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ABSTRACT: For transportation infrastructures, one of the greatest challenges today is to keep large-scale transportation networks, 
such as railway networks, operational under all conditions. In this paper we present a tool aimed at helping in management tasks 
related to maintenance and repair works for a particular component of these infrastructures, the slopes. For that, the high and flexible 
learning capabilities of artificial neural networks and support vector machines were applied in the development of a tool able to 
identify the stability condition of soil cutting slopes, keeping in mind the use of information usually collected during routine 
inspection activities (visual information) to feed the models. This task was addressed following two different strategies: nominal 
classification and regression. Moreover, to overcome the problem of imbalanced data, three training sampling approaches were 
explored: no resampling, SMOTE and Oversampling. The achieved results are presented and discussed, comparing both algorithms 
performance as well as the effect of the sampling approaches. A comparison between nominal classification and regression strategies 
is also carried out. These achieved results can give a valuable contribution for practical applications at network level. 

RÉSUMÉ : Pour les infrastructures de transport, l'un des plus grands défis d’aujourd'hui est de maintenir les réseaux de transport à grande 
échelle, tels que les réseaux ferroviaires, opérationnels dans toutes les conditions. Dans cet article, on présente un outil d’aide à la gestion 
liée aux travaux de maintenance et de réparation d’une composante géotechnique de ces infrastructures, les pentes. Pour cela, les 
capacités d'apprentissage élevées et flexibles des réseaux de neurones artificiels et des machines à vecteurs de support ont été appliquées 
dans l'élaboration d'un outil capable d'identifier l'état de stabilité des pentes d’excavation du sol en gardant à l'esprit l'utilisation des 
informations recueillies habituellement lors des activités d'inspection de routine visuelles pour alimenter les modèles. Cette tâche a été 
abordée selon deux stratégies différentes: la classification nominale et la régression. De plus, pour surmonter le problème des données 
déséquilibrées, trois méthodes d'échantillonnage ont été explorées: non ré-échantillonnage, SMOTE et sur-échantillonnage. Les résultats 
obtenus sont présentés et discutés, en comparant les performances des algorithmes ainsi que l'effet des approches d'échantillonnage. Une 
comparaison entre les stratégies de classification nominale et de régression est également réalisée. Les résultats obtenus peuvent apporter 
une contribution précieuse aux applications pratiques au niveau du réseau. 
KEYWORDS: slope stability condition, soil cutting slopes, railway, soft computing, data mining, imbalanced data. 

 
1  INTRODUCTION 

For a good optimization of the available budgets it is important 
to have a set of tools to help decision makers to take the best 
decisions. In the framework of transportations networks, in 
particular for a railway, slopes are perhaps the element for 
which their failure can have the strongest impact at several 
levels. Therefore, it is important to develop ways to identify 
potential problems before they result in failures. 

Although there are some models and systems to detect slope 
failures, most of them were developed for natural slopes, 
presenting some constraints when applied to engineered 
(human-made) slopes. They have limited applicability as most 
of the existing systems were developed based on particular case 
studies or using small databases. Furthermore, another aspect 
that can limit its applicability is related with the information 
required to feed them, such as data taken from complex tests or 
from expensive monitoring systems. Some approaches found in 
the literature for slope failure detection are identified below. 
Pourkhosravani and Kalantari (2011) summarize the current 
methods for slope stability evaluation, which were grouped into 

Limit Equilibrium (LE) methods, Numerical Analysis methods, 
Artificial Neural Networks and Limit Analysis methods. There 
are also approaches based on finite elements methods 
(Suchomel et al., 2010), reliability analysis (Husein Malkawi et 
al., 2000), as well as some methods making use of data mining 
(DM) algorithms (Cheng and Hoang, 2014; Ahangar-Asr et al., 
2010; Yao et al., 2008). More recently, a new flexible statistical 
system was proposed by Pinheiro et al. (2015), based on the 
assessment of different factors that affect the behavior of a 
given slope. By weighting the different factors, a final indicator 
of the slope stability condition is calculated. 

As mentioned above, the main limitations of almost 
approaches so far proposed are related with its applicability 
domain or dependency on information that is difficult to obtain. 
Indeed, the prediction of whether a slope will fail or not is a 
multi-variable problem characterized by a high dimensionality.  

In this work we take advantage of the learning capabilities of 
flexible data mining classification algorithms, such as the 
Artificial Neural Networks (ANNs) and Support Vector 
Machines (SVMs). These data mining algorithms were used to 
fit a large database of soil cutting slopes in order to predict the 
stability condition of a given slope according to a pre-defined 
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classification scale based on four levels (classes). One of the 
underlying premises of this work is to identify the real stability 
condition of a given slop based on information that can be 
easily obtained through visual routine inspections. For that, 
more than fifty variables related with data collected during 
routine inspections as well as geometric, geological and 
geographic data were used to feed the models. This type of 
visual information is sufficient from the point of view of the 
network management, allowing the identification of critical 
zones for which more detailed information can then be obtained 
in order to perform more detailed stability analysis, which is out 
of the scope of this study. 

2  DATA AND METHODOLOGY 

2 .1  Data characterization 

In this work a model is proposed to identify the stability 
condition, from this point referred to as EHC (Earthwork 
Hazard Category, adapted from Power et al. (2016)), of soil 
cutting slopes using data mining tools. 

The EHC system comprises 4 classes (“A”, “B”, “C” and 
“D”) where “A” represents a good stability condition and “D” a 
bad stability condition. In other words, the expected probability 
of failure is higher for class “D” and lower for class “A”. To fit 
the models for EHC prediction, a database was compiled 
containing information collected during routine inspections and 
complemented with geometric, geological and geographic data 
of each slope. The database was gathered by Network Rail 
workers and is concerned with the railway network of the UK. 
For each slope a class of the EHC system was defined by the 
Network Rail Engineers based on their experience/algorithm 
(Power et al., 2016), which will be assumed as a proxy for the 
real stability condition of the slope for the year 2015. 

Figure 1 depicts the distribution of the 10928 records by 
each EHC class. From this analysis, it is possible to observe an 
asymmetric distribution (imbalanced data). Indeed, more than 
57% of the soil cutting slopes are classified as “A” and only 
about 1% belongs to class “D”. Although this type of 
asymmetric distribution, where most of the slopes present a low 
probability of failure (class “A”), is normal and desirable from 
the safety point of view and slope network management, it can 
represent an important challenge for data mining models 
learning, as detailed in next section. 

 

 
Figure 1. Soil cutting slopes data distribution by EHC classes. 

 

2 .2  Modeling 

To model EHC prediction of soil cutting slopes two of the most 
flexible data mining algorithms, namely ANNs and SVMs were 
applied. Both algorithms had already been successful applied in 
different knowledge domains (Liao et al., 2012) including in 
civil engineering (Tinoco et al., 2014a,b). There are also some 
examples of ANN and SVM applications in slope stability 
analysis (Yao et al., 2008; Cheng et al., 2012). 

ANNs try to simulate basic aspects of the human brain 
(Kenig et al., 2001). The information is processed using 
iteration among several neurons. This technique is capable of 
modeling complex non-linear mappings and is robust in 
exploration of data with noise. In this study we adopt the multi-
layer perceptron that contains only feedforward connections, 
with one hidden layer containing H processing units. Because 
the network's performance is sensitive to H (a trade-off between 
fitting accuracy and generalisation capability), we adopt a grid 
search of {0; 2; 4; 6; 8} during the learning phase to find the 
best H value. The neural function of the hidden nodes was set to 
the popular logistic function 1 (1 + 푒 )⁄ . 

SVMs was initially proposed for classification tasks (Cortes 
and Vapnik, 1995). Then it became possible to apply SVM to 
regression tasks after the introduction of the ε-insensitive loss 
function (Smola and Scholkopf, 2004). The main purpose of the 
SVM is to transform input data into a high-dimensional feature 
space using non-linear mapping. The SVM then finds the best 
linear separating hyperplane, related to a set of support vector 
points, in the feature space. This transformation depends on a 
kernel function. In this work the popular Gaussian kernel was 
adopted. In this context, its performance is affected by three 
parameters: γ, the parameter of the kernel; C, a penalty 
parameter; and ε (only for regression), the width of an ε-
insensitive zone (Safarzadegan Gilan et al., 2012). The 
heuristics proposed by Cherkassky and Ma (2004) were used to 
define the first two parameter values, C=3 (for a standardized 
output) and 휀 = 휎 √푁⁄ , where 휎 = 1.5 푁⁄ ∙ ∑ (푦 − 푦 ) , 
푦  is the measured value, 푦  is the value predicted by a 3-
nearest neighbour algorithm and N is the number of examples. 
A grid search of {1; 3; 7; 9} was adopted to optimize the kernel 
parameter γ. 

The problem of EHC prediction of soil cutting slopes was 
initially approached following a nominal classification strategy. 
However, aiming to improve the models performance, the 
problem was also addressed following a regression strategy, 
adopting a regression scale where “A” = 1, “B” = 2, “C” = 4, 
“D” = 10. Moreover, in order to minimize the effect of the 
imbalanced data (see Figure 1), Oversampling (Ling and Li, 
1998) and SMOTE (Chawla et al., 2002) approaches were 
applied over the training data before fitting the models. When 
approaching imbalanced classification tasks, where there is at 
least one target class label with a smaller number of training 
samples when compared with other target class labels, the 
simple use of a data mining training algorithm will lead to data-
driven models with better prediction accuracies for the majority 
classes and worst classification accuracies for the minority 
classes. Thus, techniques that adjust the training data in order to 
balance the output class labels, such as Oversampling and 
SMOTE, are commonly used with imbalanced datasets. In 
particular, Oversampling is a simple technique that randomly 
adds samples (with repetition) of the minority classes to the 
training data, such that the final training set is balanced. 
SMOTE is a more sophisticated technique that creates “new 
data” by looking at nearest neighbours to establish a 
neighbourhood and then sampling from within that 
neighbourhood. It operates on the assumptions that the original 
data is similar because of proximity. More recently, Torgo et al. 
(2015) adapted the SMOTE method for regression tasks. 

All experiments were conducted using the R statistical 
environment (Team, 2009) and supported through the rminer 
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package (Cortez, 2010), which facilitates the implementation of 
ANNs and SVMs algorithms, as well as different validation 
approaches such as cross-validation. 

The distinct data mining models will be evaluated and 
compared using three classification metrics: recall, precision 
and F1-score. The recall measures the ratio of how many cases 
of a certain class were properly captured by the model. In other 
words, the recall of a certain class is given by 
TruePositives/(TruePositives+FalseNegatives). On the other 
hand, the precision measures the correctness of the model when 
it predicts a certain class. More specifically, the precision of a 
certain class is given by TruePositives/(TruePositives + 
FalsePositives). The F1-score was also calculated, which 
represents a trade-off between the recall and precision of a 
class. The F1-score corresponds to the harmonic mean of 
precision and recall. For all four metrics, the higher the value, 
the better are the predictions, and their values can range from 
0% to 100%. The generalization capacity of the models was 
accessed through a 5-fold cross-validation approach under 20 
runs (Hastie et al., 2009). This means that each modeling setup 
is trained 5 × 20 = 100  times. Also, the four prediction 
metrics are always computed on test unseen data (as provided 
by the 5-fold validation procedure). 

3  RESULTS AND DISCUSSION 

As described above, two different data mining algorithms 
(ANN and SVM) were applied for EHC prediction under two 
distinct modeling strategies: nominal classification and 
regression. Moreover, in order to overcome the problem of 
unbalanced data, three training sampling approaches were 
explored: Normal (no resampling), OVERed (Oversampling) 
and SMOTEd (SMOTE). In case of regression, we compared 
two sampling approaches: Normal (no resampling) and 
SMOTEd (SMOTE for regression). We note that the different 
sampling approaches were applied only to training data, used to 
fit the data-driven models, and the test data (as provided by the 
5-fold procedure) was kept without any change. 

Figures 2 and 3 show and compare models performance in 
EHC prediction of soil cutting slopes based on metrics recall, 
precision and F1-score, following a nominal classification and 
regression strategies respectively. SMOTE and Oversampling 
approaches are also compared. 

Following a nominal classification strategy, Figure 2 shows 
that soil cutting slopes of class “A” can be correctly identified, 
particularly by ANN model, with or without sampling. Also for 
classes “B” and “C” a promising performance is observed, with 
an F1-score around 55%, in particular by the ANN algorithm. 
Concerning the class “D”, although an F1-score lower than 36% 
was achieved, the obtained value for recall metric around 57% 
shows a promising performance for class “D” prediction 
according to ANN algorithm.  

Based on a regression strategy (Figure 3), the achieved 
results are very similar to those obtained from a nominal 
classification strategy. The main differences are related with the 
effect of the sampling approaches, which is not so relevant 
following a regression strategy, particularly for the minority 
classes. Comparing ANN and SVM algorithms, ANN works 
better (as observed previously), particularly in the prediction of 
class “C” and “D” classes.  

Comparing both strategies, we can observe that better results 
are achieved following a nominal classification strategy. 
Moreover, analyzing Figures 4 and 5 that show the relation 
between observed and predicted EHC values according to the 
best fits, following a nominal classification and regression 
strategies respectively, we can see that the models performance 
is very promising. Indeed, according to a nominal classification 
strategy and sampling the database with the SMOTE approach 
(see Figure 4), the ANN algorithm is able to predict correctly 

around 57% of soil cutting slopes of class “D”, which 
represents a very promising performance if we take into account 
that this is the minority class. For class “C”, around 40% of the 
records are correctly predicted. Moreover, when not predicted 
as “C” they are classified as belonging to the closest class, that 
is, “B” or “D”. This type of misclassification is also observed 
for classes “A”, “B” and “D”, which can be interpreted as an 
advantage. Concerning to classes “A” and “B”, the ANN model 
was also able to identify it very accurately. 
 

 
Figure 2. Model comparison based on recall, precision and F1-score, 
according to a nominal classification strategy in EHC prediction of soil 
cutting slopes. 

 

 
Figure 3. Models comparison based on recall, precision and F1-score, 
according to a regression strategy in EHC prediction of soil cutting 
slopes. 

 
As a conclusion, an attempt to predict Earthwork Hazard 
Classification (EHC) of soil cutting slopes through the 
application of data mining techniques was presented. Although 
a very promising performance have been achieved, namely for 
class “A”, further developments are required aiming to improve 
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models performance, particularly for a better identification of 
soil cutting slopes that belong to class “D” (minority class). 
Moreover, and considering the overall performance of all 
models, we would like to stress that data mining algorithms, 
particularly ANNs, can be seen as a tool with a high potential to 
identify stability condition of engineered slopes. 
 

 
Figure 4. ANN model performance in EHC prediction of soil cutting 
slopes following a nominal classifications strategy and applying a 
SMOTE approach. 

 

 
Figure 5. ANN model performance in EHC prediction of soil cutting 
slopes following a regression strategy and with no resampling. 
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