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ORIGINAL ARTICLE
AP2y controls adult hippocampal neurogenesis and modulates

cognitive, but not anxiety or depressive-like behavior

A Mateus-Pinheiro’*®, ND Alves'*®, P Patricio'?, AR Machado-Santos'?, E Loureiro-Campos'?, JM Silva'?, VM Sardinha'?, J Reis',
H Schorle3, JF Oliveira'?, J Ninkovic*?, N Sousa'? and L Pinto'?

Hippocampal neurogenesis has been proposed to participate in a myriad of behavioral responses, both in basal states and in the
context of neuropsychiatric disorders. Here, we identify activating protein 2y (AP2y, also known as Tcfap2c), originally described to
regulate the generation of neurons in the developing cortex, as a modulator of adult hippocampal glutamatergic neurogenesis in
mice. Specifically, AP2y is present in a sub-population of hippocampal transient amplifying progenitors. There, it is found to act as a
positive regulator of the cell fate determinants Tbr2 and NeuroD, promoting proliferation and differentiation of new glutamatergic
granular neurons. Conditional ablation of AP2y in the adult brain significantly reduced hippocampal neurogenesis and disrupted
neural coherence between the ventral hippocampus and the medial prefrontal cortex. Furthermore, it resulted in the precipitation
of multimodal cognitive deficits. This indicates that the sub-population of AP2y-positive hippocampal progenitors may constitute
an important cellular substrate for hippocampal-dependent cognitive functions. Concurrently, AP2y deletion produced significant
impairments in contextual memory and reversal learning. More so, in a water maze reference memory task a delay in the transition
to cognitive strategies relying on hippocampal function integrity was observed. Interestingly, anxiety- and depressive-like behaviors
were not significantly affected. Altogether, findings open new perspectives in understanding the role of specific sub-populations of
newborn neurons in the (patho)physiology of neuropsychiatric disorders affecting hippocampal neuroplasticity and cognitive

function in the adult brain.
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INTRODUCTION

In the adult central nervous system, specific brain niches retain the
ability to generate new neurons throughout life.'! Among these,
the subgranular zone (SGZ) of the hippocampal dentate gyrus
(DG) is of particular interest. There, newly generated cells become
mostly glutamatergic granular neurons,®™ in the process recog-
nized as neurogenesis. Adult hippocampal neurogenesis is a
multistep and highly regulated process, originating from neural
stem cells (NSCs) residing in the SGZ."” Thereafter, the SGZ NSCs
will divide to give rise to transient amplifying progenitors (TAPs),
mitotically active cells, which will be responsible for the rapid
expansion of the multipotent progenitor cells pool. Finally, the
generated neuroblasts will undergo a short migration into the
granule cell layer of the DG, differentiating into fully mature and
integrated neurons in the pre-existing neural circuits. Importantly,
survival of newborn cells depends on proper axonal and dendritic
development. This confers cells the ability to receive GABAergic
and, subsequently, glutamatergic synaptic input, both crucial for
normal maturation and integration of newly generated cells.®
Several lines of evidence have shed light on the relevance
of hippocampal neurogenesis for both structural and functional
plasticity of the adult hippocampus. This process has beha-
vioral repercussions in distinct cognitive and emotional domains,
both in basal states and in neuropsychiatric disorders (such as

schizophrenia and depressive disorders).””"" More so, the

transcriptional network involved in the regulation of neurogen-
esis, both in early developmental stages and during adulthood,
has been the focus of recent studies.>™'® It is now established that
during cortical development the regulation of glutamatergic
neurogenesis is controlled by a set of transcription factors,
including Pax6, Tbr2, NeuroD and Tbr1, with implications on
proliferation, cell cycle kinetics, lineage and fate specification,
axonal growth and cell adhesion processes.'®'”'® Interestingly,
the transcriptional sequence of cell fate determinants (Pax6 —
Thr2 — NeuroD — Tbr1) is recapitulated during adult hippocampal
neurogenesis and, with some variations, has a role in cell fate
towards glutamatergic lineages in the subependymal zone.'®'822

Activating protein 2y (AP2y, also known as Tcfap2c or Tfap2c) is
a recently described transcription factor. It is part of the
transcriptional network regulating glutamatergic neurogenesis
during early developmental stages, directly regulating the basal
progenitor fate determinants Math3 and Tbr2. In the developing
cortex, deletion of AP2y results in a specific reduction of upper
layer neurons in the occipital cerebral cortex, whereas its
overexpression potentiates region- and time-specific generation
of cortical layers II/lll.2* Yet, during adulthood, AP2y has been
classically linked to breast carcinogenesis, namely as a promotor
of proliferation and impaired differentiation of tumor cells and as
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a corlaributor to chemoresistance and radiation resistance of these
cells.

Herein, in a mice model, we addressed the question of whether
AP2y is an active transcriptional regulator of adult glutamatergic
neurogenesis and if its function is relevant for different emotional
and cognitive behavioral dimensions. The present study reveals an
important role of AP2y in the regulation of glutamatergic
neurogenesis in the adult hippocampal DG, with functional
repercussions in the integrity of limbicocortical connections and
in different cognitive modalities.

MATERIALS AND METHODS

A brief description of the Materials and methods is presented in this
section. For a full description of all methods, please refer to the
Supplementary Information.

Animals

AP2y'oxP/1oxP (APDVA/fl), Emx1-cre, Glast:CreErt2 (ref. 25) and Glast:CreErt2/Z/
EG*® mice were maintained on a C57BI/6) background (also used as wild
type). For the initial in vivo AP2y deletion experiment, AP2yfl/fl mice were
crossed with Glast:CreErt2/Z/EG mice to generate AP2yfl/fl//Glast::CreErt2//Z/
EG mice. Tamoxifen (Sigma-Aldrich, St Louis, MO, USA; T-5648) was
dissolved in corn oil (Sigma-Aldrich; C-8267) at 20 mg ml~"and 1 mg was
injected intraperitoneally two times a day for 5 consecutive days in
2-month-old male animals. Animals were killed 1 week after the end
of tamoxifen administration. For in vivo AP2y overexpression experiments,
2-month-old male C57BI/6J wild-type animals were stereotactically
injected with 1 pl of either CAG-IRES-GFP (IRES-GFP) or CAG-IRES-AP2y
(AP2y-IRES-GFP) retroviruses into the left and the right DG, and killed either
1 week or 1T month postinjections (n=5 per group for each experimental
condition). For behavioral and electrophysiological studies, wild-type (Wt),
AP2yfl/+//Glast::CreErt2 (AP2y*'~ cKO) and AP2yfl/fl//Glast::CreErt2 (AP2y~’~
cKO) 2-month-old male mice were injected intraperitoneally with 1 mg
tamoxifen two times a day for 5 consecutive days, with 7 days break
followed by injections for 5 additional consecutive days. Animals were
subjected to electrophysiological studies and behavioral testing 21 days
after injections (n=10 per group).

All procedures were carried out in accordance with EU Directive
2010/63/EU and were approved by the Portuguese Government/Direcao
Geral de Alimentacdo e Veterinaria (DGAV) with the project reference
0420/000/000/2011 (DGAV 4542).

In situ hybridization and immunohistochemical analysis

In situ hybridization and immunostaining analysis were performed as
described previously.?* Details on conditions and antibodies can be found
in the Supplementary Information.

BrdU labeling

Wt mice used for cell type analyses with in situ hybridization and immuno-
fluorescence were given bromodeoxyuridine (BrdU) in drinking water
(1 mg mli~; Sigma-Aldrich; B5002) for 2 weeks, and killed 8 weeks later. For
the remaining deletion and overexpression experiments, mice were injected
once with BrdU (100 mg kg ™, intraperitoneally), 24 h before killing.

Primary DG cultures and in vitro AP2y deletion

For primary DG cultures, six male mice (AP2yfl/fl male mice, 2 months old)
were used, as described previously.23 Cells were transduced with a
retroviral vector IRES-GFP or CRE-IRES-GFP 2h after being plated.?’” After
7 days in culture, cells were fixed with 4% paraformaldehyde in PBS for
15 min. at room temperature and processed for antibody staining.

3D morphological analysis

To assess the 3D dendritic morphology of hippocampal DG granular
neurons, we used the Golgi-Cox impregnation technique. Dendritic
arborization and spine numbers/density were analyzed in the DG
of Wt, AP2y*'~ cKO and AP2y~’~ cKO mice, as described previously”?
(10-15 neurons for each animal; n=4 per group).
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Electrophysiological studies

Local field potentials (LFPs) were recorded in the ventral hippocampus
(VHIP) and in the prefrontal cortex (PFC); coherence measurements
between simultaneously recorded LFPs in both regions were performed,
as described previously.”® Power spectra densities (PSDs) were also
measured in these two regions, as detailed in the Supplementary
Information.

Behavioral analysis

Wt, AP2y"’~ cKO and AP2y '/~ cKO mice were tested in the forced
swimming test (FST; to assess depressive-like behavior), in the open field
and in the elevated plus maze tests (to assess anxiety-like behavior), as
described previously.9 Furthermore, mice were tested in a contextual fear
conditioning paradigm, as well as in different water maze tasks to
characterize animals’ cognitive function, as detailed in the Supplementary
Information.

Data analysis and statistics

Statistical analyses were performed using the SPSS software (Chicago, IL,
USA). Animals were assigned to groups according to their genotypes.
Sample sizes were determined by power analyses based on previously
published studies. All presented data satisfied normal distribution in
Kolmogorov-Smirnov testing. After confirmation of homogeneity of group
variances between the groups, data were subjected to appropriate
statistical tests. Analysis of variance (ANOVA) repeated measures was used
to analyze performance on cognitive learning tasks. One-way ANOVA was
used to evaluate the remaining behavioral and molecular results. F- and P-
values derived from statistical analyses are properly indicated along the
text. Differences between groups were determined by Bonferroni’s post
hoc multiple comparison test, and the corresponding P-values are
indicated in the figures. A t-test was used to evaluate differences between
two groups where appropriate. Statistical significance was accepted for
P < 0.05. No data points were excluded from the different analyses. Effect
size, Cohen’s d for t-test and n? for ANOVA were presented whenever
statistical significance was reached. All results and corresponding statistical
analyses are detailed in Supplementary Table 1.

RESULTS

AP2y is present in the adult hippocampal neurogenic niche

In light of the early description of the role of AP2y in the
regulation of glutamatergic neurogenesis during developmental
stages, we explored whether AP2y expression was present in
the adult hippocampal DG, as this area represents an important
source of glutamatergic neurons in the adult brain. Using in situ
hybridization to characterize regional gene expression distribu-
tion, we found AP2y-mRNA-positive cells in the adult DG
(Figure 1a). Furthermore, using an 8-week BrdU label retaining
protocol, we found colocalization of AP2y-mRNA signal with
BrdU labeling, as well as with the transcription factor Tbr2, a
regulator of glutamatergic neurogenesis in both developing and
mature brain (Figure 1b). Subsequent immunofluorescent labeling
of AP2y protein and cell count analysis revealed a high proportion
of AP2y-positive cells in the SGZ to be also positive for the
neuroblast marker doublecortin (DCX) (61.5+2.7%), whereas
a subset of these cells was colabelled with Tbr2 (21.3+4.1%;
Figures 1c and d), supporting lineage commitment of
AP2y-positive cells to the glutamatergic neuronal lineage. More-
over, AP2y immunopositive cells were also positive for the cell
cycle marker Ki-67 (Supplementary Figure 1) and BrdU (after an 8-
week chase period) in the hippocampal DG (13.9+3.5%;
Figures 1c and d), showing that a small portion of AP2y-positive
cells are slow dividing progenitor cells. Importantly, we did not
find colocalization between AP2y-positive cells and mature
neuronal nuclei (NeuN)-positive neurons (Supplementary
Figure 1).

© 2016 Macmillan Publishers Limited, part of Springer Nature.
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Figure 1.

*

Activating protein 2y (AP2y) expression in the adult mouse hippocampal dentate gyrus (DG). (a) In situ hybrization (ISH) of AP2y

in the adult hippocampal DG. (b) The left panel shows the combination of ISH of AP2y in the DG with immunolabelled bromodeoxyuridine
(BrdU)-positive (in red) and Thr2-positive cells (in green). (c and d) Immunohistochemical quantification of the percentage of AP2y-positive
cells colabelled with BrdU, Tbr2 or doublecortin (DCX) in the DG. Error bars represent s.e.m. Scale bars represent 100 pm (a) and 50 pm

(b and c).

AP2y regulates adult hippocampal proliferation and neuronal
differentiation, through reciprocal interactions with transcriptional
regulators of glutamatergic neurogenesis

After identifying the presence of AP2y in glutamatergic progeni-
tors and neuroblasts of the adult DG, we assessed whether its
ability to regulate neurogenesis during the prenatal cortical
developmental window was preserved in the adult brain. To
understand its role in neuronal fate specification, we used NSCs
primary cultures, derived from the adult DG. We used a retroviral-
based approach to infect cultured NSCs from mice containing
AP2y flanked by loxP sites (AP2yfl/fl mice) to delete AP2y. Viral-
mediated deletion of AP2y produced a decrease in the generation

© 2016 Macmillan Publishers Limited, part of Springer Nature.

of mixed clones (clones containing both neuronal Tuj1-positive
and non-neuronal Tujl-negative cells; t;g=5.705 P < 0.001),
counterbalanced by a marked increase in the formation of non-
neuronal Tujl-negative clones (t;g=7.173, P < 0.001), supporting
the role of AP2y in commitment and differentiation into the
neuronal lineage (Figures 2a and b). We did not observe a
significant difference in the clone size of control and AP2y-absent
cells (Figure 2c).

To verify if the effects observed in vitro upon deletion of AP2y
were present in the adult brain, we used tamoxifen-inducible
AP2yfl/fl//Glast::CreErt2//Z/EG mice (henceforth referred to as
AP2y™'7) to promote the deletion of AP2y, and evaluated the

Molecular Psychiatry (2016), 1-10
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effects on hippocampal neurogenesis 1 week after induction (cells
with AP2y deletion become labeled as GFP-positive cells). In
AP2y’/’ mice, we observed a significant decrease in the
percentage of GFP/DCX-double-positive cells in the DG in
comparison with Wt mice (t;g=4.239, P<0.001) (Figure 2d).

The decrease in neuroblasts was accompanied by an increase in
GFP/GFAP-double-positive cells (t;g=4.171, P < 0.001; Figure 2d).
This increase in GFAP-positive cells in the SGZ is likely to represent
an increase in the GFAP-expressing progenitors pool, as a result of
a defect in differentiation progression into glutamatergic neurons.
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We complemented these data with a forebrain AP2y deletion
experiment, and observed a decrease in DCX-positive neuroblasts
in the DG (Supplementary Figure 2).

To gain further insight on the effects of AP2y in the regulation
of adult hippocampal neurogenesis, an AP2y overexpression
(AP2y®) experiment was conducted through intrahippocampal
injections of a retrovirus carrying an AP2y-IRES-GFP cassette in the
DG. Hence, proliferative cells were stably infected by viral vectors,
resulting in the overexpression of AP2y and coexpression of GFP.
Analysis performed 1 week after injection showed that a large
proportion of GFP-positive cells corresponded to neuroblasts
(GFP/DCX-double-positive cells; Figure 2e). Moreover, there was a
reduction in the percentage of neuroblasts in AP2y®* animals,
1 week after injection (t;g=3.082; P=0.003) (Figure 2e) that was
accompanied by a significant increase in mature granular neurons
(GFP/NeuN-double-positive cells; t;g=4.945; P < 0.001) (Figure 2e)
and a reduction in the GFAP-positive cell population (t;g=2.828;
P=0.006) (Figure 2e). This result suggests the promotion of
neurogenesis and an acceleration of the neuronal differentiation
process after AP2y overexpression. In animals killed 1 month after
injection, most GFP-positive cells corresponded to mature (NeuN-
positive) neurons (Figure 2f). At this time point, the increase in the
differentiation of neuronal cells in the DG was maintained in
AP2y®* mice, which presented a significant increase in the per-
centage of GFP/NeuN-double-positive cells (t;g=6.529; P < 0.001)
(Figure 2f). Few GFP-positive cells colocalized with GFAP-positive
cells in the DG (Supplementary Figure 3) and a significant increase
was observed in the percentage of GFP/GFAP-double-positive
cells in AP2y°* mice (Figure 2f). Taken together, both in vitro and
in vivo results demonstrate the role of AP2y in the regulation of
adult hippocampal proliferation and neuronal differentiation.

Moreover, to have a mechanistic view on how AP2y participates
in the regulation of adult hippocampal neurogenesis, mouse
embryonic carcinoma P19 cells were transfected with a pGL3
luciferase vector containing either NeuroD or Tbr2 promoters
along with a control, Sox2, Pax6 or AP2y cDNA expression vector.
Transfection with AP2y led to a significant activation of both
promoters (Tbr2, P < 0.001; NeuroD, P=0.031; Figure 2g) in line
with previous reports focusing developmental stages.”> We also
observed significant activation of these promoters by Sox2 (Tbr2,
P=0.001; NeuroD, P=0.001; Figure 2g) and Pax6 (Tbr2, P=0.026;
NeuroD, P=0.022; Figure 2g), but no cooperative effects of Pax6
with AP2y. However, simultaneous transfection with Sox2 and
AP2y potentiated the activation of the Tbr2 promoter (Tbr2,
P=0.026; NeuroD, P=0.022; Figure 2g). In a parallel assay, we also
found that Pax6 and Sox2 activate the AP2y promoter while
Mash1 and Ngn1 promote its inhibition. Finally, we show that
AP2y was able to trigger its own promoter activation (Figure 2h).

AP2y cKO adult mice display hippocampal neurogenesis
impairments but no alterations in neuronal morphology

After using complementary approaches to manipulate AP2y levels
both in vitro and in vivo, a tamoxifen-inducible AP2y cKO mouse
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model was used to explore the functional implications of AP2y
deficiency in the adult brain (Figure 3a). A significant reduction on
AP2y protein levels was confirmed by western blot in the
hippocampal region of both heterozygous (AP2y™ ~cKO) and
homozygous conditional  knockout (AP2y™'~ cKO) mice
(Figures 3b and c). Moreover, AP2y deficiency triggered a
reduction of Pax6 and Tbr2 protein levels, but not Sox2 (an
upstream regulator), in the both dorsal and ventral DG of adult
mice (Figures 3b and c).

AP2y cKO animals present deficits in hippocampal proliferation
(decrease in BrdU-positive cells), an effect that is more
pronounced in homozygous mice (dorsal DG: F;_3,=11.97,
P <0.001; post hoc: P<0.001; ventral DG: F;3,=8.596,
P <0.001; post hoc: P<0.001; Figures 3d-f) as well as in the
generation of new neuroblasts (detected as lower number of
BrdU/DCX-double-positive cells; dorsal DG: F5_37=19.87, P < 0.001;
post hoc: P < 0.001; ventral DG: F3_37=4.678, P=0.015; post hoc:
P < 0.01; Figures 3e and f).

To explore whether AP2y deficiency could affect other forms of
structural plasticity within the adult DG, we analyzed the dendritic
morphology of DG granular neurons, and spine densities and
morphology (Figures 3g-i and Supplementary Figure 4). Of note,
none of these parameters was affected by AP2y deletion.

AP2y deficiency induces cognitive deficits, but has no impact on
anxiety- or depressive-like behavior

Given the role of AP2y in adult hippocampal neurogenesis, we
tested AP2y cKO mice in different behavioral paradigms to assess
its impact in several emotional and cognitive domains. We used
two behavioral tests to detect anxiety-like behavior, namely the
open-field test and the elevated plus maze. AP2y deletion was not
sufficient to produce a statistically significant decrease in the total
distance traveled in the center of the open-field arena (Figure 3j),
or a decreased exploration time in open arms of the elevated plus
maze (Figure 3k). Moreover, in the FST, a depressive-like behavior
test, AP2y cKO mice displayed similar immobility levels compared
with Wt animals (Figure 3lI).

Next, we assessed the repercussions of AP2y deletion for
different cognitive domains. We tested animals in a contextual
fear conditioning task, previously described to be sensitive to
neurogenesis impairments.>® Animals were submitted to a context
probe, aimed to test hippocampal-dependent memory, and a
light-cued probe, aimed to assess the integrity of extrahippo-
campal memory circuits®® (Figure 3m). All groups presented
similar average freezing percentages after the conditioning trials
(Figure 3m). In the context probe (context A), AP2y '~ cKO
presented a reduction in the percentage of freezing when
exposed to a familiar context (F3_;s =3.767, P=0.047; post hoc:
P < 0.05; Figure 3m). Switching to a new environment (context B)
promoted a decrease in freezing in all groups (Figure 3m). Of note,
heterozygous deletion of AP2y was not sufficient to produce
impairments in contextual memory. In the light probe, all groups
presented similar responses to the light cue (t;4=0.7959,

Figure 2.

Deletion and overexpression of activating protein 2y (AP2y) in the adult brain. (a and b) In vitro viral-mediated deletion of AP2y in

neural stem cell (NSC) primary cultures (a) with quantification of the percentage of pure neuronal (PC), mixed neuronal and non-neuronal
(MC) and non-neuronal clones (NC) (b) and average clone size (c) in dentate gyrus (DG) NSC primary cultures; n=10. (d) Tamoxifen-induced
AP2y deletion in Glast-expressing cells was performed, and the percentage of green fluorescent protein (GFP)-positive cells colabelled with
doublecortin (DCX) or glial fibrillary acidic protein (GFAP) in the subgranular zone (SGZ) was assessed. (e and f) Viral-mediated overexpression
of AP2y in the adult hippocampal DG. Adult mice were injected with retrovirus containing AP2yIRES-GFP or simply IRES-GFP as an
experimental control and killed either 1 week after injection (e) or 4 weeks after injection (f). Graphs show quantification of GFP-positive
cells colabelled with DCX, neuronal nuclei (NeuN) or GFAP. Right panels show GFP-positive transfected cells in the hippocampal SGZ; n=6.
(g and h) Histograms depicting the luciferase luminescence intensity normalized to Renilla intensity from embryonic carcinoma P19 cells
transduced with the firefly or Renilla luciferase constructs (Fluc or Rluc, respectively) using either NeuroD and Tbr2 (g) or AP2y promoters (h).
Values were normalized to the pMXIG empty vector containing only GFP (four independent experiments). Student’s t-test, *P < 0.05, **P < 0.01

and ***P<0.001. Error bars represent s.e.m. Scale bars represent 20 pm.
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Figure 3. Loss of activating protein 2y (AP2y) impairs adult hippocampal neurogene5|s and cognitive function. (a) Two-month-old wild-type
(Wt), AP2yfl/+//Glast::CreErt2 (AP2y™ ~ cKO) and AP2yfl/fi//Glast:CreErt2 (AP2y~’~ cKO) animals were injected with tamoxifen, tested 21 days after
and subsequently killed. (b and c) Western blot analysis of AP2y, Sox2, Pax6 and Tbr2 in adult hippocampal protein extracts from Wt,
AP2y*~cKO and AP2y~/~ cKO mice; n=5-6. (d) Dorsal hippocampal coronal section stained for bromodeoxyuridine (BrdU) (in green) and
doublecortin (DCX) (in red). Double-stained BrdU and DCX are indicated by white arrows. (e and f) Cell counts of BrdU-positive cells and BrdU/
DCX-double-positive cells in the hippocampal dentate gyrus (DG); n=6. (g) Representative three-dimensional (3D) morphometric
reconstruction of a DG granular neuron. (h and i) Dendritic length and spines density and morphology of hippocampal granular neurons;
n=10. (j and k) Anxiety-like behavior was tested both in the open-field test (j) and in the elevated plus maze (k). (I) The presence of
depressive-like behavior was assessed in the forced swim test. (m) In addition, animals were tested in a contextual fear conditioning paradigm;
percentage of freezing is presented after initial light-shock pairings (left panel), in the context probe (middle-right and -left panels) and in the
cue probe (right panel); n=10. One-way analysis of variance (ANOVA), *P < 0.05, **P<0.01 and ***P < 0.001. Error bars represent s.e.m. Scale
bars represent 50 pm. CFC, contextual fear conditioning; cKO, conditional knockout; EPM, elevated plus maze; FST, forced swim test;
M, mushroom spines; OA, open arms; OF, open field; R, ramified spines; T, thin spines; Tk, thick spines.
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Figure 4. Cognitive strategies during water maze learning in AP2y~’~ conditional knockout (cKO) mice. (a-h) Spatial reference memory was
evaluated as the average escape latency in each test day. A schematic representation and color code for each strategy (b) and the average
prevalence of each strategy by trial number are shown both for wild-type (Wt) (c) and for AP2y™/~ cKO animals (d). The prevalence of each
strategy-block along trials (Block 1: ‘non-hippocampal-dependent strategies’; Block 2: ‘hippocampal-dependent strategies'), the distribution of
strategies-block boundaries and overall block length are shown for Wt (e) and AP2y~/~ cKO animals (f); graphical comparison of these
parameters is shown in (g and h). (i and j) Furthermore, animals were tested in a working memory task (i) and in reversal learning task (j);

n=10, Student’s t-test, ***P < 0.001. Error bars represent s.e.m. AP2y, activating protein 2y.

P=0.219; Figure 3m). Overall, contextual fear conditioning results
showed that AP2y™’~ cKO display specific deficits in contextual
hippocampal-associated memory, whereas preserving associative
non-hippocampal-dependent memory.

We proceeded with the cognitive characterization of AP2y cKO
using different water maze test paradigms (Figure 4). In a
reference  memory task, which relies on the integrity of
hippocampal function,*® Wt and AP2y™’~ cKO mice presented
similar learning curves (Figure 4a). However, analysis of the
strategies adopted to reach the escape platform®' 3 showed that

© 2016 Macmillan Publishers Limited, part of Springer Nature.

AP2y™’~ cKO mice delayed the switch from non-hippocampal-
dependent strategies (‘Block 1°) to hippocampal-dependent
strategies (‘Block 2') (Figures 4b-h). In fact, most AP2y /= cKO
animals initiate Block 2 strategies by test days 3 and 4, while
presenting an increased mean duration of Block 1 compared with
Wt mice (Block 1: t;3=1.966; P=0.032; Block 2: t;3=2.690;
P=0.008; Figures 4e-h). Furthermore, in a working memory test
paradigm, AP2y~’/~ cKO and Wt mice presented similar perfor-
mances along all the trials (Figure 4i). Regarding behavioral
flexibility, AP2y~'~ cKO displayed increased time spent on the
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Activating protein 2y (AP2y) deficiency decreases spectral coherence between the ventral hippocampus (vHIP) and the medial

prefrontal cortex (mPFC) and neuronal activity within each region. (a) Upper panel depicting local field potential (LFP) recording sites and
electrode positions; lower panel shows representative LFP signals. (b) Spectral coherence between vHIP and mPFC of wild-type (Wt) and AP2y
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One-way analysis of variance (ANOVA), **P<0.01 and ***P<0.001. Error bars represent s.e.m.

‘older quadrant’, compared with Wt mice (t;s =4.806, P < 0.0001;
Figure 4j). Interestingly, these results were only found in
homozygous mice, as AP2y*~ cKO presented test performances
similar to Wt animals (Supplementary Figure 5).

The hippocampal-to-PFC link is impaired in AP2y”’~ cKO mice
To better understand the mechanism underlying reference
memory and behavior flexibility deficits in AP2y-deficient mice,
we performed a functional characterization of the hippocampus-
to-PFC network by analyzing electrophysiological features of LFPs
in these areas (Figure 5a). Interestingly, the temporal structure of
the LFPs recorded from AP2y cKO animals was found to be
affected; specifically, in AP2y~’~ cKO animals, coherence measure-
ments between simultaneously recorded LFPs?®3* of the medial
PFC and the VHIP were significantly decreased in all spectral bands
(theta: F3_1,=6.788, P=0.011, post hoc: P < 0.01; beta: F5_,,=28.72,
P < 0.001, post hoc: P < 0.001; low gamma: F3_;,=19.77, P < 0.001,
post hoc: P <0.001; Figure 5b), thus showing a compromised
connection between these two brain regions. PSDs translate the
amplitude of the signals recorded in a brain region across the
frequency domain and are important read-outs of the function of
that region.?®3> AP2y depletion did not exert an effect in PSD of the
ventral hippocampus (Figures 5c and d) but promoted a reduction
in PSD of the PFC, namely in the beta and low gamma frequency
bands (beta: F3_;,=11.94, P=0.001, post hoc: P < 0.01; low gamma:
F3_1,=11.03, P=0.0038, post hoc: P < 0.01; Figures 5c and e).

DISCUSSION

Adult hippocampal neurogenesis has been widely associated with
hippocampal-dependent cognitive functions, such as spatial ref-
erence memory, behavioral flexibility or pattern separation.>~3#

Molecular Psychiatry (2016), 1-10

In addition, and although still a matter of debate, altered
hippocampal neurogenesis has been implicated in the precipita-
tion of anxiety- and depressive-like behavior in rodent models of
psychiatric diseases, as well as in the improving effects mediated
by different classes of antidepressants, antipsychotic or antide-
mentia drugs.'®***° Herein, we investigated whether the neuro-
genic regulatory effects of AP2y in the developing brain could be
extended to the mature adult brain.

We believe the present study demonstrates for the first time the
presence of AP2y in the adult hippocampal DG, both in Thr2-
positive glutamatergic progenitor cells and in neuroblasts. More-
over, results reveal that AP2y is a positive regulator of adult
hippocampal neurogenesis. Its overexpression promotes the
generation of new neurons in this region, whereas its deletion
results in a marked reduction of the neuroblast population, both
in vitro and in vivo. Mechanistically, AP2y acts as an effector of
Sox2 and Pax6 in the promotion of Tbr2 expression in
hippocampal progenitor cells. In fact, we show that alterations
in AP2y expression produce a negative net effect in Tbr2 protein
levels within the hippocampal DG (significant decrease). The
results suggest that AP2y regulates postnatal glutamatergic
neurogenesis by mobilizing TAPs, rather than interfering with
the NSC pool. Indeed, Thr2 (along with transcription factors such
as NeuroD) is likely a major downstream effector of AP2y
regulation. Tbr2 expression has been shown to be critical for
TAPs' pool expansion and to coordinate the progression to
subsequent neuronal lineage differentiation stages in the adult
hippocampus.>>*'*? Interestingly, the presence of an alternative
regulatory pathway using AP2y as an intermediate transcriptional
regulator, in parallel with the direct regulation of Tbr2 by Pax6,
suggests that AP2y function may allow a fine-tuning of the
neurogenic process. This may be either by rapidly expanding or by
restricting the TAPs' pool through the modulation of Thr2
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expression.**** Accordingly, the reduction of progenitor cells
observed after deletion of AP2y possibly results from a failure in
the progression to a postmitotic phase, where normal axonal
growth and dendritic extension allow the proper synaptic input
(shown to be critical for the successful survival and maturation of
newborn cells)."® More so, AP2y deletion in early embryonic
corticogenesis was associated with a twofold increase in apoptosis
of progenitor cells and their immediate progeny.”® Thus, it is
plausible that the same developmental outcome is recapitulated
in adult hippocampus and the observed reduction in TAPs is
related with halted progression to subsequent maturation stages,
culminating in cell death of glutamatergic progenitors.

We next explored how the transcriptional modulation of
glutamatergic neurogenesis could impact on behavior. Interest-
ingly, no significant changes were observed in emotional states,
both depressive- or anxiety-like, in animals with reduced levels of
AP2y. Given that AP2y is only present in a subset of newly formed
neuroblasts, it is likely that the lack of AP2y-positive neuroblast
sub-population is not sufficient to elicit an evident phenotype.
Moreover, AP2y manipulation in the adult hippocampus did not
influence normal dendritic morphology of postmitotic cells,
another form of hippocampal structural plasticity critical for
complex emotional behaviors.”*°  Altogether, results point
for the need to characterize and modulate AP2y-positive and
-negative neuroblast populations in future studies. This will allow
to pinpoint its specific participation in different behavioral
outcomes, both in basal and in pathological context. Furthermore,
it is plausible that by challenging the finely tuned hippocampal
neurogenic process, AP2y-positive newborn cells will evidence
additional functional correlates. Accordingly, glutamatergic
Tbr2-positive progenitors have been shown to be highly
responsive to environmental enrichment or voluntary wheel
running, which more than doubled Tbr2-positive TAPs, suggesting
that in the advent of external stimuli these cells may have
additional roles to those here reported. Additional insights on the
full extent of the functional importance of AP2y-positive
progenitors may come from future studies analyzing the
behavioral impacts of AP2y overexpression in the adult hippo-
campus. More so, in studies, in which hippocampal neurogenesis
has been experimentally bolstered, beneficial effects in learning,
memory*“® and pattern separation®’ were reported. In the
opposite perspective, in psychopathological contexts known to
promote a potent antineurogenic insult, such as chronic stress
exposure, the sub-population of AP2y-positive progenitors is likely
to become severely compromised. This reduction in AP2y-positive
cells, in articulation with other deleterious effects on neural
plasticity promoted by chronic stress, may also contribute to a
better characterization of the importance of these cells, not only in
basal conditions but also in pathological scenarios, such as in
depression.”*®

Interestingly, AP2y regulation of the TAPs’ population seems
essential to the preservation of hippocampal-dependent cognitive
tasks. Cognitive dimensions based on the interaction of the
hippocampal formation and prefrontal cortical areas, such as
spatial behavioral flexibility, were also impaired in AP2y™/~ cKO
animals. Strikingly, the electrophysiological studies revealed that
AP2y deficiency in the adult brain led to a significant decrease of
coherence between the vHIP and the PFC, indicating a decrease in
the ability of these regions to functionally interact. This included
the 6 and S frequencies, previously shown to be critically related
with behavior outputs dependent on the corticolimbic
networks.?®4%°% Sych inter-regional electrophysiological impair-
ments reflect how the lack of AP2y-positive progenitors impact
not only at the level of intrahippocampal circuitry but also
modulate the function of cortical regions that cooperate with the
hippocampus in the orchestration of complex cognitive behaviors.
Moreover, the integrity of the vHIP-to-PFC link has been recently
described to be important to the antidepressant action of drugs,
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such as ketamine,®' raising the possibility of AP2y to have an
important role in the preservation of this neuronal circuit.

Altogether, in this work we show that the lack of AP2y in the
adult mammalian brain impairs the regulation of hippocampal
neurogenesis, leading to glutamatergic network malfunction
impairments on neuronal activity and inter-regional communica-
tion. This dysregulation had significant implications for cognitive
processes that may be relevant for the pathogenesis of psychiatric
conditions. In light of the findings reported herein, future studies
should explore whether AP2y participates in the pathogenesis of
these disorders characterized by hippocampal neurogenesis
impairments.
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