square brackets); second, the line
number of the error regarding to the liss code in window number 2 (see Figure 26) and
finally, the error message text.

Notice that the line number is very important to locate and understand the error and
correct it.

140

6

C O N C L U S I O N

In this final chapter, it will be summarized the information that was exposed throughout
this document in order to remember the aims of the project and how they were achieved.

First, it begins by contextualizing the reasons of helping the developers for being more
productive regarding the creation of some programs for computers. This was attained
by creating a software system (a compiler) which makes the life of a developer easier by
allowing him to write programs at a high level of productivity. But as always there is the
necessity of achieving more (creating a program with a high level language and in a safety
way) and that is why, we introduce the notion of Syntax Directed Editor, an editor that
helps the programmer writing his code guiding him through the language syntax.

The main idea underlying of a SDE is to create programs whithout the use of the key-
board avoiding syntax errors; instead, the programmer will use the mouse and create the
code by selecting some rules available in the grammar of the language. For this project, it
was aimed to create a SDE for the language called LISS.

So, it was needed to first understand that language, writting some test programs. After
understanding the syntax of the language, some improvements were introduced in the
language (due to its old age) by changing or deleting some rules.

After designing those improvements in the grammar, it was necessary to develop the
compiler to analyse and check the LISS programs and generate the associated assembly
code. For that purpose, the original grammar (a CFG - Context-Free Grammar) was evolved
to another type (an AG - Attribute Grammar).

Before creating the compiler, it was needed to understand the MIPS architecture which
is the chosen target machine (the compiler will generate MIPS assembly code). The archi-
tecture is a RISC architecture which makes the learning phase easier. After understanding
the architecture, it was necessary to test it, writting some programs in MIPS assembly code
for a better view of that programming language.

With those knowledge acquired relatively to the MIPS architecture, it was essential to
create some adapted data structures (stack, registers) to support the code generation and
the execution of LISS program.

141

As a result of all the research and reasoning made, we began by creating the compiler.
It is important to remember that the compiler only pass once throw the LISS code which
has some pros and cons. In that single pass, two tasks are performed by the compiler’s
back-end; the semantic analysis and the code generation.

The semantic analysis requires some structures that are a symbol table and an error
table. The symbol table save information about all the LISS identifiers; the error table stores
the error messages to inform the user relatively to the semantic analysis (both of those
structures are in a sense connected). The symbol table is also used to support the most
complex stage in the project, the code generation.

The code generation rose up a lot of difficulties and this is due to some hard issues listed
below:

• processing the LISS code only once and caring about the order that it is processing
relatively for generating the code.

• saving some informations in the memory relatively for generating the code in the
correct order (due to the specifications of the MIPS architecture).

• creating a linked-list in MIPS assembly code to implement the sequence type.

• creating MIPS code with alignment address.

• defining a certain architecture for generating the code relatively to the context that
the compiler is dealing with (using which register, stack or heap).

• creating some complex algorithm for the use of some structure available in the project.

After developing the compiler there is the need of testing it and checking the correctness
of the code generated. 18 LISS programs prepared specifically to cover the different types
and statements that were tested and approved.

Once the compiler was created, it was built the visual (Syntax Directed Editor - SDE)
program. By studying and reading some articles about the concept of SDE, we managed
to draw the interface and its visual appearance, focusing on the most important notions of
such an editor:

• having a visualization of the abstract syntax tree for the LISS language.

• having a window where the LISS code being created can be seen.

• having an output window where the error messages found at runtime by the compiler
are displayed as well as the ouput produced by the execution.

After developing the visual editor and integrating it with the LISS compiler, it was needed
to connect the compiler and the MARS simulator. This task for connecting the MARS

142

6.1. Future Work

simulator with the SDE environment, was one of the hardest parts of the project due to the
complexity of using processes and threads in JAVA for sending some input and getting the
output.

The last step was the final, testing of the SDE environment to check if everything works
properly.

It was made an inquiry for testing the application and learn more about the usability of
the syntax direct editor. It was concluded that this concept is a must for learning a new
programming language due to the fact of getting a better perception of the syntax of the
programming language and the easy way for creating some code. However when the user
has better and deeper knowledge of the programming language, that approach is not the
most appropriated.

The project is available to test on github throw this link https://github.com/damienvaz/

Liss-SDE.

6.1 future work

To conclude that dissertation, it is intended to discuss some future work that might be
done for improving the application concerning the productivity of the programmer and the
compiler efficiency.

• Adding some semantic to the abstract syntax tree available in the visual for generating
the rules. This means that if we declare a variable where it is initialized with an integer
value, it should know that the variable will be an integer type. In this case, we could
create a SSDE (Semantic Syntax Directed Editor).

• Optimizing the code generated by the compiler.

• Adding the possibility of moving statements in the abstract syntax tree. For instance,
if you want to swap two statements, you cannot do it.

• Adding a feature for incremental compilation.

• Adding a feature to the editor (SDE) to be adaptable to any programming language
who deal with other programs not written in LISS.

143

https://github.com/damienvaz/Liss-SDE
https://github.com/damienvaz/Liss-SDE

B I B L I O G R A P H Y

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques and Tools. Addison-
Wesley, 1986.

Henk Alblas. Introduction to attribute grammars. In H. Alblas and B. Melichar, editors,
Int. Summer School on Attribute Grammars, Applications and Systems, pages 1–15. Springer-
Verlag, Jun. 1991. LNCS 545.

F. Arefi, C.E. Hughes, and D.A. Workman. The object-oriented design of a visual syntax-
directed editor generator. In Computer Software and Applications Conference, 1989. COMP-
SAC 89., Proceedings of the 13th Annual International, pages 389 –396, sep 1989. doi:
10.1109/CMPSAC.1989.65112.

Noami Chomsky. Context-free grammars and pushdown storage. RLE Quarterly Progress
Report 65, MIT, Apr. 1962.

Daniela da Cruz and Pedro Rangel Henriques. Liss - language of integers, sequences and
sets. Talk to the gEPL, Dep. Informática / Univ. Minho, Oct. 2005.

Daniela da Cruz and Pedro Rangel Henriques. Liss – language, compiler & companion. In
Proceedings of the Conference on Compiler Technologies for .Net (CTNET’06 - Universidade da
Beira Interior, Portugal), Mar. 2006a. (to be published).

Daniela da Cruz and Pedro Rangel Henriques. Liss compiler homepage.
http://www.di.uminho.pt/ gepl/LISS, 2006b.

Daniela da Cruz and Pedro Rangel Henriques. LISS — a linguagem e o compilador. Re-
latório interno do CCTC, Dep.Informática / Univ. do Minho, Jan. 2007a. (to be pub-
lished).

Daniela da Cruz and Pedro Rangel Henriques. Liss — the language and the compiler. In
Proceedings of the 1.st Conference on Compiler Related Technologies and Applications, CoRTA’07
— Universidade da Beira Interior, Portugal, Jul 2007b.

P. Deransart and M. Jourdan, editors. Attribute Grammars and their Applications, Sep. 1990.
INRIA, Springer-Verlag. Lecture Notes in Computer Science, nu. 461.

P. Deransart, M. Jourdan, and B. Lorho. Attribute grammars: Main results, existing systems
and bibliography. In LNCS 341. Springer-Verlag, 1988.

144

Bibliography

G. Filè. Theory of attribute grammars. (Dissertation) Onderafdeling der Informatica, Tech-
nische Hogeschool Twente, 1983.

M. C. Gaudel. Compilers generation from formal definitions of programming languages:
A survey. In Methods and Tools for Compiler Construction, pages 225–242. INRIA, Rocquen-
court, Dec. 1983.

Dick Grune, Kees van Reeuwijk, Henri E. Bal, Ceriel J.H. Jacobs, and Koen Langendoen.
Modern Compiler Design. Springer, New York, Heilderberg, Dordrecht, London, 2nd edi-
tion, 2012. ISBN 978-1-4614-4698-9. doi: 10.1007/978-1-4614-4699-6.

Niklas Holsti. Incremental interaction by syntax transformation. In Compiler Compilers and
Incremental Compilation – Proc. of the Workshop, Bautzen, pages 192–210. Akademie der
Wissenschaften der DDR, Institut für Informatik und Rechentechnik, Oct. 1986.

John E. Hopcroft, Rajeev Motwani, and Jeffrey Ullman. Introduction to Automata Theory, Lan-
guages, and Computation, chapter 5 – Context-Free Grammars and Languages. Addison-
Wesley, 3rd ed. edition, 2006. ISBN 0-321-46225-4.

Uwe Kastens. Attribute grammar as a specification method. In H. Alblas and B. Melichar,
editors, Int. Summer School on Attribute Grammars, Applications and Systems, pages 16–47.
Springer-Verlag, Jun. 1991a. LNCS 545.

Uwe Kastens. Attribute grammars in a compiler construction environment. In H. Alblas and
B. Melichar, editors, Int. Summer School on Attribute Grammars, Applications and Systems,
pages 380–400. Springer-Verlag, Jun. 1991b. LNCS 545.

Andrew J. Ko, Htet Htet Aung, and Brad A. Myers. Design requirements for more flexi-
ble structured editors from a study of programmers text editing. In CHI ’05: HUMAN
FACTORS IN COMPUTING, pages 1557–1560. Press, 2005.

MI-students, Daniela da Cruz, and Pedro Rangel Henriques. Agile - a structured-editor,
analyzer, metric-evaluator and transformer for attribute grammars. In Luis S. Barbosa
and Miguel P. Correia, editors, INForum’10 — Simposio de Informatica (CoRTA’10 track),
pages 197–200, Braga, Portugal, September 2010. Universidade do Minho.

Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.
ISBN 1-55860-320-4.

Nuno Oliveira, Maria Joao Varanda Pereira, Pedro Rangel Henriques, Daniela da Cruz, and
Bastian Cramer. Visuallisa: A visual environment to develop attribute grammars. ComSIS
– Computer Science an Information Systems Journal, Special issue on Advances in Languages,
Related Technologies and Applications, 7(2):266 – 289, May 2010. ISSN ISSN: 1820-0214.

145

Bibliography

Terence Parr. An introduction to antlr. http://www.cs.usfca.edu/ parrt/-
course/652/lectures/antlr.html, Jun. 2005.

Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. The Pragmatic Bookshelf, Raleigh, 2007. URL http://www.amazon.de/

Complete-ANTLR-Reference-Guide-Domain-specific/dp/0978739256.

K. J. Räihä. Bibliography on attribute grammars. SIGPLAN Notices, 15(3):35–44, 1980.

Thomas Reps and Tim Teitelbaum. The Synthesizer Generator: A System for Constructing
Language-Based Editors. Texts and Monographs in Computer Science. Springer-Verlag,
1989a.

Thomas Reps and Tim Teitelbaum. The Synthesizer Generator Reference Manual. Texts and
Monographs in Computer Science. Springer-Verlag, 1989b.

Thomas Reps, Tim Teitelbaum, and A. Demers. Incremental context-dependent analysis for
language-based editors. ACM Trans. Programming Languages and Systems (TOPLAS), 5(3):
449–477, 1983.

Thomas Reps, Carla Marceau, and Tim Teitelbaum. Remote attribute updating for language-
based editors. Communications of the ACM, Sep. 1986.

S.D. Swierstra and H.H. Vogt. Higher order attribute grammars, lecture notes of the Int.
Summer School on Attribute Grammars, Applications and Systems. Technical Report
RUU-CS-91-14, Dep. of Computer Science / Utrecht Univ., Jun. 1991.

Tim Teitelbaum and Thomas Reps. The cornell program synthesizer: A syntax-directed
programming environment. Communications of the ACM, 24(9), Sep. 1981.

H.H. Vogt, S.D. Swierstra, and M.F. Kuiper. On the efficient incremental evaluation of
Higher Order Attribute Grammars. Research Report RUU-CS-90-36, Dep. of Computer
Science / Utrecht Univ., Dec. 1990.

William Waite and Gerhard Goos. Compiler Construction. Texts and Monographs in Com-
puter Science. Springer-Verlag, 1984.

146

http://www.amazon.de/Complete-ANTLR-Reference-Guide-Domain-specific/dp/0978739256
http://www.amazon.de/Complete-ANTLR-Reference-Guide-Domain-specific/dp/0978739256

A
L I S S C O N T E X T F R E E G R A M M A R

LISS (da Cruz and Henriques, 2007a) is an imperative programming language, defined by
the Language Processing members (Pedro Henriques and Leonor Barroca) at UM for teach-
ing purposes. It allows handling integers, sets of integers, dynamic sequences, complex
numbers, polynomials, etc., etc (da Cruz and Henriques, 2007b,a, 2006a,b, 2005).

The idea behind the design of LISS language was to create a simplified version of the
more usual imperative languages although combining functionalities from various lan-
guages.

1 grammar LissGIC ;
2

3 /∗ ∗∗∗∗∗∗ Program ∗∗∗∗∗∗ ∗ /
4

5 l i s s : ’ program ’ i d e n t i f i e r body
6 ;
7

8

9 body : ’ { ’
10 ’ d e c l a r a t i o n s ’ d e c l a r a t i o n s
11 ’ s ta tements ’ s tatements
12 ’ } ’
13 ;
14

15 /∗ ∗∗∗∗∗∗ D e c l a r a t i o n s ∗∗∗∗∗∗ ∗ /
16

17 d e c l a r a t i o n s : v a r i a b l e d e c l a r a t i o n ∗ subprogram def ini t ion ∗
18 ;
19

20 /∗ ∗∗∗∗∗∗ V a r i a b l e s ∗∗∗∗∗∗ ∗ /
21

22 v a r i a b l e d e c l a r a t i o n : vars ’−> ’ type ’ ; ’
23 ;
24

147

25 vars : var (’ , ’ var) ∗
26 ;
27

28 var : i d e n t i f i e r value var
29 ;
30

31 value var :
32 | ’= ’ i n i c v a r
33 ;
34

35 type : ’ i n t e g e r ’
36 | ’ boolean ’
37 | ’ s e t ’
38 | ’ sequence ’
39 | ’ array ’ ’ s i z e ’ dimension
40 ;
41

42 typeReturnSubProgram : ’ i n t e g e r ’
43 | ’ boolean ’
44 ;
45

46 dimension : number (’ , ’ number) ∗
47 ;
48

49 i n i c v a r : constant
50 | a r r a y d e f i n i t i o n
51 | s e t d e f i n i t i o n
52 | s e q u e n c e d e f i n i t i o n
53 ;
54

55 constant : s ign number
56 | ’ t rue ’
57 | ’ f a l s e ’
58 ;
59

60 s ign :
61 | ’+ ’
62 | ’− ’
63 ;
64

65 /∗ ∗∗∗∗∗∗ Array d e f i n i t i o n ∗∗∗∗∗∗ ∗ /
66

67 a r r a y d e f i n i t i o n : ’ [’ a r r a y i n i t i a l i z a t i o n ’] ’

148

68 ;
69

70 a r r a y i n i t i a l i z a t i o n : elem (’ , ’ elem) ∗
71 ;
72

73 elem : number
74 | a r r a y d e f i n i t i o n
75 ;
76

77 /∗ ∗∗∗∗∗∗ Sequence d e f i n i t i o n ∗∗∗∗∗∗ ∗ /
78

79 s e q u e n c e d e f i n i t i o n : ’<< ’ s e q u e n c e i n i t i a l i z a t i o n ’>> ’
80 ;
81

82 s e q u e n c e i n i t i a l i z a t i o n :
83 | values
84 ;
85

86 values : number (’ , ’ number) ∗
87 ;
88

89 /∗ ∗∗∗∗∗∗ S e t d e f i n i t i o n ∗∗∗∗∗∗ ∗ /
90

91 s e t d e f i n i t i o n : ’ { ’ s e t i n i t i a l i z a t i o n ’ } ’
92 ;
93

94 s e t i n i t i a l i z a t i o n :
95 | i d e n t i f i e r ’ | ’ express ion
96 ;
97

98 /∗ ∗∗∗∗∗∗ SubProgram d e f i n i t i o n ∗∗∗∗∗∗ ∗ /
99

100 subprogram def ini t ion : ’ subprogram ’ i d e n t i f i e r ’ (’ formal args ’) ’
re turn type f body

101 ;
102

103 f body : ’ { ’
104 ’ d e c l a r a t i o n s ’ d e c l a r a t i o n s
105 ’ s ta tements ’ s tatements
106 returnSubPrg
107 ’ } ’
108 ;
109

149

110 /∗ ∗∗∗∗∗∗ Formal a r g s ∗∗∗∗∗∗ ∗ /
111

112 formal args :
113 | f a r g s
114 ;
115

116 f a r g s : formal arg (’ , ’ formal arg) ∗
117 ;
118

119 formal arg : i d e n t i f i e r ’−> ’ type
120 ;
121

122 /∗ ∗∗∗∗∗∗ Return t y p e ∗∗∗∗∗∗ ∗ /
123

124 re turn type :
125 | ’−> ’ typeReturnSubProgram
126 ;
127

128 /∗ ∗∗∗∗∗∗ Return ∗∗∗∗∗∗ ∗ /
129

130 returnSubPrg :
131 | ’ re turn ’ express ion ’ ; ’
132 ;
133

134 /∗ ∗∗∗∗∗∗ S t a t e m e n t s ∗∗∗∗∗∗ ∗ /
135

136 s tatements : s tatement ∗
137 ;
138

139 statement : assignment ’ ; ’
140 | wri te s ta tement ’ ; ’
141 | read statement ’ ; ’
142 | c o n d i t i o n a l s t a t e m e n t
143 | i t e r a t i v e s t a t e m e n t
144 | f u n c t i o n c a l l ’ ; ’
145 | succ or pred ’ ; ’
146 | copy statement ’ ; ’
147 | c a t s t a t e m e n t ’ ; ’
148 ;
149

150 /∗ ∗∗∗∗∗∗ Assignment ∗∗∗∗∗∗ ∗ /
151

152 assignment : des ignator ’= ’ express ion

150

153 ;
154

155 /∗ ∗∗∗∗∗∗ D e s i g n a t o r ∗∗∗∗∗∗ ∗ /
156

157 des ignator : i d e n t i f i e r a r r a y a c c e s s
158 ;
159

160 a r r a y a c c e s s :
161 | ’ [’ e lem array ’] ’
162 ;
163

164 elem array : s i n g l e e x p r e s s i o n (’ , ’ s i n g l e e x p r e s s i o n) ∗
165 ;
166

167 /∗ ∗∗∗∗∗∗ Func t i on c a l l ∗∗∗∗∗∗ ∗ /
168

169 f u n c t i o n c a l l : i d e n t i f i e r ’ (’ sub prg args ’) ’
170 ;
171

172 sub prg args :
173 | args
174 ;
175

176 args : express ion (’ , ’ express ion) ∗
177 ;
178

179 /∗ ∗∗∗∗∗∗ E x p r e s s i o n ∗∗∗∗∗∗ ∗ /
180

181 express ion : s i n g l e e x p r e s s i o n (r e l o p s i n g l e e x p r e s s i o n) ?
182 ;
183

184 /∗ ∗∗∗∗∗∗ S i n g l e e x p r e s s i o n ∗∗∗∗∗∗ ∗ /
185

186 s i n g l e e x p r e s s i o n : term (add op term) ∗
187 ;
188

189 /∗ ∗∗∗∗∗∗ Term ∗∗∗∗∗∗ ∗ /
190 term : f a c t o r (mul op f a c t o r) ∗
191 ;
192

193 /∗ ∗∗∗∗∗∗ F a c t o r ∗∗∗∗∗∗ ∗ /
194

195 f a c t o r : i n i c v a r

151

196 | des ignator
197 | ’ (’ express ion ’) ’
198 | ’ ! ’ f a c t o r
199 | f u n c t i o n c a l l
200 | s p e c i a l F u n c t i o n s
201 ;
202

203 s p e c i a l F u n c t i o n s : t a i l
204 | head
205 | cons
206 | member
207 | is empty
208 | length
209 | d e l e t e
210 ;
211

212 /∗ ∗∗∗∗∗∗ add op , mul op , r e l o p ∗∗∗∗∗∗ ∗ /
213

214 add op : ’+ ’
215 | ’− ’
216 | ’ | | ’
217 | ’++ ’
218 ;
219

220 mul op : ’ ∗ ’
221 | ’/ ’
222 | ’&&’
223 | ’ ∗∗ ’
224 ;
225

226 r e l o p : ’== ’
227 | ’ != ’
228 | ’< ’
229 | ’> ’
230 | ’<= ’
231 | ’>= ’
232 | ’ in ’
233 ;
234

235 /∗ ∗∗∗∗∗∗ Write s t a t e m e n t ∗∗∗∗∗∗ ∗ /
236

237 wri te s ta tement : wr i te expr ’ (’ pr int what ’) ’
238 ;

152

239

240 wri te expr : ’ wri te ’
241 | ’ wr i t e ln ’
242 ;
243

244 print what :
245 | express ion
246 ;
247

248 /∗ ∗∗∗∗∗∗ Read s t a t e m e n t ∗∗∗∗∗∗ ∗ /
249

250 read statement : ’ input ’ ’ (’ i d e n t i f i e r ’) ’
251 ;
252

253 /∗ ∗∗∗∗∗∗ C o n d i t i o n a l & I t e r a t i v e ∗∗∗∗∗∗ ∗ /
254

255 c o n d i t i o n a l s t a t e m e n t : i f t h e n e l s e s t a t
256 ;
257

258 i t e r a t i v e s t a t e m e n t : f o r s t a t
259 | w h i l e s t a t
260 ;
261

262 /∗ ∗∗∗∗∗∗ i f t h e n e l s e s t a t ∗∗∗∗∗∗ ∗ /
263

264 i f t h e n e l s e s t a t : ’ i f ’ ’ (’ express ion ’) ’
265 ’ then ’ ’ { ’ s ta tements ’ } ’
266 e l s e e x p r e s s i o n
267 ;
268

269 e l s e e x p r e s s i o n :
270 | ’ e l s e ’ ’ { ’ s ta tements ’ } ’
271 ;
272

273 /∗ ∗∗∗∗∗∗ f o r s t a t ∗∗∗∗∗∗ ∗ /
274

275 f o r s t a t : ’ f o r ’ ’ (’ i n t e r v a l ’) ’ s tep s a t i s f y
276 ’ { ’ s ta tements ’ } ’
277 ;
278

279 i n t e r v a l : i d e n t i f i e r t y p e i n t e r v a l
280 ;
281

153

282 t y p e i n t e r v a l : ’ in ’ range
283 | ’ inArray ’ i d e n t i f i e r
284 ;
285

286 range : minimum ’ . . ’ maximum
287 ;
288

289 minimum : number
290 | i d e n t i f i e r
291 ;
292

293 maximum : number
294 | i d e n t i f i e r
295 ;
296

297 s tep :
298 | up down number
299 ;
300

301 up down : ’ stepUp ’
302 | ’ stepDown ’
303 ;
304

305 s a t i s f y :
306 | ’ s a t i s f y i n g ’ express ion
307 ;
308

309 /∗ ∗∗∗∗∗∗ W h i l e S t a t ∗∗∗∗∗∗ ∗ /
310 w h i l e s t a t : ’ while ’ ’ (’ express ion ’) ’
311 ’ { ’ s ta tements ’ } ’
312 ;
313

314 /∗ ∗∗∗∗∗∗ Succ Or Predd ∗∗∗∗∗∗ ∗ /
315

316 succ or pred : succ pred i d e n t i f i e r
317 ;
318

319 succ pred : ’ succ ’
320 | ’ pred ’
321 ;
322

323 /∗ ∗∗∗∗∗∗ SequenceOper ∗∗∗∗∗∗ ∗ /
324

154

325 t a i l / / t a i l : s e q u e n c e −> s e q u e n c e
326 : ’ t a i l ’ ’ (’ express ion ’) ’
327 ;
328

329 head / / head : s e q u e n c e −> i n t e g e r
330 : ’ head ’ ’ (’ express ion ’) ’
331 ;
332

333 cons / / i n t e g e r x s e q u e n c e −> s e q u e n c e
334 : ’ cons ’ ’ (’ express ion ’ , ’ express ion ’) ’
335 ;
336

337 d e l e t e / / d e l : i n t e g e r x s e q u e n c e −> s e q u e n c e
338 : ’ del ’ ’ (’ express ion ’ , ’ express ion ’) ’
339 ;
340

341 copy statement / / c o p y s t a t e m e n t : s e q x s e q −> v o i d
342 : ’ copy ’ ’ (’ i d e n t i f i e r ’ , ’ i d e n t i f i e r ’) ’
343 ;
344

345 c a t s t a t e m e n t / / c a t s t a t e m e n t : s e q x s e q −> v o i d
346 : ’ c a t ’ ’ (’ i d e n t i f i e r ’ , ’ i d e n t i f i e r ’) ’
347 ;
348

349 is empty / / i s e m p t y : s e q u e n c e −> b o o l e a n
350 : ’ isEmpty ’ ’ (’ express ion ’) ’
351 ;
352

353 length / / l e n g t h : s e q u e n c e −> i n t e g e r
354 : ’ length ’ ’ (’ express ion ’) ’
355 ;
356

357 /∗ ∗∗∗∗∗∗ s e t o p e r ∗∗∗∗∗∗ ∗ /
358

359 member / / isMember : i n t e g e r x s e q u e n c e −> b o o l e a n
360 : ’ isMember ’ ’ (’ express ion ’ , ’ i d e n t i f i e r ’) ’
361 ;
362

363

364

365 /∗
++
∗ /

155

366

367 s t r i n g : STR
368 ;
369

370 number : NBR
371 ;
372

373 i d e n t i f i e r : ID
374 ;
375 /∗

++
∗ /

376

377

378 /∗ ∗∗∗∗∗∗ L e x e r ∗∗∗∗∗∗ ∗ /
379

380 NBR : (’ 0 ’ . . ’ 9 ’) +
381 ;
382

383 ID : (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’) (’ a ’ . . ’ z ’ | ’A ’ . . ’Z ’ | ’ 0 ’ . . ’ 9 ’ | ’ ’) ∗
384 ;
385

386 WS : ([\ t \ r \n] | COMMENT) −> skip
387 ;
388

389 STR : ’ ” ’ (ESC SEQ | ˜ (’ ” ’)) ∗ ’ ” ’
390 ;
391

392

393 fragment
394 COMMENT
395 : ’ /∗ ’ . ∗ ? ’∗/ ’ /∗ m u l t i p l e comments ∗ /
396 | ’// ’ ˜ (’ \ r ’ | ’ \n ’) ∗ /∗ s i n g l e comment ∗ /
397 ;
398

399 fragment
400 ESC SEQ
401 : ’ \\ ’ (’ b ’ | ’ t ’ | ’n ’ | ’ f ’ | ’ r ’ | ’ \” ’ | ’ \ ’ ’ | ’ \\ ’)
402 ;

lissGIC.g4

156

	1 Introduction
	1.1 Objectives
	1.2 Research Hypothesis
	1.3 Document Structure

	2 LISS language
	2.1 Formal languages and grammar
	2.2 LISS Data types
	2.2.1 LISS lexical conventions

	2.3 LISS blocks and statements
	2.3.1 LISS declarations
	2.3.2 LISS statements
	2.3.3 LISS control statements
	2.3.4 Other statements

	2.4 LISS subprograms
	2.5 Evolution of LISS syntax

	3 Target machine: MIPS
	3.1 MIPS coprocessors
	3.2 MIPS cpu data formats
	3.3 MIPS registers usage
	3.4 MIPS instruction formats
	3.4.1 MIPS R-Type
	3.4.2 MIPS I-Type
	3.4.3 MIPS J-Type

	3.5 MIPS assembly language
	3.5.1 MIPS data declarations
	3.5.2 MIPS text declarations

	3.6 MIPS instructions
	3.7 MIPS Memory Management
	3.7.1 MIPS stack
	3.7.2 MIPS heap

	3.8 MIPS simulator
	3.8.1 MARS at a glance

	4 Compiler development
	4.1 Compiler generation with ANTLR
	4.2 Lexical and syntatical analysis
	4.3 Semantic Analysis
	4.3.1 Symbol Table
	4.3.2 Error table in LISS
	4.3.3 Types of error message
	4.3.4 Validations Implemented

	4.4 Code Generation
	4.4.1 Strategy used for the code generation
	4.4.2 LISS language code generation
	4.4.3 Creating a variable in LISS
	4.4.4 Loading a variable or a value
	4.4.5 Assigning in LISS
	4.4.6 Set operations
	4.4.7 Sequence operations
	4.4.8 Implementing Function calls
	4.4.9 Implementing Input/Output
	4.4.10 Implementing Conditional statements
	4.4.11 Implementing Iterative statements
	4.4.12 Implementing increment or decrement operators

	5 SDE: DEVELOPMENT
	5.1 What is a template?
	5.2 Conception of the SDE
	5.2.1 Toolbar meaning
	5.2.2 Creating a program
	5.2.3 Executing a program
	5.2.4 Error System in liss|SDE

	6 Conclusion
	6.1 Future Work

	A Liss Context Free Grammar

