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RESUMO 
 

O conjunto de mecanismos que protege o organismo de agentes patogénicos tem de ser agressivo o 

suficiente para destruir microorganismos e parasitas. Consequentemente, isto torna-o potencialmente 

perigoso para os tecidos do hospedeiro. Assim sendo, têm de existir estratégias e pontos de controlo 

que evitem que o sistema imunitário reconheça antigénios do organismo ou antigénios externos mas 

inofensivos. Esta capacidade de não responder a determinados antigénios é designada por tolerância 

imunitária, e tem de ser assegurada especialmente a nível células T, uma vez que são elas as que 

coordenam grande parte das respostas imunitárias. Parte deste controlo é exercido durante o 

desenvolvimento das células T no timo, por um processo de selecção negativa conduzido por células 

tímicas epiteliais medulares (mTEC). As mTEC são especialmente intrigantes pela sua capacidade de 

expressar ectopicamente genes próprios de outros tecidos (antigénios restritos a tecidos, TRAs) para 

o exibirem às células T em desenvolvimento. A intensidade com que as células T reconhecem os 

péptidos apresentados pelas mTEC condiciona o destino das primeiras: se a ligação for fraca, podem 

sobreviver uma vez que não são auto-reactivas; se a ligação for muito forte, são eliminadas; ligações 

com força intermédia podem ser encaminhadas para um tipo celular particular, as células T 

reguladoras (Treg). Estas últimas actuam posteriormente nos tecidos periféricos, exercendo uma 

função anti-inflamatória, impedindo nomeadamente que células T auto-reactivas que possam ter 

escapado à selecção negativa montem uma reacção imunitária contra antigénios próprios.  

Ambos estes tipos celulares, mTEC e Treg, têm sido estudados exaustivamente com o objectivo geral 

de compreender e potencialmente manipular o processo de tolerância imunitária. Além de ambas 

terem em comum um papel relevante no mesmo processo, e de defeitos em qualquer uma delas 

originarem problemas de auto-imunidade e inflamações crónicas, ambas as populações carecem de 

uma caracterização exaustiva com resolução célula-a-célula que permita identificar potenciais 

subpopulações e seus fenótipos. Assim sendo, usei métodos recentes para analisar o transcriptoma 

de células individuais (single-cell RNA sequencing, scRNA-seq) de forma a esclarecer a estrutura, 

desenvolvimento e funções de populações de mTECs e Tregs. 

Em relação às mTEC, isolei células de ratinho sem enriquecer para nenhuma subpopulação 

conhecida, e obtive dados de scRNA-seq usando uma plataforma microfluídica comercial. Com estes 

dados, por agrupamento hierárquico, identifiquei três subpopulações dentro do compartimento das 

mTEC - jTEC (Pdpn-positivas), mTEChi (níveis de Aire elevados) e mTEClo (níveis de Aire reduzidos) - 



 x 

que aparentam corresponder a fases consecutivas do desenvolvimento deste tipo celular, de acordo 

com a expressão do gene regulador Aire e a capacidade das mTEC em expressar TRAs. Foi a primeira 

vez que estas subpopulações foram identificadas e caracterizadas sem recurso a marcadores 

adicionais, como MHCII, durante a citometria de fluxo. Esta estratégia dá uma nova perspectiva 

nomeadamente do estado pós-Aire (mTEClo), que aparece como um mediador activo e potente de 

tolerância imunitária, capaz de expressar TRAs tão ou mais eficientemente que as paradigmáticas 

mTEChi. A análise de correlações entre genes, associada a análise de enriquecimento de locais de 

ligação de factores de transcrição, permitiu ainda a identificação de potenciais novos reguladores do 

desenvolvimento das mTEC (Vdr, Plagl1, Zbtb7a, Hnf4g). 

As Treg, por seu lado, representam um desafio bastante diferente. A importância das populações de 

Treg em tecidos não-linfóides (NLTs) é agora clara, quer na manutenção da tolerância imunitária face 

a auto-antigénios e outros antigénios inofensivos, quer em funções não-imunitárias, como regulação 

de metabolismo e regeneração de tecidos. Assim sendo, foquei-me em caracterizar as populações 

presentes em NLTs de ratinho, nomeadamente na lamina propria do cólon e pele, e compará-las com 

as suas equivalentes em tecidos linfóides (nódulos linfáticos que drenam os tecidos e o baço). 

Usando células T de memória (Tmem) como referência, defini quais os genes que caracterizam 

exclusivamente NLT Treg ou que são comuns a outros tipos de células T nos NLT. Também pude 

definir quais as diferenças e semelhanças entre as Treg na pele e no cólon. Modelando os dados 

computacionalmente, estabeleci ainda a ordem pela qual estas adaptações aos NLT são adquiridas 

pelas Treg aquando do seu recrutamento para os tecidos, quer em homeostase, quer durante uma 

perturbação imunitária (neste caso, indução de melanoma).  As semelhanças entre os vários tecidos 

e condições são consideráveis, sugerindo um programa de recrutamento e adaptação geral das Treg 

ao ambiente não-linfóide, que é ligeiramente ajustável ao NLT específico. Verifiquei ainda que estas 

adaptações começam a surgir ainda no nódulo linfático que drena o tecido. Por último, confirmei que 

vários dos marcadores identificados para NLT Treg podem ser usados em humanos. 

Em resumo, dados de scRNA-seq foram usados de forma bastante distinta para esclarecer dois 

processos e tipos celulares fundamentais na tolerância imunitária, que de outra forma 

permaneceriam confundidos em análises a nível de populações. 
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ABSTRACT 
 

The set of mechanisms that protects the organism against pathogens needs to be efficient to destroy 

invading microorganisms and parasites. Consequently, this makes it potentially dangerous for the 

host’s tissue. Therefore, strategies and checkpoints have to be in place to avoid the production of 

immune responses against self-antigens or harmless external antigens. This ability, named immune 

tolerance, has to be enforced mainly at the level of T cells, as they coordinate most immune 

responses. An important part of this control is exerted during T cell development in the thymus, 

through a remarkable process of negative selection conducted by medullary thymic epithelial cells 

(mTECs), which ectopically express tissue-restricted antigens (TRAs) to present to the developing T 

cells. The strength of the signal elicited upon recognition of self-peptides conditions the fate of T cells: 

a weak signal allows T cells to survive, as they are not self-reactive; a strong signal leads to their 

elimination; a moderate signal can lead to the development of a particular T cell subtype, the 

regulatory T cells (Treg). These cells later act on the peripheral tissues by exerting anti-inflammatory 

influence, blocking self-reactive conventional T cells that might have escaped negative selection. 

Both cell types, mTEC and Treg, have thus been extensively studied in order to understand and 

eventually control and fine-tune immune tolerance. However, both populations have been missing a 

comprehensive characterization, namely with single-cell resolution, which would allow the 

identification of subpopulations and their phenotypes. Therefore, I employed state-of-the-art methods 

to analyse the transcriptome of individual cells (single-cell RNA sequencing, scRNA-seq), so that the 

structure, development and functions of mTEC and Treg populations could be clarified. 

Murine mTECs were sorted without enrichment for any known maturation stage, and single-cell data 

was generated using a commercial microfluidic plaform. By hierarchical clustering, I identified three 

subpopulations within the mTEC compartment - jTEC (Pdpn-positive), mTEChi (Aire-high) e mTEClo 

(Aire-low) - that appear to correspond to consecutive phases of mTEC development, according to the 

expression of the Aire transcription factor and each subpopulation’s capacity to express TRAs. For the 

first time, these subpopulations were identified and characterized using an unbiased approach, i.e. 

without using additional flow cytometry markers. This approach gives a new perspective of the post-

Aire state (mTEClo), which emerges as an active and potent driver of immune tolerance, capable of 

expressing TRAs at least as efficiently as the paradigmatic mTEChi. Gene-gene correlations, coupled 



 xii 

with transcription factor-binding motif enrichment, I identified potential new regulators of mTEC 

development (Vdr, Plagl1, Zbtb7a, Hnf4g). 

Treg, on the other hand, represented quite a different challenge. Their importance in non-lymphoid 

tissues (NLTs) is now clear, both in maintaining immune tolerance to self and other harmless 

antigens, and in eliciting non-immune functions, as metabolism regulation and tissue regeneration. 

Therefore, I focused in characterizing the NLT Treg populations in mouse, namely in the colonic 

lamina propria and skin, and comparing them to their lymphoid tissue counterparts (draining-lymph 

nodes and spleen). Using memory T cells (Tmem) as a reference, I define the gene signatures that 

exclusively characterize NLT Treg, or that are shared with other T cell types in the NLTs. I also define 

the differences and similarities between skin and colon Treg. Computational modelling allowed me to 

establish the order by which NLT adaptations are acquired during their recruitment to the tissues, 

both in steady-state and during an immune challenge (namely, during melanoma induction). The 

similarity between tissues and conditions is quite significant, suggesting the existence of a general 

programme of recruitment and adaptation to the non-lymphoid environment that can be fine-tuned to 

each specific NLT. I also verify that such adaptations start to arise still in the respective draining-lymph 

nodes. Finally, I confirm that several of the identified NLT Treg markers can be used in the human 

context. 

In summary, scRNA-seq data was used in quite distinct ways to clarify processes and cell types 

fundamental for immune tolerance, which would otherwise remain confounded in analyses at the 

population level. 
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CHAPTER I  -  General  Introduct ion 

All multicellular organisms are regularly exposed to pathogenic agents that aim at invading and 

colonizing them. In response to this threat, they have developed the immune system: a set of barriers, 

cell types and molecules that can fight the replication and propagation of pathogens. Although 

indispensable for the organism’s survival, this system can cause severe complications when 

deregulated or misdirected. Namely, the immune system has to be able to prevent immune reactions 

against its own host as well as against other innocuous antigens, a property known as immune 

tolerance. Understanding how tolerance is induced and established will be fundamental in the 

development of efficient immunotherapies against autoimmune diseases, chronic inflammations and 

allergies. 

From all the cell types in the immune system, T lymphocytes, or T cells, are arguably the most 

important lineage to control due to their capacity to recognize antigens and unparalleled ability to 

orchestrate the immune responses against them. Therefore, the specificity of T cells is carefully 

supervised during their development, resulting in the deletion of self-reactive T cells or their 

repurposing into regulatory T cells. 

In this thesis I have addressed two cell types that play pivotal and complementary roles in immune 

tolerance: medullary thymic epithelial cells (mTEC) and CD4+ regulatory T cells (Treg). While mTECs 

are responsible for the selection process that depletes self-reactive T cells, CD4+ regulatory T cells 

(Treg) control self-reactive T cells that escape the selection process, as well as all other immune 

responses triggered in the periphery.  

Although both cell types have been extensively studied in recent years, further progress has been 

largely impaired by lack of unbiased and comprehensive single-cell resolution. Therefore, here I am 

using state-of-the-art single-cell RNA sequencing in order to investigate the development, heterogeneity 

and phenotype of mTECs and Tregs, one cell at a time.  

 

In Chapter I, I describe broad aspects of the immune system, with focus on adaptive immunity. 

Immune tolerance is then further addressed, with particular attention to mTEC and Treg functions and 

development. As the work described in this thesis relies largely on single-cell RNA sequencing 
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approaches, this chapter also includes a section on the experimental protocols and computational 

tools available, as well as specific examples of their use in the study of the immune system. 

I finish this Chapter with a description of the motivations for this study, the specific questions that I 

propose to address, and the relevance of this work in the context of the mTEC and Treg fields. 

In Chapter II, I describe the experimental procedures and computational analyses performed. They 

have been separated in two sections, which correspond to the study of mTECs (section II.1) and Tregs 

(section II.2). 

In section Chapter III, I describe how I performed scRNA-seq of murine medullary thymic epithelial 

cells using the C1 platform, and how I used these data to find and characterize mTEC subpopulations. 

I characterize them in terms of simple gene expression and, most importantly, in terms of their ability 

to induce immune tolerance. scRNA-seq allows me to divide mTECs in an unbiased way into three 

subpopulations, which differ in their maturation state and their capacity to express tissue restricted 

antigens. Despite these differences, all three subpopulations appear to be able to express most of 

those genes. Importantly, I show that the most differentiated mTEC stage is still actively taking part in 

the induction of immune tolerance. 

In Chapter IV, I describe the phenotype of murine CD4+ T cells, both regulatory and memory T cells 

(Treg and Tmem), found in non-lymphoid tissues. I focus mostly on Tregs and I describe 

computationally the trajectory of recruitment and adaptation to non-lymphoid tissues, skin and colon, 

in steady state. Using a murine melanoma model, I compare the steady-state with the challenged 

condition. The reconstruction of pseudotime trajectories reveals a core set of genes that is 

upregulated in Tregs during adaptation to colonic and skin environments, which is also largely shared 

by cells undergoing recruitment to tumours. The same perturbation also shows that adaptation starts 

in the lymph nodes and not upon arrival of Tregs to the non-lymphoid tissues. 

Finally, I conclude this section performing a human-mouse comparison of non-lymphoid tissue 

markers. 

Lastly, in Chapter V I collect the general and most relevant findings described in this thesis.  
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I .1  The Immune System1 

I .1.1  Innate immunity 

The first line of protection of the organism against foreign agents consists of the innate immune 

system, which is present under some form in all multicellular organisms. 

The response elicited is rapid, targeting structures shared across several families of microbes, and it 

remains unchanged in subsequent contacts with the same agent.  

The innate branch of immunity is composed of physical barriers, cell intrinsic defense programs, 

multiple immune cell types and biochemical defenses. Intact skin and mucosal surfaces of the 

gastrointestinal and respiratory tracts constitute the three main epithelia that separate the organism 

from pathogens in the surrounding environment. Besides the physical separation they impose, cells in 

these barriers are responsible for the production of antimicrobial peptides, defensins and 

cathelicidins, which exert their immune function directly through microbicidal effects and indirectly 

through activation of immune cells. The cellular component of innate immunity includes cells from the 

myeloid lineage (neutrophils, macrophages and dendritic cells), which are able to express pattern 

recognition receptors that respond to foreign molecules, e.g. lipoproteins, peptoglycans, nucleic acids, 

present in either the extra- or intracellular environment. Activation of receptors such as Toll-like 

receptors (TLR), C-type lectins and NLRs, ultimately leads to increased expression of inflammatory 

cytokines, chemokines, costimulatory molecules (CD80, CD86) and antiviral cytokines. 

In parallel, dendritic cells and macrophages function as professional antigen-presenting cells (APCs). 

They are able to efficiently sample, process, and exhibit antigens to T cells via Major Histocompatibility 

Complex (MHC) ultimately leading to T cell activation, and thus linking innate immunity and the 

activation of the adaptive branch.  

Overall, innate immunity responses are fundamental in the defense of the organism, granting prompt 

response to invasions. However, microbes often circumvent these general responses and their 

elimination then relies on the more powerful mechanisms of the adaptive immune system. 

 

 

 

                                                
 

1 Unless specific references are mentioned, the information on this section is reviewed in [1] 
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I .1.2  Adapt ive immunity  

Vertebrates have developed an additional line of defense that overcomes some of the limitations of the 

innate immune system. This set of mechanisms can be divided into humoral and cellular responses, 

respectively driven by B and T lymphocytes, which work together to eliminate pathogens following 

three complementary strategies. First, T lymphocytes, namely T helper cells, boost the microbicidal 

abilities of phagocytes and stimulate antibody production by B cells. Secondly, the antibodies secreted 

by B cells bind to extracellular pathogens, impairing their ability to infect the host and facilitating their 

phagocytosis. Thirdly, cytotoxic T cells (CTLs) destroy cells infected by microbes that are inaccessible 

to antibodies.  

 

I .1.2.1  General  features of  the adapt ive immune response 

In contrast with the innate branch, the repertoire of molecules that can be recognized by the adaptive 

immune system is extremely diverse, and the lymphocytes stimulated are specific for each antigen 

(Table 1). Furthermore, the response of the adaptive immune system against any antigen becomes 

more proficient with every exposure to the same antigen. As a result of a primary response against a 

given antigen, lymphocytes are able to establish long-lived memory populations that change the 

dynamics of subsequent contacts. Secondary responses will thus be prompter and more powerful 

than the primary one. Remarkably, the response given by this branch is specialized, varying in 

accordance with the specific pathogen that triggers it, thus enhancing its control over each infection. 

To keep pace with the rapid replication rate of infecting pathogens, responding lymphocytes are able 

to divide at high rates, thus increasing the pool of specific lymphocytes in a process known as clonal 

expansion. Finally, it is important to consider that such a competent and effective system has to be 

tightly regulated. After the threat has been eliminated, several mechanisms, namely deprivation of 

survival factors, induce the contraction of the adaptive immune response and the restoration of 

homeostasis.  

It is equally important that responses are not triggered altogether against self-antigens, as well as 

other harmless antigens that might be recognized by the adaptive immune system. This feature is 

defined as immune tolerance, and will be further addressed in a later section of the Introduction 

(section I.3).  
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Table 1 - Main features of the adaptive immune system 

Feature Funct iona l  s ign i f icance 

Specificity Ensures that distinct antigens elicit specific responses 

Diversity Enables immune system to respond to a large variety of antigens 

Memory Leads to enhanced responses to repeated exposures to the same antigen 

Clonal expansion Increases number of antigen-specific lymphocytes to keep pace with microbes 

Specialization 
Generates responses that are optimal for defense against different types of 

microbes 

Contraction and 

homeostasis 
Allows immune system to respond to newly encountered antigens 

Non-reactivity to self Prevents injury to the host during responses to foreign antigens 

 

I .1.2.2  Recirculat ion pattern by the adapt ive immune system 

All circulating blood cells in the adult, including lymphocytes, are generated in the bone marrow from 

the division and differentiation of a population of hematopoietic stem cells (HSCs). While the 

maturation of B lymphocytes unfolds completely within the bone marrow, immature T lymphocytes 

have to migrate to the thymus to finish their development.  

When fully mature, lymphocytes leave the primary lymphoid organs and adopt a traffic pattern known 

as lymphocyte recirculation (Figure 1): they continuously circulate between blood stream, secondary 

lymphoid organs (lymph nodes and spleen), the lymphatic system, and back to the blood stream until 

they find the antigen they are specific to.  

Such encounters are potentiated specifically in the lymph nodes, due to high concentration of antigens 

and APCs drained from the surrounding non-lymphoid tissues. Upon antigen recognition, lymphocytes 

can go back to the blood stream and enter sites of infection/inflammation in non-lymphoid tissues 

(NLT) to fight the ongoing immune challenge. All these steps are governed by the regulation of 

expression of adhesion molecules (integrins and selectins) and chemokine receptors that promote 

preferential migration and/or retention in specific tissues, in a process called homing. 
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Figure 1 — T lymphocyte recirculation.  

Naïve T cells usually enter the lymph nodes coming from the blood stream through high endothelial venules. Dendritic 
cells coming from non-lymphoid tissues and presenting antigens found there enter the lymph nodes via afferent lymphatic 
vessels. If T cells are able to recognize these peptides, they get activated and return to circulation through the lymphatic 
system, and then to the bloodstream, finally reaching the sites of inflammation in peripheral tissues through venules. From 
[1]. 

 

I .1.2.3  Phases of  adapt ive immune responses 

The number of naïve lymphocytes with specificity to a given antigen is in the order of 1 in 105 or 106. 

In addition, the amount of the antigen itself is usually small. Therefore, to increase the chances of 

lymphocytes encountering the right antigen, there is a need for capturing microbes, concentrating 

them in certain locations, and efficiently presenting them to lymphocytes. Mainly dendritic cells, the 

paradigm of APCs, play the important role of sampling antigens in the epithelia and connective 

tissues, and migrating to the tissue-draining lymph nodes where they present them to recirculating 

lymphocytes.  

 

Lymphocyte activation triggered upon antigen recognition starts with clonal expansion of the reactive 

clones, followed by their differentiation into more mature states. After inducing antigen elimination and 
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as homeostasis of the system is reestablished, the vast majority of the activated lymphocytes is then 

routed towards apoptosis, or to a lesser extent, towards a memory phenotype. Despite following the 

same general trajectory, T and B cell reactions and functions upon activation are quite distinct.  

 

Activation of CD4+ and CD8+ T cells lineages happens upon engagement of the T cell receptor (TCR) 

by antigens being presented by APCs, respectively via class II and class I MHC molecules. CD4+ T 

helper cells differentiate into effector cells, which contribute to the immune response mainly via 

cytokine production. They egress from the lymph node and migrate towards the sites of inflammation, 

where they stimulate phagocytes that have captured microbes to destroy them. They are also capable 

of stimulating eosinophils that, in turn, target parasites that cannot be phagocytosed. In the lymph 

nodes, CD4+ T helper cells also play a fundamental role in activating B cells against protein antigens. 

CD8+ T cells are activated and differentiate into CTLs capable of killing infected host cells, either by 

viruses or by bacteria that survive in the phagocytic vacuoles. The function and characteristics of the T 

cell lineage, especially CD4+ T helper cells are of major relevance for this thesis and will be described 

in detail in section I.2. 

Activation of B cells ultimately leads to the secretion of antibodies. In contrast to T cells, B cell 

receptors (BCRs) can be activated by free lipid or polysaccharide antigens that possess repetitive 

structures and can thus engage with a high number of BCRs simultaneously on the same cell. 

However, for protein antigens, activation of B cells depends on activating signals transmitted by T 

helper cells. For this, B cells work as APCs to interact with reactive T cells that will in turn activate 

them. 
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Figure 2 — Phases of adaptive immune responses.  

Adaptive immunity responses consist of five phases. It starts with antigen recognition, then lymphocyte activation 
(concomitant clonal expansion and differentiation), and antigen elimination, after which responding lymphocyte population 
contracts by cell death, finally returning to homeostasis leaving memory lymphocytes behind. The time on the x-axis can 
vary depending on the immune challenge. The y-axis is an arbitrary measure of magnitude of response. From [1]. 
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I .2  T cel ls  

I .2.1  Development of  T cel ls  

Typically, the most immature T cells arrive to the thymic cortex via blood vessels, migrating through 

cortex and then towards the thymic medulla as they go through several stages of maturation and 

undergo two steps of selection, one positive and one negative (negative selection is further explored in 

section I.3.1.1). Fully mature T cells emerge from the thymus expressing fully functional TCR on the 

cell surface. During maturation, the genes encoding the TCR chains undergo somatic rearrangement 

of gene segments that are spatially separated in the germline loci. Although the TCR can be formed by 

either α and β or γ and δ chains, the majority of the mature T cell population is composed of αβ T 

cells. The α locus is composed of multiple V and J segments, while the β locus has V, D and J 

segments. The combinatorial associations between these segments, plus additional inclusion and 

exclusion of nucleotides at their junctions, gives rise to the diversity of the TCR repertoire.  

The development of T cells in the thymus (thymocytes) happens as they migrate from the cortex to the 

medulla. The thymocytes that arrive to the thymic cortex from the bone marrow proliferate and 

undergo apoptosis at extremely high rates, being estimated that 95% of them die before getting to the 

medulla. They constitute the most immature cell state, which is known as pro-T cell stage (or double-

negative thymocytes), and is characterized by having the TCR locus in their germline configuration, 

and for not expressing TCR, CD3, or the coreceptors CD4 and CD8. After rearrangement, 90% of 

these double-negative cells will eventually give rise to cells expressing α and β chains. Then, they pass 

through the pre-T stage, during which V-D-J recombination of the β locus is completed. A pre-TCR, 

composed of this β chain and an invariant α chain, transduces a signal that inhibits the 

rearrangement of the other β locus and promotes the expression of CD4 and CD8. The double-positive 

stage, cells are both CD4 and CD8-positive, and they start expressing low levels of the TCR receptor 

after the α chain is rearranged. The resulting TCRαβ CD4+CD8+ T cells are then positively selected, 

i.e. rescued from programmed cell death, if the TCR is able to recognize with low avidity the peptide-

MHC complexes on the surface of thymic epithelial cells. In the medulla, already as single-positive T 

cells committed to either CD4 or CD8 lineage, T cells are negatively selected based on high-avidity 

recognition of self-antigens (clonal deletion) (see section I.3.1). By the end of their maturation, the 

resulting naïve T cells will then enter the bloodstream and start exerting their function. 
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I .2.2  Subpopulat ions of  TCRαβ CD4+ T cel ls  

 As described above, naïve CD4+ T cells that arise from the thymus adopt a pattern of recirculation 

between secondary lymphoid organs (SLOs) and the bloodstream until they find the correct antigen 

(Figure 1). Upon TCR engagement, an activation and differentiation process ensues leading naïve 

CD4+ T cells down one of several lineages of effector T cells. The result of this differentiation will 

depend on the cues given by the surrounding inflammatory environment: TCR signaling, co-stimulation 

via CD28, and activation of distinct cytokine receptors [2], which will affect transcription, chromatin 

structure, translation and signaling transduction within activated T cells.  

Ultimately, several differentiated and functionally distinct T helper (Th) cell subsets can develop and 

be classified according to the primary cytokines expressed and their master transcription factors (Th1, 

Th2, Th9, Tfh, Th17, Treg). Each subset of T helper cells has been associated with the control of 

different immune challenges or particular functions within the adaptive immune response, as 

described in Figure 3. In contrast with the pro-inflammatory functions of most CD4+ T cell lineages, 

regulatory T cells (Tregs) play a critical role in the suppression of the immune response, conveying 

peripheral tolerance to self- and non-self-antigens. Treg can arise directly from the thymus (thymic 

Treg, tTreg) or, as T helper lineages, from differentiation of naïve T cells in the periphery (peripheral 

Treg, pTreg). As one of the main subjects explored in this thesis, the Treg lineage will be further 

addressed in section I.3.2. 

When the immune challenge that triggered the activation and differentiation of CD4+ T cells is 

eliminated, approximately 90% of effector cells are expected to die during the contraction phase of the 

adaptive immune response (1-2 weeks). The remaining cells set-up long-lived populations of quiescent 

memory cells, capable of sporadic self-renewal and survival in the absence of their antigen [3]. Central 

memory T cells (Tcm) recirculate mainly through lymphoid organs due to the expression of CD62L (L-

selectin) and the chemokine receptor CCR7, and are able to produce IL2 and replicate at high rates in 

case of a recurrent infection. Effector memory T cells (Tem), on the other hand, can circulate through 

the non-lymphoid tissues and will produce high amounts of cytokines upon TCR activation. More 

recently, it has been shown that tissue-resident memory T cells (Trm) can be formed and preferentially 

reside in the non-lymphoid tissues, playing an important role in the immediate control of immune 

challenges and, to some extent, intervening in non-immune processes [4–6]. 
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Figure 3 - CD4+ T cell subtypes. 

Each CD4+ T cell subset can be defined by the signals they sense (red), the transcription factors that govern their 
differentiation (orange) and the effector molecules and chemokine receptors that contribute to their function (blue) in the 
control of specific pathogens or immune pathologies. Adapted from [7]. 

 

I .2.3  Prolonged pers istence in non- lymphoid t issues 

In recent years, it has become evident that memory T cells can be divided into circulating cells, Tem 

and Tcm, and non-circulating, residing cells, the Trm. Trm dwell in non-lymphoid tissues, such as the 

colon, lung and skin, and they respond locally and rapidly, constituting an early line of response to 

immune challenges [4]. They exhibit a phenotype that is distinct from the circulating cells, and 

appears to be heavily influenced by their location. These are likely to be adaptations to new functions, 

different migratory patterns and to the different survival signals in non-lymphoid environments. Such 

compartmentalization is also seen at the level of the TCR repertoire of the Trm, which does not 

overlap with the repertoire from circulating cells.  

In spite of Trm’s demonstrable relevance, the functions, development and maintenance of Trm, and in 

particular of CD4+ Trm, are still poorly understood. The importance in understanding the differences 

and similarities between circulating and tissue-residing T cells increased with the expansion of T cell-

targeting and T cell-based approaches for treatment of cancer autoimmunity and inflammatory 

diseases [6]. 
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I .3  Immune to lerance2 

One of the most enigmatic questions in Immunology is the ability of the immune system to effectively 

react against pathogenic agents while remaining unresponsive to self and other harmless antigens. 

This is explained by the induction of tolerance to the former but not to the latter group of antigens. 

Problems in establishing tolerance are thus frequently linked to the development of autoimmune 

disorders, chronic inflammations and allergies.  

There are two main categories of tolerance: central and peripheral. The former is exerted at the level 

of immature lymphocytes as they undergo maturation in a primary lymphoid organ, namely the 

thymus for T cells and the fetal liver or bone marrow for B cells. The latter, on the other hand, 

happens at the level of mature lymphocytes while they are recirculating through secondary lymphoid 

organs.  

For T cells, central tolerance is enforced by medullary thymic epithelial cells (mTECs), which induce 

clonal deletion of highly reactive T cells and differentiation of mildly self-reactive cells into thymic 

regulatory T cells (tTreg). Interestingly, another branch of Tregs, peripherally-derived Tregs (pTreg), 

differentiates from naïve T cells throughout the organism, controlling immune reactions against 

innocuous foreign antigens, thus being part of the peripheral tolerance. The biology of mTECs and 

Tregs is addressed separately in the next sections. 

 

I .3.1  mTECs: main dr ivers of  centra l  to lerance 3 

I .3.1.1  Negat ive select ion of  thymocytes 

Haematopoietic stem cell-derived T lymphoid progenitors migrate from the bone marrow to the 

thymus relying on chemokine receptors such as CCR7, CCR9 and CXCR4. In the thymus, developing 

T cells, i.e. thymocytes, are positively selected in the cortex (outer region) by cortical thymic epithelial 

cells (cTECs). The selection is based on the ability of their TCR to interact with MHC molecules. Then, 

CCR7 expression drives thymocytes to migrate to the thymic medulla (inner region) and to interact 

with APCs, namely with medullary thymic epithelial cells (mTECs) and dendritic cells.  

                                                
 

2 Unless specific references are mentioned, the information on this section is reviewed in [1] 
3 Parts of this section were adapted from [170]. 
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The medulla of the thymus plays a major role in tolerance induction via negative selection of 

thymocytes (maturing T cells), also designated as clonal deletion. In fact, disruption of the spatial 

structure of the medulla and other perturbations that block thymocytes from maturing in the medulla 

environment, give rise to autoimmune manifestations [8]. This function of the medulla has been 

mainly linked to the ability of mTECs to “ectopically” express a range of tissue-restricted antigens 

(TRAs) in a rather obscure process designated as promiscuous gene expression (PGE) (section 

I.3.1.2). The expressed TRA proteins are broken down into peptides and presented to thymocytes1 

which will take different paths upon engagement depending on the binding affinity. According to the 

affinity model of thymocyte selection (reviewed in [8,9]), low affinity binding will promote thymocyte 

survival, while high affinity will induce thymocyte apoptosis. Within a window of medium affinity 

interactions, thymocytes can be differentiated towards a conventional T cell or a thymic regulatory T 

cell (tTreg) phenotype [8,10–13]. As a result, the conventional T cell repertoire is largely purged of 

clones that interact strongly with self peptide-MHC complexes, ensuring that they will not mount 

immune reactions against self-antigens.  

 

I .3.1.2  Promiscuous gene expression by mTEC 

At the population level, the characteristic promiscuous gene expression by mTEC allows them to 

virtually express all the genes in the genome. At the cellular level however, such expression is highly 

variable, with individual TRAs in many cases expressed only by a small fraction (1-3%) of the mTECs 

[14–17]. Despite being the focus of many studies, multiple dimensions of this remarkable process are 

still far from being understood. 

The most well characterized factor contributing to PGE in mTECs is the AIRE protein encoded by the 

Autoimmune regulator gene (Aire). Its deletion leads to a polysymptomatic autoimmune disorder 

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) [18], and its expression 

in thymus depends on p65 and RELB binding to conserved enhancer elements upstream of the Aire 

locus [19,20]. AIRE acts largely independently of DNA sequence, as indicated by its discrepant targets 

in different cell types [21,22], binding to hypomethylated Lys4 of histone 3 and other repressive 

epigenetic marks, promoting gene expression by inducing the release of stalled RNA polymerases 

(reviewed in [23]). In addition, it has recently been suggested that AIRE preferentially sits in super-

enhancer regions, which can form intra- and inter-chromosome loops in a dynamic fashion, thus 

explaining the high cell-to-cell variability of TRA expression in mTECs [24].  
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Interestingly, a significant proportion of TRAs have been found to be expressed also in the absence of 

Aire, strongly suggesting the existence of unknown complementary mechanisms [14,25]. In line with 

this notion, the transcription factor Fez family zinc-finger 2, Fezf2, was recently identified to induce the 

expression of some Aire-independent TRAs [26].  

At the single-cell level, TRAs expressed in each mTEC seem to be functionally unrelated [27], i.e. they 

do not recapitulate functional modules seen in the tissues that express them. Nonetheless, some co-

expression modules appear to be present, and might be linked to sub-stages of mTEC development  

[28].  

Understanding of PGE has been impaired by a combination of its stochastic nature, the incomplete 

understanding of the mechanisms and factors driving TRA expression, and the confounding effect of a 

yet unclear mTEC developmental process. 

 

 

I .3.1.3  mTEC development 

The development of mTECs has been proposed to originate from bipotent thymic epithelial progenitor 

cells (bTEP), also giving rise to cTECs [29,30]. These bTEP have been poorly characterized so far, 

especially in the adult thymus. In fact, a great majority of the cells that acquire mTEC fate originate in 

lineage-restricted progenitors [31], and they have been shown to progress through an early 

developmental stage termed junctional TEC (jTEC) [32], into a mature Aire-expressing stage, 

eventually progressing into a post-AIRE stage [33,34]. This process of development of functional 

mTECs is known to be driven by the histone deacetylase 3 (Hdac3) and NF-κB signaling, the latter 

through RANKL and CD40L produced by thymocytes [35]. As mTECs progress along this trajectory, 

they migrate from the outer to the inner region of the medulla [33].  

Mature postnatal mTECs can be divided into two main subpopulations based of their ability to present 

antigens, i.e. based on the expression levels of CD80 and MHC Class II molecules: CD80hiMHCIIhi 

and CD80loMHCIIlo. However, these subpopulations are intrinsically heterogeneous and their 

developmental relationships are unclear22 [23]. While CD80hiMHCIIhi are mostly Aire-expressing 

mTECs, and have been reported to be subdivided according to subsets of TRAs expressed [36], 

CD80loMHCIIlo typically express less Aire, including both pre- and post-Aire stages (reviewed in [23]). 

Until recently, the mTEC population expressing high levels of AIRE (CD80hiMHCIIhi) was considered 

the apex of mTEC maturation, after which cells would enter AIRE-driven apoptosis [37]. However, it 
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has recently been demonstrated by cell fate mapping that upregulation of Aire does not mark the last 

stage of mTEC life cycle. Instead, lymphotoxin-α (LTα)–LTβR signals coming from developing 

thymocytes [38] induce cells to proceed into a post-Aire stage characterized by loss of Aire, Cd80 and 

MHCII expression and upregulation of epithelial differentiation markers, such as desmoglein-1 and 3, 

involucrin and Spink5 [33,34]. Although post-Aire mTECs are regarded as terminally differentiated, the 

exact function and progression through intermediate steps are not clear.  

In summary, the developmental stages in the thymic medulla are still incompletely understood. 

Furthermore, the mechanisms by which TRA expression is gained, and to which extent it is maintained 

in the post-Aire state remain poorly understood. The cell-intrinsic and developmental heterogeneity of 

the epithelial cells, have made these mechanisms difficult to elucidate using population-level 

approaches. 

 

I .3.2  Regulatory T cel ls  

I .3.2.1  Phenotype, heterogeneity and funct ion 

Regulatory T (Treg) cells are responsible for the suppression of immune responses, thus limiting 

inflammation, allergies, autoimmune diseases and influencing the development of tumours. They exert 

their functions by killing or inhibiting T cells and APCs, e.g. through CTLA4 and GZMB, and by 

producing suppressive cytokines such as TGF-b, IL-10, IL-35, and galectin-1. The key role of Treg is 

apparent from the severe immune deregulations motivated by neonatal thymectomy and other 

impairments of Treg development (reviewed in [39]). Foxp3 gene is the best marker to identify Treg, 

despite being transiently expressed in human T helper during activation. This transcription factor is 

part of the forkhead/winged-helix family of transcription factors, it is highly conserved between species 

and mutations in the gene were identified as the causative factor responsible for Scurfy, in mouse, 

and the Immunodysregulation, Polyendocrinopathy, and Enteropathy, X-linked syndrome (IPEX), in 

human.  

Most Treg arise from the thymic medulla – thymic-derived Treg (tTreg) [40] – as a functionally mature 

T cell subpopulation able to migrate towards inflammation sites and suppressing effector lymphocytes 

upon recognition of the cognate antigen (reviewed in [41,42]). It is also known that, under the correct 

conditions (weak TCR signaling, TGF-β and IL-2), naïve CD4+ T cells can give rise to Foxp3+ 

suppressor cells in the periphery – peripherally derived Treg (pTreg) [40]. Although their generic 
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suppressor role seems the same, tTreg cells are believed to be in charge of controlling autoimmune 

reactions (tolerance to self-antigens) while pTreg mediate neo-antigen tolerance, e.g. antigens from 

commensal bacteria, environmental antigens, food (reviewed in [43]). Interestingly, functional 

differences between tTreg and pTreg have not been found. 

The Treg lineage has been shown to exhibit remarkable plasticity. In fact, they seem to be able to 

enhance their ability to control inflammatory responses through co-expression of transcription factors 

typically associated with the differentiation program of effector T helper cells, such as T-bet, Gata3, 

Irf4 and Stat3 [43,44]. This ability of Treg cells to adapt to their surrounding inflammatory milieu is 

critical in preventing the development of context-dependent immunopathology. 

In recent years, the diversity of Treg phenotypes has been reported in the context of different states of 

activation and location. Central Treg (cTreg) can be found recirculating between SLOs, expressing low 

amounts of CD25, and high levels of CD62L, CCR7 and CD45RA. Activation induces differentiation 

into effector Treg (eTreg), which upregulate CD25, CD44, KLRG1, CD103, the transcription factors 

BLIMP-1, BATF, IRF4 and the downregulate CD62L, CCR7 and CD45RA, which overall translates into 

a Treg phenotype that is more suppressive and spends less time in SLOs. Additionally, non-lymphoid 

tissue Treg (NLT Treg), which are phenotypically similar to eTreg, have also been identified.  

 

I .3.2.2  Non- lymphoid t issue Treg 

I .3.2.2.1  Phenotype and funct ions 

As for T helper cells, compartmentalisation of regulatory T cell populations has been observed across 

several tissues. Multiple studies have described distinct adaptations that NLT Tregs develop in 

contrast to their lymphoid counterparts, which provide them with tools to control both immune and 

non-immune processes, most notably in the environment of the visceral adipose tissue (VAT) [45], 

skeletal muscle [46], and the colonic lamina propria [47]. These NLT Tregs exhibit a differential 

transcriptional profile with obvious enrichment of transcripts encoding effector molecules (Ctla4, 

Gzmb, Klrg1), chemokines and their receptors (e.g. Ccr4), and immunosuppressive cytokines such as 

Il10 [48]. In addition, NLT Tregs also express a TCR repertoire distinct from their lymphoid 

counterparts, yet another indication of tissue specialisation. 

Remarkably, the role of NLT Tregs can also extend beyond the immune regulatory function and has 

been implicated in multiple unique tissue-specific physiological processes. For instance, VAT Tregs 

have been shown to influence overall metabolic parameters, such as obesity, obesity-related 
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inflammation and glucose tolerance via IL33-signaling through ST2 (reviewed in [49]). Also in an ST2-

dependent mechanism, Tregs in the skeletal muscle have been shown to promote muscle repair, 

partially by the production of amphiregulin, Areg [46]. 

 

I .3.2.2.2  Origin and establ ishment of  NLT Treg populat ions 

The exact origin of NLT Treg is diverse and largely dependent on the specific tissue being considered. 

It seems like VAT Treg are largely thymic-derived Treg, as suggested by observations such as the 

expression of tTreg markers Neuropilin-1 (Nrp1) and Helios (Ikzf2) and the non-overlapping TCR 

repertoire between Treg and effector T cells in the VAT. A similar situation characterizes skeletal 

muscle Treg. Colonic Tregs, however, appear to be heterogeneous and divided into a tTreg and a 

pTreg population, Gata3+ and Ror-γt+ (Rorc+) respectively. 

In terms of dynamics of retention in each NLT, Treg seem to also be fairly heterogeneous. While VAT 

Treg population remains stable, i.e. there is a low number of Treg being recruited and leaving the 

NLT, skeletal muscle and colonic Treg migration rates to and from NLTs are quite higher. 

Recruitment seems to be driven both by general NLT receptors, such as Ccr8, Ccr2, Ccr5, in 

conjunction with tissue-specific ones, such as Gpr15, a homing factor to the colon. Interestingly, the 

attraction and survival in the NLTs seems to be motivated by local antigens, at least for VAT and 

colonic Ror-γt+ Treg. 

The timing and the location where Treg acquire NLT phenotypes is even more obscure than the 

phenotypes themselves. Although it seems more likely that such differences are established upon 

arrival of Tregs to the NLTs after induction by tissue-specific cues, the existence of biases imposed in 

the thymus or any mixture of these two alternatives have not been disproven.  
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I .4  Single -ce l l  mRNA sequencing technologies4 

In the last decade, Biology has been heavily influenced by the rise of omics approaches, which can 

provide information on large pools of molecules simultaneously. This effect is particularly relevant for 

techniques that use high-throughput sequencing platforms, such as whole-genome sequencing, 

sequencing of chromatin immunoprecipitation products (ChIP-seq), sequencing of accessible 

chromatin (ATAC-seq) and sequencing of RNA (RNA-seq). The comprehensive characterization made 

possible through these methods is remarkably powerful, and has been driving remarkable progress in 

multiple biological and biomedical fields.  

The level of proteins, the final products that carry out most functions in the cell, constitutes the most 

accurate data to characterize and understand cell function. Unfortunately, the cost, scalability and 

complexity of proteomics are significantly behind nucleic acid sequencing techniques [50]. 

Consequently, and since RNA levels explain approximately 40% of variance in protein levels [51], gene 

expression is most often used as a proxy for protein levels.  

For most studies, RNA-seq profiling had focused on populations of cells (bulk RNA-seq), which 

imposed two main limitations to this method. First, the number of cells needed for bulk RNA-seq is 

typically in the order of the hundred of thousands of cells, which can be problematic for rare 

populations. Second, the population-perspective implies that FACS-sorting, cell culture selecting for 

specific cell types, tissue dissection or any other strategy for cell enrichment has to be used prior to 

bulk RNA-seq in order to obtain a group of cells that is considered homogeneous. Naturally, 

homogeneity can only be as good as the knowledge of the population structure and its associated 

markers, as well as the efficiency and sensitivity of the purification step. Consequently, due to either 

lack of knowledge or imperfect enrichment, heterogeneity can easily be introduced in the populations 

analysed by bulk RNA-seq, meaning that results will be an average of the gene expression levels 

across all cells and all potential subpopulations captured.  

In 2009 however, soon after bulk RNA-seq was introduced, the first single-cell RNA-sequencing 

(scRNA-seq) method was published [52], laying the ground for the exploration of cell populations in a 

comprehensive and unsupervised manner. In the following years, single-cell transcriptomics went 

through a speedy maturation period, both experimentally and analytically, while they have also been 

applied to an increasing number of biological questions and fields. 

                                                
 

4 Parts of this section were adapted from [171]. 
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In the next sections, the current state of the scRNA-seq field will be addressed, in terms of protocols 

and platforms available, their challenges, as well as the most common and useful analytical tools and 

strategies used when analyzing such datasets. This Chapter will end a few examples of scRNA-seq 

applied to the Immunology field will be explored. 

 

I .4.1.1  Exper imental  protocols for scRNA-seq 

All scRNA-seq protocols involve four major steps: cell isolation (and lysis), reverse transcription, 

amplification, sequencing library preparation (and sequencing). Each of these steps contains 

particular challenges, which have been addressed by diverse strategies (Figure 4).  

Cell isolation is very time-consuming if not automated in any way. Hence, the initial scRNA-seq 

studies, which were based on manual isolation of single-cells, were limited to very low numbers 

(reviewed in [53]). However, the throughput of scRNA-seq methods quickly increased from tens of 

cells up to tens of thousands, as capture of single-cells moved to automated valve-based microfluidics 

systems, single-cell sorting into 96 and 384-well plates, and more recently, to droplet-based 

microfluidics and micro-well methods.  

The Fluidigm C1 Autoprep System (C1) was the first automated alternative to perform scRNA-seq in a 

medium-throughput manner. In this method, cells in suspension are loaded into a disposable 

microfluidic chip where they are then captured in 96 individual compartments (capture sites). The 

capture efficiency, i.e. how many of the capture sites contain a single cell, can be assessed under a 

microscope by the user, and it will mainly depend on the cell type being used (size and physical 

properties), on the number of cells loaded, and the amount of debris present on the cell suspension. 

The reagents for cell lysis, reverse transcription and amplification are then added to the chip that is 

then loaded once again into the C1, which processes the single-cells up to cDNA within approximately 

8 hours. This platform, being very user friendly, with little hands-on time needed, enabled the first 

generation of studies with considerable number of cells to be produced. The data generated not only 

provided the first glimpse on how biological systems are organised at the single-cell level, but were 

also used to develop fundamental analytical tools and strategies, some of which are mentioned in the 

next section. 

Nonetheless, as time went by, several drawbacks of this system became apparent: the need to have a 

dedicated machine, the high cost of consumables and reagents (initially limited to the SMARTer kit 

(Clontech)), lack of flexibility to accommodate experimental designs that include multiple conditions or 
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controls, lack of ability to alter the in-built scripts. Although some of these issues have been 

addressed, namely by allowing the use of customised programs which opened C1 to scRNA-seq 

chemistries besides SMARTer, this platform was increasingly overshadowed by newer approaches in 

the last few years.  

The publication of the Smart-seq2 protocol [54], an improved SMARTer chemistry that uses off-the-

shelf reagents, has addressed several of the issues affecting C1. First and foremost, it made the 

procedure much more cost effective by not relying on commercial kits. Second, this protocol relied on 

FACS sorting into microtiter plates to capture single-cells. The lower costs achieved per cell allowed 

the developers of Smart-seq2 to use larger volumes, thus facilitating plate-based reactions. Third, a 

plate-based approach does not require specialized equipment such as the C1, and it dramatically 

increased the flexibility to include multiple conditions in scRNA-seq experiments, e.g. different cell 

types, different conditions, use of controls. Finally, after collecting cells in plates, the resulting lysates 

can be stored and processed later, which further increases flexibility and facilitates collaborative work 

between distantly located groups.   

Manually, plate-based Smart-seq2 is simple enough to achieve medium-throughput single-cell 

processing (up to ten 96-well plates per day, from RNA to amplified cDNA). However, for increased 

throughput, Smart-seq2 can be adapted to use robots (e.g. Mantis (Formulatrix), Hamilton STAR 

(Hamilton Robotics) liquid handlers). 

More recently, new approaches have been developed that further decrease the cost per cell while 

increasing the number of cells per run to the order of tens of thousands. So far, droplet-based 

microfluidics is the most widely-used alternative, with two publicly available protocols Drop-seq [55], 

InDrops [56] and its commercial variant, Chromium (10xGenomics). These methods entrap single-

cells in aqueous droplets, together with either microparticles or hydrogel beads, which in turn deliver 

barcoded primers that tag the RNA from each cell uniquely.  

Using nanoliter droplets as microreactors  decreases the amount of reagents needed, driving the price 

dramatically down, allowing for the analysis of tens of thousands of cells. In addition, no cell-size 

biases are imposed by this strategy, in contrast with valve-based microfluidics. Capture efficiency in 

InDrops and Chromium is around 70%, in clear advantage over other approaches  (valve-based 

microfluidics: 1-10%, Drop-seq: 2-4%). Despite all the advantages, some limitations of droplet-based 

approaches should be considered, namely the inability to link transcriptome data to other single-cell 

information acquired previously (e.g. fluorescence, morphology) and the decreased sensitivity for gene 

detection. The latter limitation stems from the fact that sequencing more cells up to saturation (i.e. 
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when further increase of sequencing depth does not translate to more genes detected) becomes 

limiting in terms of cost. Thus, when comparing populations with subtle transcriptomic differences, 

other approaches should be preferred. Finally, the number of starting cells should also be considered, 

as 10 000 cells or more are preferred for droplet-based experiments. 

   

Table 2 — Single-cell capture alternatives.  

 Micromanipulation 
Valve-based 
microfluidics 

Plate-based 
Droplet-based 
microfluidics 

No. of cells Tens Hundreds Hundreds 
Thousands/tens of 

thousands 

Dedicated 

plataform 
Not needed Needed Not needed Needed 

Cell selection Morphology; fluorescence 
Pre-capture (e.g. 

FACS) 
FACS 

Pre-capture (e.g. 

FACS) 

Single-cell 

information 
Visual observation Visual observation 

FACS measurements 

(protein markers, size, 

granularity) 

No 

Reaction 

volume 
Microliter Nanoliter Microliter Nanoliter 

Time Very slow Fast Fast Fast 

Experimental 

design 
More flexible Less flexible More flexible Less flexible 

Cost per cell $$ $$$ $$ $ 

Percentage of 

initial cells 
NA 1-10% NA 

Drop-seq: 2-4% 

InDrop: 60-90% 

 

 

In parallel, different methods of reverse transcription and amplification were also introduced, granting 

access to either full-length transcripts, 5’ or 3’ fragments (reviewed in [57]), either by PCR or in vitro 

transcription (IVT). The large repertoire of currently existing protocols for scRNA-seq is an outcome of 

the combinatorial usage of the different strategies for cell isolation, reverse transcription and 

amplification, which were summarised in Figure 4. 

In addition, an increasing number of protocols are now allowing the integration of scRNA-seq with 

single-cell genomics [58,59], epigenomics [60] and CRISPR screenings [61–63]. 
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Systematic comparisons of scRNA-seq protocols have now been published [64,65]. On one hand, they 

show that most single-cell mRNA protocols are able to correctly assess the abundance of mRNA 

molecules present across cells (good accuracy). On the other hand, significant differences in lower 

detection limits were detected between protocols (variable sensitivity).  

Nevertheless, read depth per cell rather than protocol seems like the main factor to produce reliable 

scRNA-seq data. Ensuring around 1 million reads/cell is recommended to maximize accuracy and, 

more importantly, sensitivity, while keeping costs to the minimum [64]. 

 
Figure 4 — Single-cell RNA-sequencing methods.  

For each of the steps of scRNA-seq protocols (top row), several alternative strategies can be used. Combinations of all 
these alternatives give rise to the currently available methods. From [66]. 

 

Therefore, the choice of protocol will ultimately be influenced by practical factors [65]. It will depend 

on the number of starting cells available (droplet-based microfluidics usually require more input cells 

[65]), whether full transcripts are required or not (while 3 or 5’-end reads are suitable gene 

quantification, study of isoform variants [67] or TCR reconstruction [68] require full-transcripts), 

whether index-sorting data for each cell is desirable (plate-based approaches can record fluorescence 

levels of important proteins [69]), number of conditions and controls (plate-based approaches are 

more amenable to complex experimental designs), how many cells and how well characterized they 

should be (for similar sequencing costs, droplet-based approaches will yield more cells but will detect 
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mostly their most highly expressed genes, while plate-based approaches yield fewer cells but have a 

larger spectrum of gene detection), the cost and the availability of dedicated platforms (microfluidic 

approaches require either commercial or home-made dedicated platforms, while plate-based 

approaches depend on FACS machines). 

 

 

I .4.1.2  Computat ional  analys is of  scRNA-seq data 

Computationally, scRNA-seq data has presented new challenges to the RNA-seq community [70]. 

These challenges include, among others: (1) Technical differences between cells stemming from 

library quality and batch effects: low quality of libraries can be detected by a preliminary quality-control 

stage where quality of each library is assessed based on various criteria (such as total number of 

mapped reads or number of detected genes) [71]. Batch effects can be addressed by batch correction 

methods (these include traditional and newly developed methods to remove unwanted factors[72]). 

(2) Variable or inefficient capture of mRNA (or “dropouts”) due to low amount of starting material, 

which can affect the ability to detect lowly-expressed genes. This can be addressed by methods that 

impute the data and restore its likely structure [73]. (3) Difficulties in discerning between technical 

noise and genuine biological heterogeneity.  

 

In the past couple of years, these have been addressed by a combination of adaptations of bulk-RNA 

analysis methods, and the development of completely new tools, several of which have now been 

integrated into user-friendly packages [72]. 

In general terms, gene expression data of a differentiation process with single-cell resolution has the 

potential to provide answers to five main questions [53]:  

1. Are there distinct clusters of cells within the general cell population (corresponding to either a 

variety of differentiation stages or to various, fully- differentiated, cell types)?  

2. Which genes characterize each cell population?  

3. Which gene modules regulate differentiation?  

4. How do cells progress through the differentiation process?  

5. How is the differentiation process spatially reflected in the relevant tissue? 

 

These questions can be addressed by utilising different techniques (Figure 5):  
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1. Identifying cell clusters can be achieved by either applying dimensionality reduction 

techniques or hierarchical clustering algorithms.  

2. The biological roles of the identified clusters can then be evaluated based on genes that 

differentially expressed (DE) between clusters, using available methods to infer differential 

expression (reviewed in [72,74]).  

3. Measuring gene co-occurrence or gene-gene correlations across single-cells can be used to 

build co-expression networks that can yield insights into important gene modules and gene 

regulation involved in differentiation. With the recent integration of CRISPR screenings with 

scRNA-seq [61–63], there is now the potential to systematically perturb these networks and 

assess true regulatory relationships between their elements. 

4. Although single-cell data of a differentiation path is a static snapshot, differentiation is a 

dynamic and continuous process, encompassing a continuous range of cell-states along this 

process. Multiple algorithms have been recently developed to interpret such cell-to-cell 

differences and reconstruct trajectories of cell differentiation. Ordering cells along this 

“pseudotime” enables studying gene kinetics during differentiation, inference of regulatory 

relationships and determination of branching points between cell-fates [75–80] (reviewed in 

[72,74]). 

5. Finally, in systems such as embryonic development and organogenesis where differentiation 

and localization go in tandem, matching single-cells back to their original location within the 

tissue of interest is imperative to understanding the tissue physiology. This can be achieved 

computationally by mapping single-cells against a spatial reference [81,82], allowing the 

spatial visualization of cell subpopulations, markers and gene modules identified in previous 

stages.  
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Figure 5 - scRNA-seq analyses: from a gene expression matrix datasets to complete reconstruction of a 
differentiation process.  

(A) Analysis of scRNA-seq take as input a cell vs. gene matrix and ideally lead to an ordered set of cells, fully defined and 
structured at multiple levels. (B-H) Several steps have to be undertaken to conduct a meaningful scRNA-seq analysis. (B) 
Heterogeneity within cell populations can be addressed either by dimensionality reduction algorithms or hierarchical 
clustering (reviewed in [72,74]). (C) Multiple methods exist to determine which genes are differentially expressed by each 
cluster[83]. (D) Individual genes can then be grouped into regulatory networks[74,84] to predict functional associations. 
(E) At the cell level, inferring a pseudotime of high resolution differentiation is a powerful application of scRNA-seq. 
Naturally, numerous computational tools have now been developed to order cells based on their transcriptomic differences 
[77,79,80,85,86] (reviewed in [72,74]). (F) Similarly, tools to specifically separate more than one co-existing lineages are 
also emerging [75,79,80,85] (reviewed in [72,74]) (G) Once differentiation trajectories are established, one can investigate 
the kinetics of gene expression along them [87,88]. (H) Mapping single-cell information back to the tissue of origin, thus 
recovering spatial information, has been attempted in some systems[81,82]. 

 

 

 



CHAPTER I 

 28 

I .4.1.3  Appl icat ions of  scRNA-seq to Immunology 

The rise of scRNA-seq has been influencing several fields across Biology. The potential impact that 

these technologies can have specifically in Immunology is very significant, as heterogeneity and 

plasticity within known populations is remarkably high (as discussed in section I.3.2), namely within 

the adaptive immune system. 

To cope with the vast array of invading pathogens, T cells rely on naïve cells that can rapidly adapt 

and differentiate towards specific fates according to the any given immune challenge. Single-cell 

resolution of adaptive immune responses can capture in detail such processes, giving insights into 

how different challenges and tissues influence immune differentiation, which cell subtypes arise in 

different stages of infection, and how adaptive immune cells further differentiate to acquire memory 

phenotypes. 

A recent work used scRNA-seq of in vivo and in vitro murine Th17 cells to explore their path to 

pathogenesis in autoimmune encephalomyelitis (EAE) [89] (Figure 6A). The authors collected Th17 

cells from lymph node (LN) and the central nervous system (CNS), and assigned the cells into discrete 

stages of differentiation. Coupling this information with scRNA-seq of in vitro Th17, a subset of CNS-

dwelling Th17 was shown to be particularly pathogenic, while most other subsets were non-

pathogenic. Ultimately, multiple genes were shown to drive pathogenesis. 

In another study, differentiation within the CD8+ lymphocyte branch was addressed in the context of 

lymphocytic choriomeningitis virus (LCMV) infection [90]. Here, several time-points rather than tissues 

were studied, spanning both early and late infection. Single-cell data shows that two subpopulations 

arise as soon as responder cells undergo their first cell division, adopting either T effector or T 

memory phenotypes. This surprisingly early separation of phenotypes was then used to classify 

intermediate differentiation states as “effector-like” or “memory-like”, identifying Ezh2 as a new 

“effector” driver gene, associated with epigenetic repression of “memory” traits. 

Differentiation of naïve CD4+ T cells into effector stages was tracked by scRNA-seq during malaria 

infection in a mouse model [80] (Figure 6B). The authors ordered hundreds of cells from multiple 

time-points based on their transcriptome similarities, establishing a continuous “pseudotime” using a 

novel approach based on Gaussian processes. As in many other differentiation events, at a specific 

differentiation stage along the pseudotime, two cell types arise: Th1 and Tfh. Therefore, the authors 

applied a second approach in order to disentangle one differentiation trajectory from the other. This 

framework allowed an in-depth study of the Th1-Tfh bifurcation point, which led to the discovery of key 

genes, such as Lgals1, driving differentiation along each lineage. 
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T cells, as a population, are able to recognize an immense variety of pathogenic molecules. This 

ability relies on the somatic recombination of the T-cell receptor (TCR) locus, which can be used as a 

barcode to follow development of T cells, such as in the above mentioned examples. scRNA-seq of T 

cells has provided a unique resource to study TCR recombination and clonality, and several methods 

have been developed to reconstruct TCR sequences in single-cell data [68,91–94]. Using one of these 

approaches [68], clonally-related T cells were shown to be able to adopt both Th1 and Tfh fates during 

malaria infection [80].  

The combination of single-cell resolution and cell tagging can be valuable in tracking cellular fates 

during cell differentiation of numerous lineages unrelated to T cells [95]. It is thus likely that several 

synthetic barcoding strategies, mostly using genome-editing systems [96–101], would prove to be 

powerful tools in future studies of cell differentiation. 

 
Figure 6 - Two contrasting strategies for dissecting T cell  differentiation using scRNA-seq. 

(A) Supervised functional annotation approach used to classify subpopulations of Th17 cells from lymph-node (LN) and 
central nervous system (CNS) in EAE [89]. First, based on the literature, gene signatures for five stages were defined. Cells 
were scored for each of the five stages and were assigned to the stage for which they score the highest. (B) Unsupervised 
dimensionality reduction approach based on Gaussian processes (Bayesian Gaussian Processes Latent Variable Modelling 
– BGPLVM) is used to order cells along a continuous variable of transcriptomic changes – pseudotime. At a second stage, 
two trends of cell differentiation were detected and separated using Overlapping Mixture of Gaussian Processes 
(OMGP/GPfates [80]). 
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I .5  Object ives of  th is  thesis  

 

Both mTECs and Tregs have attracted a great deal of attention in recent years. However, and as 

highlighted in the previous sections, the more has been uncovered about their functions, phenotypes, 

development and/or population structure, the more intriguing and challenging they have become. 

Further characterization of both systems has collided with the lack of appropriate marker genes, and 

biased by the limited range of the existing ones. Although the use of RNA-sequencing has brought a 

more comprehensive characterization of the known populations of cells, this “bulk” perspective has 

not been enough to efficiently dissect the complex heterogeneity within them. In this thesis, I thus 

decided to leverage the power of state-of-the-art scRNA-seq approaches to perform a comprehensive 

and unbiased characterization of mTECs and Tregs. 

By applying scRNA-seq to the mTEC population (Chapter III), my main objective is to characterize their 

developmental process. Due to the constant turnover of mTECs in the adult medulla, it is likely that 

several stages can be captured in the snapshot that scRNA-seq data represents. My sub-aims include: 

- Determination of potential drivers of mTEC differentiation 

- Characterization of gene expression between subpopulations 

- Defining the role played by each subpopulation and their ability to induce immune tolerance 

By profiling Treg and Tmem cells from multiple lymphoid and non-lymphoid tissues (Chapter IV), I am 

aiming at determining Treg features that explain their recruitment, adaptation and retention in non-

lymphoid tissues. 

Sub-aims include: 

- Determining gene signatures that characterize different cell types and/or tissues of origin 

- Assessing the presence of subpopulations of Treg and Tmem within each tissue 

- Determining how and where non-lymphoid tissue Treg phenotype is established 

- Comparing recruitment and adaptation of Tregs in steady-state and disease 

- Evaluating conservation of marker genes between mouse and human 
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CHAPTER I I  -  Mater ia l  and Methods 

This Chapter is divided into two main sections, each concerning one of the two systems studied in this 

thesis: mTECs and Tregs. 

 

I I .1  scRNA-seq of  the mTEC populat ion5 

I I .1.1  Exper imental  procedures 

I I .1.1.1  Mice 

C57BL/6 mice were maintained under specific pathogen-free conditions at the Wellcome Trust 

Genome Campus Research Support Facility (Cambridge, UK). These animal facilities are approved by 

and registered with the UK Home Office. All procedures were in accordance with the Animals 

(Scientific Procedures) Act 1986. The protocols were approved by the Animal Welfare and Ethical 

Review Body of the Wellcome Trust Genome Campus. 

I I .1.1.2  Tissue processing 

Thymi were collected from 2 and 4 week-old wild-type C57BL/6 male and female mice. Epithelial cell 

isolation was performed based on [102]. Up to 3 thymi were cleaned of fat and connective tissue, 

finely minced and pooled together. Thymocytes were flushed by gentle agitation with a magnetic 

stirrer in RPMI-1640 for 30 min, at 4ºC. Thymic fragments were recovered by settling, and the 

supernatant discarded. After further dispersion, three additional washes were performed. Fragments 

were then incubated in 5 mL of 0.125% (w/v) Collagenase D and 0.1% (w/v) DNAse I (both from 

Roche) in RPMI-1640, at 37ºC for 15 min, with gentle pipetting every 5 min. The supernatant was 

collected and kept on ice, while the thymic fragments were subject to two further incubations. The 

remaining fragments were finally resuspended in 5ml of 0.125%(w/v) Collagenase/Dispase (Roche) 

and 0.1%(w/v) DNaseI in RPMI-1640 for 30 min at 37ºC, with gentle agitation every 15 min. All the 

collected fractions were pooled, centrifuged at 450x g for 5 min and incubated in 5 mM EDTA, 1% 

                                                
 

5 Parts of this section were adapted from [170]. 
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FCS, 0.02% (w/v) NaN3 in PBS (EDTA/FACS buffer) for 10 min at 4ºC. After filtering through a 

100µm-strainer, the resulting cell suspension was depleted of hematopoietic cells by Magnetic-

Activated Cell Sorting (MACS) using CD45-MicroBeads (Miltenyi Biotec).  

I I .1.1.3  FACS sort ing 

For sorting, the recovered fraction was blocked using anti-CD16/CD32 (clone 2.4G2, Tonbo) and then 

stained using anti-CD45-PerCP-Cy5.5 (clone 30-F11, BioLegend), anti-Ly-51-FITC (clone 6C3, 

BioLegend), anti-CD326(Ep-CAM)-AF647 (clone G8.8, BioLegend), UEA-1-Biotin and Streptavidin-

Pacific Blue. mTECs (CD45-Ly-51-UEA+) were sorted with a MoFlo™ XDP (Beckman Coulter, Inc.). 

Propidium iodide was used as a viability dye. 

I I .1.1.4  Single-cel l  RNA-sequencing using C1 Single -Cel l  Auto Prep System 

The microfluidics platform C1 Single-Cell Auto Prep System (C1) from Fluidigm was used for single-

cell capture, reverse transcription and cDNA amplification. The protocol (PN 100-5950 B1) and 

original scripts provided by the company were used for all runs. This protocol relies on the SMARTer 

chemistry (SMARTer Ultra Low Input RNA Kit for Sequencing - v3, Clontech, cat.#634852). 

In total, three C1 runs were performed: one with cells from 2-week old mice and, on a separate day, 

two parallel runs with cells from 4-week old mice. After priming of a “medium-sized” chip, ideal for 10-

17µm cells (C1™ Single-Cell Preamp IFC, Fluidigm, cat.#100-5480), 5000-10,000 recently sorted 

mTECs were loaded and captured. Visual inspection of all 96 capture-sites across the chip provided 

information on number of cells captured, presence of debris and overall appearance of cells. No 

live/dead staining was used, as live mTECs had previously been sorted based on PI. Lysis, reverse 

transcription and PCR mixes (Table 3) were all loaded into the appropriate inlets. Within the following 

6h30min, C1 took the cells through lysis, reverse transcription and amplification (Table 4), then taking 

2 hours to harvest the resulting cDNA. All the material (approximately 3µL) was then manually 

transferred from the C1 chip to 96-well plates containing 10µL of C1 DNA Dilution Reagent. At this 

point, samples could be frozen down. However, quality of the cDNA was typically assessed before 

storage, by running 1µL of cDNA on an Agilent Bioanalyzer High-sensitivity chip. Ideally, cDNA size 

ranges between 400-10,000bp (according to SMARTer Ultra Low Input RNA Kit for Sequencing - v3 

User Manual). cDNA was not detected between 0-400bp, which suggests there were not issues of 

RNA degradation, contamination or primer concatenation. A small dataset of mTECs was processed 

using the Smartseq2 protocol (section II.2.1.9). 
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Table 3 — Mixes for scRNA-seq with C1 Single-Cell Auto Prep System. 

Cel l  lys is  Reverse t ranscr ip t ion Ampl i f ica t ion (PCR) 

Reagents 
Vo l .  
(µL)  

Reagents 
Vo l .  
(µL)  

Reagents 
Vo l .  
(µL)  

ERCC mix (1:2000) 

(Ambion) 

1.0 C1 Loading reagent 

(Fluidigm) 

1.2 PCR water (Clontech) 63.5 

RNase Inhibitor  

(Clontech) 

0.5 5x First-strand buffer 

(Clontech) 

11.2 10x Advantage 2 PCR 

buffer 
(Clontech) 

10.0 

3’ SMART CDS Primer II A  
(Clontech) 

7.0 Dithiothreitol 
(Clontech) 

1.4 50x dNTP mix  
(Clontech) 

4.0 

Dilution buffer 
(Clontech) 

11.5 dNTP mix (10mM each) 
(Clontech) 

5.6 IS PCR primer 
(Clontech) 

4.0 

  SMARTer II A Oligonucleotide 
(Clontech) 

5.6 50x Advantage 2 
Polymerase mix 

(Clontech) 

4.0 

  RNase inhibitor 

(Clontech) 

1.4 C1 Loading reagent 

(Fluidigm) 

4.5 

  SMARTScribe™ reverse transcriptase 

(Clontech) 

5.6   

TOTAL 20.0 TOTAL 32.0 TOTAL 90.0 

 

Table 4 — C1 thermal cycling protocols. 

Cel l  lys is  Ampl i f ica t ion (PCR) 
Temperature Time Temperature Time Cycles 

72ºC 3min 95ºC 1min 1 

4ºC 10min 95ºC 20sec 

5 25ºC 1min 58ºC 4min 

Reverse t ranscr ip t ion 68ºC 6min 

Temperature Time 95ºC 20sec 

9 42ºC 90min 64ºC 30sec 
70ºC 10min 68ºC 6min 

  95ºC 30sec 
7   64ºC 30sec 

  68ºC 7min 

  72ºC 10min 1 
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I I .1.1.5  Nextera XT I l lumina Library prep – manual 

 

The information gathered from visual inspection of C1 chips (see section II.1.1.4) was then used to 

select single-cells for downstream processing. The libraries for sequencing were prepared using 

Nextera XT DNA Sample Preparation Kit (Illumina), according to the protocol supplied by Fluidigm (PN 

100-5950 B1). Based on the average concentration of samples assessed by Bioanalyzer, each plate 

was diluted to a final concentration in the 0.1-0.3ng/µL range. 1.25µL of each sample were mixed 

with 3.75µL of tagmentation mix (pre-mixed 2.5µL of Tagment DNA Buffer and 1.25µL of 

Amplification Tagment Mix) on a new 96-well plate. Plates were then vortexed at medium speed for 

20sec and centrifuged (2000xg, 5min), to remove bubbles. They were then tagmented at 55ºC for 

10min, and then kept at 10ºC until 1.25µL of NT buffer were added per sample to stop the reaction. 

After vortexing at medium speed and centrifuging (2000xg, 5min), 3.75µL of PCR Master Mix (NPM) 

were added to each sample. Indices from Illumina Nextera XT Index Kit were then added to each 

plate: 1.25µL of Index Primer 1 (N701-N712) were added to each row (from 1 to 12, respectively), 

and 1.25µL of Index Primer 2 (S501-S508) to each column (from A to H, respectively). After vortexing 

at medium speed and centrifuging (2000xg, 2min), plates went through PCR amplification (Table 5). 

Per plate, 1µL of all 96 samples were then pooled together in one 1.5mL eppendorf. Finally, AMPure 

XP beads (Beckman Coulter) were used to purify sample pools for sequencing (removal of excess 

dNTPs, primers, salts and enzymes). To each pool, 87µL of room-temperature beads were added 

(1:0.9) and mixed. Libraries from 96 single cells were pooled (1µL per sample) and subsequently 

purified using AMPure XP beads (Beckman Coulter).  

 
Table 5 - Nextera XT PCR protocol. 

Ampl i f ica t ion (PCR) 
Temperature Time Cycles 

72ºC 3min 1 
95ºC 30sec 1 

95ºC 10sec 
12 55ºC 30sec 

72ºC 60sec 
72ºC 5min 1 

10ºC hold  
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I I .1.1.6  I l lumina High- throughput Sequencing 

Pooled samples were sequenced on an Illumina HiSeq 2500 instrument, using paired-end 100-base 

pair reads.   

 

I I .1.2  Computat ional  analyses 

I I .1.2.1  Processing and qual i ty  contro l  of  s ingle -cel l  mRNA-seq data 

Reads were mapped to the Mus musculus genome (Ensembl version 38.75) concatenated with the 

ERCC sequences, using GSNAP (version 2014-05-15_v2, [103]) with default parameters. The read 

counts for each gene were determined using HTseq (version 2.6.0, [104]), and TPM calculated. Only 

genes expressed with 5 or more TPM in at least 5 cells across all datasets were kept. As cell quality 

control measures, cells with fewer than 1000 genes, fewer than 500,000 reads mapping to exons or 

with more than 20% reads mapped to mitochondrial genes were excluded from further analyses. 

Cyclone package [105] was used to determine the cell cycle phase of each cell. scLVM package [106] 

was run for all datasets, and the corrected matrices were used for the datasets showing relevant 

number of cycling cells, i.e. Sansom et al. and Brennecke et al. datasets [28,107]. For the in-house 

dataset, which presented a very limited number of cycling cells, I chose not to use scLVM as it 

introduced additional confounding factors to the analysis: the effect of cell size (number of genes 

detected) was spread across multiple PC1s (Figure 12A), while it exhibited strong negative correlation 

with PC1 in the original matrix (Spearman correlation -0.92). Nevertheless, cell consensus clustering 

(see below) was also performed with the corrected matrix to confirm that the three clusters were not 

affected by cell cycle.  

  

I I .1.2.2  Dif ferent ia l  expression 

For DE analysis, two linear models were fit to the expression levels of each gene separately: a full 

model containing the information for each mTEC subpopulation and a reduced model only including 

an intercept term. These were then compared by a likelihood-ratio test, and p-values were adjusted to 

account for the false discovery rate associated to multiple testing. 
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I I .1.2.3  Consensus Cluster ing 

For cell clustering, the genes contributing the most to PC2 and PC3 in the main dataset PCA were 

used (|gene loading|>0.02). For each dataset, clusters were determined using the 

ConsensusClusterPlus package [108] with 70% cell and gene resampling, in 2000 resampling events. 

Although up to 6 clusters were explored per dataset, 3 clusters was the most stable option in all 

cases. 

 

I I .1.2.4  Genomic c luster ing 

A nearest-neighbour method was used to assess genomic clustering of expressed TRAs. First, a set of 

genes with a similar distance distribution for each TRA subset was determined, minimizing the 

Kullback-Leibler (KL) divergence between them in an iterative manner. The residual divergence 

between these distributions (KLgen) will later be taken into account. Then, for each cell, the distance 

between each expressed TRA gene and its closest expressed TRA was calculated. In parallel, a similar 

number of expressed control genes were sampled and their distances to the nearest expressed 

neighbour control gene were measured. This sampling step was repeated a thousand times per cell 

and these distances were used as background. To compare the mean distance in both distributions 

the Mann-Whitney-Wilcoxon test was used, and to quantify how similar the distributions were, I 

calculated their KL divergence and subtracted KLgen. This analysis was conducted per mTEC sub-

population and for each TRA subset, i.e. Aire-dependent, Aire-enhanced and Aire-unaffected TRAs. 

 

 

I I .1.2.5  Monocle  

The Monocle algorithm was originally described in [79]. A new release (Monocle2), with improved 

algorithms was used. In brief, the algorithm estimates for each cell a degree of differentiation based 

on the expression of a defined set of marker genes. The analysis was performed using the normalized 

data (TPM) and all genes expressed. The direction of pseudo-time was inferred from expression 

patterns of known markers of jTECs and mTECs.  
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I I .1.2.6  Binding mot i f  enr ichment analys is 

 

Binding motif enrichment analysis was performed on the genes, which are correlated with PC2 or PC3 

in Figure 17A. Genes which have loadings greater than 0.02 on PC2 or PC3 were selected and input 

to the gprofile function in the R package gProfileR [109], using its default settings.  The function 

gprofile outputs the enriched TF families and corresponding target genes from the input gene set. For 

each pair of TF and target gene, Spearman correlation and Jaccard Index were calculated. The 

Jaccard Index was calculated based on binarized gene expression levels. Network visualisation was 

created using TF-target pairs with Spearman correlation |r| > 0.3 (p-value < 0.005) and Jaccard 

Index j > 0.3.  
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I I .2  scTreg of  Treg populat ions6 

I I .2.1  Exper imental  procedures 

I I .2.1.1  Mice 

All mice were maintained under specific pathogen-free conditions at the Wellcome Trust Genome 

Campus Research Support Facility (Cambridge, UK) and at the Kennedy Institute for Rheumatology 

(Oxford, UK). All procedures were in accordance with the Animals Scientific Procedures Act 1986. For 

steady-state experiments, the Foxp3-GFP-KI mouse reporter line [110] was used. The melanoma 

challenge was performed in Foxp3-IRES-GFP knock-in reporter mice [111] purchased from The 

Jackson Laboratory (stock no. 006772). In both cases, 6-14 week-old females were used. 

 

I I .2.1.2  Human samples 

Human skin and blood samples were obtained from patients undergoing breast reduction plastic 

surgeries (REC approval number: 08/H0906/95+5). 

Surgical-resection specimens were obtained from patients attending the John Radcliffe Hospital 

Gastroenterology Unit (Oxford, UK). These specimens were obtained from normal regions of bowel 

adjacent to resected colorectal tumours from patients undergoing surgery. Informed, written consent 

was obtained from all donors. Human experimental protocols were approved by the NHS Research 

Ethics System (Reference number:11/YH/0020).  

 

I I .2.1.3  Iso lat ion of  murine leukocytes for steady-state skin dataset 

To isolate leukocytes from ear tissue, ears were removed at the base, split into halves and cut into 

very small pieces. Tissue was digested in 3.5ml RPMI media with 0.1% BSA, 15mM Hepes, 1mg/ml 

collagenase D (Roche) and 450µg/ml Liberase TL (Roche) for 60 minutes at 37°C in a shaking 

incubator at 200rpm. Digested tissue was passed through a 18G needle to further disrupt the tissue 

and release cells. Cells were passed through a 70µm cell strainer, and the digestion was terminated 

by addition of ice-cold RPMI containing 0.1%BSA and 5mM EDTA. A three-layer (30/40/70%) Percoll 

                                                
 

6 Parts of this section were adapted from [172]. 
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density-gradient was used to enrich for the lymphocytes. Cells obtained from the digestion were 

layered in the 30% layer on top of the 40% and 70% layers, and centrifuged for 20 minutes at 

1800rpm without brake. Cells at the 40/70% interface were collected for the subsequent analysis. 

Cell suspensions from spleen and bLN were prepared as described previously  [112]. 

 

I I .2.1.4  Iso lat ion of  murine leukocytes for steady-state colon dataset 

Colons were washed twice in RPMI media with 0.1%BSA and 5mM EDTA in a shaking incubator at 

200rpm at 37°C to remove epithelial cells. The tissue was then digested for an hour in the presence 

of RPMI/10%FCS/15mM Hepes with 100U/ml collagenase VIII. Digestion was terminated by addition 

of ice-cold RPMI/10% FCS/5mM EDTA. A three-layer (30/40/70%) Percoll density-gradient was used 

to enrich for the lymphocytes. Cells obtained from the digestion were layered in the 30% layer on top 

of the 40% and 70% layers, and centrifuged for 20 minutes at 1800rpm without brake. Cells at the 

40/70% interface were collected for the subsequent analysis. Cell suspensions from spleen and mLN 

were prepared as described previously [112]. 

 

 

I I .2.1.5  Melanoma induct ion and cel l  iso lat ion    

The melanoma induction experiments were performed in accordance with UK Home Office regulations 

under Project License PPL 80/2574. Protocol used was adapted from a previous publication [113]. 

For syngeneic tumours, 2.5 × 105 B16.F10 melanoma cells were inoculated subcutaneously into the 

shoulder region 6- to 14-week-old female Foxp3-IRES-GFP mice [111]. Animals were excluded only if 

tumours failed to form or if health concerns were reported. Control Foxp3-IRES-GFP mice were 

injected with 50 µl PBS. Tumour size was monitored with calipers and the volume was calculated 

based on the ellipsoid formula π/6 × (length × width2). Animals were culled after 11 days. Tumour 

tissue, tumour-draining (brachial) lymph nodes and spleen were isolated for subsequent analysis. 

PBS-injected skin, draining lymph nodes (bLN) and spleen were collected from control mice, as well 

as steady-state skin from the lumbar region along with its draining (inguinal) lymph node (iLN). 

Tumour and PBS-injected skin were mechanically disrupted and digested in a 1ml mixture of 1 mg/ml 

collagenase A (Roche) and 0.4 mg/ml DNase I (Roche) in PBS (solution A) at 37°C for 1h with 

600rpm rotation. 1ml of PBS containing 1mg/ml Collagenase D (Roche) and 0.4 mg/ml DNase I 

(solution B) was then added to each sample, which returned to 37 °C for 1h with 600 rpm rotation. 
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Lymph nodes were digested for 30min in 500µl of solution A, and for further 30min after the addition 

of 500µl of solution B. EDTA at the final concentration of 10mM was added to all samples. Spleens 

were processed as described previously [112]. Suspensions were passed through a 70µm mesh 

before immunostaining with combinations of fluorescently conjugated antibodies (Table 6). Samples 

from different animals were kept separated throughout processing and sorting. Cells from iLN and 

lumbar-region skin were later compared to bLN and PBS-injected skin cells, respectively, and shown 

to be identical (Figure 37E, F). 

 

I I .2.1.6  Iso lat ion of  leukocytes from Human skin   

Plastic surgery skin included reticular dermis to the depth of the fat layer.  The upper 200 microns of 

skin were harvested using a split skin graft knife.  Whole skin was digested in RF10 with 1.6mg/ml 

type IV collagenase for 12-16 hours at 37°C and 5% CO2.  Digest was passed repeatedly through a 

10ml pipette until no visible material remained. To yield a single cell suspension, digest was passed 

through a 100-micron filter into a polypropylene sorting tube. Wells were washed twice using cold sort 

buffer without calcium or magnesium to collect residual and adherent cells. 

 

I I .2.1.7  Iso lat ion of  leukocytes from Human colon 

Normal regions of bowel adjacent to resected colorectal tumours were prepared as previously 

described, with minor modifications [114,110]. In brief, mucosa was dissected and washed in 1mM 

dithiothreitol (DTT) solution for 15 min at room temperature to remove mucus. Specimens were then 

washed three times in 0.75mM EDTA to deplete epithelial crypts and were digested for 2h in 

0.1mg/ml collagenase A solution (Roche, UK). For enrichment of mononuclear cells, digests were 

centrifuged for 30 min at 500g in a four-layer Percoll gradient and collected at the 40%/60% interface. 

 
  

 

I I .2.1.8  Peripheral  b lood mononuclear cel l  iso lat ion 

10ml blood from skin donors were collected into EDTA. Density centrifugation with Lymphoprep was 

performed according to manufacturer instructions. Recovered cells were cryopreserved by pelleting 

and resuspending in 1ml heat-inactivated fetal calf serum containing 10% DMSO, and storing at -80ºC.  
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Cryovials were later thawed in water bath, then rapidly being transferred to warmed medium (RPMI 

1640 with 100IU/ml penicillin, 10ug/ml streptomycin, 2mM L-glutamine, 10% heat-inactivated fetal 

calf serum) and filtered through a 100-micron filter. 

 

I I .2.1.9  Flow cytometry and s ingle -cel l  RNA sequencing 

Mouse and human cell suspensions were stained with the antibodies in Table 6 and DAPI. Single-cells 

were sorted in 2µl of Lysis Buffer (1:20 solution of RNase Inhibitor (Clontech, cat. no. 2313A) in 0.2% 

v/v Triton X-100 (Sigma-Aldrich, cat. no. T9284)) in 96 well plates, spun down and immediately 

frozen at -80 degrees.  

 
Table 6 - Antibody panels used for flow cytometry. 

Species Marker Fluorochrome Manufacturer Cat no. 
Mouse CD8a APC-Cy7 BioLegend 100714 

Mouse CD19 APC-Cy7 BioLegend 115530 

Mouse CD11b APC-Cy7 BioLegend 101226 

Mouse TCRb AF647 BioLegend 109218 

Mouse CD4 BV510 BioLegend 100553 

Mouse CD44 BV421 BD Biosciences 563970 

Mouse CD62L AF700 BioLegend 104426 

Mouse ST2 
Biotin (streptavidin-

PeCy7) 
mdBioproducts 101001B 

Human CD45 APCCy7 BD Biosciences 557833 

Human CD3 FITC BD Biosciences 345763 

Human CD4 AF700 BD Biosciences 557922 

Human CD8 PERCPCy5.5 BioLegend 300924 

Human CD25 PE BioLegend 302606 

Human CD127 BV421 BioLegend 351309 

Human CCR7 PECy7 BioLegend 353226 

Human CD45RA BV510 BD 563031 

 

 

Smart-seq2 protocol [54] was largely followed to obtain mRNA libraries from single-cells. Oligo-dT 

primer, dNTPs (ThermoFisher, cat. no. 10319879) and ERCC RNA Spike-In Mix (1:50,000,000 final 

dilution, Ambion, cat. no. 4456740) were then added. Reverse Transcription and PCR were performed 

as previously published [54], using 50U of SMARTScribe™ Reverse Transcriptase (Clontech, cat. no. 

639538). The cDNA libraries for sequencing were prepared either using Nextera XT DNA Sample 

Preparation Kit (section II.1.1.5), manually or with Hamilton 384 head robot (Hamilton Robotics). 

Libraries from single cells were pooled and purified using AMPure XP beads (Beckman Coulter).  
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Pooled samples were sequenced aiming at an average depth of 1Million reads/cell, on an Illumina 

HiSeq 2500 (paired-end 100-bp reads) or Illumina HiSeq 2000 v4 chemistry (paired-end 75-bp 

reads).  

 

I I .2.2  Computat ional  analyses 

I I .2.2.1  RNA expression quant i f icat ion 

Gene expression from scRNA-seq data was quantified in Transcripts Per Million (TPM) using Salmon 

v0.6.0 [115], with the parameters --fldMax 150000000 --fldMean 350 --fldSD 250 --numBootstraps 

100 --biasCorrect --allowOrphans --useVBOpt. For mouse, the cDNA sequences used contain genes 

from GRCm38 and sequences from RepBase, as well as ERCC sequences and an EGFP sequence. 

Since the EGFP RNA is transcribed together with Foxp3, TPM from these two genes were added after 

quantification to represent Foxp3 expression. For human data quantification, cDNA sequences from 

GRCh38 and ERCC were used. 

 

I I .2.2.2  scRNA-seq qual i ty  contro l  

After expression quantification, TPM values for each cell were grouped in an expression matrix. ERCC 

expression levels were separated and TPM were rescaled to total 1 million per cell. Cells were then 

filtered based on different quality parameters calculated for each dataset (Figure 24, Table 7) 

Additionally, the output of TraCeR [68] was used to remove cells without a detected TCR sequence, as 

well as iNKT and γδ-T cells (defined as cells with at least one γ and one δ chain detected and no αβ 

pair). Two mouse steady-state skin Treg from the Mouse Melanoma dataset were also removed from 

posterior analysis because, even though they had reconstructed TCR and expression of expected T cell 

genes, they also presented transcripts expected to appear in other cell types, possibly keratinocytes or 

Langerhans cells [116,117] (Figure 25D).  
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Table 7 - Quality control criteria for filtering single cell transcriptomes in each dataset, and parameters 
for their visualization in tSNE (last two columns). Cells were kept if they passed all these filters. 

 
Mouse 
Colon 

Mouse 
Skin 

Mouse 
Melanoma 

Human 
Skin and 

Colon 

Maximum mitochondr ia l   

reads (%)  
25 20 20 20 

Max imum ERCC-der ived  

reads (%)  
30 40 40 60 

Max imum unmapped  

reads (%)  
40 35 40 60 

Min imum number o f   

detected genes (#)  
1000 1000 1000 1500 

Min imum number o f   

mapped reads (#)  
200000 200000 50000 150000 

Conta ins TCR reads 

detected by TraCeR? 
Y Y Y Y 

Number o f  PCs used as 

input  for  tSNE 
20 20 20 50 

tSNE perp lex i ty  30 30 35 35 

 

 

I I .2.2.3  Dimensional i ty  reduct ion methods 

To obtain an overview of the datasets showing the relationships between cell population clusters, 

Principal Component Analysis (PCA, Figure 25A,B) and tSNE were used. tSNE was performed using 

the Rtsne R package, with the function Rtsne that uses the Barnes-Hutt implementation of the 

algorithm. For each dataset, a different number of Principal Components (PCs) and values for 

perplexity were used (Table 7). Datasets were treated separately as much as possible to avoid 

confounding batch effects from experiments performed separately. 

 

 

I I .2.2.4  Cel l  cycle analys is 

To assess potential effects of cell cycle in the interpretation of the scRNA-seq datasets collected, 

Cyclone [105] (implemented in the scran R package) was used on all datasets. Results were projected 
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on the tSNE (Supplementary Figure 1). As the vast majority of cells was assigned to the default stage 

(G0/G1 in mouse, S in human), no cell cycle correction was performed. 

 

I I .2.2.5  Dif ferent ia l  expression analys is 

Two linear models were fitted using the lm function from the base R package to the expression of 

each gene: a full model containing the information for each population under study (e.g. NLT vs non-

NLT, Treg vs Tmem, etc.), and a reduced model only including an intercept term. These were then 

compared using a likelihood-ratio test (lmtest R package), and a q-value was calculated to correct for 

multiple testing. For all tests between tissues, genes with a q-value≤0.01 and a log2(fold-change)≥1 

were considered differentially expressed. For tests between cell types within a tissue, a q-value 

threshold of 0.05 was used. 

 

I I .2.2.6  Dif ferent ia l  co-expression analys is 

Cell identity is defined not only by expression of specific genes, but also interactions between them. To 

assess which interactions define Treg and Tmem identity in NLTs or Treg identity between NLTs, the 

DGCA package [118] was used, which relies on the Fisher z-score transformation of the Spearman 

correlation values to perform a  differential correlation test on gene pairs. For these tests, only genes 

identified as NLT markers and expressed in more than 5 cells in both conditions tested were used. 

Only differentially correlating genes where at least one population had a correlation coefficient greater 

than 0.25 (meaning co-expression of the gene pair in the tested condition) were kept. 

 

I I .2.2.7  Obtaining a migrat ion latent var iable for steady -state Tregs 

The large dimensionality of single-cell RNA-seq data has been used before to gain insights on time-

dependent events [79,80] by applying methods for pseudotime inference. Although it is impossible to 

follow one cell through the complete process, these methods can order single-cell data into a 

continuous dimension, using the discrete samples as snapshots containing a multitude of 

intermediate states. 

Immune cells are expected to migrate via blood or lymph. I assumed that this effect would be 

reflected as a gradual single-cell expression phenotype, which could be captured as a latent variable of 

the data. To achieve this, I used Bayesian Gaussian Process Latent Variable Modelling (BGPLVM) 
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[119], implemented in the python package GPy (https://github.com/SheffieldML/GPy) as 

“GPy.models.BayesianGPLVM”, which was already used before for dimensionality reduction in scRNA-

seq data to model Th1-Tfh differentiation [80]. BGPLVM was used asking for 6 latent variables, and 

the two most significant by Automatic Relevance Determination (ARD, Figure 32) were plotted. Spleen 

cells were excluded from this analysis to avoid making assumptions about the migration direction 

between the three tissues, and focus on general LN to NLT trafficking. This analysis was performed 

separately in Treg and Tmem, to avoid a cell type-specific confounding effect (Figure 31A,D, Figure 

34). Indeed, while skin Tmems appear to have latent effects similar to those present in Treg (Figure 

34F), the same can not be said for Tmems from the mouse colon dataset, where only a division by 

tissue can be observed (Figure 34). Gene correlations with colon LV1 and skin LV0 are correlated 

(Figure 32C), and a high proportion of those genes are associated with NLT identity (Figure 32D). The 

effect from these LVs is also present in each tissue individually, unlike what is observed for colon LV0 

or skin LV1 (Figure 33). Thus, colon LV1 and skin LV0 were identified as representing tissue 

adaptation in each dataset. 

 

I I .2.2.8  Ident i fy ing a common t issue migrat ion tra jectory in contro l  and 

melanoma 

Similarly to the steady state, migration from the LN to the skin with a melanoma challenge is also 

expected. A common between-tissue Treg migration trajectory in control and melanoma conditions 

was obtained using Manifold Relevance Determination [120] (MRD). MRD works by having an 

underlying BGPLVM model whose dimensions can be shared or private between sections of the data.  

The importance of each section in each latent variable is shown in the ARD plot (Figure 39). Having 

the prior knowledge that a cell cycle effect is present in the data (Supplementary Figure 1) and with 

the goal of obtaining a latent variable explaining tissue recruitment in both conditions, the melanoma 

dataset was divided into three sections for input: one with the expression in all cell cycle associated 

genes, one with marker genes for any tissue, and one with the remaining genes. The model was run 

allowing for 12 latent variables as output, and the one highly influenced by tissue-specific genes but 

not cell cycle or other genes was used as a migration trajectory for both conditions. The effects 

captured by these latent variables can be observed in BGPLVM projections for the individual 

conditions (Figure 40A-D), and the latent variable with the largest tissue identity is also the most 

correlated to the LV used in the skin steady-state (Figure 40E). However, the cell cycle associated 
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latent variable also includes tissue-related effects, which can be explained by the expansion of Treg 

just before leaving the LN and upon arriving in the skin. 

 

I I .2.2.9  Switch- l ike genes in the migrat ion latent var iable 

Gene expression changes in a continuous trajectory can be interpreted as a series of switch-like 

events. These can be modeled using a sigmoid curve, described by the following equation: 

 

! = 2×!0
1+ !−!(!−!0) 

 

where !!is the mean expression between the sigmoid “on” and “off” states, !! is the point in which 

the switch in expression happens, and !defines the sigmoid inclination and can be interpreted as the 

activation strength. Parameter ! will additionally inform on the direction of the switch (activation or 

inhibition) from its signal. 

The R package switchde [87] was used to model gene expression as a sigmoid in the inferred 

migration trajectories, using the appropriate latent variable as pseudotime. In the steady-state 

datasets, switchde was applied for genes detected as Treg markers in either dataset (Treg vs Tmem 

differential expression regardless of tissue), tissue markers for each tissue in each dataset, or genes 

with an absolute correlation greater than 0.25 with the latent variable chosen. For the melanoma 

dataset, genes expressed in at least 5 cells in both conditions were tested. Only genes with a q-

value≤0.05 and that had a !!within the LV range were kept for further interpretation. 

 

 

I I .2.2.10  Detect ion of  expanded clonotypes 

T cell receptor (TCR) sequences were reconstructed from single cell RNA-seq data and used to infer 

clonality using the TraCeR software tool [68]. TraCeR was used with the parameters -- loci A B D G, --

max_junc_len 120 to allow reconstruction of TCRα, TCRβ, TCR∂ and TCRγ chains in each cell and to 

permit TCRγ chains with long CDR3 regions.   
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I I .2.2.11  GO Term enr ichment 

To test for enriched GO Biological Processes or KEGG Pathways in gene sets, the gprofiler R package 

[121] was used, with the option of moderate hierarchical filtering enabled. 

 

I I .2.2.12  Cluster ing analys is 

To search for subpopulations in the NLT obtained Treg and Tmem cells, consensus clustering 

algorithm implemented in the SC3 R package [122] was used. I looked for 2 to 4 clusters to be able 

to exclude cases where small spurious subpopulations are identified. For each tissue/cell 

combination, I chose to compare the largest subpopulations detected that also were the farthest apart 

in tSNE space. Differential expression between clusters was performed on all expressed genes in 

them. 
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CHAPTER I I I  -  Single -ce l l  RNA-seq resolves se l f -ant igen 

express ion dur ing mTEC development7 

I I I .1  Abstract  

The crucial ability of T cells for discrimination between self and non-self peptides is based on negative 

selection of developing thymocytes by medullary thymic epithelial cells (mTECs). mTECs purge 

autoreactive T cells by expression of cell type specific genes referred to as tissue-restricted antigens 

(TRAs). Here, scRNA-seq approaches were used to look into the mTEC cell population 

(PI−CD45−EpCAM+Ly51−UEA-1+), dissect their development and determine trends of TRA expression. 

Three subpopulations of cells were found computationally within the general mTEC population: jTEC, 

the recently described mTEC progenitors, mTEChi, characterized by strong Aire expression and 

considered the apex of mTEC function, and mTEClo, a later stage characterized by declining Aire 

expression. Gene expression differences between these groups were determined and suggest that 

interactions between mTEC and T cells might change during mTEC development. A gene regulatory 

network based on TF-binding sites and gene-to-gene correlation values is put forward, highlighting 

known and novel TFs and respective targets in mTEC development (IRF and NF-κB families, Notch-

related Hes1 and Zbtb7a, Vdr, Plagl1, Zbtb7a, Hnf4g). TRA expression patterns were then compared 

between subpopulations. No major differences in coverage of TRAs was observed, suggesting that all 

mTEC subpopulations seem able to express them, despite doing so with less efficiency in early stages. 

It is also shown that Aire-dependent TRA expression in genomic clusters is only switched on during 

jTEC-mTEC transition. Finally, it was shown that after Aire expression peaks, i.e. in mTEClo, the 

number of TRAs expressed per cell still increases.  

Taken together, this chapter characterizes mTEC development, specifically the mTEClo stage, 

supporting the “terminal differentiation model” according to which individual mTECs express more 

TRAs all the way through their development. Simultaneously, it also contradicts the widely spread 

notion that Aire downregulation impairs TRA expression. 

  

                                                
 

7 Parts of this section, including figures, were adapted from [170]. 
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I I I .2  Resul ts  

I I I .2.1  Single -cel l  mRNA sequencing of  mTEC ident i f ies g lobal  

character ist ics of  TRA expression 

To resolve the heterogeneity of the mTEC population, and to dissect the patterns of TRA expression, 

transcriptomes of murine mTECs (PI−CD45−EpCAM+Ly51−UEA-1+) at the single-cell level were 

sequenced and analyzed (Figure 7A, Figure 8). By using SMARTer chemistry (Clontech) on the C1 

autoprep system (Fluidigm), cDNA libraries from 216 cells were obtained and sequenced, 164 of 

which met quality control criteria (Figure 7B, Figure 9A) and were kept for downstream analysis. 

 

 
Figure 7 - Experimental workflow and expression of tissue-restricted antigens on population level.  

A) Experimental workflow: mTECs in single-cell suspension were sorted to be run in Fluidigm C1 system.  
B) Quality control of scRNA-seq for all 3 batches of cells processed with the Fluidigm C1 system based on number of 
genes detected, percentage of mitochondrial reads and number of mapped reads. Each batch corresponds to a different 
colour, and the age of the mice used match the shapes. 
C) Number of expressed genes vs number of expressed TRAs in each cell.  
D)   Number of expressed genes as a function of the number of mTECs considered. Each point was calculated based on 
the average of 100 random orders of the 692 cells of all datasets analysed.   
E)   Comparing genes from different categories in terms of expression frequency and mean expression level across all 
cells.  
*** p-value<0.001, ** p-value<0.01, * p-value<0.05, NS – not significant, according to Mann-Whitney-Wilcoxon test, p-
value adjusted using Bonferroni correction. 
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Number of mapped reads, number of detected genes and percentage of reads mapped to 

mitochondrial genes were considered as quality control variables. All of which constitute proxies for 

the technical quality, e.g. lower concentration of cDNA in the final pool of cells, and biological quality, 

e.g. cell death during the harsh process to obtain single-cell suspensions, of the cell being analyzed. 

Batches of cells coming from different experiments and/or C1 machines were compared by 

differential expression analysis, and did not show gene expression biases (Figure 9B). TRA genes, as 

defined by Sansom et al. [107] and excluding genes coding for MHCI proteins, totalled 6611 genes 

expressed in both datasets. On average, TRAs accounted for approximately 10% of all genes 

expressed in a single cell (Figure 7C). In line with previous reports [28,107,123], the repertoires of 

TRAs expressed in single mTECs did not exhibit significant enrichment for any particular peripheral 

tissues (Figure 10). 

 
Figure 8 - Flow cytometry cell sorting strategy for isolation of mTECs. 

mTECs were sorted as PI−CD45−EpCAM+Ly51−UEA-1+ using a MoFlo™ XDP (Beckman Coulter, Inc.). 

  

 



CHAPTER III 

 58 

 
Figure 9 — mTEC scRNA-seq quality control.  

A) Number of mapped reads and genes detected in the C1 dataset. Cells with less than 1000 genes, less than 500,000 
mapped reads or more than 20% of mitochondrial reads were excluded (gray symbols). 
B) Differential expression between different batches within the C1 dataset.   
C) QC metrics for all datasets used. Same thresholds were used across all datasets. 

 

Integrating publicly available datasets with my data, it is apparent that the majority of protein coding 

genes, including TRAs, are covered in a couple of hundreds of mTECs (Figure 7D), also supporting 

previous observations [8,28]. Further interactions of thymocytes with additional mTECs would 

therefore result in minimal increase in the variety of TRAs they are exposed to.  

To achieve greater resolution, TRAs were then divided into subsets of genes, of which expression is 

either completely dependent on Aire (Aire-dependent), enhanced by it (Aire-enhanced), or unchanged 

in its absence (Aire-unaffected) according to previous data in Aire-deficient mice [107]. Analyzing the 

expression frequency and expression level separately for the genes of each of these subsets evidences 

Aire-dependent genes as a notably distinct group, with significantly lower expression frequency and 

higher mean expression level than genes in the other subsets (Figure 7E), as previously reported  

[107,124,123]. Despite the differences between subsets of Aire genes, it is worth noticing that all of 

them were expressed on average at equal or higher levels than all other genes in mTECs. This 
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indicates that Aire genes of all subsets, especially Aire-dependent, are actively expressed and not 

merely products of passive and/or residual level expression. The behaviour of TRAs controlled by the 

recently discovered Fezf2 regulator [26] was then evaluated (Figure 11). In contrast to Aire-induced 

TRAs, Fezf2-induced TRAs were expressed as frequently as normal genes (“non-TRA”), although their 

expression level was higher, similarly to Aire TRAs (Figure 11). Such differences are likely to stem 

from the different mechanisms of gene activation by these two transcription factors.  

 

 
Figure 10 - Correlation between individual mTECs and tissues. 

Correlations between individual mTECs and microarray data from multiple tissues 56 were measured and clustered. All 
expressed genes were used in the calculations. Colour bar denotes cell size, as estimated by number of detected genes.  
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Figure 11 - Expression of Fezf2-regulated TRAs at the single-cell level.  

Comparing TRAs from different Fezf2 categories in terms of expression frequency and mean expression level across all 
cells.  
*** p-value<0.001, ** p-value<0.01, * p-value<0.05, NS – not significant, according to Mann-Whitney-Wilcoxon test, p-
value adjusted using Bonferroni correction. 

 

 

I I I .2.2  scRNA-seq resolves three major subpopulat ions a long mTEC 

di f ferant iat ion 

Principal component analysis (PCA) was performed to explore the subpopulation structure within 

mTECs.  It was noticed that a great source of variability came from cell size (number of detected 

genes), which correlated strongly with the most important PC1 (Spearman rho 0.92, Figure 12A). The 

analysis was thus focused on the next two PCs, markedly less affected by this variable (Figure 12A-C). 

Importantly, cells that were isolated from different mice and processed on different C1 integrated 

fluidic circuits were dispersed among each other, suggesting that batch effects did not contribute 

significantly to the overall heterogeneity (Figure 12B). In addition to cell size and batch, single-cell 

RNA-seq data can be profoundly affected with variation associated with cell cycle. To assess how 

much the data was biased by cell cycle, the Cyclone package was used to assign single cells into cell 

cycle phases [105] (Figure 12D). All but six mTECs were in G1/G0 phase, suggesting relatively 

modest cell cycle effects over gene expression in this population.  
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Figure 12 - Principal Component Analysis of C1 dataset.  

A) Correlation between the first three PCs and the number of detected genes per cell, either in uncorrected (top) or scLVM 
corrected data (bottom).  
B) Distribution of the three C1 batches along Principal Component 2 (PC2) and PC3. 
C) Proportion of variance (%) for the first 20 PCs. PC2 and PC3 seem to contain most biological variance.  
D) Cell cycle classification of single-cells (G1/G0, G2M, S) as determined by the Cyclone package. 
E) Correlation between PC1 and PC2 in scLVM corrected data and PC1, PC2, PC3 in the uncorrected data. 
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Nonetheless, this possibility was investigated further by running scLVM package to evaluate and 

regress out any cell cycle related biases. Performing PCA on the scLVM-corrected data, it was 

observed that PC1, PC2 and PC3 all correlated with the cell size to some extent (Figure 12A, bottom), 

in contrast with the uncorrected data where cell size appears limited to PC1 (Figure 12A, top). 

Simultaneously, scLVM-corrected PC1 was highly correlated with the original PC2 and scLVM-

corrected PC2 with the original PC3 (Figure 12E). Therefore, on this particular case in which cell cycle 

effect is minimal, technical effects could be more easily deconvoluted from biological variability simply 

by focusing on higher components on the uncorrected dataset. For the publicly available datasets in 

which cell cycle seemed to have a stronger effect, scLVM correction was adopted. 

For the main dataset, PC2 scores of single cells were correlated with the expression of several 

established markers of thymic development, such as Cldn3&4, Pdpn and Cd80 [32,35,125] (Figure 

13A). On the other hand, among the top PC3 loadings were Aire, Cd40, Icosl and other genes 

associated with the mature mTEC phenotype. This further suggested that the variability associated 

with mTEC development was primarily distributed along these two components. Using the expression 

data from top PC2 and PC3 genes (loadings above 0.02 and below -0.02), a consensus clustering 

approach was used to assign single cells to three distinct sub-populations (Figure 13B and Methods). 

Only approximately 20% of these top genes are TRAs, which suggests that TRA expression patterns do 

not explain the three sub-populations found. Cell size also does not seem to influence this 

classification of mTECs (Figure 14A). 
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Figure 13 - Analyses of mTEC subpopulation structure.  

A) Principal Component Analysis (PCA) of mTECs using all genes. Batches match colour and age of mice matches shapes 
(left). The PC2 and PC3 loadings of key genes of interest are highlighted (right). 
B)  Hierarchical clustering of 164 transcriptomes of single-cells, based on the top positively and inversely correlated genes 
with PC2 and PC3. Three clusters of cells were identified (jTEC, mTEChi and mTEClo). Cell cluster, mice age and batch 
are depicted. 
C)  Expression of selected marker genes in the jTEC, mTEChi, and mTEClo populations.  
*** p-value<0.001, ** p-value<0.01, * p-value<0.05, NS – not significant, according to Mann-Whitney-Wilcoxon test, p-
value adjusted using Bonferroni correction. 
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D) Ordering of single cells in pseudotime by degree of maturation using the Monocle2 algorithm. Data points represent 
single cells, colours denoting cell clusters (B). 
E)  Distribution of single cells of each cluster (B) along pseudotime. 

 

 

An initial inspection of established marker genes painted a general picture of the identity of these 

subpopulations: the first of these clusters was characterized by the expression of Pdpn, a marker of a 

recently identified population of junctional TEC precursors (jTEC), which gives rise to fully 

differentiated mTEC [32]; the different levels of Aire expression between the second and third clusters 

led me to classify them as Aire-high mTEC (mTEChi) and Aire-low mTEC (mTEClo). The cells of the 

mTEClo population, although resembling a post-Aire state for their lower expression of Aire and higher 

expression of Keratin 10 (Krt10) [33,34], expressed similar levels of Cd80 and HLA (class II) genes as 

the mTEChi cells (Figure 13C). Statistically significant differences for other proposed markers of mTEC 

stages (i.e., Gp2, Gad1, Ceacam1, Tspan8) [28,36] were not observed, although Gad1 and Tspan8 

tend to characterize mTEChi and mTEClo, respectively (Figure 14B), which is in line with previous 

reports [36].  

 
Figure 14 - Subpopulation comparisons for in-house C1 dataset. 

A) Number of genes detected per subpopulation C1 dataset. 
B) Expression of selected marker genes in the jTEC, mTEChi, and mTEClo populations.  
*** p-value<0.001, ** p-value<0.01, * p-value<0.05, NS – not significant, according to Mann-Whitney-Wilcoxon test, p-
value adjusted using Bonferroni correction. 

 

To confirm the robustness of these findings, additional cells using the Smartseq2 protocol were 

sequenced [126]. In addition, two recently published single-cell datasets [28,107], were included and 

processed using the same pipeline and QC parameters used for the original dataset (Figure 9C). 
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Importantly, cell clustering and expression of marker genes remained largely consistent across these 

datasets (Figure 15 and Figure 16).  

 
Figure 15 - PCA and consensus clustering on publicly available and in-house Smartseq2 mTEC datasets. 

Consensus clustering (top) and PCA of Sansom et al, Brennecke et al and in-house Smartseq2 datasets (middle), coloured 
by cell clusters as determined by hierarchical clustering. Sansom et al and Brennecke et al datasets were subject to scLVM 
correction (see text). PCA coloured by cell cycle, as determined by the Cyclone package (bottom). 
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Figure 16 - Differential expression of genes across mTEC subpopulations in publicly available and in-house 
Smartseq2 mTEC datasets.  

*** p-value<0.001, ** p-value<0.01, * p-value<0.05, NS – not significant, according to Mann-Whitney-Wilcoxon test, p-
value adjusted using Bonferroni correction. 
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To further investigate this differentiation process, Monocle2 [79] was used to infer pseudotime, 

representing a measure of cells progression along the differentiation trajectory. jTEC positioned 

towards the beginning of the pseudotime, followed by mTEChi and ending with mTEClo cells. mTEChi 

and mTEClo overlapped to some extent, suggesting a close relationship between them (Figure 13D 

and E). In contrast, the clear gap between jTEC and mTEC indicated more profound differences 

between these subpopulations. Notably, no cells from the 2-week old mice fell into the jTEC 

population, potentially resulting from age-associated changes in frequencies of thymic subsets [127]. 

Then, differential expression analysis was performed to systematically identify genes that are specific 

to each subpopulation (Figure 17A). The jTEC state was associated with upregulation of 383 genes 

and downregulation of 63 genes (q-value<0.05, |log2(FC)|>1). In the mTEChi cells, 50 genes were 

upregulated (including Aire) and 90 were downregulated. The mTEClo population was characterised 

by 109 upregulated and 81 downregulated genes.  It is worth mentioning that of the genes 

differentially expressed between the mTEC subpopulations, only 45 encoded for TRAs. Notably, almost 

all of these (43) were Aire-unaffected TRAs. The notable absence of Aire-regulated TRAs among these 

genes is probably explained by their relatively lower expression frequency. Furthermore, some of the 

jTEC-specific TRAs (such as Adm, Cdh3, Krt14 and Krt17) are associated with epithelial development, 

and are thus likely to be required for a specific functional role despite being been considered TRAs. 

Several of the markers now identified seem to be related to particular states of maturation, 

interactions with the surroundings and/or specific functions of each subpopulation. For example, Jag1 

upregulation by mTEChi cells, together with Notch2, Hes1 and Hes6 upregulation in jTECs suggest 

that Notch signalling might be involved in the jTEC to mTEC transition. Based on the expression of 

genes such as Jag1, Cd40 and Icosl in mTEChi 33-35 [128–130], Skint-family genes (Skint7 and 

Skint9) [131], galectins and related genes (Lgals1, Lgals9, Lgals3bp) in jTEC and mTEClo [132,133], 

the way each subpopulation instructs thymocytes is likely to be slightly different, e.g. role of ICOSL in 

the expansion of regulatory T cells (Treg) in humans [130]. From a practical point of view, membrane 

proteins in these sets of marker genes can potentially be used in the future to sort out each 

subpopulation for further studies (e.g. Lypd8 to distinguish mTEChi and mTEClo). 
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Figure 17 - Differential expression of genes across mTEC subpopulations. 

A) Genes differentially expressed (DE) between each cell population and the remaining populations. The significance of this 
DE was calculated using a linear model. q-value < 0.01 and |FC| > 1.  
B) Scaled median expression levels of transcription factors with enriched binding motifs (C) across jTEC, mTEChi and 
mTEClo subpopulations. The TFs were grouped according to TF families, as denoted by the color bar. 
C) Network visualisation of TFs and their putative target genes. Target genes were identified by binding motif analysis using 
gProfileR. The results were further filtered based on co-expression, based on Spearman correlation and Jaccard index. 
Colours of the nodes denote TF families, as shown in (B). Thicker and darker edges represent higher Spearman 
correlation. 
 

I I I .2.3  Binding mot i f  and coexpression analys is h ighl ights potent ia l  

dr ivers of  mTEC maturat ion 

Hierarchical clustering and pseudotime reconstruction revealed three distinct stages during mTECs 

lifetime. Considering the importance of mTEC development for central tolerance, it would be of great 

relevance to pinpoint transcription factors (TFs) involved in this process, as well as their respective 
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target genes. To address this question, the top PC2 and PC3 genes, which were also used for cell 

clustering, were considered. Scanning the genomic regions upstream of these genes (1 kb), I found an 

enrichment of binding-sites for several TFs, most of which were preferentially expressed in one of the 

three mTEC subpopulations (Figure 17B). Top PC2 and PC3 genes possessing a binding-site for a 

given TF were considered as being potentially regulated by it. The gene-to-gene correlation between TF 

and respective target was then calculated for all TF-target pairs. The most significant TF-target 

relationships were filtered using stringent correlation and Jaccard index threshold values. These 

relationships were thus considered to potentially indicate direct regulation of the target by the TF, and 

were visualised as a co-expression network (Figure 17C). In this network, the most prominent TF hubs 

were Egr1 and Jun. Although both are characteristic of jTEC, the program they set in motion is likely 

to also span mTEChi and mTEClo (e.g. Klf4). Ccl21, a key marker of the jTEC subpopulation, was 

identified as a putative target of seven different TFs. Notably, Nfκb and Irf transcription factor families 

were well represented across all three subpopulations: jTEC expressing Irf7 and Irf9, mTEChi 

expressing Irf5 and Nfκb2, and mTEClo expressing Irf5, Rel and Rela. Both classical and non-classical 

NF-κB signaling (through TRAF6 and NIK, respectively) have been proven necessary for the 

development of Aire-positive mTECs [134]. More recently, the Irf family has also been implicated in 

the development of mTECs [10] and shown to contribute to TRA expression along with AIRE [22]. 

Hes1 expression by jTEC and Zbtb7a [135] by mTEClo suggest the involvement of the Notch pathway 

in this progression. Finally, Vdr, Plagl1, Zbtb7a, Hnf4g, most of which have previously been detected 

in mTEC [36,136,137], assume particular relevance as presumptive drivers of the late stages of 

mTEC differentiation. 

 

I I I .2.4  TRA expression dur ing mTEC development 

Having identified three subpopulations of mTECs spanning different stages of maturation, investigating 

TRA expression patterns across them was naturally of great interest. Several models have been put 

forward in efforts to explain how TRA expression is regulated during mTECs lifetime to guarantee a 

comprehensive negative selection of self-reactive thymocytes. Do mTECs progressively express a 

higher number of TRAs as they differentiate (“terminal differentiation model”)? Do they begin with the 

capacity to express significant numbers of TRAs, and then progressively (and independently of other 

mTECs) limit the range of TRAs expressed (“progressive restriction”) [138]? Are certain sets of TRAs 

co-expressed, or in a predefined sequence [28]? 



CHAPTER III 

 70 

With these questions in mind, the extent to which mTEC populations differ in their TRA expression 

coverage was addressed (Figure 18A). Very few genes (in any of the TRA-subsets) were uniquely 

expressed by jTECs, in line with the notion that they are the most immature population. Surprisingly, 

jTECs covered as many as 84% of Aire-unaffected TRAs and the majority (66%) of Aire-enhanced TRAs. 

Nonetheless, the percentage of Aire-unaffected TRAs and Aire-enhanced TRAs shared exclusively 

between mTEChi and mTEClo (11% and 23%, respectively) was larger than between either population 

and jTECs. Aire-dependent TRAs were expressed by jTEC to a lesser extent (46%) than the other TRAs, 

and once again, mTEChi and mTEClo shared 37% exclusively between them and expressed a higher 

percentage of unique genes (14% for mTEChi and 8% for mTEClo) (Figure 18A). Together, these 

observations indicate that the TRA repertoire is largely equivalent between the three maturation 

stages, except for some compartmentalization of Aire-dependent TRAs.  

 

Next, the performance of individual cells within these groups was assessed. To measure their 

competence in driving the negative selection process, the level of expression and the number of TRAs 

expressed by individual cells was measured in jTEC, mTEChi and mTEClo. As expected, mTEChi 

expressed significantly elevated levels of Aire-enhanced and Aire-dependent TRAs (Figure 19A). Then, 

the number of TRAs expressed on a cell-by-cell basis was assessed, normalized by the number of 

detected genes, thus accounting for differences in sequencing efficiency of single cells (Figure 18B). 

jTEC stood out as the least competent subpopulation for each of the TRA subgroups. Surprisingly, 

mTEClo were at the other end of the spectrum, expressing the highest number of TRAs per cell. 

Specifically, mTEClo expressed the highest number of Aire-unaffected TRAs, and a similar number of 

Aire-enhanced and even Aire-dependent TRAs compared to mTEChi (Figure 18B) an equivalent 

number of Aire-enhanced TRAs compared to mTEChi. mTEChi seem to perform slightly better with 

respect to Aire-dependent TRAs, although the advantage over mTEClo is not significant.  
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Figure 18 - Expression of TRAs across mTEC subpopulations. 

A) The detection of TRA genes across jTEC, mTEChi, and mTEClo populations. The numbers indicate the fraction of TRAs 
detected in the respective subset of cells. 
B)  Number of TRA genes expressed in the jTEC, mTEChi, and mTEClo populations. To account for differences in library 
sizes, the number of detected TRA genes were normalised to the number of detected genes per cell. 
*** p-value<0.001, ** p-value<0.01, * p-value<0.05, NS – not significant, according to Mann-Whitney-Wilcoxon test, p-
value adjusted using Bonferroni correction. 
 
 

Genes controlled by Fezf2, a master regulator of TRAs besides Aire [26], were shown to increase 

consistently in number and level of TRA expression along differentiation (Figure 19B). 

In summary, all three subpopulations of mTECs collectively expressed most of the TRA genes. 

However, they did differ in their expression efficiency in terms of level and number of TRAs expressed, 

with mTEChi holding an advantage for Aire-regulated TRAs, as expected. Nevertheless, mTEClo, a 

state that has been classically regarded as a passive step towards mTEC death, showed extreme 

competence at expressing Aire-enhanced and Aire-unaffected TRAs. These observations are largely 

confirmed in other datasets (Figure 20). They are also in line with previous reports [33,34] and 

indicate that mTEClo are active players in negative selection, with TRA expression increasing during 

the entire mTEC lifetime and remaining high after Aire expression declines. 
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Figure 19 - TRA expression sectioned by Aire and Fezf2 dependency and mTEC subpopulations in C1 
dataset. 

A) Comparing TRAs from different Aire categories in terms of expression frequency and mean expression level across all 
cells. 
B) Comparing TRAs from different Fezf2 categories in terms of expression frequency and mean expression level across all 
cells. 
*** p-value<0.001, ** p-value<0.01, * p-value<0.05, NS – not significant, according to Mann-Whitney-Wilcoxon test, p-
value adjusted using Bonferroni correction. 
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Figure 20 - Characterization of publicly available and in-house Smartseq2 mTEC datasets. 

Number of genes detected per mTEC subpopulation in each dataset and number of TRA genes expressed in the jTEC, 
mTEChi, and mTEClo populations, in each dataset. To account for differences in library sizes, the number of detected TRA 
genes were normalised to the number of detected genes per cell. 
*** p-value<0.001, ** p-value<0.01, * p-value<0.05, NS – not significant, according to Mann-Whitney-Wilcoxon test, p-
value adjusted using Bonferroni correction. 

 

I I I .2.5  Expression of  A ire -dependent TRAs is associated with strong 

genomic enr ichment at  s ingle -cel l  level  and is induced dur ing 

jTEC-mTEC transi t ion 

About a decade ago, Aire-regulated genes were shown to be in close linear chromosomal proximity to 

each other, forming genomic microclusters [14,139]. Since then, it became accepted that AIRE’s 

ability to recruit transcription factors to regions of closed chromatin would induce remodelling of such 

segments, thus facilitating the co-expression of neighbouring genes [140]. The discovery that AIRE 

binds super-enhancers [24] supports this idea, providing a model that explains both intra- and 

interchromosomal coexpression patterns of Aire-regulated genes [123]. Although pivotal to understand 

the mechanisms behind TRA expression, genomic clustering of expressed TRAs was never 

investigated at the single-cell level. Single-cell qPCR of mTEC has been reported [24], but it covered a 

very restricted number of TRAs and genomic clustering was not addressed.  
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In this section, several aspects of TRA genomic clustering are addressed at the single-cell level, 

namely how does clustering evolve along mTEC development, how differently are Aire-enhanced and  
 

Figure 21 — Genomic distribution of expressed TRAs across mTEC subpopulations. 

Histograms represent distribution of distance to the nearest neighbour gene for TRA genes. The background histograms 
represent the distribution of distances to the nearest neighbour of randomly sampled expressed genes from a control 
distribution (Methods) in the corresponding cell. 
*** p-value<0.001, ** p-value<0.01, * p-value<0.05, according to Mann-Whitney-Wilcoxon test 

 

Aire-dependent TRAs affected, and whether these principles can be generalized to all TRAs. 

First, the tendency of expressed TRAs to sit closer together along the genome was tested at the single-

cell level. Sub-groups of TRAs based on Aire-regulation were considered separately, as well as the 

three developmental stages identified, jTEC, mTEChi and mTEClo. For each expressed TRA, the base-

pair distance to the nearest expressed TRA was calculated on a cell-by-cell basis. The resulting 

distribution of distances was then compared to a control distribution built to account for the genomic 

location of TRA genes, as well as the generic clustering effect reported for any set of expressed genes 

[14] (see Material and Methods).   
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The mean values for the actual and the background distances (p-value from Mann-Whitney-Wilcoxon 

test) were compared, along with the magnitude of the divergence between these distributions 

(Kullback-Leibler divergence (KL)) (Figure 18C). Although statistically significant, it is clear that 

genomic clustering of Aire-unaffected TRAs is extremely weak for all three subpopulations (KLs ≤ 

0.006). For Aire-enhanced TRAs, the clustering effect does increase (KLs ≤ 0.071), remaining quite 

modest nonetheless particularly for jTECs (KL = 0.048). Aire-dependent TRAs, on the other hand, 

exhibit a distribution of distances indicating strong genomic clustering profile in both mTEChi and 

mTEClo (KL= 2.134 and 2.297, respectively). In turn, for jTECs there is no statistically significant 

difference between the Aire-dependent TRA distance mean and the background, and the divergence 

between these two distributions (KL = 1.862) is lower than mTEChi and mTEClo counterparts. 

For Aire-enhanced TRAs, the majority of observed distances overlap the control, suggesting that for 

most genes the induction of expression mediated by Aire does not rely on the activation of stretches of 

chromatin. Nonetheless, there is a minor proportion of shorter distances hinting that such a 

mechanism might be important for a reduced number of Aire-enhanced TRA genes. Finally, for Aire-

dependent TRA genes, the distribution of real distances is markedly distinct from the control 

background, exhibiting a clear peak of short distances.  

Overall, these results evidence that the genomic clustering tendency affects only a minority of TRA 

genes. They also highlight that such mechanism preferentially affects Aire-dependent genes in 

comparison to Aire-enhanced genes, which might actually explain why and how AIRE affects them 

differently. Finally, this clustering effect seems to be established only during the progression from jTEC 

to mTEC, as both the number of TRAs per cell and genomic clustering of Aire-dependent TRAs were 

very limited in the jTEC population. 
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I I I .3  Discussion 

I I I .3.1  Unbiased analys is resolves mTEC development in adul t  

Here, the analysis that I performed on scRNA-seq data of mTEC cells constitutes, to the best of my 

knowledge, the first attempt to use single-cell transcriptomics to dissect the development of this 

pivotal cell type in central immune tolerance. Although similar scRNA-seq data has been produced 

previously, these studies focused solely on TRA co-expression patterns across mTECs, overlooking 

their development. 

I identify and characterize three distinct stages of mTEC maturation: early mTEC in the cortex-medulla 

junction (jTEC), Aire-expressing mTECs (mTEChi), and mTECs entering the post-Aire stage (mTEClo) 

[32–34]. This dissection is particularly interesting for two main reasons: first, is the first time that 

these populations are analyzed as a whole, i.e. with no bias introduced by sorting strategies, allowing 

the capture of a more representative range of cell states; second, it identifies a post-Aire state that is 

often masked by the sorting strategies used. 

For each of the three stages I provide markers that can potentially reduce the need for transgenic 

mice or intra-cellular staining of AIRE in future studies. While pseudotime analysis indicates that in 

general, mTEChi stage preceded mTEClo, there was some overlap between the two populations. This 

suggested that the transition between these states might not be a tightly programmed event and 

individual cells might undergo it at asynchronous rates. Notably, hierarchical clustering did not clearly 

segregate cells expressing high or low levels of the widely-used maturation markers Cd80 and MHC 

Class II. This might relate to the fact that CD80low mTECs appear to represent a mixed population, 

containing both immature precursor cells and terminally differentiated post-Aire mTECs [23,141].  

I also identify potential new regulators of mTEC development. Besides the expected Nfkb and Irf 

families of genes, the regulatory network inferred for mTEC development (Figure 3C) puts forward a 

few candidate TFs as drivers of this process: Egr1 mainly on jTEC, and Vdr, Plagl1, Zbtb7a, Hnf4g on 

mTEClo. 

Surprisingly, having mTECs from 2 and 4 week-old mice gave some interesting insight into the 

changes happening in the mTEC compartment during the first weeks of development. The fact that 

most mTECs from 2 week-old mice have been classified as mTEChi suggests that jTEC and mTEClo 

are lowly represented so early in the post-natal life. One can hypothesize that fewer mTECs have 

undergone the full development process at this stage, contributing to a low number of mTEClo cells 

being present. jTEC absence can be explained by the fact that the thymus is still undergoing 
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developmental changes at week 2, having a less defined cortex-medulla interface, where jTEC are 

later located. Nonetheless, one has to consider the low number of sorted cells potentially affecting the 

representation of all the three subpopulations. Future experiments using some sort of droplet-based 

microfluidics would be ideal to address these questions. 

 

I I I .3.2  Relevance of  post -A ire states in centra l  to lerance 

Historically, mTEChi, as key expressers of most TRAs and being particularly competent in antigen 

presentation, have been considered the main player in negative selection in the thymus, while pre- 

and post-Aire stages would be of limited relevance. However, my observations indicate that mTEClo, 

and to a more limited extent, jTEC cells, might also contribute to this process. The competence of 

mTEClo in terms of number of TRAs expressed per cell was in fact equal or greater than that of 

mTEChi (Figure 4B), suggesting that mTECs progressively express more TRAs as they mature, even 

after Aire expression declines. Moreover, the expression levels of Fezf2-affected TRAs were 

progressively higher from jTEC, to mTEChi and then to mTEClo (Figure 19B). In parallel, differentially 

expressed genes like Jag1, Cd40, Icosl, Skint-family genes and galectins suggested distinct 

functions/interactions of mTEC subsets during thymocyte development. Overall, these observations 

were in line with previous studies [33,34] inspection of MHCII and individual TRA expression in post-

Aire mTECs, consolidating mTEClo as a key stage in the maintenance of central tolerance. In terms of 

TRA repertoire, even jTEC could cover most of the Aire-unaffected and the Aire-enhanced genes, and 

most TRAs in general (Figure 4A). However, the cell-to-cell ability to express them was significantly 

impaired (Figure 4B), which likely explains the low levels of TRAs detected in previous reports, namely 

for Aire-dependent TRAs [32]. Taken together, these results indicated that while AIRE is important for 

turning on TRA expression during jTEC-mTEC transition, the TRA expression was maintained in 

mTEClo even in the absence of AIRE. In summary, AIRE seems to be critical for inducing TRA 

expression, but not for maintaining it.  

 

I I I .3.3  Lack of  order opt imizes the negat ive select ion process 

Theoretically, a couple of hundred mTECs are enough to collectively express the entire repertoire of 

TRA genes (Figure 1D and [28]), and further contacts of thymocytes with additional mTECs would 

therefore be unnecessary for increasing their exposure to new self-antigens. This number of mTECs 
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fits perfectly with the observation that thymocytes visit only a small number of confinement areas 

(each containing 100-200 mTECs) [142], and appears to be a highly energy/time-effective strategy for 

covering as much of the TRA repertoire possible. In line with this scenario, it was observed little 

divergence between the TRA repertoires of each maturation stage (Figure 4A), meaning that the TRAs 

encountered by thymocytes anywhere across the medulla should not depend largely on the 

maturation stage of the surrounding mTECs. This is particularly relevant as mTECs tend to re-locate to 

different regions of the medulla during their maturation (jTEC in the cortex-medulla junction, mTEChi 

towards the periphery of the medulla and mTEClo towards the centre of the medulla) [33]. 

Nonetheless, the possibility of subtle differences along the differentiation process having been 

overlooked (e.g. Tspan8 and Gad1 trends (Figure 14B and B), or that subtle TRA biases are present 

within each subpopulation of mTECs cannot be excluded. It remains possible that such patterns can 

be elucidated by future studies employing technologies with higher cell throughput and higher 

transcript detection sensitivity. 
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CHAPTER IV -  Single ce l l  t ranscr iptomics of  regulatory T cel ls  

reveals t ra jector ies of  t issue adaptat ion8 

IV.1  Abstract  

Non-lymphoid tissues (NLTs) harbour a pool of adaptive immune cells distinct from their counterparts 

in lymphoid tissues, and their development and phenotype remains largely unexplored. Here, I used 

scRNA-seq to survey CD4+ T regulatory (Treg) and memory T (Tmem) cells in spleen, lymph nodes, 

skin and colon in an unbiased way. I establish comprehensive gene signatures for cell types and 

tissues, and model a continuous lymphoid-to-NLT trajectory for steady-state murine Tregs to dissect T 

cell recruitment. Reshaping of Tregs’ transcriptomes begins with NLT priming in the lymph nodes and 

continues with adaptation in the NLT, and a core signature of this process is shared between skin and 

gut. Predicted kinetics are validated using a melanoma-induction model, emphasizing the relevance of 

key regulators and receptors such as Batf, Rora, Ccr8, Samsn1. Finally, I profile human blood and 

NLT cells and identify conserved tissue signatures. In sum, I provide a new conceptual framework for 

modelling scRNAseq data to recapitulate and uncover new genes involved in Treg NLT adaptation. 

 

  

                                                
 

8 Parts of this section, including figures, were adapted from [172]. 
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IV .2  Resul ts 

IV.2.1  Transcr iptomes of  CD4+ Treg and Tmem cel ls  c luster by cel l  

type and t issue 

To compare T cell transcriptomes in different tissues, CD4+Foxp3+ (Treg) and CD4+Foxp3-CD44high 

memory (Tmem) T cells were isolated from a Foxp3-GFP-KI mouse reporter line [110] from two barrier 

NLT sites - the colonic lamina propria, designated as colon for simplicity, and the skin. These were 

profiled together with their lymphoid counterparts: the respective draining lymph nodes (LN), 

mesenteric and brachial lymph nodes (mLN and bLN), and the spleen (Figure 22A, Figure 23). Each 

NLT (and accompanying lymphoid tissues) was obtained separately, and henceforth will be referred to 

as “colon” or “skin” datasets. Treg and Tmem populations together will be referred as CD4+ T cells. 

 

Figure 22 - Steady-state scRNA-seq datasets of CD4+ T cells from LT and NLT.  

(A) Two independent scRNA-seq datasets composed of Treg (TCRb+CD4+Foxp3+) and Tmem (TCRb+CD4+Foxp3-CD44+) 
cells from an NLT (colon or skin), draining lymph node (LN, mesenteric LN for the colon and brachial LN for the skin, 

respectively) or spleen, sorted from Foxp3+ reporter mice were generated. 
(B) Mean expression levels of characteristic markers across CD4+ T cell populations and tissues are recapitulated by 
scRNA-seq. 
(C and D)  t-SNE dimensionality reduction of colon (C) and skin (D) datasets, showing Treg and Tmem from NLTs (colon 
and skin), LNs (mLN and bLN) and spleen. Treg and Tmem are represented by filled and open symbols, respectively. 
Colours and symbols match tissue: NLTs in red circles, LNs in blue squares, spleen in purple triangles. 
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Figure 23 - Sorting scheme for murine Treg and Tmem. 

FACS-sorting strategy for sorting Treg and Tmem cells from (top) lymphoid (mLN) and (bottom) non-lymphoid (colonic 
lamina propria, cLP, as an example) organs.  

 

From single cell suspensions, individual Treg and Tmem cells were index-sorted into 96-well plates. 

Poly-adenylated mRNA was then reverse transcribed and amplified using the Smart-seq2 protocol 

[54], and subsequently sequenced after library preparation. After mapping and quality control, 485 

cells were retained from the colon dataset, and 796 cells from the skin dataset, expressing on average 

3118 genes (TPM>0) (Figure 24A; see Material and Methods). The thresholds used for quality control 

were adapted to the distributions found in each dataset. TCR sequences reconstructed using TraCeR 

[68] were used to exclude non-T cell contaminations, as well as few iNKT cells sorted as Tmem in the 

spleen and γδ-T cells in the skin (Table 7).  
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Figure 24 - Quality-control of steady-state colon and skin scRNA-seq datasets.  

(A and D) Multiple QC metrics and their relationships in the (A) colon and (D) skin dataset. Measurements for individual 
cells are depicted in scatterplots. The respective distributions are represented as density plots (diagonal), and histograms 
(bottom). Distribution per cell type is represented in boxplots (right). Treg and Tmem are marked as dark and light red, 
respectively. 
(B and E) Number of single-cells from colon (B) and skin (D) datasets retained after QC), per tissue and cell type. 
(C and F) Distribution of the number of genes for the colon (C) and skin (F) datasets per tissue and cell type. 
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Figure 25 - Additional characterization of sorted CD4+ T cell populations from steady-state mouse tissues. 

 (A and B) Principal Component Analysis (PCA) projections of the mouse colon (A) and skin (B) datasets. The first four PCs 
were plotted against each other, and the percentage of variance explained by each of them is presented in the title boxes. 
(C and D) Hierarchical clustering of cell-to-cell Spearman correlations across colon (C) and skin (D) datasets.  
(E) Spearman correlation values between mRNA and protein expression the single-cell level by tissue and cell type. The 
two rightmost columns refer to correlations between the average levels of mRNA and the average levels of protein for all 
subpopulations in colon and skin datasets, respectively. Protein expression values were obtained from FACS index sorting 
data. 
 

 

In these datasets, the expression levels of classical Treg and Tmem marker genes reproduce 

previously known patterns (Figure 22D). Foxp3 expression is reliably detected in Tregs while being 

absent from Tmem cells, and effector Treg molecules such as Ctla4, Il10, Gzmb, Klrg1 and Il1rl1 
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(ST2), were highly expressed only in Tregs isolated from the NLTs. Sell (CD62L) characterises Treg 

and Tmem from LT22  [143], while Ccr7 is specific to lymph nodes, as previously described  [144].  

To get a global picture of the relationships between the cell populations isolated, a dimensionality 

reduction algorithm (tSNE) was applied to skin and colon datasets individually (Figure 22B,C). Both 

datasets were treated separately as much as possible to avoid introduction of batch effects. Overall, 

populations in both datasets are structured in a similar fashion, and they contain only small numbers 

of cycling cells  (Supplementary Figure 1). First and foremost, Treg and Tmem populations from NLTs 

are clearly separated from the respective lymphoid counterparts. This can be seen in the tSNE and 

along PC2 of the Principal Component Analysis (PCA) (Figure 22C,D, Figure 25A-D), evidencing that 

these cell types exhibit distinct gene signatures in NLTs, in line with previous studies with bulk RNA-

seq in human have shown [145]. Secondly, Treg and Tmem from spleen and LNs form a tight cluster, 

albeit with distinct regions for each population, underscoring the similarity between lymphoid tissue 

CD4+ T cells.  

From a technical perspective, scRNA-seq plate-based approaches allow for the comparison between 

mRNA levels and protein levels of the markers included for cytometry. As observed by others [146], 

mRNA-protein correlations are pushed to low values, likely by a mixture of post-translational regulation 

and high technical drop-out rates (Figure 25E). Nonetheless, the agreement between the average 

values of mRNA and protein across the six populations considered is high for most markers, i.e. if a 

population has higher average level of protein, scRNA-seq will detect higher average level of mRNA.  

tSNE projections do not provide evidence of clear sub-clusters within each cell type in the skin or 

colon, which is at odds with reports of phenotypically and functionally diverse subpopulations of CD4+ 

T cells within NLTs [47,147,148]. Therefore, to search for subpopulations within the NLT Treg and 

Tmem cells, the consensus clustering algorithm implemented in the SC3 R package [122]. 

 The search ranged from 2 to 4 clusters to be able to exclude cases where small spurious 

subpopulations are identified. For each tissue/cell combination, a comparison was made between the 

largest subpopulations detected, which incidentally were also the farthest apart in tSNE space. 

Differential expression between clusters was performed on all expressed genes in them. This 

confirmed that colonic Tregs remained a homogenous population (Figure 26A-C), with no differentially 

expressed genes detected between them. 
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Figure 26 - Assessment of intra-population heterogeneity by consensus clustering in colonic cell 
populations.  

(A) t-SNE dimensionality reduction of colon Treg. Red and blue identify the two clusters found employing a consensus 
clustering approach. 
(B) Silhouette plot showing cluster stability within and between colon Treg clusters. 
(C) Differential expression between subpopulations identified within colon Treg (q-value<=0.05 and log2(FC)>=1). Genes 
are coloured based on the cluster they are upregulated in (based on fold-change). Transparent genes are not significantly 
DE. In this case, no genes were found to be differentially expressed. 
(D) t-SNE dimensionality reduction of colon Tmem. Colors identify the four clusters found employing a consensus 
clustering approach. Red and blue identify the two clusters considered for comparison. 
(E) Silhouette plot showing cluster stability within and between colon Tmem clusters. 
(F) Differential expression between two subpopulations identified within colon Tmem (q-value<=0.05 and log2(FC)>=1). 
Genes are coloured based on the cluster they are upregulated in (based on fold-change). Transparent genes are not 
significantly DE. 
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Figure 27 - Assessment of intra-population heterogeneity by consensus clustering in skin cell populations.  

(A) t-SNE dimensionality reduction of skin Treg. Colors identify the four clusters found employing a consensus clustering 
approach. Red and blue identify the two clusters considered for comparison. 
(B) Silhouette plot showing cluster stability within and between skin Treg clusters. 
(C) Differential expression between two subpopulations identified within skin Treg (q-value<=0.05 and log2(FC)>=1). Genes 
are coloured based on the cluster they are upregulated in (based on fold-change). Transparent genes are not significantly 
DE. 
(D) t-SNE dimensionality reduction of skin Tmem. Colors identify the four clusters found employing a consensus clustering 
approach. Red and blue identify the two clusters considered for comparison. 
(E) Silhouette plot showing cluster stability within and between skin Tmem clusters. 
(F) Differential expression between two subpopulations identified within skin Tmem (q-value<=0.05 and log2(FC)>=1). 
Genes are coloured based on the cluster they are upregulated in (based on fold-change). Transparent genes are not 
significantly DE. 

 

 In contrast with Treg, colonic Tmem cells present more diversity, segregating into a cluster 

characterized by higher expression of Th1-associated genes, such as Tbx21 (T-bet), Il12rb and Ifngr1, 

and a second cluster characterized by higher expression of Th17-associated genes, including Il23r, 

Il17f and Il1rl1 (Figure 26D-F).  Skin Treg and Tmem populations appear to exhibit small gradients of 

activation and cytokine expression within each population  (Figure 27). It is worth noting that absence 

of evidence for the existence of subpopulations is not evidence of their absence. Indeed, it has 
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previously been shown that the number of cells in a scRNA-seq experiment is more important for 

subpopulation detection than the number of detected genes [149]. Therefore, I underline that the 

presented datasets are mostly useful for a deep characterization of the sorted populations. 

Overall, these single-cell transcriptomic data validate the expression of known CD4+ T cell markers, 

and provide evidence of dramatic phenotypic changes between Treg and Tmem populations in NLT 

adaptation. 

 

IV.2.2  Gene expression s ignatures of  NLT regulatory and memory CD4+ 

T cel ls  

Next, the transcriptomic differences between NLT and LT CD4+ T cells were explored. Separately for 

skin and colon datasets, a differential expression test was performed to determine which genes 

characterize CD4+ T cells in the NLTs. Then, to investigate cell type-specific NLT adaptations, NLT 

markers were classified as Treg, Tmem or shared, based on differential expression between the two 

populations (Figure 28A,B). In colon, 31 genes were unique to Treg, 289 unique to Tmem, and 83 

were shared between the two. In the skin, 85 genes were unique to Treg, 146 unique to Tmem and 

527 were shared. 

The common signature expressed by CD4+ T cell found in the colon and skin (“Both NLT” in Figure 

28C) included transcription factors with known functions in T cells, such as Id2, Crem and Maf, 

kinases Sik1 and Pim1, and histone demethylases Jmjd1c and Kdm6b. In addition, NLT Tregs (as 

compared to Tmems) were enriched in the expression of TNF receptors (Tnfrsf4, Tnfrsf9, Tnfrsf18), 

homing receptors, including Itgav and Ccr2, and immunosuppressive molecules Fgl2, Tigit and Il10 

(“Both NLT” in Figure 28C). In line with previous reports, the chemoattractant receptor Gpr15 was 

highly expressed in both colonic Tmem and Treg cells [150] (“Colon” in Figure 28C). Skil, Gata3 and 

Ccr8 were preferentially expressed in colonic Tregs versus Tmems. In contrast, colonic Tmem cells 

expressed high levels of genes important for T cell survival and function Runx1, Irf4 and Ifng, which 

are absent from Tregs. 

The skin NLT signature (“Skin” in Figure 28C) includes the chemokine receptor Ccr6, along with 

vimentin, Vim, two galectin-encoding genes, Lgals1 and Lgals3, and transcription factors, such as 

Mxi1 and the TGFb family member Smad7. On top of this, the skin Treg signature presents high 

expression of Batf, the NF-κB modulator Bcl3, effector Treg markers Il1rl1 and Itgae, and genes with 

hitherto undefined function in the context of Treg biology, including the chemokine-like factor Cmtm7, 
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triglyceride metabolism enzyme Dgat2 and putative signal transduction modulator Gem. In sum, 

scRNA-seq characterisation reveals a rich landscape of global and cell type-specific expression 

patterns in non-lymphoid tissues. 

 
Figure 28 - Characterization of Treg and Tmem NLT adaptations. 

(A and B) Differential expression of NLT markers between NLT Treg and Tmem, in colon (A) and skin (B). Per dataset, 
genes were first identified as NLT- or LT-associated (q-value<=0.01, log2 fold-change (FC)>=1). This subset of genes was 
then characterized as Treg, Tmem or shared between cell types based on q-value<=0.05 and log2FC>=1 (see Methods). 
(C) Z-score of mean expression levels of newly identified markers across cell types and tissues, grouped by the populations 
where they are differentially expressed (left labels). 
(D) Top 20 differentially correlated gene pairs in colonic Treg (left) and Tmem (right), ordered by difference in correlation 
between both populations. 
(E) Top 20 differentially correlated gene pairs in skin Treg (left) and Tmem (right), ordered by difference in correlation 
between both populations. 
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Figure 29 - Percentage of cells expressing NLT markers from mouse colon (A) and skin (B). 

 

Although preferentially expressed in either NLT Treg or Tmem populations, most marker genes are 

present in both cell types to a certain extent (Figure 28A-C, Figure 29). This observation suggests that 

the interactions established by genes within each cell type can be more relevant than the expression 

values per se. Therefore, a differential correlation test between cell types in each NLT was used to 

identify differential gene-gene interactions between Treg and Tmem using (refer to Methods for 

detailed description). 

With this approach, the coexpressed pairs of genes exhibiting cell type-specific differences were 

ranked by the magnitude of this difference (correlations of top pairs are the most different between 

cell types). In colon (Figure 28D), Crem and Gata3 are strongly correlated in Treg, mirroring their 

induction in Th2 cells [151]. Within colon Tmem, there is a strong relationship between Nfkb2 and 

Prdx6, which has been shown in the context of ROS homeostasis [152]  in a different system. In skin 

(Figure 28E), Stat3 is potentially inducing Nars expression [153] in Treg, while Tmem exhibit signs of 

exhaustion by co-expressing Sh2d2a and Rgs1 [154]. Skin Tmem also show a high correlation 

between the pair Fosb and Tob1, upregulated by platelet-derived growth factor [155] in another 

system. 
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NLT adaptations to skin and colon were extensively identified and characterized, specifically 

emphasizing the similarities and differences between Treg and Tmem. Differential expression analyses 

were then complemented with the examination of differential gene-gene interactions. 

 

IV.2.3  Tregs in sk in and colon present contrast ing biases  

Treg adaptation across NLTs was then directly addressed. To do so, both populations were compared 

by differential expression (Figure 30A) to understand which transcriptomic changes underlie Treg 

adaptation to either the colon or the skin environment. As expected from the previous analyses, there 

is a core NLT Treg signature shared across tissue Tregs, e.g. Kdm6b, Itgav, Tnfrsf4, Fgl2. In addition 

to this shared signature, transcription factors Batf and Nfil3, and the surface receptors Tnfrsf9 and 

Il1rl1, and the Ca2+-binding protein S100a6, are all upregulated in the skin Treg cells. In turn, Treg in 

the colon are characterized by the activation markers Cd83 and Ccr8, the receptor Gpr15, and the 

immunosuppressive cytokine Il10. This seems to suggest that in the skin environment there is a 

stronger induction of typical NLT Treg markers [49], while the colonic environment promotes a rather 

activated Treg state, potentially due to the very close contact between the mucosa and foreign 

antigens. 

Similarly to the comparison between Treg and Tmem, information about gene-gene interactions 

established in each NLT was then extracted (Figure 30B). The differential correlation test highlighted 

several pairs of genes that shift in relevance from colon to skin. For example, in colon Treg, previously 

described MARCH-mediated ubiquitination effects on Cd44 stability [156] might underlie March7 

correlation with Cd44. The interaction between Il1rl1, a known player in visceral adipose tissue (VAT) 

Treg development, and Hif1a, involved in T cell metabolism reprogramming [157], can be directly 

associated with skin Treg differentiation. Also in skin, there is a high correlation between Rel and Il1r2, 

whose promoter contains a potential binding site for Rel [158]  , and a high correlation between the 

MAPK-pathway genes Rgcc and Klf4, which have been shown to be correlated in T cell activation 

settings  [159]. 

In sum, Tregs show a general NLT phenotype which, in colon, is biased towards activation, and in skin 

is biased towards a more differentiated state. Some of the gene-gene interactions determined are 

likely to be involved in these tissue differences. 
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Figure 30 - Specific Treg adaptations to skin and colon environments. 

(A) Differential expression of NLT markers between skin and colon Treg. Genes are characterized as colon-specific, skin-
specific or shared based on based on q-value<=0.01 and absolute log2FC>=1 (see Methods). 
(E) Top 20 differentially correlated gene pairs in colon Treg (left) and skin Treg (right), ordered by difference in correlation 
between both populations. 

 

IV .2.4  Pseudospace a l ignment of  Tregs from LNs to NLTs reveals 

stages of  t issue adaptat ion 

The analyses performed so far demonstrate how NLT Tregs differ from their LT counterparts in terms 

of expression of a set of NLT-specific genes. It is known that NLT populations are progressively 

established throughout an individual’s lifetime, as Tregs accumulate in the NLTs of mice under steady-

state conditions [160,161] . However, the actual transition process from LT to NLT phenotypes is far 

from being completely understood. 

To investigate whether there is evidence of cell trafficking between lymphoid and non-lymphoid 

tissues, TCR sequences were reconstructed using TraCeR [68] (Supplementary Figure 2A,B) and T 

cell clonal relationships were investigated. TCR clonotype analysis reveals that clonal relationships 

occur exclusively within the Tmem and Treg compartments, rather than across these cells types. 

Tmem and Treg clones are observed both within and across lymphoid and non-lymphoid 
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environments, suggesting trafficking of members of the same clone across locations. It is worth 

mentioning that for these steady-state experiments, the cells captured come from pools of mice and 

not a single animal, which is likely to cause an underestimation of clonotype sharing frequency. 

Given the absence of subpopulations within Treg populations, phenotypic changes associated with 

migration and adaptation to NLTs are likely to constitute a rather continuous process, from activation 

of Tregs in draining-LNs, proliferation, migration from LN towards the respective NLT, and potential 

priming for NLT adaptation along the way. On the NLT side, it is also likely that Tregs in the NLT can 

present various degrees of adaptation depending on the time spent in the NLT environment. 

Therefore, to identify such trends in the Treg data, this “pseudospace” relationship between cells 

reflecting recruitment and adaptation of Tregs to NLTs, was computationally reconstructed. Bayesian 

Gaussian Process Latent Variable Modelling (BGPLVM) [119] (see Methods) were employed to Treg 

transcriptomes from NLTs and their respective draining-LN (Figure 31). The non-linear latent variables 

(LVs) representing combinations of gene expression patterns can then be interpreted biologically. Per 

dataset, two main LVs that explain most of the transcriptomic differences present across cells and 

tissues (LV0 and LV1) (Figure 31A,D; Figure 32A,B) were identified. Importantly, the general 

organization along LVs (Figure 31A,D), as well as the genes associated with each of them are 

significantly similar in both mLN-to-colon and bLN-to-skin transitions (Figure 32C; see Methods). This 

pair of latent variables contains a larger proportion of NLT-associated genes (Figure 32D), and the 

gradient is retained even when analysing NLT and LN populations individually (Figure 33). LV1 in 

colon and LV0 in skin could thus be used to represent the continuum of Treg activation and trafficking 

between LNs and NLTs. Although trajectories for Tmem populations were also calculated (Figure 34), 

no downstream analyses were conducted, and only Treg were further investigated. 
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Figure 31 - Reconstruction of Treg recruitment from lymphoid to non-lymphoid tissues in steady-state. 

(A and D) Top two latent variables found with BGPLVM of Treg in (A) skin and (C) colon datasets, associated with either 
tissue of origin or activation/recruitment to non-lymphoid tissue. Colours match tissue of origin: non-lymphoid tissue in 
red, lymph nodes in blue. 
(B and E) Activation moment (t0) and intensity (k) of genes significant in migration to colon or skin. (Top) Time of 
activation/deactivation (t0) of genes along the activation/recruitment trajectory as determined by the switchDE package, in 
colon (B) and skin (F) datasets. (Bottom) Distribution of Treg cells from lymph nodes and the non-lymphoid tissues along 
trajectories. 
(C and F) Sigmoid fits of Itgav and Sell expression along (C) colon and (F) skin recruitment trajectory as determined by 
switchDE. Dashed lines represent t0. 
 

 

Having established a trajectory for recruitment and adaptation of Tregs from LNs to NLTs, the kinetics 

of up- and down-regulation of genes along it were then examined. This question was addressed by 

fitting a sigmoid curve to the expression values of each gene along the pseudospace trajectory (see 

Methods) (Figure 31E,F). This allowed the determination of each gene’s point of 

activation/deactivation in the trajectory (t0) (Figure 31G,H). From the 318 and 1163 genes that follow 

a sigmoidal trend in the bLN-to-skin and mLN-to-colon paths, 243 genes in common were identified, 

which are still associated with various immune functions and cell migration (Figure 35A). 
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Several NLT transcription factors (Maf, Id2, Gata3, Irf4, Nfil3, Stat3, Fosl2, Nr3c1, Ikzf3, Nr4a1, Skil, 

Rora) and chromatin regulators (Kdm6b and Jmjd1c) appear to drive this progression in both NLTs. 

Effector membrane proteins (Ctla4, Cd44, Cd82, Tigit, Klrg1, Icos, Gzmb, Havcr2, Cmtm7), as well as 

secreted factors (Lgals1, Lgals3, Il10) are upregulated, progressively increasing NLT Treg ability to 

interact with surrounding cells and shape the environment in the NLTs. Membrane receptor molecules 

(Ccr2, Ccr8, Cxcr6, Gpr183, Itgav) can also be found in this core NLT signature. Expression of TNF 

receptors (Tnfrsf4, Tnfrsf9, Tnfrsf18) and a TNF transducer (Traf1) underline the role that Nf-!b 

signalling is likely to exert over Treg function and survival in the NLTs as a whole [162]. 

Downregulation of Sell (Cd62l) and Evl, respectively relevant for T cell trafficking to secondary 

lymphoid organs in steady-state and inflammation, and Bcl2, occurs along the trajectory ordered 

towards the NLT. 

Interestingly, genes previously detected as more highly expressed in NLT Tmems (Rora) or 

differentially present between colon and skin Tregs (Nfil3, Stat3, Skil) can still play a role in the 

inferred migration along both trajectories, and have similar expression kinetics. As determined before 

(Figure 30B), different interactions can be established in each context, potentially leading to distinct 

overall transcriptomic signatures. Alternatively or in addition to this, the suggested differences of 

states of activation and differentiation between colon and skin Treg (Figure 30A) might explain the 

differences in expression at the population level. Interestingly, there are factors specific to the skin 

trajectory such as Ikzf4 and Il1rl1, known to contribute to Treg stability and enhanced suppression 

respectively [163,164]. 
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Figure 32 - BGPLVM Latent Variable relevance for LN-to-NLT transition in the colon and skin datasets. 

(A-B) Automatic Relevance Determination (ARD) plots for BGPLVM of Treg in colon (A) and skin (B) datasets 

(C) Correlation between latent variables using the correlations of all genes with each latent variable. This shows that Colon 
dataset LV1 is more similar to Skin dataset LV0, and Colon dataset LV0 is more similar to Skin dataset LV1. 
(D) Venn diagrammes intersecting genes in common between pairs of latent variables and NLT markers. (top) Genes in 
Colon dataset LV0 and Skin dataset LV1; (bottom) Genes in Colon dataset LV1 and Skin dataset LV0 (both used as a 
“pseudospatial” variable). 
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Figure 33 - The effect of the “pseudospace” latent variable can be identified in individual tissues. 

(A) BGPLVM projection of mLN Tregs, using the top two latent variables. 
(B) Correlation between latent variables using the correlations of all genes with each latent variable. X axis - Colon dataset 
Treg latent variables; Y axis - mLN Treg latent variables. 
(C) BGPLVM projection of colon Tregs, using the top two latent variables. 
(D) Correlation between latent variables using the correlations of all genes with each latent variable. X axis - Colon dataset 
Treg latent variables; Y axis - colon Treg latent variables. 
(E) BGPLVM projection of bLN Tregs, using the top two latent variables. 
(F) Correlation between latent variables using the correlations of all genes with each latent variable. X axis - Skin dataset 
Treg latent variables; Y axis - bLN Treg latent variables. 
(G) BGPLVM projection of skin Tregs, using the top two latent variables. 
(H) Correlation between latent variables using the correlations of all genes with each latent variable. X axis - Skin dataset 
Treg latent variables; Y axis - skin Treg latent variables. 
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Figure 34 - Comparison of BGPLVM in Tmem and Treg from the colon and skin datasets. 

(A-B) Automatic Relevance Determination (ARD) plots for BGPLVM of Tmem in colon (A) and skin (B) datasets 

(C) BGPLVM projection of mLN and colon Tmems, using the top two latent variables according to ARD. 
(D) Correlation between latent variables using the correlations of all genes with each latent variable. X axis - Colon dataset 
Treg latent variables; Y axis - Colon dataset Tmem latent variables. 
(E) BGPLVM projection of bLN and skin Tmems, using the top two latent variables according to ARD. 
(F) Correlation between latent variables using the correlations of all genes with each latent variable. X axis - Skin dataset 
Treg latent variables; Y axis - Skin dataset Tmem latent variables. 

 

Going one step further, the conservation of the sequence of gene activation/deactivation between the 

two trajectories was investigated. Early NLT adaptation, i.e. the 1st and 2nd quartiles of 

activated/deactivated genes, is consistent between NLTs (Figure 36A; see Methods). The first wave of 

NLT adaptation is characterized by upregulation of genes such as Ctla4, Kdm6b, Tnfrsf4 and 

Tnfrsf18, while the second wave includes the upregulation of Icos, Lmna and Tnfrsf9, and 

downregulation of Bcl2 and Evl. Respectively, they are enriched in “leukocyte transendothelial 

migration” and “cytokine-cytokine receptor interaction” (Figure 36B,C). In contrast, late NLT 

adaptation (3rd and 4th quartiles) is less consistent between colon and skin, which can potentially be 
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explained by different environmental cues in each NLT. Nevertheless, the transcription factors Stat3 

and Irf4, known to be important in Treg adaptation and differentiation [165,166], are part of the third 

wave of adaptation, which is enriched in “Th17 cell differentiation” (Figure 36D,E). 

In summary, a range of Treg stages were captured and these cells were ordered across lymphoid and 

non-lymphoid tissues, establishing a continuous trajectory of recruitment and adaptation that is 

consistent between NLTs, and characterized by a core set of genes. Furthermore, from their 

conserved sequential order of activation, it can be concluded that gene activation leading to NLT 

adaptation follows a similar regulatory sequence in both bLN-to-skin and mLN-to-colon trajectories. 

 
Figure 35 - Characterizing core genes in steady-state adaptation to colon and skin. 

(A) Enriched GO Biological Processes (left) and KEGG Pathways (right) in common between the colon and skin 
migration/adaptation gradient. 
(B and C)Time of activation (t0) and intensity (k) of all genes identified as DE in the Colon (B) or Skin (C) trajectories 
(related to Figure 4B and 4E). 
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Figure 36 - Examining the migration programme shared between the colon and skin datasets. 

(A) Comparing order of activation between Colon and Skin trajectories. Genes DE in both trajectories were grouped by the 
quartile of their t0 value in each trajectory, and each of the four groups was intersected between datasets. 
(B-E) KEGG Pathways enriched in shared gene groups in each quartile 
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IV.2.5  Recrui tment of  Tregs to steady-state and chal lenged non-

lymphoid t issues re ly  on shared mechanisms  

The analyses above predicted the existence of a continuous sequence of stages of gene regulation in 

Tregs trafficking and adapting from lymph nodes to skin and colon in immune homeostasis. To 

validate these phenotypes, I sought to characterise the transcriptomes of Tregs in a process where 

dynamic recruitment of cells is known to occur between lymph nodes and skin. Namely, the system 

chosen was tumour Treg recruitment. Tumours are known to harbour several populations of 

lymphocytes, including Tregs. Based on the human TCR repertoire [167,168], previous studies have 

shown that tumour-Treg are likely to be recruited de novo from lymphoid tissues and not from the 

adjacent NLT, despite exhibiting a phenotype similar to that of NLT Treg [167] .  

CD4+ T cells were obtained from Foxp3-IRES-eGFP reporter mouse [111] 11 days after injection with 

B16.F10 melanoma cell line or PBS (Figure 38A; see Methods). Skin and tumour Treg cluster 

separately (Figure 38B), providing transcriptomic evidence of differences between the two conditions. 

In contrast to the steady-state, there is a cluster of cycling cells in the cells from tumour-injected mice 

(Supplementary Figure 1C). In addition, tumour-injected mice show clonotype sharing between tumour 

Treg and bLN Treg (Supplementary Figure 2C). Cycling Tregs on tumour and respective draining-LN, 

in parallel with clonotype sharing between both locations, suggest de novo Treg recruitment from LN 

(as seen in human [167]) and concomitant expansion in both tumour and draining-LN. 
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Figure 37 - Quality-control of mouse melanoma scRNA-seq dataset. 

(A) Multiple QC metrics and their relationships within the melanoma dataset. Measurements for individual cells are 
depicted in scatterplots. The respective distributions are represented as density plots (diagonal), and histograms (bottom). 
Distribution per cell type is represented in boxplots (right). Treg and Tmem are marked as dark and light red, respectively. 
(B) Number of single-cells from the melanoma dataset retained after QC. 
(C) Number of detected genes per cell type, tissue and condition. 
(D) Hierarchical clustering of steady-state skin Treg based on general Treg and keratinocyte markers. The horizontal 
division separates the two cells that were removed from the dataset for containing keratinocyte markers, suspected of 
being doublets.  
(E) Hierarchical clustering of cell-to-cell Spearman correlations across brachial and inguinal lymph nodes. 
(F) Hierarchical clustering of cell-to-cell Spearman correlations across steady-state and PBS injected skin. 

 

Differential expression analysis between non-cycling tumour Tregs and control skin Tregs reveals a 

relatively small number of genes are significantly different between the two populations of Treg (112 

upregulated in tumour Treg and 37 in steady-state skin Treg (Figure 38C), in line with recently 
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published human data [167]. Unsurprisingly, tumour Tregs upregulate genes related to proteasome 

activity, along with other pathways indicative of adhesion and migration (Figure 39D). Specifically, they 

upregulate the exhaustion marker Lag3 [169] , as well as Cxcr3, Nkg7, Lgals1, Ccl5, and some LN 

markers, such as Ltb. Control skin Tregs, on the other hand, show upregulation of skin Treg markers 

such as Il1rl1, Rora, Pim1, Sdc4, Kdm6b, Jmjd1c and Erdr1. Nonetheless, tumour and skin Treg are 

overall very similar in terms of recruitment and NLT adaptation. Skin Treg signature genes such as 

Batf, Tnfrsf4, Tnfrsf9, Samsn1, Tigit, Tchp, Ccr8, Ccr2 and Itgav are expressed at equivalent levels in 

tumour Treg.  
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Figure 38 - Recruitment and adaptation of Treg to the tumour environment recapitulates steady-state 
migration. 

(A) Melanoma induction strategy and tissues sampled for different cell types (similar to Figure 1A, see Methods). 
(B) t-SNE dimensionality reduction of single-cell data from control and tumour conditions, depicting Treg and Tmem 
steady-state skin and tumour, draining brachial lymph nodes and spleen. Treg and Tmem are represented by filled and 
open symbols, respectively. Colours match condition: control in dark blue, melanoma in dark red. Symbols match tissue: 
non-lymphoid tissues in circles, lymph nodes in squares, spleen in triangles. 
(C) Differential expression between skin and tumour (non-cycling) Treg (q-value<0.01 and log2(FC)>1).   
(D) (top) Latent variables found with BGPLVM representing cell cycle and non-lymphoid tissue recruitment/adaptation of 
Treg (see  Methods). Tissue of origin matches colour: skin in red, lymph node in blue. Condition matches shade: control 
cells darker, tumour cells lighter. (bottom) Distribution of cells in different categories (Tissue and Condition, Cell Cycle 
phase) along the recruitment trajectory. 
(E) Comparison between time of activation of genes (t0) in control and tumour, measured as the difference of t0 between 
conditions. Genes are classified as being markers of skin, lymph node, cell cycle or other. Coloured points show mean +/- 
mean standard error. Vertical dashed lines represent +/- difference between mean t0 in each condition.  
(F) Proposed model of gene expression changes in NLT adaptation of Tregs. At each stage examples of genes activated are 
listed below. 
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Figure 39 - Control and Melanoma response in the Tumour migration trajectory. 

(A) Automatic Relevance Determination (ARD) plots for MRD-BGPLVM of Treg in control and melanoma conditions. Colours 
show effect of gene groups in each obtained latent variable. 
(B) Venn diagramme comparing obtained DE genes in the control and melanoma common trajectory, as well as the Skin 
steady-state trajectory previously obtained. 
(C and D) GO Biological Processes (top) and KEGG Pathways (bottom) enriched in genes DE in Control (C) or Melanoma 
(D) cells along the common trajectory. 
 

Then, a shared migration trajectory between control and melanoma-exposed cells was determined. To 

this end, MRD-BGPLVM [120] (see Methods) was used to explore gene expression trends across Treg 

from the control skin, tumour and respective draining-LNs together. Two main latent variables were 

identified, one concentrating most of cell cycle-associated variability (LV0), and one mainly associated 

with the NLT signature (LV4) (Figure 39A). Notably, NLT adaptation trajectory (LV4) correlates with 

trajectories found in control and melanoma conditions when MRD-BGPLVM is applied to each one 

individually (respectively, 0.63 and 0.45 Spearman correlation coefficients; Figure 40A-D, see 

Methods). Moreover, it also correlates with the NLT adaptation pseudotime previously determined for 

steady-state skin (0.35 Spearman correlation coefficient, Figure 40E). These observations support that 
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changes in Treg gene expression leading to NLT adaptation along bLN-to-skin and bLN-to-tumour 

trajectories are equivalent processes. 

 
Figure 40 - The migration effect detected using MRD is present in both conditions individually. 

(A and C) BGPLVM projection of bLN and skin in control (A) and melanoma (D) conditions, using the top two latent 
variables. 
(B) Correlation between latent variables using the correlations of all genes with each latent variable. X axis - Control and 
Melanoma Treg latent variables; Y axis - Control Treg latent variables. 
(D) Correlation between latent variables using the correlations of all genes with each latent variable. X axis - Control and 
Melanoma Treg latent variables; Y axis - Melanoma Treg latent variables. 
(E) Correlation between latent variables using the correlations of all genes with each latent variable. X axis - Control and 
Melanoma Treg latent variables; Y axis - Steady-state Skin dataset Treg latent variables. 

 

Gene kinetics along NLT adaptation (LV4) was investigated separately in control and melanoma 

conditions (Figure 41). 129 genes are shared between both conditions, 73% of which were also 

present in the steady-state skin trajectory determined previously (Figure 39B). As expected, values of 

t0 remain largely unchanged between control and melanoma (Figure 38E), further suggesting that 
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NLT recruitment and adaptation follow the same program in homeostatic and perturbed conditions. 

The shared adaptation genes between control and melanoma include transcription factors (Rora, 

Ikzf2, Ikzf3, Id2, Nr3c1, Batf, Nfil3, Mxd1), migration and adhesion-related proteins (Ccr2, Ccr8, Itgav, 

Plxna2, Iqgap1), ligands and receptors  (Il1r2, Klrg1, Icos, Tigit, Ctla4, Tnfrsf9, Tnfrsf4, Tnfrsf18, 

Cmtm7), secreted factors (Lgasl1, Metrnl), and the NF-κB modulator Bcl3.  

 
Figure 41 - Examples of individual genes varying in the control and melanoma migration trajectory.  

Vertical dashed lines indicate time of activation (t0) values determined for each condition. 
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Despite the similarities between melanoma and control, the distributions of cells from both conditions 

are not completely overlapping along NLT adaptation trajectory, and can be ordered by increasing NLT 

adaptation between populations (from least to most adapted: control LN Treg, melanoma LN Treg 

tumour Treg, and control skin Treg) (Figure 38D). This implies that in response to an ongoing 

challenge in the peripheral tissue, a higher fraction of Tregs in the LNs is acquiring NLT adaptations. 

In fact, for several NLT markers there are more cells expressing them in the tumour-draining LN 

compared to the control, e.g. Id2 (53% vs 24%), Batf (49% vs 17%), Nfil3 (43% vs 21%), Lgals1 (85% vs 

57%), Ccr8 (72% vs 45%). This further supports the notion of priming of Treg to NLTs happening while 

still in the LN. Contrary to tumour-Treg, LN Tregs do not show signs of exhaustion (Lag3 expression in 

Figure 38C, and data not shown), which strongly suggests that the “primed” LN Tregs do not 

represent instances of migration from tumour to the LN. 

Finally, and as suggested by DE analysis (Figure 38C), tumour Tregs have the most cells with NLT 

adaptation, which brings them very close to the control skin Tregs.  

Overall, Tregs from challenged mice recapitulate and fill in the gaps along steady-state NLT 

adaptation. This trajectory is summarized in (Figure 38F), where the stages of adaptation and key 

markers for each stage are shown. 
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IV.2.6  Evolut ionary conservat ion between mouse and human NLT Treg 

cel ls  

Insights into human NLT lymphocytes are of critical importance in the development of future 

therapies. To address this need, the extensive characterization of murine NLT CD4+ Treg and Tmem 

was complemented with a comparison to their human counterparts. Treg, Tcm and Tem cells were 

collected from blood and skin of individuals undergoing mammary reduction surgical interventions, 

and also from tumour-adjacent colon sections from patients undergoing colonic resection interventions 

(Figure 42A, Figure 43). Similarly to the mouse analysis, gene markers for human CD4+ T cell 

populations were determined (Figure 44; see Methods). Tcm and Tem cells were considered together 

as Tmem. 

In terms of one-to-one orthologs, 86 out of 350 human skin Treg markers and 37 out of 214 human 

colon Treg markers overlap with the respective mouse signature. Interestingly, the general NLT 

signature common to both organs includes human/mouse conserved TNF-pathway receptors 

(Tnfrsf1b, Tnfrsf4, Tnfrsf18) and a regulator (Tank), other membrane proteins (Ctla4, Icos, and Cd44), 

and transcriptions factors (Maf and Fosl2). In tissue-specific terms, Rora, Prdm1, Batf, Zfp36, Ccr6 

and Lgals1 in skin Treg, and Skil, Ccr8, Cxcr6 and Gpr183 in colon Treg are markers conserved 

across the two organisms (Figure 42B-E).  

Close inspection of NLT markers obtained for both species revealed several instances where the 

expression pattern of one gene is taken by its paralog in the other organism (Figure 42F). For 

example, while the kinase Pim1 is a marker of mouse NLT Tregs, and is not expressed in human, 

Pim3 is not expressed in mouse, and marks human NLT Treg. A similar situation was observed for 

Ccr2/Ccr4, Traf1/Traf3 and others. This suggests that some paralogous proteins have evolved to 

substitute for each other during the evolution of NLT Tregs in mammals. 

Overall, this comparison suggests that despite mouse-human differences, the NLT program defined in 

mouse can at least in part be transposed to a human context. 
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Figure 42 - Human-mouse comparison of non-lymphoid tissue Treg marker genes.  

(A) Tissues sampled for different cell-types from human individuals (similar to Figure 1A, see Methods). 
(B and D) Overlap between non-lymphoid tissue Treg markers detected in human and mouse, in either (B) colon or (D) 
skin datasets. 
(C and E) Fold-change between gene expression in non-lymphoid and lymphoid tissues in mouse and human. Blood and 
spleen were used as lymphoid tissues in human and mouse respectively. 
(F) Non-lymphoid tissue paralogs exhibiting opposing expression patterns between human and mouse. 
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Figure 43 - Quality-control of steady-state human colon and skin scRNA-seq.  

(A) Multiple QC metrics and their relationships in all human samples. Measurements for individual cells are depicted in 
scatterplots. The respective distributions are represented as density plots (diagonal), and histograms (bottom). Average per 
cell type is represented in boxplots (right). Treg, Tem and Tcm are marked in shades of purple.  
(B) Number of single-cells from retained after QC. 
(C) Number of genes per cell type and tissue. 
(D and E) t-SNE dimensionality reduction. Shapes match cell type and tissue according to legend. Colours match either 
cell type and tissue (D) or sampled individual (E). 
(F and G) t-SNE dimensionality reduction per individual, with cells coloured by tissue and cell type. 
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Figure 44 - NLT CD4+ T cell markers in human colon and skin scRNA-seq datasets.  

(A and B) Differential expression of NLT markers between NLT Treg and Tmem (grouping together Tcm and Tem), in skin 
(A) and colon (B). Per dataset, genes were first identified as NLT- or blood-associated (q-value<=0.01, log2 fold-change 
(FC)>=1). This subset of genes was then characterized as Treg, Tmem or shared between cell types based on q-
value<=0.05 and log2FC>=1 (see Methods). 
(C) Z-score of mean expression levels of identified markers across all sampled cell types and tissues in human. 
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IV.3  Discussion 

IV.3.1  Phenotype of  NLT CD4+ T cel ls  as a set  of  t issue and cel l  type-

speci f ic  modules     

Until recently, the protective role of T cells was believed to be supported mostly by populations of cells 

recirculating between secondary lymphoid organs. Currently, not only is there evidence that T cells 

can reside in non-lymphoid tissues, they have been shown to play fundamental roles in the local 

immune response. Moreover, non-immune functions have been attributed to some of these 

populations, namely tissue resident Tregs (section I.3.2). Although phenotypic differences between 

non-lymphoid and lymphoid tissue populations have been reported, they were not systematically or 

comprehensively studied before. 

 To address this knowledge gap, I used scRNA-seq data from steady-state CD4+ T cells, i.e. Treg and 

Tmem, from lymphoid and non-lymphoid tissues. My first objective was to determine the sets of 

specific genes that characterize each T cell compartment in comparison to the remaining ones, with 

particular focus on the non-lymphoid tissues skin and colon. The strategy adopted involved a “two-step 

differential expression”, first comparing tissues and then cell types within each tissue, allowing me to 

classify genes as Treg, Tmem or shared across both cell types in each given tissue.  

I could then “order” gene sets from the most general to the most specific in terms of NLT adaptation. 

First, I could identify genes that constitute fundamental traits shared across Treg and Tmem, in the 

skin and colon compartments, e.g. Maf, Id2, Kdm6b, Samsn1. The next level of NLT adaptation to 

consider is cell type-specific but still shared across skin and colon, e.g. Tnfrsf4 or Gzmb, that are 

functionally important for the general role of Treg in both NLTs. Finally, the most specific markers are 

unique to one of the cell types in either skin or colon, like Batf in skin Treg. General factors are thus 

likely to work as a basic adaptation of CD4+ T cells to the non-lymphoid environment, on top of which 

additional functional, migratory and survival features are added to attain the complete skin and colon-

specific phenotypes. Cell surface proteins are a good example of this. Receptors such as Itgav, Ccr2, 

Gpr183 are part of a general NLT Treg signature, and appear to set the stage for migration and 

retention in NLTs. A second level of receptors, e.g. Gpr15 [150] in colon, Ccr6 in skin, may determine 

tissue-specific Treg retention.   

In future attempts to differentiate and stabilize NLT CD4+ T cells, general NLT genes should be 

upregulated. This also means that for therapies that aim at targeting specific NLT compartments, 
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these might not be good choices, as one would expect a general effect across all NLT CD4+ T cell 

populations 

Although useful for characterization, statistic tests used to assign genes to different categories always 

rely on arbitrary thresholds, namely in terms of fold-change, which can oversimplify the biological 

processes under study.  This seems to be the case with several of the marker genes found (Figure 

28A,B, Figure 30A), as many of them are expressed in both tissues or both cell types, although to 

different extents. These observations suggest that such genes are likely to play roles in more than one 

condition, which prompted me to address gene relationships rather than gene expression alone to 

complement this characterization (Figure 28D, Figure 30B). 

Lastly, I was not able to find clear subpopulations of Treg cells, which were expected particularly in the 

colon. While for effector and central Tregs one could argue that they are confounded with tissue of 

origin, i.e. central Treg in lymphoid tissues, effector Treg in the NLTs, the same is not true for the 

microbiota-dependent, peripherally-derived Treg Ror-γt+ (Rorc+) and thymic-derived Treg Gata3+ 

colonic Treg. The fact that the majority of colonic Tregs captured do express high levels of Gata3 and 

very little Rorc (data not shown) suggests that not many Ror-γt+ cells have been sorted, which is not 

surprising as only 20% of colonic Treg should express it in the first place [47]. Furthermore, the 

animal facility where these mice were kept is known to be extremely clean (e.g. registering difficulties 

in establishing models of spontaneous inflammatory bowel disease), which might further contribute to 

low numbers of Ror-γt+ Treg. 

The systematic characterization of both Tmem and Treg cells across lymphoid and non-lymphoid 

tissues presented in this Chapter has major biological interest in understanding NLT adaptations, and 

could ultimately help harness NLT CD4+ T cells for future therapeutic applications.  

 

IV.3.2  Consistency in the recrui tment and adaptat ion of  Tregs to NLTs 

I used steady-state NLTs in mice to build high-resolution transcriptomic trajectories of recruitment and 

adaptation of Tregs from lymph nodes to NLTs. This modelling approach revealed the continuous 

nature of recruitment and adaptation to NLTs, with no clearly defined intermediate stages.  

The core genes shared by trajectories, as well as their order of transcriptional activation and 

repression are similar between skin and colon, particularly for the first half of the trajectory (Figure 

36).  
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Presumably, the first half of the process is related to triggering of recruitment and general NLT 

adaptations, while the differences in the later stage might reflect the bias that seems to exist towards 

activation or full-differentiation between colon and skin Treg, respectively.  

The trajectories of LT-to-NLT trafficking are supported by clonotype sharing between cells, which were 

inferred by reconstruction the TCR α and β chains from the full-length mRNA transcriptome data in 

each cell. Although the number of Treg sharing both chains across tissues is limited (only one case 

between bLN and skin), it evidences that one can capture “sister-cells” in different stages of NLT 

adaptation across tissues, which is further supported by multiple events observed within Tmems. On 

the other hand, the expanded clonotypes are almost exclusively within a cell type (e.g. within Tregs or 

within Tmems) rather than shared across Tregs and Tmems (Supplementary Figure 2), suggesting 

that these are distinct, committed cell fates in vivo rather than plastic and interchangeable states. 

 

IV.3.3  Tumour Treg adaptat ion fo l lows the path of  steady-state NLT 

Tregs 

Perturbation often exacerbates and evidences the features of the system under study. Therefore, to 

further address the adaptation of Tregs to non-lymphoid environments, I chose to promote the 

development of a tumour, which has been suggested to induce de novo recruitment of Treg from 

draining-lymph nodes [167]. Indeed, the existence of cycling populations in both tumour and the 

draining-LN, in conjunction with clonotype-sharing between tumour and LN Tregs, strongly suggests 

de novo recruitment of Tregs to NLTs is taking place and has been captured in this dataset. Therefore, 

I have then used this melanoma-challenge to validate the steady-state observations and, on a second 

stage, to increase the resolution and understanding of this process.  

I observed that not only the trajectory of adaptation of Treg to the tumour environment is well 

correlated with the steady-state bLN-to-skin trajectory (Figure 40), there is also a considerable 

proportion of this adaptation programme that is consistent with both the bLN-to-skin and mLN-to-colon 

trajectories (Figure 32C). These observations unify all three NLT adaptation programmes around a 

solid core set of genes.  

Furthermore, analysing Treg cells from control and challenged mice together provided a more detailed 

perspective of this process. On one hand, I concluded that cues trigger transcriptomic changes in 

Tregs located in the draining-LNs, inducing transcriptomic changes that place them closer to the NLT-

adapted phenotype, as indicated by higher percentage of cells expressing Batf, Ccr8, Samsn1 and 
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other NLT markers in the melanoma condition. On the other hand, the NLT trajectory suggests that 

tumour Tregs are slightly less mature versions of NLT Tregs in immune homeostasis. This difference 

is likely related to the few genes (37) that are upregulated in skin Treg when compared to tumour Treg 

(Figure 38C), including NLT markers such as Il1rl1, Rora, Kdm6b, and Ccr6.  

It remains to be explained whether these genes are not expressed equally between conditions for lack 

of the correct environmental cues or because they only stabilize at a later stage of adaptation, and 

whether any (or several) of these differentially expressed genes is responsible for the final NLT 

differentiation. Knock-out mice and/or genome editing techniques coupled with adoptive transfers 

would be of great importance in answering these questions. 

 

IV.3.4  NLT adaptat ion from mouse to human 

The NLT compartment of CD4+ T cells has remained more obscure in human than in mouse due to 

limitations in access to tissues. Therefore, the scRNA-seq data I collected from human skin, colon and 

blood constitutes, in and of itself, an important resource to understand different aspects of NLT CD4+ 

T cells. 

Overall, these human cell populations show conservation in structure, i.e., as in mouse, there is a 

clear separation between cells from lymphoid and non-lymphoid tissues. Not only this, but several of 

the genes driving this separation are common between human and mouse (Figure 42B-E). 

Interestingly, I observed changes in the expression patterns of specific paralog genes between 

species, in particular in the PIM and the TRAF family (Figure 42F). The usage of different paralogs for 

the same function suggests an important role of expanded gene families in rewiring signaling 

pathways throughout evolution. 

Reconstruction of recruitment trajectories in the human data was not attempted, mainly because no 

lymph node data was available. Blood-to-NLT trajectories would most likely be extremely confounded 

by T cells activated and primed in lymph nodes all across the organism.  

Although clonotype sharing analysis show that memory and regulatory cell types can share TCRs, in 

contrast with mouse, these events are likely artefacts of the sorting strategy, that allows for Treg to be 

sorted as Tmem and vice-versa.  

In sum, my observations suggest that several of the key targets identified in mouse are likely to play 

important roles in humans, and can therefore be considered as potential targets in future therapeutic 

approaches. The analyses performed on the human datasets focused mainly on validating the 
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presence of markers found in mouse NLT Treg, overlooking other interesting questions, such as an in-

depth evolutionary comparison. 

In this study, I have used genomic data to model the process of recruitment and adaptation of 

regulatory T cells from secondary lymphoid organs to non-lymphoid tissues. The transcriptomic 

changes associated with this transition form a continuous trajectory that starts in the draining-lymph 

nodes and continues within the NLTs, both in steady-state and immune challenge conditions. 

Overall, these results reveal a dynamic adaptation of T cells as they traffic from one tissue to another, 

and provides a broad resource for investigating in vivo CD4+ T cell phenotypes in mouse and human. 
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CHAPTER V -  Conclus ions and Future Work 
 

In this thesis, I set myself to capitalize on state-of-the-art scRNA-seq methods to characterize elusive 

cell types and processes in immune tolerance. The results presented herein contribute to a better 

understanding of these populations of cells and their dynamics of development and function, which 

had been concealed until now. Single-cell resolution was instrumental in addressing these two 

systems, interestingly, in considerable different ways. While it allowed for the direct identification of 

discrete subpopulations during mTEC development, it could also be leveraged to interpret the 

continuous gradients underlying recruitment and adaptation of Tregs to non-lymphoid tissues. 

 

In the work described in Chapter III, I identified three subpopulations of medullary thymic epithelial 

cells: jTEC, mTEChi and mTEClo. To the best of my knowledge, this is the first time that these 

populations have been identified in an unbiased way. Importantly, single-cell resolution allowed me to 

isolate mTEClo, a subpopulation generally dismissed and/or heavily biased towards late post-Aire 

stage, and clarify its role as an important and active piece in negative selection.  

Chapter IV introduces a model for adaptation of Treg to non-lymphoid tissues, one of the major open 

questions in the field. The results shown suggest that this adaptation starts still in the lymph nodes, 

progressing as a continuous gradient within and across tissues. The comparisons made between 

tissues and cell types provide important information on how specific NLT markers are, important 

information for future studies and therapies.  

 

Any scRNA-seq experiment is affected by technical drop-out events, i.e. genes which are expressed but 

not being detected. In the context of this thesis, such limitation can strongly impair the study of Aire-

dependent and Aire-enhanced TRAs across mTECs, which are expressed in a low percentage of cells 

in the population. It is plausible that myself and others [28,123] have thus underestimated expression 

frequency of TRAs and overlooked small clusters of co-expressed TRAs. 

This drop-out effect, coupled with post-transcriptional regulation and differences in the protein stability, 

leads to relatively low correlations between mRNA and protein levels. This discordance is likely to 

affect how intra-population heterogeneity is perceived, and might explain why reported heterogeneity 

within Treg populations using protein markers is not apparent at the transcriptome level.  

The numbers of cells that can be processed and sequenced using scRNA-seq plate-based approaches, 

as done in this thesis, are situated in the hundreds of cells. This might not have been sufficient to 



CHAPTER IV 

 122 

capture all the heterogeneity present within the populations I studied in this thesis, e.g. Ror-γt+ colonic 

Treg. Droplet-based approaches to analyze tens of thousands of cells could be used to uncover lowly 

represented populations in future experiments. 

Future work should also include additional validation experiments to further consolidate some of the 

reported observations. In the mTEC context, the most immediate path to follow includes FACS 

validation of marker genes identified at the mRNA level for jTEC, mTEChi, and most importantly, 

mTEClo. ChIP-seq and/or CRISPR would also be of interest to test to what extent the TFs identified as 

new regulators of mTEC development (e.g. Vdr, Plagl1, Zbtb7a, Hnf4g) are affecting the process.  In 

the Treg context, adoptive transfer experiments of cells deficient for TFs and chromatin modifiers 

involved in NLT adaptation would greatly contribute to fully understand how this phenotype is 

established. Genes upregulated in skin and not in tumour (e.g. Rora, Kdm6b) would be an interesting 

set of genes to start from. 

In conclusion, the work described in this thesis represents a significant step forward in discerning the 

highly complex and specific set of mechanisms that sustain immune tolerance, whilst also providing a 

resource for further characterization of mTEC and Treg populations.  
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Annexes 

 
Supplementary Figure 1 - Cell cycle phase detection by Cyclone. 

 (A-D) t-SNE dimensionality reduction showing cell cycle phase in (A) mouse colon, (B) mouse skin, (C) mouse melanoma 
and (D) human datasets.  
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Supplementary Figure 2 - CD4+ T cells TCR clonotypes in different tissues. 

Clonotypes detected using TraCeR software in (A) mouse colon, (B) mouse skin, (C) mouse melanoma and (D) human 
datasets.  
(left) t-SNE dimensionality reduction highlighting cells sharing productive ɑ and β TCR chains. Shapes match cell type and 
tissue origin according to the legend. 
(middle)  Number of clonotypes detected spanning different tissues and cell type combinations. Top half registers all 
events of TCR chain sharing, bottom half only considers the sharing of productive ɑ and β TCR chain. 
(bottom) Number of clonotypes detected within each cell type and tissue, considering the sharing of any chain or 
productive ɑ and β. 
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