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In this communication we shall present developments 
concerning the synthesis of Single-Input, Single-Output 
(SISO) and Multi-Input, Multi-Output (MIMO) adaptive 
linearizing algorithms for the operation of bioreactors. 
Results will be illustrated for the baker’s yeast 
fermentation process.  

The synthesis of these non-linear control laws is 
performed by employing differential geometry 
techniques with system linearization by state feedback. 
The controller design includes a step of order reduction 
of the process state model. The adaptive feature comes 
from the on-line estimation of the required process time 
varying parameters. The adaptive algorithm proposed 
enforces a desired and pre-set second order convergence 
dynamics as originally introduced by Oliveira et al. (1). 
Formulating the estimator on this basis leaves the user 
with the choice of two simple and intuitive tuning 
parameters with physical meaning - a damping 
coefficient and a natural period of oscillation. 

PROCESS MODEL 

The baker’s yeast process is accepted as occurring in 
two possible metabolic regimes, viz. - i) a respiro-
fermentative regime, corresponding to an ethanol 
production state, and ii) a respirative regime, 
corresponding to an ethanol consumption pathway as 
stated by Sonnleitner and Käpelli (2). The fermentation 
is carried out in semi-batch reactor with the controlled 
addition of substrate.  

TABLE 1a - Model for respiro-fermentative regime 

State Equations 

X
•
 = –DX + ϕ1 + ϕ2 

S
•
 = –DS – k1ϕ1 – k2ϕ2 + DSin 

E
•
 = –DE + k3ϕ2 

O
•

 = –DO – k5ϕ1 + OTR 

C
•

 = –DC + k7ϕ1 + k8ϕ2 – CTR 

TABLE 1b - Model for respirative regime 

State equations 

X
•
 = –DX + ϕ1 + ϕ3 

S
•
 = –DS – k1ϕ1 + Dsin 

E
•
 = –DE – k4ϕ3 

O
•

 = –DO – k5ϕ1 – k6ϕ3 + OTR 

C
•

 = –DC + k7ϕ1 + k9ϕ3 – CTR 

 

Classical mathematical modelling leads to two partial 
models, as represented in Table 1a and Table 1b where 
S, O, X, C and E represent respectively glucose, oxygen, 
biomass, carbon dioxide and ethanol concentrations; ϕ1, 
ϕ2 and ϕ3 represent growth rates, the ki are yield 
coefficients, OTR is the oxygen transfer rate, CTR is the 
carbon dioxide transfer rate, Sin is the inlet concentration 
of glucose in the feed, and, finally, D is the dilution rate 
(ratio feed rate / volume). 

The two partial models above may be described in a 
space-state matrix form by a general dynamic model of 
biological reactors as: 

( )d
dt

K t D F Q
ξ

ϕ ξ ξ= − + −,  (1) 

where ξ represents the state components; Kϕ represents 
the kinetic structure, assumed unknown; the vectors F 
and Q represent respectively the process inputs and 
outputs, known from on-line measurements. 

Model Order Reduction 

Given that the kinetic structure is usually unknown, a 
procedure of on-line parameter estimation will have to 
be employed, which however will have to be based on a 
reformulated model free of the kinetic terms. In those 
cases where a number of fast dynamic state components 
are recognised, this number being equal to or larger than 
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the number of unknown kinetic terms, it is possible to 
assume that such components are in pseudo steady-state 
and, through the single perturbation method, to 
reformulate the problem in terms of a reduced model. 

Assuming that glucose and CO2 exhibit fast dynamics 
relatively to the slow limiting dynamics of biomass, 
ethanol, and oxygen, and adopting the single 
perturbation procedure, it is possible to obtain, a 
reduced model representation of the process: i) recurring 
to the algebraic equations in glucose and CO2, growth 
rates (ϕ1, ϕ2 and ϕ3) are obtained as functions of the 
input and output vectors; ii) substituting in the dynamic 
equations for X, E and O leads to the following reduced 
representation of such dynamics: 

d
dt

O
E
X

CTR OTR
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where the parameters θ1,…, θ6 are variable functions of 
the yield coefficients, depending at each moment on the 
prevalent metabolic regime.  

ADAPTIVE CONTROL 

The synthesis of the non-linear control laws is 
performed by employing differential geometry 
techniques with system linearization by state feedback, 
as proposed by Bastin and Dochain (3). The adaptive 
feature comes from the on-line estimation of the 
required process time varying parameters.  

The feedback control objective is that a control variable 
y follows a reference value represented by y*(t). The 
linearizing control problem consists of deducing and 
implementing a non-linear law such that the controller 

convergence error y~ = (y* – y) be governed by a pre-
specified stable linear differential equation, known as 
reference model. 

The SISO Problem 

In the single output problem, the objective will be to 
control a scalar y which will be taken as a linear 
combination of the state variables, of the form: 

y L Li i
i

n
T= =

=
∑ ξ ξ

1
 (3) 

where LT = [L1, L2, ..., Ln] is a vector of known 
constants. Combining the reduced model equations 
(which in the present case study correspond to eqns. (2)) 
with the transformation (eqn. (3)), leads to an input-
output reduced model, which can be conveniently 
written (for the sake of error analysis) in the general 
form: 

( ) ( ) ( ) ( )dy
dt

F Q u tT= + +Φ Ψξ θ φ ξ,  (4) 

where: Φ, Ψ and φ are known functions of ξ, F and Q; 
θ represents the matrix of unknown parameters which 
characterise the kinetics; and, u(t) is the manipulated 
input (the dilution rate, for this SISO case). The kinetics 
has been taken as unknown, but even if this were not the 
case, the fact that model (eqn. (4)) is the result of some 
simplifying hypotheses means that θ is always a matrix 
of unknown parameters, which necessarily will have to 
be adapted on-line. From this point of view, φ represents 
the corresponding regression vector associated to θ. 

The control objective will consist of imposing a stable 
first order closed-loop dynamics of the trajectory for the 
control error system, of the form: 

( ) ( )d
dt

y y y y∗ ∗− + − =λ 0  (5) 

characterised by a positive time constant corresponding 
to the inverse of the characteristic time of the control 
error trajectory. 

Combining the input-output reduced model (eqn. (4)) 
with the reference model (eqn. (5)), will easily lead to 
the following linearizing control law: 

( ) ( ) ( ) ( )u t y y
dy
dt

T( ) !*
*

= − + − −








−
Ψ Φξ λ ξ θ φ ξ

1  (6) 

Employing the reduced model, will lead to concentrate 
all the unknowns in the parameter matrix θ, which will 

be estimated on-line. Hence, in eqn. (6) the estimates θ̂ 
will be employed rather than the true values θ. 

The dynamics of the control error y~ = (y* – y), for the 

situation where estimated θ̂ are employed, is modelled 
by substituting eqn. (6) in eqn. (4), giving: 

dy
dt

dy
dt

dy
dt

y T
~

~ ~*

≡ − = − −λ θ φ  (7) 

where θ
~

 represents the error in the parameters θ, defined 

by θ
~

 ≡ θ – θ̂. 

Baker’s yeast case study. Axelsson (4), Dairaku et al. 
(5) and Pomerleau (6) have shown that the regulation of 
ethanol concentration is an effective means for 
achieving a good compromise between yield (ratio of 
biomass produced to sugar added) and productivity 
(biomass production by volume and time). The 
accumulation of ethanol affects negatively both yield 
and productivity. It is however known that a low level of 
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ethanol will have the desirable effect of inducing the 
enzymatic system of the fermentative catabolic pathway, 
in this way avoiding a long adaptation period when 
using the yeast (6). 

The objective for the SISO control scheme consists of 
regulating ethanol concentration (y = E, i.e. LT=[0 1 0]), 
employing the feed rate (or dilution rate) as control 
variable. It is assumed that ethanol measurements are 
available. Yield coefficients and reaction rates are taken 
as unknowns.  

The reduced input-output model can be seen to 
correspond to eqn. (4) where: φT= [–CTR  DSin], Φ = 0 
and Ψ = –E. Substituting such values in eqn. (6) will 
lead to the following linearizing adaptive control law: 

( )
D

E E CTR
S Ein

=
− +

−

∗λ θ
θ

!
!

3

4

 (8) 

The adaptive control algorithm corresponds to 
implementing an algorithm for the on-line estimation of 
parameters θ3 and θ4 prior, at every step, to calculating 
and implementing the control law. This adaptive 
methodology has the significant advantages of 
compensating for model mismatches and of not 
requiring the identification of the metabolic regime. 

Estimation Laws 

The basis for the method adopted is the so-called 
Lyaponov design. For the single output problem, it is 
assumed that each parameter θi is estimated by the 
following adaptive law: 

( )( )d
dt

F Q y yi
i i

!
, *θ

φ= − −Γ  (9) 

where φi(F,Q) is the regressor associated to θi, function 
of F and Q, and Γi the positive definite estimator gain. 

The dynamic model for the error system, composed by 

the control error y~ and by the parameter error θ~i, can be 
deduced from eqns. (9) and (7) and written as 

d
dt

y y d
dti

i

i i i

i
~
~

~
~θ

λ φ
φ θ

θ







 =

− −
















 +








Γ 0

0
1

 (10) 

whose characteristic equation presents the roots 

– 05 0 25 2 2. .λ λ φ± − Γi i  (11) 

The criterion chosen for the error dynamics determines 
the parameter convergence and as such the quality and 
even the feasibility of the proposed adaptive scheme. 

Choice of a real double pole. Perrier and Dochain (7) 
proposed to fixing the closed loop dynamics by 
choosing a real double pole, which leads to the 
following relationship between controller and estimator 
parameters: 

Γi i= −0 25 2 2. λ φ  (12) 

Substituting eqn. (12) in eqn. (9), gives: 

( )d
dt

y yi
i

!
*θ

γφ= − −−1  (13) 

with γ ≡ 0.25λ
2
. 

Generalising for 2nd order convergence. The θ 
estimator (eqn. (13)) will be employed, with a constant 
but undefined γ. Differentiating, leads to:  

d
dt

dy
dt

d
dt

yi

i i

i
2

2 2

! ~
~θ γ

φ
γ
φ

φ
= − +  (14) 

Combining with eqn. (10), leads to the following 2nd 
order equation: 

1 1 12

2γ
θ

γ
λ

φ
φ θ

θ θ
d
dt

d
dt

d
dt

i

i

i i
i i

! !
!+ +







 + =  (15) 

Defining the characteristic adaptive and control 
parameters as: 

λ
ζ
τ φ

φ
≡ −

2 1

i

id
dt

  (16) 

γ
τ

≡
1
2   (17) 

equation (14) can be rewritten as - 

τ
θ

ζτ
θ

θ θ2
2

2 2
d
dt

d
dt

i i
i i

! !
!+ + =  (18) 

which has the meaning that each θ̂i converges for the 
true θi through a 2nd order dynamic trajectory, with a 
natural period of oscillation τ and a damping coefficient 
ζ . 

In the specific case of the choice of a double pole (i.e. γ
 ≡ 0.25λ

2
) the controller gain is inversely proportional 

to the corresponding periods of oscillation, as follows: 

λ = 2/τ (19) 

and, in fact, parameters ζ  and τ will not be independent, 
rather being related by: 
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ζ
τ
φ

φ
= +1

2 i

id
dt

 (20) 

This problem formulation based on the 2nd order 
convergence dynamics has the advantages of linking the 
controller tuning to the estimator tuning through two 
parameters (or one in the case of the real double pole 
criterion) which have a simple and well established 
physical meaning. In the case where the choice is the 
tuning of both 2nd order convergence parameters, the 
controller gain will be a function of the regressor φi(t), 
hence being time varying. 

Baker’s yeast case study. The on-line estimation of θ̂3 

and θ̂4 (noting that the related regressors are, 
respectively–CTR and DSin) is performed by using a 
discrete time implementation as follows: 

θ̂3,k+1 = θ̂3,k + T(E* – Ek)/(CTRkτ2) (21) 

θ̂4,k+1 = θ̂4,k – T(E* – Ek)/(DkSinτ2) (22) 

with the controller gain computed as: 

λ = 2ζ/τ – (CTRk – CTRk-1)/T/CTRk (23) 

in which the index k is the time index and T is the 
sampling period. The 2nd order parameters have been set 
to the following values: ζ = 2.0, τ = 0.10 h. 

The MIMO Problem 

In the MIMO problem, the objective will be to control a 
vector y with each element taken as a linear combination 
of the state variables. In eqn. (3) L is now a matrix of 
known constants.  

Dochain (8) introduced an extension of SISO adaptive 
linearizing control laws for bioreactors, leading to a 
MIMO scheme.  

The development presented in this work follows the line 
of Dochain’s publication, distinguishing itself mainly in 
the step of process identification and its implications in 
the tuning of the adaptive control law. 

Baker’s yeast case study. Williams et al. (9) 
demonstrated that for this particular biological system, 
one SISO control loop is insufficient to maximise 
simultaneously yield and productivity. These authors 
proposed a linear adaptive controller composed of two 
SISO loops to regulate respiratory quotient and 
dissolved oxygen, by manipulating the sugar feed rate 
and stirrer speed respectively. The approach suffers 
from the limitations related to employing an 
approximated linear model for the process. 

For the present work the goal is still to maximise both 
yield and productivity through the MIMO control 
problem of regulating both the ethanol (E) and dissolved 
oxygen (O) concentrations, by manipulating the feed 

and the aeration rates. It is assumed that CTR can be 
measured on-line. Similarly to the SISO problem, yield 
coefficients and reaction rates are taken as unknowns.  

The control strategy will consist of imposing a stable 
first order closed-loop dynamics for the control error 
system as: 

( )
( ) [ ] ( )

( )
d
dt

O O
E E

O O
E E

*

*

*

*

−
−













+
−
−













=λ λ1 2 0  (24) 

with λ1 and λ2 corresponding to the inverse of the 
characteristic time constants of the control error 
trajectories. 

The linearizing adaptive control laws can be shown to 
be obtained from the MIMO counterpart of the general 
control eqn. (6), or, in more simple terms, by 
substituting the equations for ethanol and dissolved 
oxygen from the reduced model (eqn. (2)) in the 
reference model (eqn. (24)), leading to: 

( )
( )

( )

( )
( )

OTR
D

S O
S E

S E

O O
E E

CTR

in

in

in
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−
−
−
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θ
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*

*
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 (25) 

Similarly to the method employed for the SISO problem, 
this control law was implemented together with an on-
line estimator of the model parameters θ. The 
simultaneous adaptation of these 4 parameters has 
proved to constitute an ill-conditioned problem of 
convergence, the system exhibiting strong sensitivity to 
the tuning parameters involved in the procedure. Hence, 
it was decided to freeze parameters θ2 and θ4 and carry 
out the estimation for θ1 and θ3. Following the same 2nd 
order approach and using a discrete time 
implementation, has led to: 

θ̂1,k+1 = θ̂1,k + T(O* – Ok)/(CTRkτ2
1) (26) 

θ̂3,k+1 = θ̂3,k + T(E* – Ek)/(CTRkτ2
2) (27) 

with the controller gains computed as: 

λ1 = 2ζ1/τ1 – (CTRk – CTRk-1)/CTRk/T (28) 

λ2 = 2ζ2/τ2 – (CTRk – CTRk-1)/CTRk/T (29) 

The 2nd order parameters have been set to the following 
values: ζ1 = ζ2 = 2.0, τ1 = τ2 = 0.10 h. 

RESULTS 

Figure 1 shows concentration profiles of ethanol and of 
the manipulated variable, for the SISO problem. A set-
point change of ±10% to the initial set-point of 0.5 gL-1 
of ethanol is shown. After 8 hours of operation, a typical 
exponential profile for D is observed, corresponding to 
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the maintenance of the respiro-fermentative regime. 

In this problem the ‘second order convergence’ law for 
the estimator has lead to the best Integral of Time 
weighted Absolute Error (ITAE) convergence indices as 
compared to those obtained with other Lyapunov 
techniques and with recursive least squares methods. 
Furthermore, robustness analysis for the control and 
adaptation laws has demonstrated that the reduced 
model was adequate for the control design.  

Results for the MIMO problem are presented in Figure 
2. It shows concentration profiles for ethanol (a) and 
dissolved oxygen (b) which are significantly kept very 
close to the reference values (E*=0.5 g.L-1 and O*=2 
mg.L-1). Also, frames (c) and (d) show adequate smooth 
profile for the manipulated variables.  

The MIMO control configuration has led to average 
values of 0.54 g.L-1.h-1 for productivity and of 0.46 g.g-1 
for yield. These indices compare most favourably with 
those observed when employing the SISO approach, 
respectively 0.34 g.L-1.h-1 and 0.43 g.g-1. 

CONCLUSIONS 

Algorithms were presented for the adaptive control of 
fermentation processes. The synthesis of the non-linear 
control laws was performed by applying a model-based 
procedure which ensures linear behaviour of the closed 
loop feedback system. A new scheme was proposed for 
the required on-line parameter identification, which 
guarantees second-order convergence for the dynamics 
of the error system.  

A case-study consisting of the regulation of ethanol 
concentration in fed-batch of baker’s yeast production 
was employed for tests by simulation. Two alternative 
identification methods were also employed for 
comparison purposes. 

The control and adaptive laws based on the reduced 
model representation of the key component dynamics 
proved to be adequate for process operation. The 
scheme based on the second order estimation procedure 
showed better performance, albeit small, as assessed by 
the ITAE and by the mean error criteria.  

Comparing the SISO and the MIMO schemes, the 
operation was not carried out under optimal (or 
optimum) trajectories, hence it is clear that these are not 
definite results on the advantages of the latter 
configuration. Yet, one would expect that the additional 
degree of freedom of the MIMO configuration should 
lead to some improvement in the operation. The present 
work supports this indication and furthermore shows the 
feasibility of its implementation. 
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Figure 1 SISO control of ethanol: 10% set-point change 
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Figure. 2 MIMO control of ethanol and dissolved oxygen 

 


