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• Soils geochemical data was assessed
with different Bayesian network ap-
proaches.

• A Bayesian Risk Index (BRI) for
assessing soil contamination was con-
structed.

• BRI's spatial patterns were constructed
throughout geostatistical modeling.

• Clusters of high PTEs cm, concentration
are overlapping an agriculture zone.

• Metallurgical plant's emissions are the
main source of soils pollutants.
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Industrial and agricultural activities heavily constrain soil quality. Potentially Toxic Elements (PTEs) are a threat
to public health and the environment alike. In this regard, the identification of areas that require remediation is
crucial. In the herein research a geochemical dataset (230 samples) comprising 14 elements (Cu, Pb, Zn, Ag, Ni,
Mn, Fe, As, Cd, V, Cr, Ti, Al and S) was gathered throughout eight different zones distinguished by their main ac-
tivity, namely, recreational, agriculture/livestock and heavy industry in the Avilés Estuary (North of Spain). Then
a stratified systematic samplingmethodwas used at short, medium, and long distances from each zone to obtain
a representative picture of the total variability of the selected attributes. The information was then combined in
four risk classes (Low, Moderate, High, Remediation) following reference values from several sediment quality
guidelines (SQGs). A Bayesian analysis, inferred for each zone, allowed the characterization of PTEs correlations,
the unsupervised learning network technique proving to be the best fit. Based on the Bayesian network structure
obtained, Pb, As and Mn were selected as key contamination parameters. For these 3 elements, the conditional
probability obtained was allocated to each observed point, and a simple, direct index (Bayesian Risk Index-
BRI) was constructed as a linear rating of the pre-defined risk classes weighted by the previously obtained prob-
ability. Finally, the BRI underwent geostatistical modeling. One hundred Sequential Gaussian Simulations (SGS)
were computed. The Mean Image and the Standard Deviation maps were obtained, allowing the definition of
High/Low risk clusters (Local G clustering) and the computation of spatial uncertainty. High-risk clusters are
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Fig. 1. Geographic location of the study area (left). Spatial
River beach; 5. Livestock/agriculture zone; 6. Background
reader is referred to the web version of this article.)
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mainly distributed within the area with the highest altitude (agriculture/livestock) showing an associated low
spatial uncertainty, clearly indicating the need for remediation. Atmospheric emissions, mainly derived from
the metallurgical industry, contribute to soil contamination by PTEs.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

A map is always a simplification of reality (Lahr and Kooistra, 2010;
Woodbury, 2003). A two-dimensional map can only gather and display
the values of a limited number of variables or attributes up to three.
Thus, when considering complex scenarios, such as environmental
characterization, a reduction to a single dimension is mandatory
(Moen and Ale, 1998). Risk maps, broadly mentioned in literature are
keen for spatial pattern visualization of e.g. pollutant concentration dis-
tribution, exposure and its effects, vulnerability assessment; therefore,
they constitute a very powerful tool to support policy-making in com-
plex environmental risk assessment framework (Lahr and Kooistra,
2010; Li et al., 2015). Thus, Bién et al. (2005) applied their own Health
Index/Risk Evaluation Tool to map the spatio-temporal probability of
cancer cases in an area of soils contaminated with benzene and Zuo
et al. (2017) used an Environmental Performance Index to evaluate
the environmental performance of provinces in China between 2006
and 2011. Moreover, Entropy indexes have recently been used to pro-
vide pivotal information for mitigation strategies against desertification
(Zambon et al., 2017) and Moreno-Jiménez et al. (2011), proposed a
new methodology for assessing the site-specific environmental impact
of contaminants at a local scale.

In the herein study, a set of 14 chemical elements, gathered in eight
different zones (Fig. 1), was used to compute a Bayesian Network to an-
alyze how high concentrations of PTEs linked up and to study how the
presence of these elements can be mutually determined. A simple, di-
rect index (Bayesian Risk Index - BRI) for land contamination assess-
ment was produced as a linear rating of pre-defined risk classes
weighted by the previously obtained Bayesian probabilities.

The practical development of Bayesian networks (BNs) has ad-
vanced greatly in the last two decades. Data integration allows efficient
drawing solutions providing visual simplicity that is not attainable by
other common statisticalmethods. The ability of BNs tomake inferences
and reduce uncertainty has caught the attention of a wide range of re-
search fields. The oil and gas sector (Davies and Hope, 2015; Elsheikh
et al., 2012) and a wide range of process industries (Gerstenberger
distribution of the samples collected
beach; 7. Llodero Cove pond; 8. Zelu
et al., 2015; Wu et al., 2016; Zhang et al., 2013) have already used
their benefits to enhance production, reduce occupational hazards,
and evaluate potential risks.

Nevertheless, from an environmental perspective, these techniques
have been so far practiced with a highly theoretical approach. The con-
tribution of BNs to ecological risk assessment or natural resources man-
agement has been reported (McDonald et al., 2015; Nolan et al., 2015;
Jiang et al., 2013; Phan et al., 2016). Recently, Taalab et al. (2015) pro-
posed BNs as a suitable modeling approach for digital soil mapping tak-
ing a step forward on an issue still relatively unexploited (Aguilera et al.,
2011).

Geostatistical techniques are based on the theory of regionalized
variables (Matheron, 1971) which states that variables within an area
show both random and spatially structured properties (Journel and
Huijbregts, 1978). Experimental variograms must be estimated and
modeled to quantify the spatial variability of randomvariables as a func-
tion of their separation lag (Antunes and Albuquerque, 2013).
Geostatistics concerns to a broad methodological approach and it is
more than the simple development of mathematical (probabilistic)
models and methods and their application. In fact, analyzing the practi-
cal problems to be solved and formalizing them in terms of concepts is a
key issue. When predicting the risk of contamination (e.g. months
ahead), it is mandatory to stress the relevance of the chances for the fu-
ture estimated values exceeding maximum admissible values. The de-
lineation of zones of high and low risk requires the interpolation of
risk values to the nodes of a regular gridmaking possible proper risk as-
sessments, and a prediction model working as guidance to a more sus-
tainable environmental management.

The main goal of this research is a straightforward procedure com-
bining BNs and geostatistical techniques to evaluate the risk of soil con-
tamination by PTEs. An industrialized site in the region of Avilés
(Asturias, Spain) was used as pilot example. To this end, an innovative
Bayesian Risk Index (BRI) was constructed. The subsequent
geostatistical approach allowed the definition of the spatial distribution
patterns of the BRI, focusing on the visualization and delineation of po-
tential zones for future monitoring and remediation.
(yellow dots) and respective influence zones: 1. Beach; 2. Landfill; 3. Dunes (Landfill); 4.
án protected pond. (For interpretation of the references to color in this figure legend, the



Fig. 2. Supervised learning networkwith Naive Bayes algorithm. The study area of Avilés is
a variable (formed by the 8 defined strategic zones) that represents the network target
node.

Table 1
Standardized composition ranges in multifunctional soils. A - Canadian Council of Minis-
ters of the Environment (2007); B - FAO and ISRIC guidelines for soil degradation in Cen-
tral and Eastern Europe (1997); C – FOREGS; D – Others.

Heavy Metal Low Moderate High Remediation A B C D

Cu (mg/kg) b50 50–100 100–500 N500 ✓ ✓ ✓

Pb (mg/kg) b70 70–140 140–600 N600 ✓ ✓

Zn (mg/kg) b200 200–300 300–500 N500 ✓ ✓ ✓

Ag (mg/kg) b0.2 0.2–0.3 0.3–0.5 N0.5 ✓

Ni (mg/kg) b50 50–100 100–500 N500 ✓ ✓ ✓

Mn (mg/kg) b10 10–450 450–1000 N1000 ✓ ✓

Fe (%) N0.1 0.1–5 5–10 N10 ✓

As (mg/kg) N12 12–30 30–50 N50 ✓ ✓

Cd (mg/kg) b1 1–10 10–20 N20 ✓ ✓

V (mg/kg) b60 60–120 120–500 N500 ✓ ✓

Cr (mg/kg) b60 60–90 90–250 N250 ✓ ✓

Ti (%) 0.02 0.02–1 1–5 N5 ✓ ✓

Al (%) b0.5 0.5–10 10–25 N25 ✓ ✓

S (%) b0.4 0.4–0.5 0.5–1 N1 ✓ ✓
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2. Materials and methods

2.1. Study area

Avilés and its surrounding area is one of the most important indus-
trialized zones in north-west Spain. Various industries (mainly metal-
lurgical) have been operating in this region for decades and their
activities have severely impacted air, water, and soil quality (Gallego
et al., 2002; Ordóñez et al., 2013). The study area is situated north of
the town of Avilés,which sits on Cantabrian Sea coastline (Fig. 1). Indus-
trial waste was commonly discharged into the Avilés estuary for many
years and consequently considerable amounts of PTEs still remain. The
main industrial activity in this area is metallurgical plants, namely:
two Zn hydrometallurgical plants (the main one very close to the
study areas), one Al production plant and one steel production plant.

Quantities and features of PTEs are dependent on a wide range of
factors (Khalil et al., 2013; Kipp et al., 2009; Neiva et al., 2014), such
as ore mineralogy and the distribution of trace and minor minerals in
bulk minerals, among others (Gallego et al., 2002; Harvey et al., 2017;
Luo et al., 2012). Several open-pit quarries related to industrial andmin-
ing activities are likewise placed in the survey region. Consequently,
emissions of Pb, Ba and other PTEs are very common (Monaci and
Bargagli, 1997), markedly affecting the quality of the surrounding soil/
sediment.

2.2. Data collection and chemical analyses

Eight strategic polygons were defined for data gathering purposes
(Fig. 1). The areas were chosen based on their geographical characteris-
tics and predominant human activities: 1. Beach – leisure area, in direct
contact with the Cantabrian Sea; 2. Landfill (soil of unknown origin); 3.
Landfill Dunes (soils of unknown origin); 4. River beach; 5. Agriculture/
Livestock zone (area with the highest altitude); 6. Background beach
(reference area, as it is protected from atmospheric emissions and
river discharge); 7. Llodero Cove; and 8. Zeluán protected ponds.

A total of 230 bed-deposited sediment samples were collected from
the upper 0–20 cm beneath a water depth of nearly 20 cm. Samples
were collected using a stratified systematic sampling method at short,
medium, and long distances to produce a representative set showing
the total variability of the chosen attributes. The samples were packed
and sealed in pre-washed polyethylene bags and dried at room temper-
ature. Inductively Coupled Plasma (Optical Emission Spectroscopy) was
used for Chemical analyses after sample leaching by means of an Aqua
Regia digestion (HCl + HNO3). Fourteen elements were analyzed,
namely Cu; Pb; Zn; Ag; Ni; Mn; Fe; As; Cd; V; Cr; Ti; Al and S. The con-
tentmeasured for these elements was after classified into four risk clas-
ses (1. Low; 2. Moderate; 3. High; 4. Remediation). For the threshold
value definition, an extensive revision was carried out using different
international sediment quality guidelines (SGGs) (Table 1). In this re-
gard, the information used included the Canadian Council of Ministers
of the Environment (2007) guidelines, the FAO and ISRIC guidelines
for soil degradation in Central and Eastern Europe (Van Lynden,
2000), and the FOREGS European topsoil geochemistry database
(http://www.gsf.fi/publ/foregsatlas/; Salminen et al., 2005). However,
several authors whomade relevant contributions to PTEs quantification
were also considered, such as Rodríguez et al. (2008) and Moen et al.
(1985), who assessed and standardized normal concentration ranges
of PTEs, in soils affected by industrial activities. This approach leaded
to a general framework for risk level classification.

2.3. Bayesian data analysis

Bayesian networks are directed acyclic graphs (DAG) where nodes
and arcs typify the cause and effect relationships between variables
(Pearl, 1986). The topological structure of a Bayesian model reflects
the dependency of the variables and describes the probability distribu-
tion of certain events occurring in specific conditions. If X = {X1, X2, …,
Xn} is a set ofm-dimensional variables, then a BN is formally defined as a
couplet X= bG, PNwhereG is a DAG inwhich each node represents one
of the variables X1, X2,…, Xn and each arc represents a direct dependen-
cy relationship between these variables; and P is a set of parameters that
quantifies the network, containing the probabilities for each possible
value xi for each variable Xi.

From the decomposition theorem, the joint probability P, under the
hypothesis that each node is independent of its non-descendants, can
be calculated. Therefore, the Bayesian network has a single joint proba-
bility distribution is given by:

P Xð Þ ¼ P X1;X2;…;Xnð Þ ¼ ∏
n

i¼1
P Xi=X j ið Þ
� � ð1Þ

where Xj(i) is the set of parent variables of Xi for direct acyclic graph G.
Consequently, application of Bayes' theorem enables to determine the
posterior probability of the variable of interest through inference. In



Fig. 3. Unsupervised learning network withMaximumWeight Spanning Tree algorithm. The light blue nodes (Ni, Cr and V) are uncorrelatedwith themain structure of the network. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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this case, the variable of interest is the Study Area of Aviles. From the
data collected, the aim is to infer the specific zones where PTEs exceed
the concentrations established by regulations. Moreover, once trained,
BNs can be used for intercausal reasoning (Druzdzel and Henrion,
1993). This opens the possibility to study whether the high concentra-
tions of certain PTEs are linked up and how the presence of these ele-
ments can be mutually determined.

Aside from their popularity in solving complex and large-scale prob-
lems, several issues concerning the composition of the BNs that need to
be stressed during themodeling process.When building a Bayesian net-
work, it is necessary to explore distinct structures. A coherent analysis is
crucial to ensure accurate characterization of phenomena (Kuhnert and
Hayes, 2009). The computation of two different network learning pro-
cedures allowed to achieve the informational content maximization of
the dataset.

2.3.1. Supervised network learning
In a first step, a supervised learning approach was used to indepen-

dently generate a model to predict the target variable. In this approach,
the only guidance provided is the node of interest, namely the study
area, which is the target variable for the machine learning process.
The zone, and hence the associated anthropogenic activities (agricul-
ture, livestock, industrial and leisure), works as key factor for clarifying
contamination sources.

For computation, Artificial Intelligence, and analytical software
BayesiaLab v6.0.7 were used. A set of supervised learning algorithms
was used to search for the optimal model.

The aim is to increase the probabilities of getting the optimal net-
work for this environmental purpose. Given that the number of possible
Table 2
Dataset for BRI construction – Pb example for Zones 1, 2 and 3.

Zone Geographical
coordinates

Pb (mg/kg) Wi Risk Level BRIPb

X Y

1 264,646.8 4,830,389.9 22 0.726 1 1.726
1 264,567.3 4,830,342.4 135 0.110 2 2.110
1 264,550.5 4,830,335.5 141 0.137 3 3.137
1 264,320.9 4,830,163.4 38 0.726 1 1.726
2 264,264.3 4,830,242.7 24 0.726 1 1.726
2 264,257.1 4,830,242.5 21 0.726 1 1.726
2 264,220.0 4,830,309.4 18 0.726 1 1.726
2 264,602.7 4,830,392.4 170 0.137 3 3.137
3 264,354.5 4,829,971.1 41 0.726 1 1.726
3 264,356.3 4,829,986.9 37 0.726 1 1.726
3 264,266.6 4,830,618.5 715 0.027 4 4.027
3 264,444.0 4,830,571.8 160 0.137 3 3.137
networks grows exponentially with the number of nodes (Friedman
and Koller, 2003), this is a major challenge. To ensure that such a chal-
lenge does not become an intractable problem, it is necessary to use
heuristic search algorithms to explore the search space to obtain a
local optimum. Nevertheless, a single heuristic search algorithm does
not assure to recover the global optimal. Therefore, BayesiaLab software
algorithms were implemented progressively, from low space search
strategies to high structural searches with more complex restrictions
(Marcot, 2012), beginning with a Naive Bayes (e.g. Webb et al., 2005)
straightforward network structure (Fig. 2) to evaluate up to what
point the model supported higher complexity rates, e.g. Sons & Spouses
or Markov Blanket (Conrady and Jouffe, 2015). This staggered proce-
dure increases the probability of finding a solution closer to the global
optimum, considering the adequate time and resources for learning

Given the importance of this previous step, the resulting network
went through an efficiency test, in which the uncertainty reduction,
provided by each variable, was analyzed. Shannon Entropy (Shannon,
1948) was used to compute the information exchanged between the
target variable and any contaminant. The definition of Shannon Entropy
of a discrete variable X is:

H Xð Þ ¼ −∑
x∈X

p xð Þlog2p xð Þ ð2Þ

The difference between the marginal entropy of the target variable
and the conditional entropy of a given target (predicted variable) is for-
mally known as Mutual Information (Shannon, 1948) and denoted by I.
For the study at hand, the Mutual Information between the study zone
(target variable) and each element (heavymetal) is the respectivemar-
ginal entropies. More generally, the Mutual Information between vari-
ables X and Y is defined by (Conrady and Jouffe, 2015):

I X;Yð Þ ¼ H Xð Þ−H XjYð Þ ð3Þ

which is equivalent to:

I X;Yð Þ ¼ ∑
x∈X

∑
y∈X

p x; yð Þlog2
p x; yð Þ
p xð Þp yð Þ ð4Þ

The computation of theMutual Information between the study zone
and each predictor, in the form of contaminant, is represented by the
Bayesian probability allocated to each class of the target variable.
Thus, the predictors providing the maximum information can be prop-
erly identified, thereby highlighting their predictive importance and re-
percussion as zone contaminants.



Fig. 4. PTEs Mutual information: progressive radial layout from the strongest to the weakest information node. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)
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2.3.2. Unsupervised network learning
In a second step, unsupervised structural learningwas used to devel-

op a model. This approach represents the purest form of knowledge as
there are no constraints for the exploration of potential relationships
between variables (Erhan et al., 2010). TheMaximumWeight Spanning
Tree algorithm (MWST) (e.g. Bazlamaçci and Hindi, 2001) was imple-
mented (Fig. 3) and the Minimum Description Length (MDL) was
used to determine the rate of attribute association. The MDL is a two-
component score that must be minimized to obtain the best solution.
It can be written as (Conrady and Jouffe, 2015):

MDL B;Dð Þ ¼ αDL Bð Þ þ DL DjBð Þ ð5Þ

where α represents the structural network coefficient, DL(B) is the
number of bits to represent the Bayesian network B (graph and proba-
bilities) and DL(B) is the number of bits to represent the dataset D
given the Bayesian network B. This score quantifies the best trade-off
between the two conditions. This is obtained by finding a point between
the simplest structure, in which the network is fully unconnected, and
the fully connected network, in which no structural independences
are stated (Wong et al., 1999).

2.4. Bayesian Risk Index (BRI)

The BRI (Bayesian Risk Index) is fixed as a rating that reflects the soil
risk level of contamination by PTEs. First, each chemical parameter was
assigned a different weight (wi-Bayesian Inference Weight). These
weightswere obtained through the inference process based on a Bayes-
ian network procedure and, therefore, ranging between 0 and 1, where
0 represents the lowest probability of belonging to a determined risk
class and 1 the highest probability (Fig. 2, Table 2). The BRIwas calculat-
ed for each observed point as follows:

BRI ¼ Risk classþwi ð6Þ

where wi is the risk (class) conditional probability to a target zone
(Table 1).
The new Bayesian Risk Index (BRI) is defined as a ‘Regionalized Var-
iable’ (Matheron, 1971) and consequently additive by construction,
since themean valuewithin a given observed support is equal to the ar-
ithmetic average of sample values, regardless of the statistical distribu-
tion of the values. This ensures that two samples with given profiles in
the variable can be replaced by a new individual (Albuquerque et al.,
2010; Rivoirard, 2005). The resulting scores correspond to the final
index values, which range between 1 and 5. A subsequent geostatistical
approach, aiming to construct the pattern of spatial risk,was used to de-
fine the areas in future need of monitoring and remediation.

2.5. Spatial modeling – geostatistical approach

The spatial probability patterns of the BRI were constructed follow-
ing a three-step geostatistical modeling methodology:

1) Selected attributes went through a structural analysis and experi-
mental variograms were computed. The variogram is a vector func-
tion used to compute the spatial variation structure of regionalized
variables (Matheron, 1971; Journel and Huijbregts, 1978).

γ hð Þ ¼ 1
2N hð Þ ∑

N hð Þ

i¼1
Z xið Þ−Z xi þ hð Þ½ �2 ð7Þ

Its argument is h (distance) where Z (xi) and Z (xi + h) are the nu-
merical values of the observed variable at points xi, and xi+ h. The num-
ber of forming pairs for a h distance is N(h). Therefore, it is the average
value of the square of the differences between all couples of points
existing in the geometric field spaced at a h distance (Journel and
Huijbregts, 1978). The graphic behavior study of the variogramprovides
an overview of the spatial structure of the variable. One of the parame-
ters that provide such information is the nugget effect (Co), which
shows the behavior at the origin. The other two parameters are the sill
(C1) and the amplitude (a) which define correspondently the inertia



Fig. 5. (a) Isotropic variograms and fitted models for: a.1) BRIMn; a.2) BRIPb and a.3) BRIAs; (b) Scatterplots of measured BRIs versus predicted ones computed by linear regression: b.1)
BRIMn; b.2) BRIPb and b.3) BRIAs.

Table 3
Variogram parameters for the fitted isotropic models.

Model C0 C1 a (m)

BRIAs Spherical 0 1,61 (100%) 1200
BRIMn Spherical 0.098 1.015 (91.2%) 950
BRIPb, Spherical 0.165 1.21 (88%) 1000
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used in the interpolation process and the influence radius of the
variable.

2) Sequential Gaussian Simulation (SGS) was used as stochastic simu-
lation algorithm. SGS starts by defining the univariate distribution
of values, performing a normal score transform of the original values
to a standard normal distribution. Normal scores at grid node loca-
tions were simulated sequentially with simple kriging (SK) using
the normal score data and a zero mean (Goovaerts, 1997). Once all
normal scores had been simulated, they were back-transformed to
original grade values. For the computation, the Space-Stat Software
V. 4.0.18, Biomedwere,wasused (Albuquerque et al., 2014). The out-
come of a simulation is a twisted version of an estimation process,
which reproduces the statistics of the known data,making a realistic
look of the exemplar, but providing a low prediction behavior. If a
multiple sequence of simulation is designed, it is possible to obtain
more reliable probabilistic maps;

3) Finally, Local G clustering allowedmeasurement of the degree of as-
sociation that results from the concentration of weighted points (or
region represented by a weighted point) and all other weighted
points included within a radius of distance from the original
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weighted point. Considering a given area subdivided into n regions, i
=1, 2,…, n, where each neighborhood is distinguished with a point
whose Cartesian coordinates are known. Each i has associatedwith it
a value x (a weight) taken from a variable X. The variable has a nat-
ural origin and is positive. The G(i) statistic developed below allows
for tests of hypotheses about the spatial concentration of the sum of
x values associatedwith the j pointswithin d of the ith point. The fol-
lowing statistic is obtained:

Gi dð Þ ¼ ∑n
j¼1Wij dð Þxi
∑n

j x j
ð8Þ

where Wij is a symmetric one/zero spatial weight matrix with ones for
all links defined as beingwithin distance d of a given i; all other links are
zero, including the link of point i to itself. The numerator is the sumof all
xjwithin d of i but not including xi. The denominator is the sum of all xj,
excluding xi (Getis and Ord, 1992).
Fig. 6. BRIMn: a) 3 SGS scenario; b)Mean Image (MI); c) significant G clusters of low (L) and hi
associatedwith the significant cluster and red arrow indicatingmoderate to high spatial uncerta
this figure legend, the reader is referred to the web version of this article.)
3. Results and discussion

3.1. Bayesian results

Bayesian analysis has allowed to identify Naive Bayes in Fig. 2 as the
best supervised learning predictor (Qi and Zhu, 2003). Given the nature
of theproblem, this algorithmmakes probabilistic inferencemuch faster
and clearer than other proven supervised ones. However, when seeking
a greater understanding of the spatial patterns of the elements, the un-
supervised learning network withMWST (Fig. 3) showed better perfor-
mance (Erhan et al., 2010; Marcot, 2012).

Mutual Information analysis is shown in Fig. 4. The top number in
the box represents the information exchanged between each node
and the target node. This is represented graphically in accordance
with the thickness of the arc and the distance to the target node. This
is a symmetric measure, as such, the amount of information that e.g.
As provides on each zone in the study area is the same as the amount
of information that each zone provides about As.

However, without context, the number might not be meaningful.
Hence, two additional measures based on Shannon Entropy calculations
gh (H) and d) Spatial Uncertainty (StdDev) – blue arrow indicating low spatial uncertainty
inty associatedwith the significant cluster. (For interpretation of the references to color in
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were computed (Conrady and Jouffe, 2015; Shannon, 1948). The blue
number in the boxes (Fig. 4) shows the relative mutual information
about the child node. Conversely, the red number shows the relative
mutual information regarding the parent node. Thus, knowing e.g. the
zone of the study area, the uncertainty regarding As is reduced by
43.32% on average. On the other hand, knowing the As threshold allows
uncertainty linked to the zone to be reduced by approximately 23.95%.

The knowledge of the all nodes allows identification of themost pre-
dictive ones regarding whether a specific zone is contaminated or not.
Consequently, As, Cd, Pb, Zn and Mn can be identified as the key PTEs
in the study area (Fig. 4).

These results are supplemented by the unsupervised learning Bayes-
ian network (Fig. 3) (Erhan et al., 2010). Thus, V, Ni and Cr were uncor-
related to the network structure, since these elements showed the least
information exchangewith the study zones (Fig. 4). Likewise, Pb, As and
Mnwere key attributes as they belonged to themain structure of the BN
and thus had high predictive importance. Finally, Pb explained the spa-
tial distribution of Cd, Al, Cu, Zn and Ag, while Mn explains together Ti
and Fe spatial distribution (Fig. 3).

The Bayesian results allowed a greater understanding of the spatial
patterns shown by the elements, offering at the same time a reduction
Fig. 7. BRIAs: a) 3 SGS scenario; b) Mean Image (MI); c) significant G clusters of low (L) and hig
associatedwith the significant cluster and red arrow indicatingmoderate to high spatial uncerta
this figure legend, the reader is referred to the web version of this article.)
in the dataset dimensionality from 14 to 3 attributes. In addition, the
Bayesian network framework developed proved to be a suitablemodel-
ing approach to cover the informational needs and relationships re-
quired in later geostatistical techniques.

3.2. Spatial patterns and spatial uncertainty

In a first step, experimental variograms for each selected BRI (BRIPb,
BRIAs and BRIMn) were computed for variable structural characteriza-
tion. No clear evidence of anisotropies was found, and isotropic
variograms were computed and corresponding models were fitted.
The quality of the model of uncertainty provided by simple kriging
(SK) (zero mean) was assessed using the same source and destination
geography approach, whereby SK results at sampled locations uα were
compared to observations. Correlation indices ranged between 0.70
and 0.88 (Fig. 5). Therefore, cross-validation results were considered
satisfactory for the selected models, thereby indicating consistency be-
tween the estimated and observed values.

The graphic behavior of the variogram function provides an over-
view of the spatial variation structure of the variable (Chica, 2005).
One of the parameters that provide such information is the nugget effect
h (H) and d) Spatial Uncertainty (StdDev) – blue arrow indicating low spatial uncertainty
inty associatedwith the significant cluster. (For interpretation of the references to color in



Fig. 8. BRIPb: a) 3 SGS scenario; b) Mean Image (MI); c) significant G clusters of low (L) and high (H) and d) Spatial Uncertainty (StdDev) – blue arrow indicating low spatial uncertainty
associatedwith the significant cluster and red arrow indicatingmoderate to high spatial uncertainty associatedwith the significant cluster. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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(C0), which shows the behavior at the origin (Pereira et al., 1993). The
other two parameters are the sill (C1) and the Range (a), which define
correspondently the inertia used in the interpolation process and the
variable structure influence zone (Table 3).

A hundred simulations were performed using Sequential Gaussian
Simulation (SGS) as a conditional stochastic simulation of the BRI value
distribution for Pb, As and Mn (BRIPb; BRIAs and BRIMn). The calculation
of the spatial uncertainty - the Standard Deviation of each pixel - set
aside the discussion of local accuracy and, finally, Local G clustering iden-
tified the BRI high-rings for the selected elements in the subject area.

Geostatistics allows finding answers to problems with space–time
indexation (Kyriakidis and Journel, 1999). A stochastic SGS model on a
100 × 100 m grid was used to generate 100 equiprobable scenarios.
The realization numbers 1, 15 and 99 in BRIMn, BRIAs and BRIPb are
shown in Figs. 6a, 7a and 8a, respectively. However, the issue is that
no single realization can be taken as a better representation of reality
than any other, and the mean spatial images (MI) - average maps -
are afterwards used to assess the spatial pattern of each variable (Figs.
6b, 7b and 8b) while the spatial variability images (standard deviation
maps) allow quantification of spatial uncertainty for each attribute
(BRIMn, BRIPb, and BRIAS) (Figs. 6c, 7c and 8c). The characterization
of aggregates of Low and High risk, for Mn, As and Pb contamination,
was achieved using the MI maps and Local G clustering (Getis and
Ord, 1992).

The spatial patterns shown and the computed clusters (Figs. 6, 7
and 8) allowed classification of zones 1, 4 and 5 as “hot-spots” for Mn,
As and Pb, corresponding to leisure (zones 1 and 4) and agricultural/
livestock (zone 5) activities, respectively, and the “cold-spots” (clean
zones) as those overlapping the protected ponds of Zeluán and Llodero
Cove (zones 7 and 8).

The area selected for background reference (zone 6) shows amoder-
ate risk of PTEs contamination, thereby indicating that the contamina-
tion is spreading towards the north-east of the region and thus
affecting a larger area than what was previously assumed. Future mon-
itoring sampling must be implemented throughout the north-east of
the study area for further clarification.

The landfill areas (zones 2 and 3) show inverse patterns, whichmay
indicate recent remediation action concerning zone 3 (Low cluster) and
the need of removal for zone 2 (High cluster). Low to moderate spatial
uncertainty (Figs. 6c, 7c and 8c) is generally associated with the predic-
tion scenarios, indicating accurate representations for risk contamina-
tion with trace elements.
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Finally, it is important to stress that the high altitude of zone 5 may
reflect atmospheric emissions of industrial plants as responsible for PTE
deposition. Future monitoring actions must be implemented in this
zone, and a set of climatic soft covariates considered (e.g. wind prefer-
ential directions) for risk modeling purposes.
4. Conclusions

Avilés and its surroundings is one of the most important industrial-
ized zones in north-west Spain. In the herein study a set of 14 chemical
elements, gathered in eight different zones, to compute Bayesian Net-
work structures to analyze how high concentrations of PTEs linked up
and how their presence can be mutually influenced. From this point, a
simple, direct index (Bayesian Risk Index - BRI) for soil contamination
assessment was developed as a linear rating of pre-defined risk classes
weighted by the previously obtained Bayesian probabilities. Within
this framework, Pb, As and Mn were found to be the key attributes, as
they belong to the main structure of the Bayesian network and, there-
fore, having high predictive importance. The spatial probability patterns
of the BRI for the three key elements (BRIPb, BRIAs and BRIMn) were ob-
tained through a 3-step geostatistical modeling methodology. A hun-
dred simulations were performed using Sequential Gaussian
Simulation (SGS) as conditional stochastic simulation algorithm, and
Local G clustering was used to identify BRIPb, BRIAs and BRIMn high-
rings. The high-altitude zone 5 may indicate atmospheric emissions by
industrial plants as sources of PTE depositions. Future monitoring ac-
tionsmust be carried out and a set of climatic soft covariates, considered
for modeling purposes, such as e.g. wind preferential directions.
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