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ABSTRACT: We report the fabrication of immunosensors
based on nanostructured mats of electrospun nanofibers of
polyamide 6 and poly(allylamine hydrochloride) coated either
with multiwalled carbon nanotubes (MWCNTs) or gold
nanoparticles (AuNPs), whose three-dimensional structure
was suitable for the immobilization of anti-CA19-9 antibodies
to detect the pancreatic cancer biomarker CA19-9. Using
impedance spectroscopy, the sensing platform was able to
detect CA19-9 with a detection limit of 1.84 and 1.57 U mL™*
for the nanostructured architectures containing MWCNT's and
AuNPs, respectively. The high sensitivity achieved can be
attributed to the irreversible adsorption between antibodies
and antigens, as confirmed with polarization-modulated

¢ AuNp é Carbon Nanotubes 1r AntiCA199 @ CA199

infrared reflection absorption spectroscopy. The adsorption mechanism was typical Langmuir—Freundlich processes. The
high sensitivity and selectivity of the immunosensors were also explored in tests with blood serum from patients with distinct
concentrations of CA19-9, for which the impedance spectra data were processed with a multidimensional projection technique.
The robustness of the immunosensors in dealing with patient samples without suffering interference from analytes present in
biological fluids is promising for a simple, effective diagnosis of pancreatic cancer at early stages.

1. INTRODUCTION

Immunosensors based on the molecular recognition process
between antibodies and antigens have been developed since the
1960s'~ upon exploiting physicochemical processes similar to
the enzyme-linked immunosorbent assay.” These sensors have
been used for a variety of diseases with a number of detection
principles, including electrochemical techniques,” optical,® and
magneto-optical methods.” Common to all of these immuno-
sensors is the need to immobilize either antibodies or antigens
on the sensing units, which must preserve their activity for
sufficiently long periods of time and allow for the binding of the
corresponding molecule in the antibody—antigen pair. This
requirement is normally fulfilled by controlling the molecular
architecture of the nanostructured films of which most
immunosensors are made.” '’ In addition to the active layer
containing antibodies or antigens, the nanostructured films
contain a matrix designed to assist in preserving bioactivity and
other components (e.g, nanomaterials) to enhance sensitiv-
ity."" Experimental methods such as the self-assembled
monolayer,""* layer-by-layer,"* and Langmuir—Blodgett'>~"
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techniques have been employed owing to their suitability to
build complex molecular architectures, where synergy may be
sought among the properties of the nanomaterials comprising
the immunosensors.

The extensive list of nanomaterials that can be utilized in
immunosensors includes graphene,lg_21 carbon nanotubes
(CNTS),R—26 carbon nanoballs, metallic nanoparticles,26 and
nanostructures derived from natural resources, for example,
chitosan,”” and electrospun polymer nanofibers.”**’ Such
nanomaterials are normally used with a twofold purpose. On
one hand, they serve as a matrix for immobilizing the
biomolecules, but they can also be exploited to enhance the
sensitivity by increasing the measured signal. This is the case of
carbon nanotubes whose chemical, thermal, mechanical, and
electrical properties make them suitable for biosensing,30
especially with functionalization by carboxylic acid groups
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that allow for interaction with molecules containing amino
groups. Gold nanoparticles (AuNPs) are also used to amplify
the analytical signal either because a higher electric current can
be generated or because they provide a larger number of active
sites in a single recognition reaction.’’ These nanomaterials can
be further combined with polymer-based nanostructured
architecture such as those made with electrospun polymer
films.”® The advantages of using electrospun nanofibers, in
particular, are associated with cost-effective method to produce
a tridimensional platform of large specific surface area, high
porosity, and one-dimensional confinement characteristics.”>
These features can be beneficial for immobilizing biomolecules
with preserved activity and enhancing sensitivity.

In this article, we explore the use of electrospun nanofibers
combined with carbon nanotubes (CNTs) and gold nano-
particles (AuNPs) to produce immunosensors for detecting the
biomarker CA19-9, referred to as Lewis antigen, which is the
only biomarker approved by the Food and Drug Administration
of the United States for pancreatic cancer.”” > The choice of
this biomarker was based on two factors: (i) on one hand,
biosensors to detect pancreatic cancer at early stages seem
today the only possible avenue to reduce the mortality rate of
this type of cancer, which at present reaches 99.3% of the
patients.’® This high rate is caused by the difficulty of early
diagnosis because the disease is silent in most patients and by
the lack of effective treatments;'® (ii) on the other hand, we
shall be able to compare the immunosensors performance with
similar ones reported in the literature, as there has been
considerable efforts to develop sensors for detecting CAI9-
9,'%3*37=3% including from our group.'® With regard to the use
of AuNPs and CNTs, the aim was to test the suitability of the
combination with the electrospun nanofibers because these
nanomaterials can promote enhanced electron transfer and
increase biosensor sensitivity.””*”*' We have not used neat
polyamide 6 (PA6)/poly(allylamine) (PAH) nanofibers
because they are not amenable to be functionalized for an
efficient adsorption of the antibodies.

Detection of CAI19-9 is made here with electrochemical
impedance spectroscopy in the samples where the antigen is
added to a buffer at different concentrations and in samples of
blood serum from the patients of a cancer hospital. To achieve
selectivity in such complex samples as those of blood serum,
the impedance spectra data are treated with a multidimensional
projection technique.42 Furthermore, because we aim at
establishing generic platforms for immunosensors that can be
extended to other types of cancer, we investigate the formation
of nanofiber mats and sensing mechanisms using the surface-
specific techniques scanning electron microscopy (SEM) and
polarization-modulated infrared reflection absorption spectros-
copy (PM-IRRAS).

2. RESULTS AND DISCUSSION

2.1. Detection of CA19-9 Biomarker. The immunosen-
sors with the two architectures based on PA6/PAH nanofibers,
modified with MWCNT or AuNPs, were both capable of
detecting the antigen CA19-9 in the buffer solutions, as
demonstrated in the electrochemical impedance spectra in
Figure la,c. The difference in the real component of the
impedance is particularly relevant at low frequencies, consistent
with the results of similar immunosensors, as the electrical
signal below 100 Hz is normally dominated by the double-layer
effects.”” The CA19-9 concentration dependence is best
represented by plotting the change in the real component of
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Figure 1. Electrochemical impedance spectra for indium tin oxide
(ITO) electrodes modified with PA6/PAH/MWCNT/anti-CA19-9
(a) and PA6/PAH/AuNPs/anti-CA19-9 (c) in K3Fe(CN)¢ and in
K,Fe(CN);. Change in the real component of the impedance vs
CA19-9 concentration for PA6/PAH/MWCNT/anti-CA19-9 (b) and
PA6/PAH/AuNPs/anti-CA19-9 (d) architectures. The solid curves
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Figure 1. continued

were calculated with one Langmuir—Freundlich isotherm in (d) and a
combination of two Langmuir—Freundlich isotherms in (b). The
parameters used for the fitting are the adsorption capacity of the
system (taken as proportional to the change in impedance), Z,, the
affinity constant for adsorption K, and the heterogeneity index n.

the impedance Z' at 10 Hz, which increases sharply at low
concentrations before saturation when all of the available anti-
CA19-9 antibody sites are occupied by the adsorption of CA19-
9 molecules. The adsorption mechanisms can be explained by
using the Langmuir—Freundlich isotherms, as discussed in the
next subsection.

The major difference between the two nanostructured
architectures lies in the lower limit of detection and the
lower concentration for saturation of the PA6/PAH/AuNPs/
anti-CA19-9 (Figure 1d) architecture. Indeed, for the PA6/
PAH/MWCNT/anti-CA19-9 architecture, the calibration curve
in Figure 1b may be approximated by a straight line up to ca.
4.5 U mL™}, whereas the corresponding linear region for PA6/
PAH/AuNPs/anti-CA19-9 is up to 2 U mL™". As for the
sensitivity, determined using the International Union of Pure
and Applied Chemistry method,” the limit of detection was
1.84 and 1.57 U mL™ for PA6/PAH/MWCNT /anti-CA19-9
and PA6/PAH/AuNPs/anti-CA19-9, respectively. These limits
of detection are lower than those quoted for the commercial
sensors Architect 12000 (2 U mL™)* and AxSYM (2 U
mL™)* and competitive with the commercial sensors
KRYPTOR (1.2 U mL™)* and Elecsys (0.6 U mL™)* and
immunosensors made with Au/porous graphene nanocompo-
sites matrix (0.006 U mL™),* Au—SiO,/Fe;O, nanospheres
(0.01 U mL™),” and the sensor made with chitosan/
concanavaline A matrix (0.69 U mL™!)."?

In addition to being capable of distinguishing different
concentrations of the biomarker, immunosensors need to be
selective for a particular biomarker. This means that the
immunosensors should be robust against possible interferents
commonly present in biological fluids, such as in blood serum
samples. The results in Figure 2 demonstrate the robustness of
the two immunosensors, which are not affected when exposed
to glucose, ascorbic acid, and fetal bovine serum, with tests
performed following the same procedures as in the detection
results. In the presence of the interferents, Z’' is close to the
value for the control sample of phosphate-buffered saline
(PBS). In contrast, there was a clear increase for the two
samples containing 2 and 48 U mL™" in Figure 2a and 2.5 and
40 U mL™" in Figure 2b of CA19-9 biomarker. The difference is
particularly significant for the PA6/PAH/AuNPs/anti-CA19-9
immunosensors, which confirms their higher sensitivity inferred
from the detection limit calculated with data in Figure 1d.

It is significant that the two immunosensors could perform
successfully with real samples extracted from the blood serum
of four patients from Barretos Cancer Hospital. To offer a
visual demonstration, we treated the impedance spectra
acquired with these patient samples with a multidimensional
projection technique referred to as Interactive Document Map
(IDMAP).* In this type of data treatment, each measured
spectrum is represented by a circle on the two-dimensional
IDMAP plot, with the positioning being defined according to
the similarity of the spectra, given by eq 1.
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Figure 2. Difference in the real component of the impedance for an
immunosensor made with (a) PA6/PAH/MWCNT/anti-CA19-9 and
(b) PA6/PAH/AuNPs/anti-CA19-9 architectures exposed to PBS and
various analytes introduced in PBS.

5(xi) x) - 5min
Siomap = ———————— —d(y, y.
P 5max - 6min (yl y}) (1)

where 8,,,, and 8, are the maximum and minimum distances
between data instances, 5(x; xj) is the distance between two
samples in the original space, and d(y, y,) is the distance
function on the projected space. That is to say, similar spectra
are placed close to each other on the projected space. Figure 3
shows that patients whose blood serum has a high CA19-9
concentration (likely to develop pancreatic cancer) can be
easily distinguished from the patients with lower CA19-9
concentrations.

2.2. Adsorption Mechanisms Behind Biosensing. It is
now well established that the high sensitivity and selectivity of
immunosensors are ascribed to the irreversible adsorption of
the detected antigens (or antibodies) on immobilized antibod-
ies (or antigens).g’10 This has been proven for cancer
biomarkers as well, as exemplified with different types of
experimental methods, including nanogravimetry,” PM-
IRRAS,”"” and scanning electron microscopy (SEM).”® In
this study, we also probed these adsorption mechanisms and
established models that account for the impedance exper-
imental data.

SEM images of the nanofibers coated with MWCNTSs and
AuNPs are shown in Figure 4a,d, respectively. Two images of
the same nanofibers mats were taken and shown to display the
same qualitative surface characteristics. Of note are typical™
200 nm diameter electrospun nanofibers decorated with
MWCNTs in Figure 4a and a uniform coating of 18 nm
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Figure 3. IDMAP plots obtained from the impedance spectra of four serum samples from the patients in Barretos Cancer Hospital using the sensing
units: (a) PA6/PAH/MWCNTs/anti-CA19-9 and (b) PA6/PAH/AuNPs/anti-CA19-9. The axes are not labeled because in IDMAP plots what
matters is the relative distance between data points. That is to say, the closer the points are on the plot, the more similar the corresponding

impedance spectra are.

AuNPs in Figure 4d, consistent with the literature.** When
these nanofibers were coated with a layer of anti-CA19-9
antibodies, the morphology changed entirely with irregularly
shaped objects occupying most of the image (see Figure 4b,e).
This applies to both nanofibers architectures, indicating that the
adsorption of the antibody layer predominates as far as
morphology is concerned. The SEM images of the PA6/PAH/
MWCNTs/anti-CA19-9 and PA6/PAH/AuNPs/anti-CA19-9
architectures obtained after the nanofibers mats were exposed
to a given CA19-9 concentration are shown in Figure 4cf
respectively. The concentration chosen was 40 U mL™", close
to the saturation of the anti-CA19-9 sites, according to the
results in Figure 1b,d. The PA6/PAH nanofibers now appear
coated with layers of biomarker, giving rise to fibers with no

6978

defined shape in both cases. The adsorption of anti-CA19-9
(Figure 4e) produces spherical clusters, which bind to gold
nanoparticles. After the addition of 40 U mL™' of CA19-9
biomarker (Figure 4f), as in the previous images, the PA6/PAH
fibers lost their defined shape. This image was obtained with 30
000 times magnification to allow for the visualization of the
fiber coating.

Interpretation of the SEM images provides evidence of the
adsorption of CA19-9 antigen biomarkers, but it does not
suffice to determine which chemical groups were involved in
such adsorption. This can be reached by analyzing the PM-
IRRAS spectra in Figure 5, where the baseline correction was
made by taking the nanofibers mats of PA6/PAH/MWCNTSs
and PA6/PAH/AuNPs as reference. The adsorption of the

DOI: 10.1021/acsomega.7b01029
ACS Omega 2017, 2, 6975—-6983


http://dx.doi.org/10.1021/acsomega.7b01029

ACS Omega

Figure 4. SEM images of nanofibers mats of (a) PA6/PAH/MWCNTs; (b) PA6/PAH/MWCNTSs/anti-CA19-9; (c) PA6/PAH/MWCNTSs/anti-
CA19-9/40 U mL™" biomarker; (d) PA6/PAH/AuNPs; (e) PA6/PA6/AuNPs/anti-CA19-9; and (f) PA6/PAH/AuNPs/anti-CA19-9/40 U mL™!

biomarker.

bioactive layer of anti-CA19-9 antibodies could perhaps be
expected to lead to identical spectra. However, a comparison of
the spectra for 0 U mL™" in Figure Sa,b points to the differences
because the number of anti-CA19-9 molecules adsorbed and
their organization depend on the functionalized substrate. In
the spectra, the most prominent bands are (i) amide I between
1600 and 1700 cm™" assigned to vibrational modes of carbonyl
(C=0) from the carboxylic acid groups in the amino acids;
(ii) amide I between 1500 and 1600 cm™, where 60% of the
vibration is associated with the N—H bond, whereas the
remaining 40% is related to the C—N bond stretching of the
amide groups. The bands are all directed upward, which means
that the dipole moments of the groups involved are preferably
oriented on the film plane. Because the bands in this region of
the spectrum originate from proteins, all of them were affected
by exposing the anti-CA19-9 lying on the active layer to the
CA19-9 biomarker. The intensity of PM-IRRAS bands depends
on the orientation as well as the number of functional groups
giving rise to a specific band. Therefore, in some cases,
adsorption of increasing amounts of analyte leads to a linear
increase in band intensity, as occurred with amide I bands from
CA19-9 in previous works to allow for a quantitative
analysis.**’ With the PA6/PAH/MWCNTs/anti-CA19-9 and
PA6/PAH/AuNPs/anti-CA19-9 immunosensors, however,
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there was no monotonic dependence on the concentration,
and a quantitative analysis cannot be performed. Also relevant
is the confirmation that CA19-9 was indeed adsorbed on the
two film architectures, as indicated in the spectra of Figure Sc.

A quantitative analysis of the adsorption mechanisms is
normally made by plotting the so-called adsorption isotherms,
that is, the amount of adsorbed material versus the
concentration of the adsorbate. For biosensors, there is
evidence that the change in impedance (or capacitance) can
be taken to be proportional to the mass of adsorbate.”'** In
spite of the size of the antigens and complexity of antigen—
antibody interactions, adsorption isotherms for immunosensors
have been modeled with the simple Langmuir—Freundlich
model,”'? originally developed for the adsorption of gas
molecules on a surface. For the two nanofiber architectures
investigated here, we attempted to fit the calibration curves in
Figure 1b,d with Langmuir and Langmuir—Freundlich models
available in the literature.”"™>* Equation 2 representing the
Langmuir—Freundlich model yielded a good fitting in Figure 1d
for CA19-9 adsorption on PA6/PAH/AuNPs/anti-CA19-9
architecture.

_ Qsat(K X Ceq)n

17 K x Cp) +1

@)
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Figure S. (a) PM-IRRAS spectra for the PA6/PAH/MWCNTs/anti-
CA19-9 and (b) PA6/PAH/AuNPs/anti-CA19-9 architectures
adsorbed on gold, before (black line) and after exposure to CA19-9
at various concentrations (colored lines). Baseline correction was
performed by taking the spectra of the PA6/PAH/MWCNTSs and
PA6/PAH/AuNPs architectures as the background. (c) Adsorption of
the antibodies on the PA6/PAH/MWCNTs and PA6/PAH/AuNPs
films is proven by comparing the spectra with and without CA19-9
antibody, where the baseline correction was made using the gold
substrate as background.

where q is taken as the amount of adsorbed material on the
substrate at an equilibrium, proportional to the change in
impedance, Q,, is the adsorption capacity, K is the affinity
constant for adsorption, C,, is the aqueous phase concentration
at equilibrium, and # is the index of heterogeneity. In contrast,
for PA6/PAH/MWCNT /anti-CA19-9 architecture, adsorption
of the CA19-9 biomarker in Figure 1b could only be achieved
with a combination of two Langmuir—Freundlich functions (eq

3)
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_ QL (K1 x CL,q)"
(K1 X CLg)" + 1

Q2 (K2 x C2,)"
(K2 X C2,9)"™ + 1

q
3)

where the symbols have the same meaning as in eq 2, now with
the subindices 1 and 2 denoting the two Langmuir—Freundlich
processes. With the data we have available, it is not possible to
determine why two adsorption processes are present before
saturation. This result for the architecture containing
MWCNTs differs from all of the the others reported in the
literature, for which only one Langmuir—Freundlich process is
observed.

3. CONCLUSIONS

Electrospun polymer nanofibers of PA6/PAH modified with
either MWCNTs or AuNPs were used as matrix for the
immobilization of anti-CA19-9 antibodies, which served as
immunosensors to detect CA19-9 biomarker using electro-
chemical impedance spectroscopy. The nanostructured archi-
tectures showed high sensitivity in detecting the commercial
CA19-9 in a buffer and for distinguishing blood serum samples
of patients with distinct concentrations of the biomarker. The
three-dimensional structure of the electrospun nanofibers, as
revealed with SEM images, appears to be relevant for the
successful preservation of the antibody activity. This high
sensitivity and selectivity toward CA19-9 in the presence of
interferents may be attributed to the antibody—antigen
irreversible adsorption, which was confirmed here with PM-
IRRAS spectroscopy in which amide bands were affected by
exposure of the immunosensors to CA19-9. The adsorption
process, in particular, is typical of Langmuir—Freundlich
processes. The clear distinction of blood serum samples of
the patients likely to develop pancreatic cancer from those with
smaller CA19-9 concentrations, below the value considered as
threshold (37 U mL™'), was achieved by treating the
electrochemical impedance data with a multidimensional
projection technique. This is a limitation of the present study
because a calibration curve for a quantitative analysis cannot be
obtained in a straightforward manner. Future experiments with
a larger number of blood serum samples are therefore required
for generating sufficient data to which regression analysis
methods can be applied to yield a quantitative determination of
CAI19-9 concentrations. An avenue will then be open for a
simple, fast diagnosis of pancreatic cancer at early stages using
an immunosensor platform that can also be utilized for other
diseases.

4. EXPERIMENTAL SECTION

4.1. Preparation of PA6 and PA6/PAH Nanofibers.
Polyamide 6 (PA6), poly(allylamine) (PAH), and multiwalled
carbon nanotubes (MWCNTSs) were purchased from Sigma-
Aldrich. The antibody anti-CA19-9 and the antigen CA19-9
were purchased from Aviva System Biology, whereas real
samples of pancreatic cancer patients were provided by
Barretos Cancer Hospital. Sera from the pancreatic cancer
patients were quantified using the electrochemiluminescence
analyzer model Cobas 601 (Roche Diagnostics, Indianapolis)
and an Elecsys CA19-9 Immunoassay kit (Roche Diagnostics,
Indianapolis). The use of patient serum samples was approved
by the Committees on Ethics in Research of Barretos Cancer
Hospital (Ethics Committee number 1.447.041).

PA6/PAH nanofibers were produced by the electrospinning
technique using a homemade apparatus from a solution of
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polymer blend composed of 20% of PA6 (w/v in respect to the
solvent) in formic acid and 30% of PAH (w/w in respect to
PAG6). The solution was kept under magnetic stirring for 4 h at
room temperature. The applied voltage was 25 kV and the
distance between the needle (0.8 mm diameter) and the
collector was 3 cm. The ejection rate was set at 0.01 mL h™".
Random polymeric nanofibers were deposited on glass
electrodes coated with indium tin oxide (ITO) and fluorine
tin oxide attached to the cylindrical collector rotating at a speed
of 250 rpm. The amount of nanofibers deposited onto the
electrode was controlled by varying the spinning time.”* The
choice of these parameters for obtaining the electrospun fibers
was based on prior works.”’

4.2, Incorporation of MWCNTs onto PA6/PAH Nano-
fibers Surface. The electrospun nanofibers had their surface
modified with the adsorption of MWCNTSs from a 0.5 mg
mL™" dispersion in an ultrapure water, adding Triton X-100
(0.3% w/v) as a nonionic surfactant to improve dispersion,
following the methodology described by Mercante et al.”> The
mixture was sonicated with an ultrasonic apparatus in an ice
bath with an average power of 30 W for 120 min. After
sonication, the PA6/PAH nanofibers were immersed in
MWCNTs dispersion for 30 min. The fibers were then washed
with distilled water and dried at room temperature.”® A solution
containing 0.1 mol L' N-ethyl-N-(3-dimethylaminopropyl)
carbodiimide (EDC) and 0.1 mol L™' N-hydroxysuccinimide
(NHS) (1:1) was used for modifying the carboxylic acid groups
of MWCNTs to allow for the binding with the antibody anti-
CA19-9. Finally, the film was immersed into 1% bovine serum
albumin (BSA) to block nonspecific binding sites.

4.3. Adsorption of Gold Nanoparticles onto PA6/PAH
Nanofibers Surface. In another type of functionalization
employed, PA6/PAH nanofibers were coated with a layer of
gold nanoparticles (AuNPs)* (Figure 6). These citrate-

Gold nanoparticles + Citrate
9

Nylon 6

Figure 6. Schematic diagram for the binding between Nylon 6 (PAS6),
PAH, and gold nanoparticle.

functionalized AuNPs were synthesized using the Turkevich
method,>® in which 20 mL of 1 mM solution of HAuCl, was
heated to 90 °C and 2 mL of 1% sodium citrate solution was
added under vigorous stirring and constant heating. The
solution changed color from yellowish (HAuCl,) to red,
indicating the Au nanoparticle formation. Heating was
discontinued with continuous stirring of the solution till
room temperature. The nanofibers were immersed in the
solution of AuNPs for 12 h, and the nanoparticles were
adsorbed onto the nanofibers surface by hydrogen bonding and
electrostatic interactions.”> The nanofibers were then washed
with ultrapure water and dried at room temperature. The same
procedure as mentioned above was performed with EDC/NHS
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to allow for the binding with the antibody anti-CA19-9,
followed by the incorporation of BSA.

4.4, Electrochemical Impedance Spectroscopy Meas-
urements. Detection of CA19-9 biomarker was carried out
using electrochemical impedance spectroscopy with the
immunosensors manufactured as described in the previous
subsections. The immunosensors were exposed to different
concentrations of commercial CA19-9 biomarker for 10 min,
followed by washing for the removal of poorly adsorbed
molecules. In another set of experiments, the immunosensors
were exposed to 4 blood serum samples from the pancreatic
cancer patients of Barretos Cancer Hospital for 10 min, also
followed by washing with PBS buffer. All of the experiments
were performed using a PGSTAT 204 Autolab system
containing a thermostated glass cell with a three-electrode
configuration: ITO glass modified with the nanofiber mats
employed as the working electrode, an Ag/AgCl electrode as a
reference, and platinum foil as auxiliary electrode. The data
were acquired in the frequency range between 1 and 10° Hz
with a 10 mV amplitude.
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