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Abstract
Cardiovascular diseases are among the leading causes of death and frequently 
result in local myocardial dysfunction. Among the numerous imaging 
modalities available to detect these dysfunctional regions, cardiac deformation 
imaging through tagged magnetic resonance imaging (t-MRI) has been an 
attractive approach. Nevertheless, fully automatic analysis of these data sets 
is still challenging. In this work, we present a fully automatic framework to 
estimate left ventricular myocardial deformation from t-MRI. This strategy 
performs automatic myocardial segmentation based on B-spline explicit 
active surfaces, which are initialized using an annular model. A non-rigid 
image-registration technique is then used to assess myocardial deformation. 
Three experiments were set up to validate the proposed framework using a 
clinical database of 75 patients. First, automatic segmentation accuracy was 
evaluated by comparing against manual delineations at one specific cardiac 
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phase. The proposed solution showed an average perpendicular distance 
error of 2.35  ±  1.21 mm and 2.27  ±  1.02 mm for the endo- and epicardium, 
respectively. Second, starting from either manual or automatic segmentation, 
myocardial tracking was performed and the resulting strain curves were 
compared. It is shown that the automatic segmentation adds negligible 
differences during the strain-estimation stage, corroborating its accuracy. 
Finally, segmental strain was compared with scar tissue extent determined by 
delay-enhanced MRI. The results proved that both strain components were 
able to distinguish between normal and infarct regions. Overall, the proposed 
framework was shown to be accurate, robust, and attractive for clinical 
practice, as it overcomes several limitations of a manual analysis.

Keywords: tagged magnetic resonance imaging, fully automatic 
segmentation, non-rigid image registration, strain estimation

S  Supplementary material for this article is available online

(Some figures may appear in colour only in the online journal)

1. Introduction

According to the 2015 cardiovascular disease (CVD) epidemiological report, CVDs are 
the leading cause of death in Europe, being responsible for 45% of all deaths (Townsend 
et al 2015). Since several CVDs manifest as local myocardial dysfunction, the assessment 
of regional myocardial deformation has gained considerable attention (Hui and Amini 2012, 
Smiseth et al 2015).

Tagged magnetic resonance imaging (t-MRI) is an imaging technique that induces a pattern 
in the tissue of interest by spatially presaturating the tissue magnetization (Axel et al 2005, 
Hui and Amini 2012). These patterns are called tags and work as landmarks, which move/
deform along with the myocardium throughout the cardiac cycle, therefore easing the assess-
ment of local deformation as they visually enhance certain motion components (e.g. torsion). 
Nevertheless, the analysis of these data sets remains challenging due to tag fading, the low 
spatial resolution, and the high variability between different data sets, ultimately hampering 
the identification and assessment of the underlying cardiac anatomy (Axel et al 2005, Hui and 
Amini 2012, Chitiboi and Axel 2017).

Several solutions have been proposed to compute myocardial deformation from t-MRI 
images. A review of these methods is presented in Hui and Amini (2012) and Chitiboi and 
Axel (2017). All these methods exploit the spatial or frequency information contained within 
the tags to estimate the left ventricle (LV) deformation throughout the cardiac cycle. While 
the tracking itself is commonly fully automatic (Osman et  al 1999, Liu and Prince 2010, 
Miller et al 2013, Del-Canto et al 2015), its initialization is typically not. Indeed, myocardial 
segmentation (i.e. delineation of the target region) is essential, but it remains an either manual 
or semi-automatic process, thereby preventing myocardial strain estimation from being fully 
automatic. This interactive process is not only time-consuming and tedious, but also results 
in relatively high intra- and inter-observer measurement variability (Queirós et al 2014). In 
t-MRI images, the variability in contour definition tends to be worse than the remaining MRI 
sequences due to the heterogeneous nature of these images combined with tag fading over the 
cardiac cycle. As a result, images tend to be fairly noisy with myocardial boundaries being 
obscured or corrupted by tagging patterns (Qian et al 2005). To mitigate these issues, some 
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authors have proposed different methodologies to segment the LV in t-MRI, the majority of 
which use a two-step strategy: an initial detagging technique to suppress the tags and partially 
recover the original information from the myocardial wall, followed by an image-segmenta-
tion strategy (Qian 2008, Shi et al 2012). Nevertheless, the detagged images typically have 
low contrast and are dependent on the signal-to-noise ratio (SNR) of the original image, ham-
pering the correct segmentation of the cardiac wall (Qian 2008). Moreover, these techniques 
are typically not combined with a tracking methodology. As such, it remains difficult to verify 
whether they improve the assessment of regional cardiac function.

In the current work, a fully automatic strategy to estimate myocardial strain from t-MRI 
images is proposed. Its accuracy is computed in a large clinical database and is assessed against 
the traditional workflow, which relies on manual contouring followed by image tracking.

The current work introduces three novelties: (1) a robust LV detection and contour ini-
tialization methodology based on a signed annular shape identification strategy; (2) a fully 
automatic framework to accurately and efficiently estimate strain curves from t-MRI images 
based on an automatic segmentation method and a state-of-the-art image tracking approach; 
and (3) a validation of the proposed framework against the traditional workflow using a multi-
center clinical database.

2. Materials and methods

2.1. Data description

A clinical database of patients with suspicion of ongoing (chronic) myocardial ischemic heart 
disease, obtained from a multi-center imaging trial was used (DOPPLER-CIP, determining 
optimal non-invasive parameters for the prediction of left ventricular morphological and func-
tional remodeling in chronic ischemic patients (Rademakers et al 2013)). A total of 75 data 
sets were acquired by two independent centers in Europe, namely 34 cases from KUL (KU 
Leuven, Belgium) and 41 cases from LIO (Linköping University, Sweden). Each data set con-
sists of a short-axis view at the base, mid-ventricular, and apical slice. For KUL, the images 
were acquired with a 1.5 T Ingenia scanner (Philips HealthCare, the Netherlands) with a tag 
orientation of 0◦, resolution of 1.37  ×  1.37 mm, output image resolution of 256  ×  256 pixels, 
slice thickness of 8 mm, repetition time of 3.0 mm, echo time of 4 ms, flip angle of 13°, and 
a total number of frames that varies between 20 and 25 was used. The images of LIO were 
obtained using a 1.5 Achieva scanner (Philips Healthcare, the Netherlands) with a tag orienta-
tion of 45°, resolution of 1.25  ×  1.25 mm, output image resolution of 256  ×  256 pixels, and 
a slice thickness of 6 mm, repetition time of 4.48 mm, echo time of 4.48 ms, flip angle of 15°, 
and a total number of 15–20 phases. For both centers, the spatial modulation of the magnetiza-
tion technique was used to create the tags.

2.2. Framework overview

The workflow of the fully automatic methodology is shown in figure 1. It starts with a fast-
myocardial wall segmentation technique based on the B-spline explicit active surfaces (BEAS) 
framework (Barbosa et al 2012), followed by an image-registration technique to estimate the 
LV deformation (Morais et al 2013).

The segmentation stage identifies the myocardial region in one specific cardiac phase, gen-
erating 2D contours of its inner (i.e. endocardium) and outer (i.e. epicardium) borders (sec-
tion 2.3). The contours are estimated per level, and they delimit the boundaries of the target 
anatomy inside the full image. Subsequently, these contours are propagated throughout the 
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cardiac cycle using an image-registration approach (section 2.4.1). Specifically, the image-
registration method identifies the optimal transformation field between consecutive images, 
applying it to the initial contours and deforming them according to the estimated anatomical 
motion. Note that not only the myocardial borders are propagated but the full myocardial mus-
cle is transformed, providing local information about its contraction and motion. The obtained 
myocardial motion field is then used to estimate local strain in the radial and circumferential 
directions (section 2.4.2).

2.3. Fully automatic segmentation of the LV

The automatic segmentation process relies on two stages (figure 2): (1) rough LV detection 
and region-of-interest (ROI) definition at the basal level; and (2) myocardial contour initializa-
tion and segmentation. Given that a t-MRI acquisition typically consists of three slices spaced 
relatively far apart (basal, mid-ventricular, and apical), 2D segmentations are sequentially 
applied from the basal to apical levels. Due to the typically higher image quality found at the 
basal slice, the LV detection stage is performed at this level only, being used to crop the origi-
nal image and to initialize the subsequent segmentation stage.

During the LV detection stage (see section 2.3.1, figure 2(A)), an image-based dispersion 
filter is applied to enhance the tags and then binarize them. Subsequently, a novel signed 
annular shape identification strategy, referred to as signed annular Hough transform (SAHT), 
is applied to estimate the epicardial position and define an LV ROI.

In the second stage (see section 2.3.2, figure 2(B)), starting from the obtained LV ROI, a 
myocardial contour segmentation strategy is applied on a cropped t-MRI image. In contrast to 
the first LV detection stage, tag enhancement is now performed in the spectral domain. While 
multiple tag frequency components are found in the spectrum of the original uncropped image 
(due to the large field-of-view and the presence of multiple tags), the spectrum of the cropped 

Figure 1. Overview of the proposed fully automatic framework. Clinical parameters are 
estimated as the result of three conceptual blocks: (1) identification and segmentation 
of the left ventricular wall; (2) tracking of the myocardial wall throughout the cardiac 
cycle; and (3) computation of local radial and circumferential (circum.) strain curves.
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version (i.e. after LV ROI detection) presents a clear definition of the myocardial tag fre-
quency components, ultimately improving their detection accuracy. Next, these tag positions 
are again binarized and the myocardial contour initialized (endo- and epicardium) through 
the abovementioned SAHT method. The contours are then refined to the real anatomy using 
BEAS (Barbosa et al 2012). In contrast to the state-of-the-art methods working with detagged 
images, this step is applied on the original gray-scale image, thereby keeping the high contrast 
between the myocardial wall and the blood pool, while making the method less dependent on 
the image’s SNR.

2.3.1. LV detection. One of the major difficulties to automatically process MRI data sets is 
the correct identification of the LV. The acquired images show multiple organs besides the 
relevant cardiac chamber, complicating its identification. Particularly for t-MRI data sets, this 
tends to be challenging, both due to the presence of the tags on the entire image (including the 
blood pool) at the beginning of the sequence and due to tag fading.

As such, an automatic segmentation strategy cannot usually be applied at the end-diastolic 
(ED) frame. In this sense, a mid-systolic cardiac phase was used instead. It might be noted that 
although some authors previously proposed to use the final frame of the sequence to perform 
segmentation (Chandrashekara et al 2004), assuming therefore that the initial and last frames 
are taken at the same phase of the cardiac cycle, full cardiac cycle sequences are typically not 
acquired in clinical t-MRI data sets and usually present a low-image contrast at the final frame 
of the sequence.

2.3.1.1. Image-based tag enhancement and binarization techniques. Since the tags fade 
quickly inside the blood pool (in the first frames) and are then only superimposed on the 
tissue regions at the mid-diastolic frame used, the correct identification of these tags can be 
used to roughly detect the different shapes in the upper chest. For this, we combine both tag 
enhancement and binarization strategies.

The first step relies on a standard deviation filter based on local intensity, thus enhancing 
the heterogeneous image regions (i.e. the tag transitions). This filter defines the value of each 

Figure 2. Schematic of the proposed automatic myocardial segmentation in tagged 
MRI.
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image pixel as the local intensity dispersion (measured through the standard deviation) of 
its neighborhood. Therefore, the filter size should be equal to the tag spacing (specifically, a 
kernel size of ~4 mm was used as the inter-tag distance was ~8 mm in the clinical database), 
consequently allowing the enhancement of the tag transitions, while maintaining the remain-
ing regions. In the second step, a simple Otsu thresholding technique is used (Otsu 1975), 
which allows the separation of the image tags from the background. An example image after 
Otsu thresholding is shown in figure 3(b). Finally, we compute the edge map of this image 
according to Barbosa et al (2013), as shown in figure 3(c). Note that the method in Barbosa 
et al (2013) is a variant of an edge-detection algorithm providing the edge location and associ-
ated vertical and horizontal gradients. The gradient positions are defined on a 2D map. Both 
the edge map and gradients will make the identification of the LV easier, as explained in the 
next section.

2.3.1.2. SAHT. Some authors have previously presented strategies to identify the myocardium 
on cine-MRI data sets through signed annular models (Ciofolo et al 2008, Queirós et al 2013). 
These methods are based on the grayscale values and intensity transitions, assuming that the 
myocardium can be described as a dark object compared to both blood pools. Thus, multiple 
dark rings are searched on the image through block matching (Ciofolo et al 2008, Queirós 
et al 2013). However, due to the presence of multiple tag transitions, these strategies are not 
suitable for t-MRI images.

As such, we propose a novel signed annular model based on oriented Hough transforms. 
Instead of an exhaustive model identification on the grayscale image as customary in cine-
MRI, the SAHT method identifies the ROI using a voting strategy applied on the edge map 
obtained in the previous section, consisting of the following steps:

Figure 3. Voting process of the SAHT technique for LV detection. (a) Original 
example basal slice. (b) Binarized tag image obtained from (a). (c) Edge map of (b), 
and corresponding gradient vectors (green arrows). (d) Schematic of SAHT voting 
strategy. (e) and (f) Example semi-circles virtually generated from each edge point in 
(c), according to the edge gradient. Note that in (e), the semi-circles are oriented with 
the edge gradient (i.e. endocardial Hough), while in (f) they are along the opposite 
direction (i.e. epicardial Hough). (g) and (h) Illustrate the multiple radii voting strategy 
into a 3D accumulator. (i) Accumulator maps for a given radius value for both endo- and 
epicardial Hough, respectively, and final optimal center position (red circle) and endo/
epi radii (red and green arrow).

P Morais et alPhys. Med. Biol. 62 (2017) 6899
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 (i) Multiple annular models with different radii are generated. Each model relies on two 
independent Hough transforms, one focusing on the identification of the endocardial 
region, termed endocardial Hough (figure 3(e)), and another targeting the epicardium, 
designated epicardial Hough (figure 3(f)). Moreover, in order to increase the robustness 
of the technique for LV detection, a signed version of the method is proposed. Thus, 
discretized semi-circles (Cm,k) oriented based on the image gradient, ϕm, at each edge 
point, m, are generated through:

Cm,k (ϕm, r) = i (r cos (θk( p)) + xm) + j (r sin (θk( p)) + ym) ,

p = 1, 2, . . . , NC θk( p) ∈

{[
ϕm − π

2 ,ϕm + π
2

]
, if k = endo[

ϕm + π
2 ,ϕm + 3π

2

]
, if k = epi

, (1)

where r  is the radius of the semi-circle, NC  is the number of discretized points used 
to represent each semi-circle, k indicates which Hough transform is being applied 
(endo- or epicardium), [xm, ym] are the edge positions, and i j are the coordinates of 
the image domain.

 (ii) Each semi-circle Cm,k is centered at each point m  of the edge map, and the θk( p) value 
selected based on the expected myocardial intensity transition profile seen from the 
LV center position towards the myocardium. A white-to-black transition and a black-
to-white transition is used for the endocardium (k = endo) and epicardium (k = epi, 
figures 3(a)–(c)), respectively. In this sense, at the real edges of the endocardium, the 
resulting endocardial Hough generates semi-circles that—combined—will vote for the 
center of the LV cavity (dark and light green semi-circles in figure 3(e)), while the epicar-
dial Hough generates a scattered map (dark and light green semi-circles in figure 3(f)). In 
contrast, at the epicardium’s real edges, the endocardial Hough creates a scattered map for 
the right ventricle (yellow, red, and blue semi-circles in figure 3(e)), while the epicardial 
Hough votes for the LV cavity center (yellow, red, and blue semi-circles in figure 3(f)). 
Note that this implementation is the inverse operation of testing multiple semi-circles 
positioned in multiple candidate centroids, which would have a very large number of 
possibilities to test (the two coordinates of the centroid and the radii for each possible 
centroid). Indeed, assuming a given circle (position [x, y] and radius r ), if we generate 
semi-circles centered in the points along its circumference with radius r , all semi-circles 
will intersect, i.e. vote, in the original centroid (i.e. [x, y]). This is the principle behind our 
SAHT approach (figure 3(d)).

 (iii) Two independent accumulators Ak  are used to count the intersection points, each repre-
senting either the endo- or epicardial Hough transform. Let x represent each coordinate 
pair [x, y] of the image, Ak (x, r) forms a 3D accumulator map with the third dimension 
representing the different tested models, i.e. different radii r  (figures 3(g) and (h)). Since 
the t-MRI image acquisition is typically centered on the LV, a weighted voting strategy 
is used to further enhance the central positions of the accumulator map, penalizing the 
remaining regions and reducing the noise obtained on the map. As such, the voting pro-
cess is performed using a confidence measure given by the distance to the center image 
position (SI), through:

Ak (x, r) =
NEdge∑
m=1

{(
1 − x−S2

I
Dmax

)
if Cm,k (ϕm, r)

⋂
x �= ∅

0 if Cm,k (ϕm, r)
⋂

x = ∅
, (2)
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 where NEdge is the total number of edge points, and Dmax the diagonal length of the 
cropped image.

 (iv) The endo- and epicardial accumulators are combined into one fused accumulator (T):

T (x, ra, rb) = Aendo (x, ra) + Aepi (x, rb) ,
a ∈ [1, Rmax − dw] and b ∈ [a + dw, Rmax] , (3)

 where Rmax is the maximum radius used and dw represents the minimal wall thickness. 
Note that the dw term prevents overlaps between contours. Since both accumulators are 
combined into a fused one, only one center position is found, making it robust to local 
minima (figures 3(g) and (h)).

 (v) The maximum in T  identifies the optimal center position of the annular model, while 
the associated radii indicate the optimal endo- and epicardial radii of the annular model 
(figure 3(i)). Furthermore, the epicardial contour is used to define a ROI, and crop the 
original t-MRI image, as shown in figure 4(a). An overview of its implementation is given 
in multimedia material I (stacks.iop.org/PMB/62/6899/mmedia).

2.3.2. Myocardial segmentation.
2.3.2.1. Frequency-based tag enhancement and binarization technique.  Starting from the 
cropped grayscale image (figure 4(a)), the spectrum is computed using the traditional 2D fast 
Fourier transform (FFT) technique. Since the tags are generated using radio-frequency pulses 
applied during the acquisition, a specific representation of the tags on the Fourier domain is 
observed (figure 4(b)), specifically a central peak defining the zero-frequency component and 
eight secondary peaks representing the first harmonic of the tag frequencies (Qian 2008). In 

Figure 4. Frequency-based tag enhancement and binarization technique. (a) Original 
image, (b) spectral representation of (a), (c) identification of the eight maximum tag 
frequencies (yellow crosses—tags frequencies, red cross—zero frequency component) 
and square fitting with size l using the distance d  between consecutives candidates, 
(d) resulting tag enhancement filter, (e) tag enhanced image and (f) binarization of (e) 
through Otsu thresholding.

P Morais et alPhys. Med. Biol. 62 (2017) 6899
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this sense, and in contrast to section 2.3.1, an accurate estimation of the tag positions can now 
be obtained.

In order to easily identify the frequency components associated with the tags, the zero-
frequency component was removed through an ideal high-pass filter with cutoff frequency at a 
10 pixel radius (red circle in figure 4(c)). Since a similar representation of the tag frequencies 
on the spectrum is usually observed for different t-MRI data sets, a fixed cutoff frequency was 
empirically defined. Then, candidates of the first harmonic of the tag frequencies are detected 
as the eight locations with highest intensity (yellow crosses in figure 4(c)). A distance larger 
than 10 pixels must exist between candidates to avoid multiple detections from the same 
comp onent. Subsequently, and in order to increase the detection robustness, the average dis-
tance d  between consecutive candidates is used to define the size l of the square that represents 
the first harmonic of the tag frequencies (green square in figure 4(c)). This technique is feasi-
ble for both 0◦ and 45◦ tag grids.

Based on the final eight candidate locations, a morphological dilation with a disk of 7 
pixel (~10 mm) radii is applied and the result is then convolved with a Gaussian filter (sigma 
of ~4 mm) to prevent artifacts. The resulting filter (figure 4(d)) is multiplied with the original 
spectrum, and the inverse FFT technique is used to reconstruct a tag-enhanced image (figure 
4(e)). Subsequently, the tags are binarized using Otsu thresholding (Otsu 1975) (figure 4(f)).

Finally, the frequency-based enhanced and binarized image is used to accurately initialize 
the endo- and epicardial contour through the abovementioned SAHT strategy.

It should be noted that the proposed frequency-based filter could not be applied on the 
original (non-cropped) image. Given that we work with an image at mid-systole, and given 
that different areas outside the myocardium will have faded at different rates, multiple (erro-
neous) tag components would be retained throughout spectral filtering, hampering the correct 
identification of the myocardial wall.

2.3.2.2. Segmentation using BEAS. Recently, the BEAS framework proved to be suitable for 
the segmentation of multiple cardiac structures acquired with different imaging modalities 
(Queirós et al 2014, 2016). A clinical validation (Queirós et al 2015) of the method showed 
its high feasibility, high accuracy, and low computational time, being attractive for clinical 
practice.

In this work, we propose to use BEAS to accurately delineate the LV on t-MRI images. 
The method is applied on the cropped grayscale image. Note that, in contrast to previous 
approaches with detagged images, this framework uses the original t-MRI image, thereby 
keeping the high contrast between myocardium and blood pool.

Segmentation of both endo- and epicardial boundaries was performed simultaneously using 
a coupling strategy (Queirós et al 2013). More specifically, both are modeled as a combination 
of two explicit functions representing the myocardial shape and thickness, respectively. While 
the first function has the ability to recover complex myocardial shapes, the second provides 
local adaptation of the contours, being possible to apply smoothing factors independently 
for each. In this sense, by applying high factors to the local wall thickness, irregular LV 
shapes caused by the tags’ block-wise appearance are prevented, without affecting the algo-
rithm’s overall ability to capture complex and irregular myocardial shapes (e.g. pathological 
anatomies).

A local energy term (local Chan–Vese) was used to search for the optimal position between 
two homogeneous regions, while a global energy term assured that the whole myocardial wall 
has a homogeneous intensity by penalizing any region that deviates from such an assumption. 
Their combination allows local refinement of the segmented contour, while taking into account 

P Morais et alPhys. Med. Biol. 62 (2017) 6899



6908

that a global coherent annular structure (i.e. the myocardium) should be found. Further details 
on the segmentation strategy and parameters can be found in Queirós et al (2013).

Finally, the obtained contour is used to initialize the segmentation in the remaining levels. 
Specifically, the contour obtained in one level (e.g. basal slice) is used to define a ROI to crop 
the subsequent level (e.g. mid-ventricular slice). This ROI is used as a starting point to the 
segmentation strategy (section 2.3.2).

2.4. Motion estimation and strain computation

2.4.1. Motion tracking. In order to track the t-MRI images throughout the cardiac cycle, a 
non-rigid image-registration technique was applied. Previous studies have shown that this 
method is attractive when compared with other alternatives (Smal et al 2011). Traditionally, 
registration is performed in a pair-wise fashion between subsequent frames. However, for 
t-MRI, suboptimal results tend to be obtained due to tag fading, the noisy image quality, and 
the tag flushing inside the blood pool (Morais et al 2013).

Instead, a sequential 2D  +  t transformation model was proposed in Morais et al (2013). 
This model computes motion in a temporal coherent framework taking all images into account 
at once. It can better penalize non-smooth motion caused by tag fading or flushing, while 
maintaining enough flexibility to extract physiological deformation. The method was previ-
ously tested on synthetic and clinical data sets, proving its high accuracy and ability to detect 
dysfunctional regions (Morais et al 2013).

2.4.2. Strain estimation. Strain curves are computed using the technique described in Morais 
et al (2013). In this case, the regional deformation of the myocardial wall is assessed by a set 
of points positioned within the myocardial wall. In each segment, five and ten points are used 
in the radial and circumferential directions, respectively. Segments are defined according to 
the model described in Cerqueira et al (2002). The displacement of all sampled points relative 
to their initial position is then found by consecutively cumulating the transformation fields 
obtained through the tracking technique. As such, strain (εN) is computed relative to the end-
diastolic frame, as described in:

εN( f ) =
DN( f )− DN(ED)

DN(ED)
, (4)

with DN( f ) representing the distance between two adjacent points in either the radial or 
circumferential direction at frame f , and similarly DN (ED) being the respective distances 
at ED.

2.5. Implementation details

Due to the presence of tags in the blood pool at the initial frames, we empirically decided to 
apply the LV segmentation strategy at the 4th frame. Since the cardiac strain is usually mea-
sured with respect to the ED frame, a ‘reverse’ propagation of the myocardial contour between 
the 4th frame and ED was performed using the proposed tracking technique. Then, the track-
ing technique was applied again, but now to the entire sequence and strain curves computed.

The LV detection and contour initialization with the SAHT method used annular models with 
radii between 15 and 40 mm, representing the expected LV wall thickness. Two independent 
number of clusters were used in the binarization, namely two and three levels for the LV detec-
tion and myocardial segmentation stage, respectively, with the cluster with maximum intensity 
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being kept. A tolerance of 25 mm for each side of the detected ROI was given to compensate 
for possible slice misalignment and sub-optimal detections. All parameters were experimentally 
selected to achieve a stable performance for all the patients. Further details on parameter selec-
tion can be found in multimedia material II (stacks.iop.org/PMB/62/6899/mmedia).

2.6. Experiments

Three experiments were set up to validate the proposed framework, namely: (1) automatic seg-
mentation performance; (2) sensitivity of the strain values with respect to automatic or manual 
contouring; and (3) clinical validation through the comparison of strain values obtained from 
t-MRI data sets in myocardial segments with or without scar tissue.

2.6.1. Automatic-segmentation performance. Each dataset was manually segmented by two 
observers. The segmentation was performed for each short-axis view at mid-systole (4th 
frame). The slices in which one of the observers could not identify the myocardium were 
excluded (21 of 225 slices). By averaging the contours of both observers, reference segmenta-
tions were obtained.

Next, these data sets were processed by the proposed segmentation technique. Differences 
between the automatic and mean contour of the two observers were analyzed at the 4th frame 
in terms of average perpendicular distance (APD), the Dice coefficient, and the Hausdorff 
distance (i.e. maximum APD). Each result was compared to the inter-observer variability 
(IOV, defined as the differences between both observers’ manual analysis) using a Wilcoxon 
matched-pairs signed rank test (p  <  0.05). Moreover, to verify if the performance was dif-
ferent for each ventricular level, a Mann– Whitney test (p  <  0.05) was performed. The seg-
mentation was considered to be successful when the APD remained under 5 mm. Note that 
this threshold is also used when evaluating cine-MRI segmentation algorithms (Queirós et al 
2014).

The accuracy of each stage of the proposed strategy was also assessed by comparing the 
center of mass of the automatic and manual contours. A Mann–Whitney test (p  <  0.05) was 
used to assess statistical differences.

Finally, the computational time of the automatic framework was registered using MATLAB 
code (version 2015a) running on an Intel (R) i7 CPU at 2.8 GHz, 16 GB of RAM and a 
Microsoft Windows(R) 8 operating system.

2.6.2. Strain-estimation performance. In order to assess the sensitivity of the tracking 
approach to the underlying segmentation methodology, the end-systolic (ES) strain values 
and global strain curves obtained with both segmentation approaches were contrasted. The ES 
was identified by an expert. Only cases in which such annotation was available were included 
in this analysis, resulting in 175 slices (64 basal, 61 mid-ventricular, and 50 apical levels out 
of the original 204 slices).

Global and segmental strain values were compared by computing a linear correlation coef-
ficient and Bland–Altman (BA) analysis, expressed as the bias (mean difference) and limits of 
agreement (LOA, 1.96 times the standard deviation). At ES, performance was compared per 
level and per segment. A two-tailed paired t-test and F-test were used to identify statistically 
significant differences (p  <  0.05) in the obtained biases and LOAs, respectively. Note that, 
for segmental analysis, the inferior right ventricular insertion point was manually defined by 
one observer, which was then used to define the 16 segments for both automatic and manual 
approaches. In this sense, only the contours differences’ influence on the strain estimation 
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is retained. The difference between the full strain curves was assessed using their cross-cor-
relation coefficient. A two-tailed paired t-test against zero (p  <  0.05), was used to identify 
statistically significant biases. Finally, the IOV was computed by tracking the contours of the 
individual observers rather than starting from the average contours.

2.6.3. Strain estimated from t-MRI in myocardial segments with different amount of scar-
ring. Strain estimated from t-MRI (computed through the fully automatic approach) was 
contrasted between myocardial segments with a different amount of scar tissue obtained from 
delay-enhancement (DE) MRI data sets of the same patient. This study was performed on 
the abovementioned 175 slices. One expert computed the percentage of scar tissue per seg-
ment. Using the strategy previously described in Ypenburg et al (2007), to each segment was 
assigned a score describing the extent of the scarring: 0—absence of scarring; 1—scar tissue 
with extent 1%–25%; 2—extent 26%–50%; 3—extent 51%–75% and 4—extent 76%–100%. 
Note that the segments were defined using the 16 segments model. A score of 1 and 2 typi-
cally indicates a non-transmural infarct segment, whereas 3 and 4 point to an infarct extending 
transmurally. The myocardial value obtained in each segment was thus divided in three classes 
(normal, non-transmural, and transmural) based on the scar score, and finally statistically 
compared through an unpaired t-test (p  <  0.05).

3. Results

3.1. Automatic-segmentation performance

A total of 58 (77%) apical, 71 (95%) mid-ventricular, and 75 (100%) basal slices were ana-
lyzed by the observers (total of 204 slices). The automatic strategy was able to successfully 
identify the LV in all cases, i.e. the center of the annular model was estimated inside the LV. 
The subsequent segmentation was successful in 97% (197 slices) and 99% (202 slices) for the 
endo- and epicardium respectively, showing the robustness of the technique even in clinical 
data sets with different acquisition parameters. The mean computational time for each data set 
(i.e. 3 levels) was approximately 180 s for each observer versus 1.17 ± 0.08 s for the automatic 
approach.

Figure 5 shows the error of the LV center during the three stages of the segmentation tech-
nique. A significant reduction of the centroid error between the initial ROI and the initializa-
tion step was always observed, while the remaining steps showed a similar error. Table 1 lists 
the automatic segment error per level, the global error, and the IOV. Generally, the error of the 
automatic approach was similar to the IOV, particularly in the endocardium.

Finally, representative segmentation examples at mid-systole are shown in figure 6 at dif-
ferent levels.

3.2. Strain-estimation performance

Table 2 shows the global and segmental strain results in terms of linear regression and BA 
analysis. Although wider LOAs were found in the segmental analysis compared to the global 
strain, these differences in terms of segmental strain were not statistically significantly dif-
ferent from those that were obtained starting from the manual references. In contrast, and 
in agreement with the results from the global analysis, a statistically significant bias existed 
between the automatic technique and the IOV for the radial strain only. Figure 7 shows a 
tracking example and the obtained strain curves, where a similar result was obtained by both 
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approaches. On average, the tracking approach and estimation required 82 ± 23 s per data set 
(three levels).

The correlation and BA plots are shown in figure  8. In the radial direction, strain was 
underestimated by the automatic technique compared to the strain obtained through manual 
delineation. The same biases were observed between observers. Interestingly, the LOAs were 
narrower for the automatic method compared with the IOV (table 2 and figure 8). In the cir-
cumferential direction, although statistically significant biases were found between observers 
for all levels, the same was not observed for the automatic approach (table 2). Once again, 
the proposed method showed narrower LOAs when compared with the IOV (table 2 and  
figure 8). Furthermore, figures 8(c) and (f) give an overview of the strain errors with respect 
to the segmental level. The largest differences were observed in the lateral segments, with an 
underestimation of the radial strain and overestimation of the circumferential one.

The difference between the automatic and manual approaches on the entire global strain 
curve was assessed through the correlation coefficient between each pair of curves. A correla-
tion result of (0.774, 0.989, 1.000) (5th, 50th, and 95th percentiles) and (0.997, 1.000, 1.000) 
was achieved for the radial and circumferential strain, respectively, while a correlation of 
(0.714, 0.999, 1.000) and (0.995, 1.000, 1.000) was obtained between observers. The same 
analysis was performed for the segmental strain curves. The automatic method achieved a 
correlation of (0.668, 0.986, 1.000) and (0.967, 0.997, 1.000) for radial and circumferential 

Figure 5. Center position error throughout the different steps of the automatic 
segmentation approach. In each step, the estimated center position is compared with 
the center of mass of the manual reference. * p < 0.05, Mann–Whitney test between 
consecutive steps of the method.

Table 1. Segmentation errors between automatic and manual contours.

APD (mm) DICE Hausdorff (mm)

Endo Epi Endo Epi Endo Epi

Basal 2.44  ±  1.34b 2.14  ±  0.82b 0.89  ±  0.06b 0.94  ±  0.02b 5.28  ±  2.41 4.86  ±  0.55b

Mid 2.56  ±  1.23 2.38  ±  1.21b 0.89  ±  0.06 0.93  ±  0.03b 5.43  ±  2.16 5.14  ±  2.18
Apical 1.99  ±  0.92 2.31  ±  1.00b 0.87  ±  0.06 0.92  ±  0.04b 4.29  ±  1.67 5.03  ±  1.74b

All 2.35  ±  1.21 2.27  ±  1.02a 0.88  ±  0.06 0.93  ±  0.03a 5.05  ±  2.18 5.01  ±  1.84a

IOV (All) 2.20  ±  1.40 1.74  ±  1.05 0.88  ±  0.08 0.94  ±  0.04 5.11  ±  2.64 4.28  ±  1.92

ap < 0.05, Wilcoxon matched-pairs signed rank test between the automatic and IOV, for all cases.
bp < 0.05, Mann–Whitney test between automatic and IOV, for each slice pair.
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strain, respectively, as opposed to the (0.650, 0.987, 1.000) and (0.961, 0.997, 1.000) between 
observers. No statistical difference was found between approaches.

3.3. Strain estimated from t-MRI in myocardial segments with different amount of scarring

Figure 9 relates the strain estimated from t-MRI with scar analysis. A clear relation was 
found between scar extent and circumferential strain, with statistically significant differences 

Figure 6. Automatic segmentation results at the 4th frame for the cases corresponding 
to the (A) 10th, (B) 30th, (C) 50th, (D) 70th, and (E) 90th percentiles, according to 
the average endo- and epicardial APD (red: endocardium; green: epicardium; yellow: 
ground truth).

Table 2. Differences of the global and segmental (segm.) radial and circumferential 
strain value at end-systole using the proposed fully automatic approach or based on an 
initial manual ROI.

Radial Circumferential

Correlation 
coefficient 
(R)

BA
Correlation 
coefficient 
(R)

BA

Bias 
(%) LOA (%)

Bias 
(%) LOA (%)

Global Basal 0.91 1.52a (−4.18;7.23) 0.97 −0.38a (−1.72;2.39)
Mid 0.92 1.46a (−4.15;7.07) 0.95 0.01 (−2.22;2.24)
Apical 0.88 −1.06a (−6.69;4.57)b 0.90 0.67a (−3.06;4.44)b

All 0.89 0.76a (−5.30;6.82)b 0.95 −0.05 (−2.84;2.74)b

IOV (All) 0.84 1.74a (−5.82;9.29) 0.93 0.60a (−2.79;4.00)
Segm. All 0.92 0.96a (−9.93;11.85) 0.93 0.18 (−5.04;5.40)

IOV 0.92 1.72a (−9.47;12.90) 0.92 −0.67 (−4.96;6.30)

ap < 0.05, two-tailed paired t-test against zero.
bp < 0.05, two-tailed F-test between the fully automatic approach (per level and per segment) and its corresponding 
semi-automatic strategy.
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between groups. Radial strain showed similar trends, but a clear difference was only seen 
between normal segments and transmural infarcts. The relation between scar extent and 
strain values is also illustrated in two different patients (figure 10), showing a correspondence 
between scar portions and positive and negative circumferential and radial strain, respectively.

Figure 7. Fully automatic estimation of the global radial and circumferential strain 
curves for one complete clinical t-MRI data set. A representation of the tracking result 
(yellow grid) and the contour propagation (red contour—endocardium, green contour—
epicardium) at (A) end-diastole, (B) and (C) mid-cycle frames, and (D) end-systole. (E) 
shows the obtained radial (red line) and circumferential (green line) strain curves (the 
blue lines indicate the result obtained with the manual approach). Extra examples can 
be found in the multimedia material III (stacks.iop.org/PMB/62/6899/mmedia).

Figure 8. Correlation and BA plots for global ES radial (a) and (b) and circumferential 
(d) and (e) strain. Mean radial (c) and circumferential (f) strain errors between automatic 
and manual approaches using the 16 segments model. Dashed lines represent bias (red) 
and 95% limits of agreement (green).
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4. Discussion

A fully automatic framework to estimate strain curves from t-MRI images was proposed. The 
technique combines a robust automatic-segmentation technique with an image-based track-
ing approach, allowing the estimation of radial/circumferential strain from t-MRI data sets 
without any user interaction. Tagged MRI is typically described as the gold standard to extract 
cardiac strain (Hui and Amini 2012) due to the presence of markers, which facilitate tracking 
cardiac motion and torsion. Unfortunately, due to its dedicated acquisition and difficulties 
in identifying the LV, the technique is not widely used in daily practice. As an alternative to 
reduce the acquisition time, only the most relevant 2D slices (three levels representing the 
basal, mid-ventricular, and apical region) were acquired. Nevertheless, due to the large inter-
slice distance, focal-abnormal regions may be missed. Recently, a full 3D volume tagging 
acquisition approach was presented (Chitiboi and Axel 2017). Since the tags are simultane-
ously generated in all directions, a more realistic and accurate 3D motion can be estimated 
from such data sets. However, the acquisition protocol is not straightforward, is recent, and is 
still being mainly used in the research field (Xu et al 2010, Amano et al 2016, Chitiboi and 
Axel 2017). In fact, most of the acquisitions are still being performed in animals (Xu et al 
2010) or phantom models (Tobon-Gomez et al 2013). Only a small number of cases applied 
in humans were acquired, requiring thus further studies to prove its added value (Amano et al 
2016). Moreover, the 3D tagging reduces the SNR, hampering the motion-estimation stage 
(Chitiboi and Axel 2017). Another alternative to estimate strain values is strain-encoded MRI. 

Figure 9. (a) and (b) Segmental radial and circumferential strain versus scar tissue 
analysis from DE-MRI. * p  <  0.05, unpaired t-test (with Welch’s correction) between 
normal, non-transmural, and transmural regions.

Figure 10. Illustrative cases of the relationship between scar extent and strain values. 
(a)–(c) represent the DE-MRI in the basal, mid-ventricular, and apical levels, respectively. 
(d) describes the 16 segments models and (e) and (f) show the circumferential and radial 
strain estimated from the t-MRI data set.

P Morais et alPhys. Med. Biol. 62 (2017) 6899



6915

In this approach, the myocardial strain is directly extracted from the images during acquisition 
(Haggerty et al 2014). However, long acquisition times are typically required, and its added 
value in clinical practice is still being investigated. To date, the strain is therefore typically 
computed from cine-MRI by using feature tracking techniques. Overall, global strain pat-
terns are similar to those extracted from t-MRI, but cine-MRI typically loses accuracy when 
assessing regional function (Hor et al 2010, Augustine et al 2013). Given the above, we feel 
that automating t-MRI analysis remains appealing, as it will reduce processing time and make 
it attractive for routine practice. The authors would like to mention that the presented frame-
work is currently also being adapted to cine-MRI (multimedia material IV (stacks.iop.org/
PMB/62/6899/mmedia)).

More than 95% of the 204 short-axis slices were successfully segmented using the pro-
posed fully automatic approach. Not only does this illustrate its robustness in realistic data sets 
but is attractive when compared to manually annotating these data sets due to its low compu-
tational time. Note that fewer apical slices were included in the analysis compared to the basal 
ones, because it was more challenging to obtain manual references for them. Indeed, image 
quality was generally poorer, and the myocardium smaller compared to the tag dimensions.

The automatic segmentation consists of two consecutive stages: (1) ROI definition and (2) 
contour initialization and segmentation. Figure 5 illustrates that the detection stage had a high 
feasibility and accuracy, with median errors already in the same order of magnitude compared 
to the final segmentation results (see the basal section in figure 5). The highest errors were 
found when propagating the ROI from one level to another. This can be easily explained by 
the expected misalignment between slices (Queirós et al 2014). Nevertheless, this initial mis-
alignment is corrected during the subsequent two stages, as presented in figure 5. This further 
illustrates the robustness of the initialization technique and the need for the two stages at the 
other levels of the myocardium.

Table 1 presents the segmentation errors obtained by the automatic technique, where the 
APD and Dice were comparable to those previously presented in cine-MRI (Petitjean and 
Dacher 2011). No significant differences were obtained between the automatic and IOV 
for the endocardial region. In contrast, significant differences were found at the epicardial 
side, consequently showing a better performance of the manual strategy against the auto-
matic method. The low performance at the epicardial region was also previously reported 
for other automatic MRI segmentation techniques (Petitjean and Dacher 2011, Queirós et al 
2015), and can be explained by the low contrast between the epicardium and its neighboring 
structures. Nonetheless, the obtained epicardial segmentation result still shows a competitive 
performance, with an APD error much lower than 5 mm (i.e. threshold typically used in the lit-
erature to consider a segmentation successful) and leads to acceptable small differences when 
assessing strain values. The reader should take into consideration that the performance of the 
segmentation method is directly related to the spatial resolution of the image. A smaller pixel 
size (current pixel size is bigger than 1.2 mm) increases the details available at the myocardial 
boundaries, reducing the segmentation errors. However, it also reduces the image SNR and 
prevents correct motion estimation. Nevertheless, the pixel size should always be smaller than 
the spacing between tags to allow separation of the tissues and tags.

Assessing the result at the different image levels (table 1), lower errors were globally found 
at the basal slice, possibly due to the high contrast between tags and tissues in combination 
with the larger LV wall at this level. Note that although lower APD errors were found at the 
apical level, this might also be explained by its smaller size, which is confirmed by a lower 
average Dice. A similar variability in terms of APD error was found between the basal and 
apical levels, indicating a high flexibility of the proposed methodology to deal with the par-
ticularities of the heart. Although the current methodology was only tested on the traditional 
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clinical data sets (with three slices), the method also showed potential for acquisitions with 
more than three slices (see multimedia material V (stacks.iop.org/PMB/62/6899/mmedia)).

Although the current framework was only tested on black blood t-MRI images, this meth-
odology appears to be suitable for white blood acquisitions too. Since the initial LV detection 
stage (section 2.3.1) searches for heterogeneous regions (i.e. myocardium) and the subsequent 
LV refinement identifies the tags using a frequency-based strategy (section 2.3.2), an enhance-
ment of the myocardial wall compared to the blood pool is always obtained. As such, after 
the binarization, the foreground class is always represented by the myocardium, while the 
background class includes the blood pool (figure 3(b)). Nevertheless, the authors would like to 
emphasize the assumptions of this segmentation strategy, namely: (1) the LV is roughly cen-
tered in the image; (2) no tags (or at least a small number of them) should be detected inside 
the blood pool; and (3) the myocardial shape is approximately circular or elliptical.

A second experiment was performed to assess the sensitivity of the strain curve with respect 
to the employed segmentation strategy, i.e. manually or automatically (table 2). Our proposed 
framework is not only fully automatic but was extensively validated in a large clinical database 
of t-MRI images. Both aspects have, to the best of our knowledge, not been described elsewhere 
before. High correlations between automatic and manual approaches were achieved for both 
global strain components at ES, illustrating the attractiveness of the developed technique for use 
in clinical practice. Moreover, similar LOAs were found when compared to the IOV ones. This 
observation indicates that the automatic-segmentation errors are competitive against manual 
observation during the strain-estimation stage. Furthermore, since the novel method is com-
pletely user-independent, the intra- and IOV previously reported in t-MRI validation studies are 
mitigated (Miller et al 2013, Del-Canto et al 2015). Note that the manual tracking results were 
evaluated by both observers, and corrected if deemed necessary. Since the current framework is 
based on an image registration technique, no modification of the tracking result is allowed, being 
the corrections performed through the modification of the initial manual contour.

When assessing performance per level, it can be observed that at the apical level errors 
were statistically different, although the LOAs were still narrow (table 2). The former might 
be related to the magnitude and complexity of the motion, which is typically higher compared 
to the other levels, as previously reported in Del-Canto et al (2015). Indeed, figure 8 confirms 
that the performance of the automatic method was lower when motion tended to be larger. 
The same trends are observed when looking at the spatial error distribution of the strain error 
(figures 8(c) and (f)). Indeed, the largest strain errors occurred at the lateral wall. Not only is 
the motion largest there (Del-Canto et al 2015) but the myocardial wall tends to be thinner 
compared to the other segments (Miller et al 2013). By acquiring a higher number of frames 
(around 20 frames were used in the current study), the image-registration performance could 
be improved as fast motion components are finer. However, it is important to note that the 
frame rate is intrinsically limited by the acquisition protocol.

When comparing both strain components, it is evident that strain curves were retrieved bet-
ter in the circumferential direction (table 2 and figure 8). This can be explained by the fact that 
radial strain has to be computed over a small thickness and is therefore sensitive to small vari-
ations in the segmentation. The presence (and fading) of the tags over the cardiac cycle may 
further complicate the radial strain estimation (Tobon-Gomez et al 2013). Indeed, the inferior 
performance of radial strain is not specific to t-MRI only, having been previously reported for 
other modalities (Alessandrini et al 2016).

The previous observations were corroborated through the comparison between tagging 
strain myocardial segments with different amount of scarring estimated from the gold stand-
ard (i.e. DE-MRI). This study reinforced the superior performance of circumferential strain 
over the radial component. Moreover, this analysis is an indicator of the high accuracy of the 
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entire framework. Although total separation for the circumferential strain (figure 9) was not 
observed between the three groups (i.e. normal, non-transmural, and transmural) as previ-
ously reported (Koos et al 2013, Nakamura et al 2015), clear differences in terms of median 
value and strain distribution were observed. Moreover, statistically significant differences 
were found between the three groups for the circumferential strain. These results indicate that 
the fully automatic method is sensitive to abnormal regions and is therefore of use in clinical 
practice to assess pathological cases (see figures 9 and 10).

This study has some limitations, namely: (1) the current segmentation can only be applied 
on short-axis views; and (2) the automatic segmentation approach was only compared against 
manual delineations. Comparing our technique to other existing commercial approaches (with 
semi-automatic segmentation, such as HARP or inTag) (Osman et al 1999, Liu and Prince 
2010) would be of interest, but remains unfeasible at this point in time given that the segmen-
tation results could not be directly exported, and therefore not directly compared.

5. Conclusion

In the current study, a novel fully automatic framework to estimate strain curves from t-MRI 
images was proposed. The technique combines a robust and fast automatic-segmentation tech-
nique with an image-based tracking approach. It was successfully applied in more than 200 
slices with an error comparable to the IOV and allowed the estimation of radial and circum-
ferential strains from the t-MRI data sets without any user interaction and with a performance 
similar to the traditional practice. Its high feasibility, fully automatic character, and robust 
estimation of the strain indices makes this solution attractive for use in clinical practice.
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