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ABSTRACT 

In this article, we present the application of a global optimization technique, in particular the 

GlobalSearch command from MatLab®, in the updating of structural dynamic models. For 

comparative purposes, we evaluate the efficiency of the global method relatively to the local search 

method previously used in the Finite Element Model Updating program. The Finite Element Model 
Updating programs are designed with the primary purpose of validating and optimizing structural 

numerical models. The first step for structural optimization process is to idealize the desired behavior 

of the dynamic model to develop, or collect experimental data of a physical model considered as the 
reference model. The process begins with the construction, on a finite element program, of a numerical 

model with initial physical parameters, preferably close to the reference model parameters. The 

numerical model is then submitted, through a Finite Element Model Updating program, to a successive 

parametric updating until improving its dynamic behavior described by their natural frequencies, mode 
shapes and damping properties, be similar to the dynamic behavior of the reference model. The 

Sequential Quadratic Programming algorithm was already used in the optimization of the Finite 

Element Model Updating program, and the obtained solutions showed that it can’t achieve the global 
optimal value of the objective function. This kind of methods, used for nonlinear constrained 

optimization problems, have, generally, difficulties to achieve the global optimum, since they are local 

optimization methods. 
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1. INTRODUCTION 

Optimization emerged with the ambition of solving problems in logistic, engineering, chemistry and 

biology areas. The last decades have allowed the appearance and evolution of computational tools able 
to solve optimization problems. 

There are optimization problems with simple linear functions of few variables, until the most complex 

problems of non-linear functions with many variables and many optimal local solutions. Thus, emerge 
the need to investigate and develop methods for global optimization. An example of application of 

these optimization methods in the engineering field is in structural dynamics, to optimize structural 

models [1] [2] [3]. In these cases, the optimization methodologies resort to the methods of improving 

finite element models, usually denominated by Finite Element Model Updating, namely in the 
optimization of the geometrical and material parameters of the structure [4]. These improvements can 

be conducted under two types of approach: 

o first, in the updating of simplified numerical models, representative of detailed physical 
models which present high computation time. The simplified model is submitted to updating 

by a Finite Element Model Updating methodology until obtain dynamic behavior similar to 

the physical model, also denominated as reference model [5]. Thus, it is possible to obtain a 
light computationally model and representative of the physical model. It is important to refer 

that, in these cases, the main interest is in the correlation of dynamic behavior, independently 

of the parameters values optimized;  

o second, in the structural modification to optimization of the models. Detailed numerical 
models of physical models are built and submitted to optimization to improve the dynamic 

behavior and/or achieve a model with similar behavior but with geometrical and/or physical 

parameters more advantageous from the design point view [6]. 

The optimization methodologies help to fit on the control of updating process, nevertheless still 

constitute a developing task. The traditional optimization methods, based on local search, have 

difficulties in dealing with global optimization problems, because are easily trapped in local minimal 

and not evolve into other areas of the feasible region. There are two types of optimization methods: the 
direct methods and methods based on gradients. The direct methods just use information of the 

objective function and constraints. The gradient-based methods use the information of the objective 

function and constraints, and their first and/or second derivates [7] [8]. The Finite Element Model 
Updating program, developed by [9], incorporates the Sequential Quadratic Programming algorithm 

(SQP), as a local search method to find the optimal value, using the fmincon command from Matlab®. 

In this paper, with the purpose of improving the efficiency of the Finite Element Model Updating 
program, the local search methodology is replaced by a global search technique, using the 

GlobalSearch command available in Matlab®. In this global optimization method, a number of starting 

points is randomly generated and then uses a local solver to find the optimal value in the basins of 

attraction of the starting points.  This methodology is performed in two phases: a local phase and a 
global phase. In the local phase, the sample of points, randomly obtained, is manipulated by the local 

search solver to find candidates for local minimum. In the global phase, the local minimum with best 

objective function value is used as an approximation to the optimal global [7]. 
The objective of this paper is to present the global optimization technique applied to the updating 

process of a structural model, and compare it with the local search method previously used in the 

Finite Element Model Updating program. 

The organization of this paper is as follows: Section 2 presents the problem description; Section 3 

describes the application of a new optimization process; Section 4 presents the models used in the 

optimization process; Section 5 shows the computational tests, the obtained results and their 

discussion. This paper is concluded in Section 6. 
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2. PROBLEM DESCRIPTION 

The optimization process starts with the building of a numerical model in the finite element program 

ANSYS®, from which are obtained its dynamic characteristics. These dynamic characteristics are 
transferred to the optimizer, developed in Matlab®, where an optimization method is applied. 

The optimization problem consists in the minimization of an objective function f(x) and the aim is to 

find the optimal value that represents the best improvement of the numerical model. The objective 
function f(x), as defined by [9] [10], is given by 

 (1) 

where x is the parameters vector to vary in the optimization of the numerical model and N is the 

number of mode shapes and frequencies involved. x
0
 is the parameters vector with the initial values. 

The MAC (Modal Assurance Criterion) [11] for a parameters vector x is given by MAC(x), affected by 
ASMAC (Alternated Search Modal Assurance Criterion) [9] [10] values. The frequencies ω for a 

parameters vector x is given by ω(x). The objective function is divided in 3 terms. The first term 

corresponds to the sum of N values of the diagonal MAC matrix, affected by ASMAC values, obtained 

from the correlation of the mode shapes between mode shapes of the reference model and mode 
shapes of the numerical model. To obtain a 100% correlation the first term should be 1. The second 

term is the sum of all values outside the diagonal MAC matrix, affected by values of ASMAC, 

obtained from the correlation of the mode shapes between mode shapes of the reference model and 
mode shapes  of numerical model. The term should be zero. The third term is the sum of the 

differences between the reference frequency values ωi and numerical frequency values ωj. The number 

of frequencies is equal to the number of mode shapes. To obtain a 100% correlation between 

frequencies, these differences should be zero. At each iteration, the objective function value is divided 
by initial objective function value in order to normalize each term of the function. 

Here, the optimization problem is a minimization of the objective function (1) subject to simple 

bounds in the decision variables x of the problem. 

3. APPLICATION OF A NEW OPTIMIZATION PROCESS 

The Finite Element Model Updating program, implemented in MatLab®, uses now the global solver 

GlobalSearch, to optimize and find the global optimal value of the objective function f(x). This global 
solver works also with the local solver fmincon. Each solution of the local solver is an optimal local 

value of f(x). The best optimal local value is the optimal global value of f(x). 

The optimization process uses the interaction between Matlab® and Ansys® to execute the numerical 
model and calculate the objective function value, and performs the following steps, as it is build in [9] 

[10]:  

1. Starts the ANSYS® program with a given numerical model input file;  

2. Reads the output file of the ANSYS program and processes it in order to build the objective 

function and constraints used for the optimization process; 

3. Stops the calculation process if an optimal value on the updating process has been achieved, or 

goes to the next iteration on the updating process; 

4. Obtains the new design parameters defined by the optimization algorithm;  

5. Modifies the ANSYS® finite element model input file with the new parameters; 

6. Starts a new analysis by going to step 1 with the new input file. 

In order to compare the local and global solver performance in the optimization process, first, it is 

used the local solver fmincon and then the global solver GlobalSearch, from Matlab®. 
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3.1. Local solver 

The local solver command used in the optimization process is the fmincon. Given an initial starting 

point, this solver can work with four algorithms type: active-set, interior-point, Sequential Quadratic 

Programming and trust-region-reflective, and performs the following steps [8]: 

1. Runs the starting point defined by user; 

2. Creates the local optimum solution vector. 

3.2. Global solver 

The global solver used in the optimization process, the GlobalSearch solver, uses a scatter search 

strategy in order to generate the trial points, and rejects all of those that are unlikely to achieve the best 

local minimum. The solver performs the following steps [8]: 

1. Runs the local solver from initial point supplied by user, and saves the f(x) value for an initial 

estimate on the radius of a basin of attraction and for posterior use in the score function; 

2. Generates trial points (potential starting points); 

3. Runs the starting points defined in the option NumStageOnePoints and evaluates the score 
function of each one; 

4. Runs the best starting point with the best score and removes the remaining points defined on 

stage one; 

5. Examines the remaining trial points and runs the local solver if point satisfies the basin of 

attraction, the score and constraints; 

6. Creates the global optimum solution vector. 

4. MODELS DESCRIPTION 

A numerical model will be optimized taking into account a reference model with reference values of 

mode shapes and natural frequencies.  

4.1. Reference model 

The reference model is a steel sheet with dimensions 200x300x10 mm3, represented respectively by 

width (w), height (h) and thickness (t), as shown in Figure 1, and has mass of 4.708 kg. This model is 

built in ANSYS® with shell elements (SHELL63), and is submitted to modal analysis for extraction of 
mode shapes in 24 points and natural frequencies. The mechanical properties of the steel sheet are 

presented in Table 1. 

 

Figure 1 Reference model 

Table 1 Mechanical properties of reference model 

Property Variable Units Value 

Young’s Module  Ex Pa 2.1e11 

Young’s Module  Ey = Ez Pa 2.2e11 

Poisson’s Ratio  υxy = υyz = υzx - 0.27 

Density  ρ kg/m3 7847 
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4.2. Numerical model 

The numerical model to be optimized has a set of 240 areas of variable geometry, as shown in Figure 

2. The areas are created from points, some with variable coordinates, enabling the change of all areas 

of the model. The points with variable coordinates are function of the geometrical parameters: width 
(wa) and height (hb). The coordinates of the points chosen for reading the mode shapes are kept 

constant in order to coincide with the data of reference.  

 

Figure 2 Initial numerical model 

The numerical model built in ANSYS® with shell elements (SHELL63), has the mechanical properties 
presented in Table 1. The width (w), height (h) and thickness (t) dimensions are equal to the reference 

model, represented in Figure 1. The numerical model has initial mass of 3.296 kg, and will be subject 

to modifications of geometric parameters, such as thickness (t), width (wa) and height (hb), to be 
optimized in the Finite Element Model Updating program. The initial values of the parameters and 

their lower and upper bounds are indicated in Table 2. 

Table 2 1 Parameters of the numerical model to be optimized  

Property Variable Units Initial Value Lower bound Upper bound 

Thickness t mm 10 1 20 

Width a wa mm 10 10 19 
Height b hb mm 10 10 24 

It is expected that the optimal value of width (wa) and height (hb) variables, have a clear tendency to 

converge to the upper bound, in order to fill the empty spaces of the steel sheet.  

5. COMPUTATIONAL TESTS 

In this section the numerical model is optimized and the obtained computational results are presented, 

first with the local solver fmincon, and then with the global solver GlobalSearch. The local solver 

fmincon is performed with the active-set, interior-point, Sequential Quadratic Programming and trust-
region-reflective algorithms. The GlobalSearch solver is performed with 100 and 400 trial points, 

where the number of points analyzed in stage one is 100 and 400, respectively. So, the GlobalSearch 

applies the fmincon solver in two starting points, on supplied initial point x0 and best starting point 

among the trial points of stage one. 

5.1. Local solver results 

In the local solver fmincon analysis, with results presented in Table 3, the search is only performed on 

the starting point x0. 

Table 3 Optimization results for fmincon solver 

Output active-set interior-point SQP  trust-region-reflective 

Number of function evaluations 162 138 239 162 

Optimization time [h] ~1.700 ~1.500 ~2.500 ~1.700 

x local [mm] 

t 10.160 

14.582 

14.881 

10.158 

14.677 

14.843 

10.142 

15.318 

14.528 

10.160 

14.582 

14.881 

wa 

hb 

Optimal local f(x) value 4.402 4.401 4.393 4.402 
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The best optimal value, 4.393, is achieved by SQP algorithm. With the other algorithms the optimal 

value of f(x) is very similar between them. The solver requires 239 function evaluations and 2.5 hours 

to achieve the best optimal global value of the objective function. 

5.2. GlobalSearch solver results 

In GlobalSearch solver analysis, there are, in general, improvements relatively to local solver solution. 

It is shown that these improvements are more evident when using 400 trial points. In the first 

experiment with 100 trial points, where the optimization results are presented in Table 4, the SQP 
algorithm obtains the best optimal value, 4.163. There is an improvement of 5.236% when compared 

with the optimal value obtained with the local search method (4.393), while with the other algorithms, 

only the interior-point achieves a slight improvement of 0.068% compared with the value obtained 
with the local solver (4.401). With the active-set and trust-region-reflective algorithms there is no 

evolution. The solver requires 532 function evaluations and 5.5 hours to achieve the best optimal 

global value of the objective function, needing more 120% of optimization time and function 

evaluations than with the local solver. 

Table 4 Optimization results with GlobalSearch for 100 trial points 

Output active-set interior-point SQP  trust-region-reflective 

Number of function evaluations 526 505 532 526 

Optimization time [h] ~5.500 ~5.200 ~5.500 ~5.500 

x global [mm] 

t 10.160 

14.582 

14.881 

10.152 

14.878 

14.762 

9.990 

19.000 

10.000 

10.160 

14.582 

14.881 

wa 

hb 

Optimal global f(x) value 4.402 4.398 4.163 4.402 

 

The results obtained with 400 trial points, are presented in Table 5, where there is an evolution in the 
optimal global value achieved by active-set, interior-point and trust-region-reflective algorithms.  

Table 5 Optimization results with GlobalSearch for 400 trial points 

Output active-set interior-point SQP  trust-region-reflective 

Number of function evaluations 1149 1224 1168 1215 

Optimization time [h] ~12.500 ~13.300 ~12.800 ~13.200 

x global [mm] 

t 10.145 

15.137 

14.645 

10.135 

15.440 

14.517 

9.990 

19.000 

10.000 

10.138 

15.389 

14.511 

wa 

hb 

Optimal global f(x) value 4.394 4.391 4.163 4.392 

 

The active-set algorithm achieves an improvement of 0.182% compared with the value obtained with 

the local solver (4.402). The interior-point and trust-region-reflective algorithms achieve an 

improvement of 0.227% compared with the value obtained with the local solver (4.401 and 4.402, 
respectively). The optimal global value obtained with the SQP algorithm remains in 4.163. The solver 

requires 1168 function evaluations and 12.8 hours to achieve the best optimal global value of the 

objective function, needing more 412% of optimization time and function evaluations than with the 
local solver. 

5.3. Discussion of Results 

The discussion of results is presented for local and global solutions. 

In general, the local solver fmincon converges to a good solution for the four algorithms, achieving a 
correlation of mode shapes and natural frequencies, between the two models, with good quality. The 

color graphs of Figure 3 represent the MAC matrix and frequencies matrix, and quantifies the 

correlation among the two models. In MAC matrix the diagonal should be as dark as possible and 
bright outside of the diagonal, to represent a good correlation among mode shapes, and the frequencies 

matrix should be as bright as possible to represent a good correlation among the frequencies. 
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The value of the objective function for the first evaluation, for any used algorithms, is 23.042, because 

the initial point x0 is the same for all cases. This value has the meaning of the geometric distance 

between the two models, imposed by initial variables of point x0. This originates a weak correlation 

between, mainly, the natural frequency values of the two models, since the correlation between all 
mode shapes in diagonal MAC matrix is quite close to the unit, as shown in Figure 3.  

 

Figure 3 Initial correlation 

After the optimization be finalized, the quality of the natural frequencies correlation shows a 
considerable improvement, and reveals a slight improvement in MAC matrix, as shown in Figure 4a. 

The SQP algorithm is the one that achieves the best optimal value of objective function, and 

consequently, the best correlation among the two models. 

             

Figure 4 a) Best correlation for local optimization; b) Best final numerical model for local optimization  

The final numerical model, presented in Figure 4b, suffers significant changes due to the width (wa) 

and height (hb) parameters converge to the upper bounds. As the thickness t parameter suffers a small 
change in relation to the initial value, the numerical model is now closer to the reference model, both 

geometrically and in terms of its dynamic behavior, but with a mass reduction of 8.5%. 

The GlobalSearch solver, in general, is able to converge to a better solution than with the local solver 
fmincon. With 100 and 400 trial points, just the SQP algorithm is able to achieve the best optimal 

value of objective function. Consequently, the quality of the correlation between mode shapes and 

natural frequencies of the two models, presented in Figure 5a, reveals an improvement relatively to 

the local solver optimization. 

             
Figure 5 a) Best correlation for global optimization; b) Best final numerical model for global optimization 
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The final numerical model, presented in Figure 5b, is closer to the reference model because the width 

(wa) parameter converges for the upper bound value. The height (hb) parameter keeps the initial value, 

and the thickness (t) parameter suffers a small change, with regard to initial value, and converges to 

the lower bound. This parameter together with the other two, originates a final numerical model with 
very similar geometry and dynamic behaviour in relation to the reference model, but with the 

advantage of mass reduction by 3.1%. 

6. CONCLUSIONS 

The aim of this paper was to apply the global optimization techniques for the optimization of finite 

element models, and to establish a comparison with the local search. The global solver has the 

advantage of being able to work with a higher number of trial points, and therefore, is more efficient 
than the local solver. The global solver tested, GlobalSearch, achieves the best optimal value when 

working with the SQP algorithm. 
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