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Abstract

In this paper we consider a stationary variational inequality with non-
constant gradient constraint and we prove the existence of solution of
a Lagrange multiplier, assuming that the bounded open not necessarily
convex set Ω has a smooth boundary.
If the gradient constraint g is sufficiently smooth and satisfies ∆g2 ≤ 0
and the source term belongs to L∞(Ω), we are able to prove that the
Lagrange multiplier belongs to Lq(Ω), for 1 < q < ∞, even in a very
degenerate case. Fixing q ≥ 2, the result is still true if ∆g2 is bounded
from above by a positive sufficiently small constant that depends on Ω,
q, min

Ω
g and max

Ω
g.

Without the restriction on the sign of ∆g2 we are still able to find a
Lagrange multiplier, now belonging to L∞(Ω)′.
We also prove that if we consider the variational inequality with coerciv-
ity constant δ and constraint g, then the family of solutions (λδ, uδ)δ>0

of our problem has a subsequence that converges weakly to (λ0, u0),
which solves the transport equation.

Résumé

Dans cet article, nous considérons une inégalité variationnelle stationnaire avec une restriction non-constante

sur le gradient et nous prouvons l’existence d’un multiplicateur de Lagrange, en supposant que l’ensemble

ouvert et borné Ω, pas nécessairement convexe, a une frontière régulière.

Si la restriction du gradient g est suffisamment régulière et satisfait ∆g2 ≤ 0 et le terme source appartient

à L∞(Ω), nous pouvons prouver que le multiplicateur de Lagrange appartient à Lq(Ω), pour 1 < q < ∞,

même dans un cas très dégénéré. Si nous fixons q ≥ 2, le résultat est aussi vrai si ∆g2 est borné par une

constante positive et suffisamment petite qui dépend de Ω, q, min
Ω
g et max

Ω
g.

Sans la restriction sur le signe de ∆g2 nous sommes capables de trouver un multiplicateur de Lagrange,

maintenant appartenant à L∞(Ω)′.

Nous montrons aussi que si l’on considère l’inégalité variationnelle avec la coercitivité constante δ et

la restriction g, alors la famille des solutions (λδ, uδ)δ>0 de notre problème a une sous-suite qui converge

faiblement vers (λ0, u0), ce qui résout l’équation de transport.
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1 Introduction

Let Ω be a bounded open subset of Rd with a Lipschitz boundary ∂Ω. It is well-known that the elastic-plastic

torsion problem, that consists in finding a function u belonging to the convex set

K =
{
v ∈ H1

0 (Ω) : |∇v| ≤ 1 a.e. in Ω
}

such that ∫
Ω

∇u · ∇(v − u) ≥
∫

Ω

f(v − u) ∀v ∈ K (1)

has the following equivalent formulation using a Lagrange multiplier: to find (λ, u) belonging to a suitable

functional space such that

−∇ ·
(
λ∇u) = f in Ω,

u = 0 on ∂Ω,

|∇u| ≤ 1 in Ω, (2)

λ ≥ 1 in Ω,

(λ− 1)(|∇u| − 1) = 0 in Ω.

The existence and uniqueness of solution of the variational inequality (1) is immediate. Brezis proved, in 1972,

in [4] that there exists a unique λ ∈ L∞(Ω) (and, of course, a unique u) that solves problem (2) when f is

constant and Ω is simply connected and Gerhardt ([12]) extended this result to multiply connected domains.

In this framework, it is easy to show that u ∈W 2,q(Ω), for 1 < q <∞.

The existence of λ ∈M(Ω) was proved in [5] (for more general operators), assuming that Ω is convex and

f ∈ Lq(Ω), with q > d. Here M(Ω) denotes the set of Radon measures. A recent result in this direction can be

found in [1]. The existence of an essentially bounded Lagrange multiplier was proved, in [21], for the parabolic

version of problem (2), with nonhomogeneous Dirichlet boundary condition and in [22] for a constraint g such

that ∆g2 ≤ 0 and homogeneous Dirichlet boundary condition, in both cases with f depending only on the

variable t.

Other problems have variational or quasivariational inequalities with gradient constraint as models: sand-

piles, river networks, superconductors in longitudinal domains (see [23, 17, 18, 19, 14, 20, 22, 3]). Some of

these are evolutionary models and the gradient constraints are no longer constant. In the quasi-variational

problems these constraints are part of the unknown. For, instance, the sandpile model presented in [17] is

the following: suppose we have a rigid surface y = h0(x) were sand is dropped and we wish to determine the

pile generated, h(x, t). The function h will satisfy ∂th −∇ · (λ∇h) = w, where w is given and λ ≥ 0 is an

unknown scalar function. If the angle of repose of the material is α, then h must satisfy |∇h| ≤ tan(α) in the

set {h(x, t) > h0(x)} and λ shall be zero in the set where |∇h| < tan(α). If we define, for a given function

u(x, t),

M(u)(x, t) =

{
tan(α) if u(x, t) > h0(x),

max{tan(α), |∇h0(x)|} if u(x, t) ≤ h0(x),

the sandpile problem is formulated as the evolutionary version of problem (1), with λ ≥ 1 replaced by λ ≥ 0

and the gradient constraint 1 replaced by the nonconstant unknown gradient constraint M(h).
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Existence of solution of problem (2) can be proved using duality theory as it is done, for example, in

[17, 6, 7]. However, the approximation of the problem by a family of PDEs has the advantage of obtaining

the Lagrange multiplier as a limit of a sequence that depends of the solutions of a family of PDEs (see [2]).

In this paper we are interested in the following problem: under suitable assumptions on f and g and for

δ ≥ 0, to find (λδ, uδ) ∈ Lq(Ω)×W 1,∞(Ω), 1 < q <∞, such that

−∇ ·
(
λδ∇uδ) = f in Ω, (3a)

uδ = 0 on ∂Ω, (3b)

|∇uδ| ≤ g in Ω, (3c)

λδ ≥ δ in Ω, (3d)

(λδ − δ)(|∇uδ| − g) = 0 in Ω (3e)

We are considering solution of (3) in the weak sense, more precisely, if f ∈ Lq(Ω) and g ∈ L∞(Ω) is positive,

then (λδ, uδ) satisfies (3a) if ∫
Ω

λδ∇uδ · ∇v =

∫
Ω

fv ∀v ∈W 1,q′

0 (Ω).

In the case δ = 0 and g ≡ 1, this problem is an equivalent formulation for the Monge-Kantorovich mass

transfer problem (see [11] for details about this problem). The sandpile model can be seen as an evolutionary

Monge-Kantorovich problem.

De Pascale and Pratelli studied in [8, 9], and together with Evans in [10], the integrability of λ, assuming

that the set Ω is convex, g ≡ 1, f ∈ Lq(Ω) for 2 ≤ q ≤ ∞ and

∫
Ω

f = 0. In [13], it can be found the version

of problem (3), with δ = 0 and variable constraint g, as modelling the optimal mass transport problem in

inhomogeneous domains.

In [2], for any bounded and not necessarily convex subset Ω of Rd with Lipschitz boundary, it was proved

that, if f ∈ L∞(Ω), g ∈W 2,∞(Ω) and δ = 1 then problem (3) has a solution in L∞(Ω)′ ×W 1,∞(Ω).

In this paper, we generalize the result obtained in [10] in two directions: we are able to treat the case were

Ω is not convex and the constraint g on the gradient is not constant, as long as g ∈ C 2(Ω) satisfies ∆g2 ≤ 0.

Assuming that f ∈ L∞(Ω), we prove that λδ ∈ Lq(Ω), for any q ∈ [1,∞) and δ ≥ 0. The proof will be done

approximating the problem (3), for δ > 0, by a family of quasilinear elliptic problems. We adapt an idea used

by Gerhardt in [12] for the case δ = 1 and gradient constraint g ≡ 1, where he approximated the maximal

monotone graph j(s) = 1 if s < 0 and j(s) = [1,∞) if s = 0 by a family of smooth increasing functions

jε(s) = 1 if s < 0 and jε(s) = e
s
ε if s ≥ ε. An analogous idea is used in [10], concerning the problem with

δ = 0 and g ≡ 1. In fact, the authors approximate the maximal monotone graph j(s) = 0 if s < 0 and

j(s) = [0,∞) if s = 0 by a sequence jk(s) = e
ks
2 , where k ∈ N. The integral type estimates used in [10]

are relevant in the proof of one result in this paper. In our case we have additional difficulties as g may be

nonconstant and Ω not convex. As a consequence, we need to control |∇uεδ| on the boundary of Ω, being

uεδ the solution of the approximating problem.

The solution of problem (2) when δ = 0 is obtained as a limit of a subsequence of
(
(λδ, uδ)

)
δ>0

, when

δ → 0. If we only assume that g is a positive function belonging to W 2,∞(Ω) and drop the assumption

∆g2 ≤ 0, we can prove, for δ > 0, (exactly as in [2]) that there exists a solution (λδ, uδ) ∈ L∞(Ω)′×W 1,∞(Ω).

The case δ = 0 will also be obtained here letting δ → 0.
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We present below the main results of this paper.

Theorem 1.1. Suppose that the boundary of Ω is of class C 2, δ > 0, f ∈ L∞(Ω), g ∈ C 2(Ω) is such that

g > 0 and 4g2 ≤ 0. Then problem (3) has a solution

(λδ, uδ) ∈ Lq(Ω)×W 1,∞(Ω), for any 1 < q <∞.

Theorem 1.2. Under the assumptions of Theorem 1.1, there exists a subsequence of the solutions
(
(λδ, uδ)

)
δ>0

of problem (3) such that

λδ −−−⇀
δ→0

λ0 in Lq(Ω),

uδ −−−⇀
δ→0

u0 in W 1,∞(Ω).

Besides, (λ0, u0) solves problem (3) for δ = 0.

Our proof that (λ0, u0) solves problem (3) for δ = 0, when g is constant and Ω is convex, is an alternative

proof of the result obtained in [10] (in this case we only need to assume that f ∈ Lq(Ω), for 2 ≤ q ≤ ∞).

If Ω is not convex, we still prove the same result, imposing f ∈ L∞(Ω), in order to control a term on the

boundary that we cannot neglect.

In Remark 2.8 we will observe that, for fixed 2 ≤ q <∞, there exists a constant C = C(Ω, q,max
Ω

g,min
Ω
g) >

0 such that the assumption ∆g2 ≤ 0 can be replace by ∆g2 ≤ C in the above two theorems.

We are able to prove that (λδ, uδ) solves a weaker version of problem (3), with no restrictions on ∆g2.

We present below this weaker version of problem (3): for δ ≥ 0, to find (λδ, uδ) ∈ L∞(Ω)′ ×W 1,∞(Ω) such

that

−∇ · (λδ∇uδ) = f in D ′(Ω), (4a)

uδ = 0 on ∂Ω, (4b)

|∇uδ| ≤ g in Ω, (4c)

λδ ≥ δ in D ′(Ω), (4d)

(λδ − δ)(|∇uδ| − g) = 0 in D ′(Ω) (4e)

Theorem 1.3. Assume that Ω is a bounded open subset of Rd with Lipschitz boundary. Given f ∈ L2(Ω)

and g ∈W 2,∞(Ω), with g > 0,

a) if δ > 0, problem (4) has a solution

(λδ, uδ) ∈ L∞(Ω)′ ×W 1,∞(Ω);

b) at least for a subsequence of
(
(λδ, uδ)

)
δ>0

of solutions of problem (4), we have

λδ −−−⇀
δ→0

λ0 in L∞(Ω)′,

uδ −−−⇀
δ→0

u0 in W 1,∞(Ω).

Besides, (λ0, u0) solves problem (4) for δ = 0.
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In Section 2 we define a family of approximating quasilinear elliptic equations and we obtain a priori

estimates that will be important later. Section 3 and 4 are dedicated to the proofs of Theorem 1.1 and

Theorem 1.2, respectively. The last section treats the case without restriction on the sign of ∆g2, proving

Theorem 1.3.

We would like to remark that the proof in [22] for the existence of Lagrange multiplier belonging to

L∞
(
Ω× (0, T )

)
for the parabolic version of problem (2) with δ = 1, uses a completely different approach. It

uses the strong maximum principle applied to an equation satisfied by |∇uεδ|2 to obtain the estimate

|∇uεδ|2 ≤ g2 + εC a.e. in Ω× (0, T ).

As we assume here that f is not constant, the reasoning used in [22] is no longer valid in Ω, although we can

use part of it to control |∇uεδ| on the boundary of Ω.

Along the paper we will use C to designate different constants, whenever it is not necessary to be specific

and we will use C0, C1, C2, C∗ when the value or the dependence of the constants on the data matters. If in

a proof several different constants appear, they are also named differently to avoid confusion. We will use Dq

to denote that the constant depends on the Lq exponent.

2 The approximating problem

In this paper Ω is a bounded open subset of Rd with Lipschitz boundary, n denotes the outward unit normal

vector to ∂Ω and δ0 is a fixed positive number. We will use the summation convention for repeated indexes,

and we will denote the partial derivative of a function u with respect to the variable xi by uxi . The normal

derivative of a function u on ∂Ω will be represented by ∂u
∂n .

For 0 < ε < 1, 0 < δ ≤ δ0 and r > max{1, d2} to be chosen later, independently of ε and δ, consider

kεδ : R −→ R.

s 7→
{
δ if s < 0

δ +
(
s
ε

)r
if s ≥ 0

(5)

We observe that the function kεδ is of class C 1 and kεδ ≥ δ > 0.

Theorem 2.1. Let f ∈ L2(Ω) and g ∈ L∞(Ω) be such that m = min
Ω
g > 0. Then problem

{ −∇ · (kεδ(|∇uεδ|2 − g2)∇uεδ
)

= fε on Ω

uεδ = 0 in ∂Ω,
(6)

where fε is the regularization by convolution of f , has a unique solution uεδ belonging to C 2(Ω) ∩ C (Ω).

Proof. The proof of this theorem is straightforward. Details can be found in [2].

In what follows, whenever there is no confusion, we will write kεδ instead of kεδ(|∇uεδ|2 − g2).

We are going to obtain some a priori estimates for the solution uεδ, independent of ε and δ. In some

estimates we may assume, without mention, that ε is smaller then 1, if necessary. We observe that when

f ∈ L∞(Ω) then ‖fε‖L∞(Ω) ≤ ‖f‖L∞(Ω).
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Lemma 2.2. Let f ∈ L(2r)′(Ω), g ∈ L∞(Ω) be such that m = min
Ω
g > 0. If uεδ solves problem (6) then,

‖∇uεδ‖L2r(Ω) ≤ C1, (7)

‖uεδ‖L∞(Ω) ≤ C2, (8)

where C1, C2 are constants depending only on ‖f‖L(2r)′ (Ω), ‖g‖L2r(Ω) and m.

Proof. Let Aεδ =
{
x ∈ Ω : |∇uεδ(x)| ≥ g(x)

}
. Then we have, in Aεδ,

|∇uεδ(x)|2r ≤ 2r−1
(
|∇uεδ(x)|2 − g2

)r
+ 2r−1g2r

≤ 2r−1εrkεδ
(
|∇uεδ(x)|2 − g2

)
+ 2r−1g2r.

Then ∫
Aεδ

|∇uεδ(x)|2r ≤ 2r−1εr
∫
Aεδ

kεδ + 2r−1

∫
Ω

g2r

≤ 2r−1

m2

∫
Ω

kεδ|∇uεδ|2 + 2r−1‖g‖2rL2r(Ω)

=
2r−1

m2

∫
Ω

fεuεδ + 2r−1‖g‖2rL2r(Ω)

≤ C
(
‖f‖(2r)

′

L(2r)′ (Ω)
+ 1
)

+ 1
2

∫
Ω

|∇uεδ|2r + 2r−1‖g‖2rL2r(Ω),

being the last inequality true by application of Young and Poincaré inequalities.

Noticing that∫
Ω

|∇uεδ|2r =

∫
Ω\Aεδ

|∇uεδ|2r +

∫
Aεδ

|∇uεδ|2r

≤
∫

Ω

g2r + C
(
‖f‖(2r)

′

L(2r)′ + 1
)

+ 1
2

∫
Ω

|∇uεδ|2r + 2r−1‖g‖2rL2r(Ω),

we get the inequality (7).

The estimate (8) is an immediate consequence of the Sobolev inclusion W 1,2r(Ω) ↪→ C0,1− d
2r (Ω).

With the purpose of controlling |∇uεδ| on ∂Ω, we introduce some definitions. Let

Kε∇ = {v ∈ H1
0 (Ω) : |∇v|2 ≤ g2 + ε a.e. in Ω}.

We define an auxiliary function ψε as follows:

ψε(x) =
∨
v∈Kε∇

v(x).

Define, for x, z ∈ Ω,

Dε(x, z) = inf
{∫ T0

0

√
g(ξ(s))2 + ε ds : T0 > 0, ξ : [0, T0]→ Ω smooth, ξ(0) = x, ξ(T0) = z, ‖ξ′‖ ≤ 1

}
.

Dε is a distance in Ω and

ψε = Dε(x, ∂Ω), ψε|∂Ω
= 0, |∇ψε|2 = g2 + ε and ∆ψε ≤ C0, (9)

where C0 is a positive constant that depends on ‖g‖C 2(Ω) and is independent of ε (for details see [16, Theorem

5.1, Theorem 8.2]).



Assis Azevedo and Lisa Santos 7

Lemma 2.3. Assume that ∂Ω is of class C 2, f ∈ L∞(Ω) and g ∈ C 2(Ω) is such that g ≥ m > 0. Let uεδ

be the solution of problem (6), for sufficiently large r, depending only on the given data. Then there exists a

positive constant C∗ and ε0 > 0, depending only on ‖f‖L∞(Ω), ‖g‖C 2(Ω) and m, such that, for ε ∈ (0, ε0),

we have

∀δ > 0 ∀x ∈ ∂Ω |∇uεδ(x)|2 ≤ g2(x) + C∗ε.

Proof. Consider the operator

L(v) = −∇ ·
(
kεδ(|∇v|2 − g2)∇v

)
.

We are going to construct a supersolution and a subsolution of problem (6). The calculations below are based

on related calculations presented in [22, Proposition 3.6], where a different function kεδ is used.

For ε > 0 let ψε be the function defined in (9). In this proof, for simplicity, we will omit the superscripts

and subscripts εδ and we will denote ‖ · ‖L∞(Ω) simply by ‖ · ‖∞.

Consider ηε(s) = s+ ε
(
1− e−Bs

)
, where B is a positive constant to be chosen later, and let φ = ηε(ψ).

Notice that φ|∂Ω
= 0. Then

• |∇φ|2 = η′ε(ψ)2(g2 + ε);

• η′ε(s) ≤ 2, if εB ≤ 1;

• |∇φ|
2−g2

ε ≥ 1;

• |∇φ|
2−g2

ε ≤ 3g2B + 4, if εB ≤ 1.

We intend to find B > 0 and r such that L(φ) ≥ ‖fε‖∞ ≥ fε = L(uεδ).

Notice that

L(φ) =

(
|∇φ|2 − g2

ε

)r−1(
2r

ε

(
−φxiφxjφxixj + ggxiφxi

)
− |∇φ|

2 − g2

ε
4φ
)
− δ4φ,

and

• φxixj = η′′ε (ψ)ψxiψxj + η′ε(ψ)ψxixj ;

• 4φ = η′′ε (ψ)|∇ψ|2 + η′ε(ψ)4ψ = η′′ε (ψ)(g2 + ε) + η′ε(ψ)4ψ ≤ η′ε(ψ)4ψ;

• ψxiψxjψxixj = ggxiψxi = g∇g · ∇ψ;

• ggxiφxi = η′ε(ψ)ggxiψxi = η′ε(ψ)g∇g · ∇ψ;

• φxiφxjφxixj = η′ε(ψ)2η′′ε (ψ)(g2 + ε)2 + η′ε(ψ)3g∇ψ · ∇g.

Then, if c = ‖g‖∞‖∇g‖∞
√
‖g‖2∞ + 1, and noticing that η′ε > 1,

−φxiφxjφxixj + ggxiφxi = η′ε(ψ)
(
g∇g · ∇ψ

(
1− η′ε(ψ)2

)
− η′ε(ψ)η′′ε (ψ)(g2 + ε)2

)
≥ η′ε(ψ)

(
c
(
1− η′ε(ψ)2

)
− η′ε(ψ)η′′ε (ψ)m4

)
= η′ε(ψ)Be−Bψε

(
Bm4 − 2c+ εB2m4e−Bψ − cεBe−Bψ

)
≥ η′ε(ψ)Be−B‖ψ‖∞ε

(
Bm4 − 3c

)
, if εB ≤ 1.

Recalling that (see (9)) ∆ψ ≤ C0,

L(φ) ≥ η′ε(ψ)
(

2rη′ε(ψ)Be−B‖ψ‖∞
(
Bm4 − 3c

)
−
(
δ0 + 3B‖g‖2∞ + 4

)
C0

)
, if εB ≤ 1,
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and then, choosing ε0 = m4

3c+1 , B = 3c+1
m4 and r ≥ (δ0+3B‖g‖2∞+4)C0+‖f‖∞

2Be−B‖ψ‖∞
then, for 0 < ε ≤ ε0 we have

L(φ) ≥ ‖f‖∞ ≥ ‖fε‖∞ ≥ L(uεδ) and, by consequence, L(−φ) ≤ L(uεδ). As φ|∂Ω = 0, we have
∣∣uεδ∣∣ ≤ φ

in Ω. Since ∂Ω is of class C 2 then, for all x ∈ ∂Ω, |∇uεδ(x)|2 ≤ |∇φ(x)|2 ≤ g2(x) + (3B‖g‖2∞ + 4) ε.

Lemma 2.4. Assume that ∂Ω is of class C 2, f ∈ L∞(Ω) and g ∈ C 2(Ω) is such that m = min
Ω
g > 0. Let

uεδ be the solution of problem (6), for 0 < ε ≤ ε0, being ε0 and r chosen in Lemma 2.3. Let

I = ∂uεδ

∂n ∆uεδ − uεδxi
∂uεδxi
∂n . (10)

Then ‖I‖L∞(∂Ω) is bounded independently of ε and δ.

Proof. For simplicity, we omit the superscripts εδ. Given x0 ∈ ∂Ω, as I is invariant by rotations, we may

assume that the outward unit normal vector at x0 is (0, . . . , 0, 1) in a system of coordinates (y1, . . . , yd) and

the boundary of Ω is, in a neighborhood of x0, given by the equation

yd = ω(y1, . . . , yd−1),

being ω a C 2 function. Following the calculations done in [15, pp. 20], we get

I = −
(
∂u
∂n

)2
∆ω.

As ω is of class C 2 and
∣∣ ∂u
∂n

∣∣2 = |∇u|2 on ∂Ω, then the conclusion follows by the preceding lemma.

Lemma 2.5. Let 2 ≤ q <∞, f ∈ Lq(Ω) and g ∈ W 2,∞(Ω) be such that m = min
Ω
g > 0. Then there exist

positive constants C,D > 0, independent of ε and δ, such that∫
Ω

kqεδ ≤ C
(∫

Ω

|f |q + 1 + δ0

)
+D

(∫
Ω

kqεδ∆g
2 −

∫
∂Ω

kqεδ
∂ g2

∂n − 2

∫
∂Ω

kqεδ I

)
, (11)

where I is defined in (10).

Proof. We adapt the proof of [10, Theorem 3.1]. There are two main differences:

1. the function kεδ(|∇uεδ|2−g2) defined here (for ε small) corresponds to the function σk = e
k
2 (|∇uk|2−1),

k ∈ N of [10]. In their paper, the authors use, explicitly, that ∂xjσk = ∂xjuk ∂
2
xixjuk σk. However, the

important property is the monotonicity of the scalar function kεδ(s) or, in their case, the monotonicity

of e
k
2 s;

2. the estimate (11) has three additional terms, two involving derivatives of g and one that we cannot

neglect when Ω is not convex.

For for the sake of completeness, as there are several differences, we present here all the calculations.

To simplify the notations we will write k and u instead of kεδ(|∇uεδ|2− g2) and uεδ. From (6) we obtain,

multiplying by kq−1u and integrating by parts∫
Ω

(k∇u) · ∇
(
kq−1u

)
=

∫
fεkq−1u.

As (k∇u) · ∇
(
kq−1u

)
= kq |∇u|2 + (q − 1)kq−1 u∇u · ∇k, we get, using (8),∫

Ω

kq |∇u|2 + (q − 1)

∫
Ω

kq−1 u∇u · ∇k =

∫
Ω

fεkq−1u ≤ C2

∫
Ω

|fε| kq−1 ≤ C3

∫
Ω

|fε|q + m2

2

∫
Ω

kq. (12)
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Notice that m2kq ≤ kq |∇u|2 +m2δ, as k = δ if |∇u| < m, and then by (12) and using (8),

m2

∫
Ω

kq ≤ 2C3

∫
Ω

|fε|q + 2(q − 1)C2

∫
Ω

kq−1|∇u · ∇k|+ 2δm2 |Ω|. (13)

Multiplying (6) by −∇ · (kq−1∇u) we obtain∫
Ω

∇ · (k∇u)∇ · (kq−1∇u) = −
∫

Ω

fε∇ · (kq−1∇u)

=

∫
Ω

fε
(
kq−2∇ · (−k∇u)− (q − 2)kq−2∇u · ∇k

)
=

∫
Ω

|fε|2kq−2 − (q − 2)

∫
Ω

fε kq−2∇u · ∇k

≤
∫

Ω

|fε|2kq−2 + (q − 2)

∫
Ω

|fε| kq−2 |∇u · ∇k| . (14)

But∫
Ω

(kuxi)xi
(
kq−1uxj

)
xj

= −
∫

Ω

kuxi
(
kq−1uxj

)
xjxi

+

∫
∂Ω

kuxini
(
kq−1uxj

)
xj

=

∫
Ω

(kuxi)xj
(
kq−1uxj

)
xi
−
∫
∂Ω

[
kuxinj

(
kq−1uxj

)
xi
− kuxini

(
kq−1uxj

)
xj

]
=

∫
Ω

(kuxi)xj
(
kq−1uxj

)
xi

+

∫
∂Ω

kquxi
[
niuxjxj − njuxixj

]
+

∫
∂Ω

(q − 1)kq−1uxiuxj
[
nikxj − njkxi

]
=

∫
Ω

(kuxi)xj
(
kq−1uxj

)
xi

+

∫
∂Ω

kq I.

Recall that k denotes kεδ(|∇uεδ|2 − g2), being kεδ the real function defined in (5). Then

kxjuxiuxjxi = 1
2 k
′(−)(|∇u|2 − g2)xj

(
|∇u|2

)
xj

= 1
2 k
′(−)(|∇u|2 − g2)xj

(
|∇u|2 − g2

)
xj︸ ︷︷ ︸

≥0

+ 1
2 k
′(−)(|∇u|2 − g2)xj︸ ︷︷ ︸

=kxj

(
g2
)
xj

≥ 1
2kxj

(
g2
)
xj
. (15)

∫
Ω

(kuxi)xi
(
kq−1uxj

)
xj

=

∫
Ω

(kuxi)xj
(
kq−1uxj

)
xi

+

∫
∂Ω

kq I

=

∫
Ω

(
kuxixj + kxjuxi

) (
kq−1uxjxi + (q − 1)kq−2kxiuxj

)
+

∫
∂Ω

kq I

=

∫
Ω

(
kq|D2u|2 + (q − 1)kq−2 |∇u · ∇k|2 + qkq−1kxjuxiuxjxi

)
+

∫
∂Ω

kq I

≥
∫

Ω

(
(q − 1)kq−2 |∇u · ∇k|2 + 1

2∇k
q · ∇g2

)
+

∫
∂Ω

kq I, (16)

because, by (15), we have

qkq−1kxjuxiuxjxi ≥ 1
2qk

q−1kxj
(
g2
)
xj

= 1
2∇k

q · ∇g2.

From (16), (14) and Young inequality, we obtain∫
Ω

(
(q − 1)kq−2 |∇u · ∇k|2 + 1

2∇k
q · ∇g2

)
≤ C

∫
Ω

|fε|2kq−2 + q−1
2

∫
Ω

kq−2|∇u · ∇k|2 −
∫
∂Ω

kq I



10 A two obstacles coupled problem

and consequently∫
Ω

kq−2 |∇u · ∇k|2 ≤ 2C
q−1

∫
Ω

|fε|2kq−2 − 1
q−1

(∫
Ω

∇kq · ∇g2 + 2

∫
∂Ω

kq I

)
= 2C

q−1

∫
Ω

|fε|2kq−2 + 1
q−1

(∫
Ω

kq∆g2 −
∫
∂Ω

kq ∂ g
2

∂n − 2

∫
∂Ω

kq I

)
.

Returning to (13), we conclude that∫
Ω

kq ≤ 2C3

m2

∫
Ω

|fε|q + 2(q − 1) C2

m2

∫
Ω

kq−1|∇u · ∇k|+ 2δ |Ω| (17)

≤ 2C3

m2

∫
Ω

|fε|q + 1
3

∫
Ω

kq + C4

∫
Ω

kq−2|∇u · ∇k|2 + 2δ |Ω| (18)

≤ 2C3

m2

∫
Ω

|fε|q + 1
3

∫
Ω

kq + C4

(
2C
q−1

∫
Ω

|fε|2kq−2 + 1
q−1

(∫
Ω

kq∆g2 −
∫
∂Ω

kq ∂ g
2

∂n − 2

∫
∂Ω

kq I

))
+ 2δ |Ω|

(19)

≤ 2
3

∫
Ω

kq + C5

∫
Ω

|fε|q + C4

q−1

(∫
Ω

kq∆g2 −
∫
∂Ω

kq ∂ g
2

∂n − 2

∫
∂Ω

kq I

)
+ 2δ0 |Ω|. (20)

Lemma 2.6. Let Ω, f and g as in Lemma 2.3, with ∆g2 ≤ 0. Then, for ε0 as in Lemma 2.3 and 1 < q <∞,

there exists a positive constant Dq such that, for all 0 < ε ≤ ε0 and 0 < δ ≤ δ0

‖kεδ(|∇uεδ|2 − g2)‖qLq(Ω) ≤ Dq, (21)

Proof. It is enough to prove the result for q ≥ 2. By Lemma 2.3, there exists a positive constant C∗ such that∣∣∣∣∫
∂Ω

kqεδ
∂ g2

∂n

∣∣∣∣ ≤ (δ0 + Cr∗)
q

∣∣∣∣∫
∂Ω

∂ g2

∂n

∣∣∣∣ , ∣∣∣∣∫
∂Ω

kqεδ I

∣∣∣∣ ≤ (δ0 + Cr∗)
q

∣∣∣∣∫
∂Ω

I

∣∣∣∣ ,
The conclusion follows by Lemma 2.5 and Lemma 2.4, as g ∈ C 2(Ω).

Lemma 2.7. Let Ω, f and g as in Lemma 2.3 with ∆g2 ≤ 0. Then, for ε0 as in Lemma 2.3 there exists a

positive constant C such that, for all 0 < ε ≤ ε0 and 0 < δ ≤ δ0

‖kεδ(|∇uεδ|2 − g2)∇uεδ‖L2(Ω) ≤ C. (22)

Proof. Using Hölder inequality, we have∫
Ω

k2
εδ|∇uεδ|2 ≤

(∫
Ω

k2r′

εδ

) 1
r′
(∫

Ω

|∇uεδ|2r
) 1
r

,

and the result is obtained by applying Lemma 2.6 and Lemma 2.2.

Remark 2.8. The assumption ∆g2 ≤ 0 in Theorems 1.1 and 1.2 can be weakened if we fix q ≥ 2, imposing

that

∆g2 < C = C(Ω, q,max
Ω

g,min
Ω
g),

where C is a certain positive constant.



Assis Azevedo and Lisa Santos 11

In fact, observing the last inequality of the proof of Lemma 2.5, instead of negleting the term
C4

q − 1

∫
Ω

kq∆g2

(which is nonpositive with the sign assumption in ∆g2), we can pass this term to the left hand side and obtain

the same conclusion, as long as
1
3 −

C4

q−1∆g2 > 0.

So, we need to carefully estimate C4. To do so, we start by estimating the constants C1 and C2 in Lemma

2.2. Simple calculations show that we can take, for r large enough, C1 =
(
2|Ω|

) 1
2r (
√

2‖g‖L∞(Ω) + 2) and,

using the Sobolev imbedding W 1,2r(Ω) ⊂ C0,1− d
2r (Ω), we have

‖uεδ‖L∞(Ω) ≤
(

2
d

) 1
2r

(
|Ω|

|B(0, 1)|

) 1
d (2r − 1

2r − d

) 2r−1
2r

(
√

2‖g‖L∞(Ω) + 2) := Dr.

We need to pay attention to the fact that uεδ also depends on r, but this is not a problem because we fixed

the space were we are obtaining the estimate. Since

lim
r→∞

Dr =

(
|Ω|

|B(0, 1)|

) 1
d

(
√

2‖g‖L∞(Ω) + 2),

choosing C2 >
(
|Ω|

|B(0,1)|

) 1
d

(
√

2‖g‖L∞(Ω) + 2), we are sure that for r suficientlty large,

‖uεδ‖L∞(Ω) ≤ C2.

The constant C4 in (17) is obtained by applying the inequality of Young and we have

C4 =
3(q − 1)2 C2

2

m4
.

Finally, recalling that min
Ω
g = m and max

Ω
g = ‖g‖L∞(Ω), the assumption we are looking for is the following

∆g2 < C :=

(
min

Ω
g
)4

9(q − 1)
(
|Ω|

|B(0,1)|

) 2
d

(
√

2 max
Ω

g + 2)2

.

We observe that, if we have the above assumption in Theorems 1.1 and 1.2, we shall impose the same

assumption in Lemmas 2.6 and 2.7.

3 Existence of solution for a Lagrange multiplier problem

From now on q will denote any number of the interval (1,∞).

In this section we will prove, for δ > 0 and convenient assumptions, that a subsequence of
(
(kεδ, u

εδ)
)
ε

converges, in a suitable space, to a pair of functions (λδ, uδ) which solve (3).

The estimates obtained in the previous section allows us to obtain a pair of functions (λδ, uδ), which is

the weak limit of a subsequence of
(
(kεδ, u

εδ)
)
ε
, the first component converging in Lq(Ω), the second one

in W 1,2r(Ω). There is a difficulty in the identification of the limit, when ε → 0, of the product kεδ∇uεδ,

because we have a product of two sequences, both converging weakly. This identification will be done using

the approximating problems, following part of the strategy used in [2], where the a priori estimates obtained

for kεδ were much weaker.
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Proof of Theorem 1.1. Let uεδ denote the solution of problem (6) and kεδ denote the function kεδ(|∇uεδ|2−
g2). By the a priori estimates (7), (21) and (22) we conclude that, at least for a subsequence of (uεδ)ε, we

have,

kεδ −−−⇀
δ→0

λδ in Lq(Ω),

∇uεδ −−−⇀
δ→0

∇uδ in L2r(Ω),

kεδ∇uεδ −−−⇀
δ→0

χδ in L2(Ω).

As kεδ ≥ δ then λδ ≥ δ and obviously uδ = 0 on ∂Ω. Let us prove (3c). Define Aε = {x ∈ Ω : |∇uεδ|2 >
g2 +

√
ε} and observe that

|Aε| =
∫
Aε

1 ≤
∫
Aε

ε
r
2

( |∇uεδ|2 − g2

ε

)r
≤ ε r2

∫
Ω

kεδ ≤ ε
r
2 D1,

using (21). Then |Aε| −→
ε→0

0 and so∫
Ω

(
|∇uδ|2 − g2

)+
=

∫
Ω

lim inf
ε→0

(
|∇uεδ|2 − g2 −

√
ε
)+

≤ lim inf
ε→0

∫
Ω

(
|∇uεδ|2 − g2 −

√
ε
)+

≤ lim inf
ε→0

‖|∇uεδ|2 − g2 −
√
ε‖Lr(Ω)|Aε|

r−1
r = 0,

by (7). Then we have |∇uδ| ≤ g, proving (3c).

Using the first equation of problem (6), we obtain, for any v ∈ H1
0 (Ω), that∫

Ω

kεδ∇uεδ · ∇v =

∫
Ω

fv (23)

and, letting ε→ 0 ∫
Ω

χδ · ∇v =

∫
Ω

fv.

Taking v = uεδ in (23), we obtain

lim
ε→0

∫
Ω

kεδ|∇uεδ|2 = lim
ε→0

∫
Ω

fuεδ =

∫
Ω

fuδ =

∫
Ω

χδ · ∇uδ. (24)

Noticing that

(kεδ − δ)
(
|∇uεδ|2 − g2

)
≥ 0

we have ∫
Ω

kεδ|∇uεδ|2 −
∫

Ω

kεδ g
2 ≥ δ

∫
Ω

(
|∇uεδ|2 − g2

)
.

So, letting ε→ 0 we obtain, recalling that lim inf
ε→0

‖∇uεδ‖L2(Ω) ≥ ‖∇uδ‖L2(Ω),∫
Ω

χδ · ∇uδ ≥
∫

Ω

(
λδ − δ

)
g2 + δ

∫
Ω

|∇uδ|2

=

∫
Ω

(
λδ − δ

)
(g2 − |∇uδ|2) +

∫
Ω

λδ |∇uδ|2

≥
∫

Ω

λδ |∇uδ|2,
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because λδ ≥ δ and |∇uδ| ≤ g.

On the other hand, using (23) and (24),

0 ≤
∫

Ω

kεδ|∇(uεδ − uδ)|2 =

∫
Ω

kεδ|∇uεδ|2 − 2

∫
Ω

kεδ∇uεδ · ∇uδ +

∫
Ω

kεδ|∇uδ|2

−→
ε→0
−
∫

Ω

χδ · ∇uδ +

∫
Ω

λδ|∇uδ|2.

So ∫
Ω

χδ · ∇uδ =

∫
Ω

λδ|∇uδ|2,

and then

δ

∫
Ω

|∇(uεδ − uδ)|2 ≤
∫

Ω

kεδ|∇(uεδ − uδ)|2 −→
ε→0

0, (25)

concluding that uεδ −→
ε→0

uδ strongly in H1
0 (Ω). As (kεδ − δ)(g− |∇uεδ|)+ = 0 then, letting ε→ 0, we obtain

0 = (λδ − δ)(g − |∇uδ|)+ = (λδ − δ)(g − |∇uδ|),

proving (3e).

Let v ∈ D(Ω). Using the strong convergence of (∇uεδ)ε to ∇uδ in L2(Ω) and the weak convergence of

(kεδ)ε to λδ in L2(Ω), we conclude from (23) that∫
Ω

fv =

∫
Ω

λδ∇uδ · ∇v.

By density, the above equality is also true for any v ∈W 1,q′(Ω), for any 1 < q <∞, proving (3a).

4 Existence of solution for a transport densities problem

We will see, in this section, that
(
(λδ, uδ)

)
δ>0

converges, when δ → 0, in a suitable space, to a pair of

functions (λ0, u0) which solves problem (3) with δ = 0.

Proof of Theorem 1.2. Let (λδ, uδ) be the subsequence of (kεδ, u
εδ)ε in the proof of Theorem 1.1. Then

‖λδ‖Lq(Ω) ≤ lim inf
ε→0

‖kεδ‖Lq(Ω), ‖∇uδ‖L∞(Ω) ≤ ‖g‖L∞(Ω), ‖λδ∇uδ‖Lq(Ω) ≤ ‖λδ‖Lq(Ω)‖∇uδ‖L∞(Ω)

and so, at least for a subsequence of (λδ, uδ)δ>0, we have

λδ −−−⇀
δ→0

λ0 in Lq(Ω),

∇uδ −−−⇀
δ→0

∇u0 in L∞(Ω) weak-*,

λδ∇uδ −−−⇀
δ→0

χ0 in Lq(Ω).

Observing that, for any v ∈W 1,q′

0 (Ω) ∫
Ω

λδ∇uδ · ∇v =

∫
Ω

fv,

we get, letting δ → 0, ∫
Ω

χ0 · ∇v =

∫
Ω

fv.
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Since uδ = 0 on ∂Ω, |∇uδ| ≤ g and λδ ≥ 0 then u0 = 0 on ∂Ω, |∇u0| ≤ g and λ0 ≥ 0, proving (3b),

(3c) and (3d). Recalling that (λδ − δ)(g2 − |∇uδ|2) = 0, we have

lim
δ→0

∫
Ω

λδg2 −
∫

Ω

λδ|∇uδ|2 = lim
δ→0

δ

∫
Ω

(g2 − |∇uδ|2) = 0, (26)

because g2 − |∇uδ|2 is bounded in L1(Ω). Observing that∫
Ω

λδ|∇uδ|2 =

∫
Ω

fuδ −→
δ→0

∫
Ω

fu0 =

∫
Ω

χ0 · ∇u0,

we conclude from (26) that ∫
Ω

λ0g2 =

∫
Ω

χ0 · ∇u0 (27)

and because |∇u0| ≤ g and λ0 ≥ 0 then ∫
Ω

λ0|∇u0|2 ≤
∫

Ω

λ0g2,

concluding that ∫
Ω

λ0|∇u0|2 ≤
∫

Ω

χ0 · ∇u0. (28)

But

0 ≤ lim
δ→0

∫
Ω

λδ|∇(uδ − u0)|2 = lim
δ→0

∫
Ω

(
λδ|∇uδ|2 − 2λδ∇uδ · ∇u0 + λδ|∇u0|2

)
= −

∫
Ω

χ0 · ∇u0 +

∫
Ω

λ0|∇u0|2 (29)

and so, using (28) and (29) we get ∫
Ω

λ0|∇u0|2 =

∫
Ω

χ0 · ∇u0 (30)

and as a consequence, we also obtain

lim
δ→0

∫
Ω

λδ|∇(uδ − u0)|2 = 0. (31)

Using (27) and (30), we conclude that ∫
Ω

λ0(g2 − |∇u0|) = 0

and so, as λ0 ≥ 0 and g2 − |∇u0| ≥ 0, we must have λ0(g2 − |∇u0|) = 0 a.e. in Ω, concluding (3e).

Given v ∈ D(Ω),∣∣∣∣∫
Ω

λδ∇(uδ − u0) · ∇v
∣∣∣∣ ≤∫

Ω

λδ|∇(uδ − u0)||∇v|

≤
(∫

Ω

λδ|∇(uδ − u0)|2
) 1

2
(∫

Ω

λδ|∇v|2
) 1

2

−→
δ→0

0, (32)

because (λδ)δ>0 is bounded in L1(Ω) and using (31). Then we have∫
Ω

λδ∇uδ · ∇v =

∫
Ω

λδ∇(uδ − u0) · ∇v +

∫
Ω

λδ∇u0 · ∇v =

∫
Ω

fv

and, letting δ → 0 and using (32), we conclude (3a), i.e.,∫
Ω

λ0∇u0 · ∇v =

∫
Ω

fv

and, by density, the same is true for all v ∈W 1,p′

0 (Ω).



Assis Azevedo and Lisa Santos 15

5 The case when ∆g2 6≤ 0

In this section we will prove Theorem 1.3 which is a generalization of Theorem 4.1 of [2]. The new result,

here, is the existence of solution (λ0, u0) ∈ L∞(Ω)′ ×W 1,∞(Ω) of problem (3), since the proof for the case

δ > 0 is identical to the case δ = 1 done in the referred paper. For the sake of completeness and because

we are able to simplify the proof presented in [2], we will show here a brief sketch of it when δ > 0. By the

inequality (25) we have strong convergence in H1
0 (Ω) of uεδ to uδ, when ε tends to zero. So, the uniform

boundedeness of uεδ in H2
loc(Ω), that was used in the proof of Theorem 4.1 of [2] is not necessary. On the

other hand, to be able to treat the case δ = 0, we need to prove some a priori estimates.

In this section we will also use again kεδ to represent kεδ(|∇uεδ|2 − g2), whenever there is no confusion.

Proposition 5.1. Suppose that δ ∈ (0, δ0), f ∈ L2(Ω) and g ∈ L∞(Ω) is such that m = min
Ω
g > 0. Then

there exists a positive constant C, independent of ε and δ, such that the solution uεδ of the approximated

problem (4) verifies

‖kεδ(|∇uεδ|2 − g2)|∇uεδ|2‖L1(Ω) ≤ C,

‖kεδ(|∇uεδ|2 − g2)‖L∞(Ω)′ ≤ C,

‖kεδ(|∇uεδ|2 − g2)∇uεδ‖L∞(Ω)′ ≤ C.

Proof. Using uεδ as test function in (6), applying Hölder inequality and (8), we get∫
Ω

kεδ|∇uεδ|2 =

∫
Ω

fuεδ ≤ ‖f‖L1(Ω)‖uεδ‖L∞(Ω) ≤ C2‖f‖L1(Ω).

Since kεδ(|∇uεδ|2 − g2) ≤ δ + 1
m2 kεδ(|∇uεδ|2 − g2)|∇uεδ|2, then∫

Ω

kεδ ≤ δ0|Ω|+
1

m2
C2‖f‖L1(Ω).

So,

‖kεδ(|∇uεδ|2 − g2)‖L∞(Ω)′ = sup
‖v‖L∞(Ω)≤1

∫
Ω

kεδv ≤ sup
‖v‖L∞(Ω)≤1

‖kεδ‖L1(Ω)‖v‖L∞(Ω) = ‖kεδ‖L1(Ω).

Finally, since

‖kεδ(|∇uεδ|2 − g2)∇uεδ ‖L∞(Ω)′ = sup
‖v‖L∞(Ω)≤1

∫
Ω

kεδ∇uεδ · v

≤ sup
‖v‖L∞(Ω)≤1

‖kεδ|∇uεδ|2‖
1
2

L1(Ω)‖kεδ‖
1
2

L1(Ω)‖v‖L∞(Ω)

≤ ‖kεδ|∇uεδ|2‖
1
2

L1(Ω)‖kεδ‖
1
2

L1(Ω),

the conclusion follows.

Proof of Theorem 1.3. From Proposition 5.1, applying the Banach-Alaoglu-Bourbaki Theorem, we have, at

least for a subsequence,

kεδ −→
ε→0

λδ in L∞(Ω)′

kεδ∇uεδ −→
ε→0

χδ in L∞(Ω)′.
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We observe that, using arguments as in the proof of Theorem 1.1, replacing the terms

∫
Ω

χδ · v by the

duality pairing 〈χδ,v〉L∞(Ω)′×L∞(Ω) and

∫
Ω

λδv by the duality pairing 〈λδ, v〉L∞(Ω)′×L∞(Ω), we have

〈χδ,∇uδ〉L∞(Ω)′×L∞(Ω) = 〈λδ, |∇uδ|2〉L∞(Ω)′×L∞(Ω)

and so also that

∇uεδ −→
ε→0
∇uδ in L2(Ω).

Using the duality pairings instead of the corresponding integrals, all the steps of the proof of this theorem

follows as in the proof of Theorem 1.1.

The proof of the case δ = 0 is more delicate. Using Proposition 5.1, there exists a positive constant C

such that

‖λδ‖L∞(Ω)′ ≤ lim inf
ε→0

‖kεδ‖L∞(Ω)′ ≤ C

‖χδ‖L∞(Ω)′ ≤ lim inf
ε→0

‖kεδ∇uεδ‖L∞(Ω)′ ≤ C

and so, again by Banach-Alaoglu-Bourbaki Theorem, at least for a subsequence, we have

λδ −→
δ→0

λ0 in L∞(Ω)′,

χδ −→
δ→0

χ0 in L∞(Ω)′.

Since, for all v ∈W 1,∞
0 (Ω) we have

〈χδ,∇v〉L∞(Ω)′×L∞(Ω) =

∫
Ω

fv,

letting δ → 0, we obtain

〈χ0,∇v〉L∞(Ω)′×L∞(Ω) =

∫
Ω

fv.

As ‖∇uδ‖L∞(Ω) ≤ ‖g‖L∞(Ω) we also have

∇uδ −−−⇀
δ→0

∇u0 in L2(Ω).

We are no longer able to prove the strong convergence in L2(Ω) of (∇uδ)δ>0 to ∇u0, when δ → 0. However,

we can still prove that (λ0, u0) solves problem (4).

Denoting below 〈 · , · 〉L∞(Ω)′×L∞(Ω) simply by 〈 · , · 〉, we have

0 = 〈λδ − δ, g2 − |∇uδ|2〉 = lim
δ→0
〈λδ − δ, g2 − |∇uδ|2〉

= lim
δ→0
〈λδ, g2〉 −

∫
Ω

fuδ − δ
∫

Ω

(g2 − |∇uδ|2)

= 〈λ0, g2〉 −
∫

Ω

fu0, (33)

since the function g2 − |∇uδ|2 is uniformly bounded in L1(Ω).

Observing that, for any δ ∈ (0, δ0), uδ = 0 on ∂Ω, |∇uεδ| ≤ g and λδ ≥ δ in D ′(Ω) then the same is true

for u0, proving (4b), (4c) and (4d) for δ = 0.
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By (4c) we have

〈λ0, |∇u0|2〉 ≤ 〈λ0, g2〉 =

∫
Ω

fu0 = 〈χ0,∇u0〉L∞(Ω)′×L∞(Ω). (34)

But, arguing as in the proof of Theorem 1.2,

0 ≤ lim
δ→0

lim
ε→0

∫
Ω

kεδ|∇(uεδ − u0)|2 = −
∫

Ω

fu0 + 〈λ0, |∇u0|2〉L∞(Ω)′×L∞(Ω)

= −〈χ0,∇u0〉L∞(Ω)′×L∞(Ω) + 〈λ0, |∇u0|2〉L∞(Ω)′×L∞(Ω), (35)

From (34) and (35), we obtain

〈χ0,∇u0〉L∞(Ω)′×L∞(Ω) = 〈λ0, |∇u0|2〉L∞(Ω)′×L∞(Ω) (36)

and, as a consequence,

lim
δ→0

lim
ε→0

∫
Ω

kεδ|∇(uεδ − u0)|2 = 0. (37)

Going back to (33) and using (36), we conclude that

〈λ0, g2 − |∇u0|2〉 = 0,

proving (4e), since λ0 and g2 − |∇u0|2 are nonnegative.

Given v ∈ D(Ω), we have ∫
Ω

kεδ∇uεδ · ∇v =

∫
Ω

fv

and so ∫
Ω

kεδ∇(uεδ − u0) · ∇v +

∫
Ω

kεδ∇u0 · ∇v =

∫
Ω

fv. (38)

But we know that

0 ≤ lim
δ→0

lim
ε→0

∣∣∣∣∫
Ω

kεδ∇(uεδ − u0) · ∇v
∣∣∣∣ ≤ lim

δ→0
lim
ε→0

(∫
Ω

kεδ|∇(uεδ − u0)|2
) 1

2
(∫

Ω

kεδ|∇v|2
) 1

2

= 0,

applying (37). So, letting in (38) ε→ 0 and after δ → 0 we prove that

〈λ0∇u0,∇v〉 =

∫
Ω

fv, ∀v ∈ D(Ω),

concluding (4a) and the proof.
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