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Universidade do Minho, Braga 4710-057, Portugal.

Abstract: The concept of the inverse along an element was introduced by X. Mary in
2011. Later, H. H. Zhu etc. introduced the one-sided inverse along an element. In this
paper, we first give a new existence criterion for the one-sided inverse along a product and
characterize the existence of Moore-Penrose inverse by means of one-sided invertibility of
certain element in a ring. In addition, we show that a ∈ S†

⋂
S# if and only if (a∗a)k

is invertible along a if and only if (aa∗)k is invertible along a in a ∗-monoid S, where k
is an arbitrary given positive integer. Finally, we prove that the inverse of a along aa∗

coincides with core inverse of a under the condition a ∈ S{1,4} in a ∗-monoid S.
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1 Introduction

Throughout this paper, S is a monoid (semigroup with identity) and R is a ring with identity.
We say a is (von Neumann) regular in S if there exists x ∈ S such that axa = a. Such x is
called an inner inverse of a and denoted by a−. An involution ∗: S→ S is an anti-isomorphism
which satisfies (ab)∗ = b∗a∗ and (a∗)∗ = a, where a, b ∈ S. ∗-monoid denotes the monoid with
an involution.

Let us recall some definitions of generalized inverses. Let S be a ∗-monoid, an element
a ∈ S is said to Moore-Penrose invertible if the following equations:

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa
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has a common solution [12]. Such solution is unique if it exists, and is usually denoted by
a†. The set of all Moore-Penrose invertible elements of S will be denoted by S†. If x ∈ S
satisfies both (1) and (3), then x is called an {1, 3}-inverse of a and denoted by a(1,3). The
set of all {1, 3}-invertible elements of S will be denoted by S{1,3}. Similarly, if x ∈ S satisfies
both (1) and (4), then x is called an {1, 4}-inverse of a and denoted by a(1,4). The set of all
{1, 4}-invertible elements of S will be denoted by S{1,4}.

The Drazin inverse [2] of a ∈ S is the element x ∈ S which satisfies

ak = ak+1x, xax = x, ax = xa, for some k ≥ 1.

The element x above is unique if it exists and is denoted by aD. The least such k is called
the index of a, and denoted by ind(a). In particular, when ind(a)=1, the Drazin inverse aD

is called the group inverse of a and it is denoted by a#. The set of all Drazin (resp. group)
invertible elements of S will be denoted by SD (resp. S#).

The core (resp. dual core) inverse [13] of a ∈ R is the element x ∈ R which satisfies

axa = a, xR = aR (resp. Rx = Ra), Rx = Ra∗ (resp. xR = a∗R).

The element x above is unique if it exists and is denoted by a#© (resp. a#©). The set of all
core (resp. dual core) invertible elements of R will be denoted by R#© (resp. R#©).

In [9], X. Mary introduced a new generalized inverse using Green’s preorders and relations
[3], named the inverse along an element. The element a ∈ S will be said to be invertible along
d ∈ S if there exists b ∈ S such that

bad = d = dab, bS ⊂ dS, Sb ⊂ Sd.

If such b exists, then it is unique and will be denoted by a‖d. This inverse unify some well-
known generalized inverse such as group inverse, Drazin inverse and Moore-Penrose inverse,
that is a# = a‖a, aD = a‖a

k
for some integer m and a† = a‖a

∗
.

In [10], X. Mary and P. Patŕıcio gave a very useful existence criterion of a‖d by means of
a unit in the ring, that is a is invertible along d if and only if ad+ 1− d−d is invertible if and
only if da + 1− dd− is invertible, when d is regular.

In [14], H. H. Zhu etc. introduced left (right) invertible along an element. An element
a ∈ S is left (resp. right) invertible along d ∈ S if there exists b ∈ S such that

bad = d (resp. dab = d), Sb ⊂ Sd (resp. bS ⊂ dS).

They proved a surprising conclusion in a ∗-monoid S, a ∈ S is left invertible along a∗ if and
only if a is right invertible a∗ if and only if a is Moore-Penrose invertible.

In this paper, our motivation is that if a is left (right) invertible along d, then we will
consider that when d is left (right) invertible along a in a semigroup (or ring). For example,
we can easily see that a is invertible along a∗ if and only if a∗ is invertible along a if and only
if a is Moore-Penrose invertible, where a ∈ S, S is a ∗-monoid.
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In [14], the authors gave an existence criterion of the one-side inverse along pmq (see [14,
Theorem 3.2]). In addition, D. S. Rakić etc. [13] proved a#© = a‖aa

∗
and a#© = a‖a

∗a under
the condition a ∈ R†. According to these facts. In section 2, we further consider the inverse
along a product pmq and generalize some results of [14]. Conversely, we consider that pmq is
invertible along a. Also, we prove that a regular element a ∈ R is Moore-Penrose invertible if
and only if (aa∗)k + 1− aa− is left invertible if and only (aa∗)k + 1− aa− is right invertible,
where k is an arbitrary given positive integer. In section 3, we mainly obtain that a ∈ S†

⋂
S#

if and only if (a∗a)k is invertible along a if and only if (aa∗)k is invertible along a, where k is
also an arbitrary given positive integer. In section 4, we give that a ∈ S#© if and only if a is
invertible along aa∗ if and only if a ∈ S† ∩ S], under the condition a ∈ S{1,4}.

Let a ∈ R, by a−1l and a−1r we denote a left inverse and a right inverse of a, respectively.
First, we state some auxiliary results we will rely on.

Lemma 1.1. [8, Exercise 1.6] Let a, b ∈ R.
(1) If 1+ab is left invertible, then 1+ba is left invertible and (1+ba)−1l = 1−b(1+ab)−1l a.
(2) If 1+ab is right invertible, then 1+ba is right invertible and (1+ba)−1r = 1−b(1+ab)−1r a.
(3) If 1 + ab is invertible, then 1 + ba is invertible and (1 + ba)−1 = 1− b(1 + ab)−1a.

Lemma 1.2. Let a, d ∈ S. Then
(1) [14, Theorem 2.3] a is left invertible along d if and only if Sd = Sdad. In this case,

ud is a left inverse of a along d, where d=udad, u ∈ S.
(2) [14, Theorem 2.4] a is right invertible along d if and only if dS = dadS. In this case,

dv is a right inverse of a along d, where d=dadv, v ∈ S.
(3) [10, Theorem 2.2] a is invertible along d if and only if Sd = Sdad and dS = dadS.
(4) a is invertible along d with inverse y if and only if a is right invertible along d with a

right inverse x and a is left invertible along d with a left inverse z. In this case y=x=z.

Proof. (4) We only need prove y = x = z. Suppose a is invertible along d with inverse y,
then yad = d, Sy ⊂ Sd. From Sy ⊂ Sd, it follows that there exists t1 ∈ S such that y = t1d.
Since x is a right inverse of a along d, we get dax = d and xS ⊂ dS, which implies x = dt2
for some t2 ∈ S. Hence, y = t1d = t1dax = yax, and x = dt2 = yadt2 = yax. So, y = x holds.
Similarly, we have y = z.

Lemma 1.3. Let a, d ∈ R with d regular. Then
(1) [14, Corollary 3.3] a is left invertible along d if and only if u = da + 1 − dd− is left

invertible if and only if v = ad + 1− d−d is left invertible. In this case, u−1l d is a left inverse
of a along d.

(2) [14, Corollary 3.5] a is right invertible along d if and only if u = da + 1− dd− is right
invertible if and only if v = ad + 1 − d−d is right invertible. In this case, dv−1r is a right
inverse of a along d.

(3) [10, Theorem 3.2] a is invertible along d if and only if u = da + 1− dd− is invertible
if and only if v = ad + 1− d−d is invertible. In this case, a‖d = u−1d = dv−1.
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Lemma 1.4. [14, Theorem 2.16] Let S be a ∗-monoid and let a ∈ S. Then a is Moore-Penrose
invertible if and only if a ∈ aa∗aS if and only if a ∈ Saa∗a.

Lemma 1.5. Let S be a ∗-monoid and let a ∈ S.
(1) [14, Theorem 2.19] If a = aa∗ax for some x ∈ S, then a ∈ R† and a† = a∗ax2a∗.
(2) [14, Theorem 2.20] If a = yaa∗a for some y ∈ S, then a ∈ R† and a† = a∗y2aa∗.

Lemma 1.6. [5, Theorem 1] Let a ∈ S. Then a ∈ S# if and only if a = a2x = ya2 for some
x, y ∈ S. In this case, a# = yax = y2a = ax2.

Lemma 1.7. [4] Let R be a ∗-ring and let a, x, y ∈ R. Then
(1) x is a {1, 3}-inverse of a if and only if a = x∗a∗a.
(2) y is a {1, 4}-inverse of a if and only if a = aa∗y∗.

Lemma 1.8. [7, Lemma 5.1] Let R be a ∗-ring and let a ∈ R. Then a ∈ R† if and only if
there exist x, y ∈ R such that axa = a = aya, (ax)∗ = ax, (ya)∗ = ya. In this case, a† = yax.

Next Lemma is proved in a ∗-ring (see [1, Proposition 2.1]). Indeed, it is true in a ∗-monoid.

Lemma 1.9. Let S be a ∗-monoid and let a ∈ S. Then
(1) a ∈ S#© if and only if a ∈ S] ∩ S{1,3}. In this case, a#© = a]aa(1,3).
(2) a ∈ S#© if and only if a ∈ S] ∩ S{1,4}. In this case, a#© = a(1,4)aa].

2 The one-sided inverse along the product pmq

In this section, we give a new existence criterion for the one-side inverse along a product pmq
in a ring R, which covers [14, Theorem 3.2].

Theorem 2.1. Let a,m, p, p′, q, q′ ∈ R with m regular and k ≥ 1. If p′pm = m = mqq′, then
the following are equivalent:

(1) a is left invertible along pmq;
(2) u = (qapm)k + 1−m−m is left invertible;
(3) v = (mqap)k + 1−mm− is left invertible.

In this case, pv−1l (mqap)k−1mq is a left inverse of a along pmq.

Proof. (2) ⇔ (3) Since u = (qapm)k−1qapm + 1 − m−m = 1 + ((qapm)k−1qap − m−)m,
according to Lemma 1.1(1), we have u is left invertible, i.e. 1 + m((qapm)k−1qap−m−) = v
is left invertible.

(1) ⇒ (2) Suppose that a is left invertible along pmq, by Lemma 1.2(1), we get pmq =
xpmqapmq for some x ∈ R. Multiplying the previous equality by q′ from the right side
and using the equality mqq′ = m, we have pm = xpmqapm. Repeatedly use the equality
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pm = xpmqapm, we have pm = x(pm)qapm = x(xpmqapm)qapm = x2pm(qapm)2 = · · · =
xk(pm)(qapm)k. Then, note that p′pm = m, we get

(mm−p′xkpmm− + 1−mm−)(m(qapm)km− + 1−mm−)

= mm−p
′
(xkpmm−m(qapm)k)m− + 1−mm−

= mm−p
′
pmm− + 1−mm−

= 1,

which implies m(qapm)km−+ 1−mm− = 1 +m((qapm)k− 1)m− is left invertible. Applying
Lemma 1.1(1), we deduce that 1+((qapm)k−1)m−m = (qapm)km−m+1−m−m = (qapm)k+
1−m−m = u is left invertible.

(3) ⇒ (1) If v = (mqap)k + 1−mm− is left invertible, then there exists s ∈ R such that
s((mqap)k + 1 − mm−) = 1. Multiplying the previous equation by m from the right side
yields m = s(mqap)km. Let b = ps(mqap)k−1mq, then ba(pmq) = ps(mqap)k−1mqapmq =
ps(mqap)kmq = pmq. Since p′pm = m, we get b = ps(mqap)k−1mq = ps(mqap)k−1p′pmq,
which implies Rb ⊂ Rpmq. Therefore, b is a left inverse of a along pmq.

As special cases of Theorem 2.1, we get the following results.

Corollary 2.2. [14, Theorem 3.2] Let a,m, p, p′, q, q′ ∈ R with m regular. If p′pm = m =
mqq′, then the following are equivalent:

(1) a is left invertible along pmq;
(2) u = qapm + 1−m−m is left invertible;
(3) v = mqap + 1−mm− is left invertible.

In this case, pv−1l mq is a left inverse of a along pmq.

Corollary 2.3. Let a,m ∈ R with m regular and k ≥ 1. Then the following are equivalent:
(1) a is left invertible along m;
(2) u = (am)k + 1−m−m is left invertible;
(3) v = (ma)k + 1−mm− is left invertible.

In this case, v−1l (ma)k−1m is a left inverse of a along m.

Corollary 2.4. Let a ∈ R be regular and k ≥ 1. Then the following are equivalent:
(1) Ra = Ra2;
(2) 1 is left invertible along a;
(3) u = ak + 1− a−a is left invertible;
(4) v = ak + 1− aa− is left invertible.

In this case, v−1l ak is a left inverse of 1 along a.

Proof. (1) ⇔ (2) By Lemma 1.2(1), we have (1) ⇔ (2).
(2) ⇔ (3) ⇔ (4) In Corollary 2.3, take a = 1, m = a. then (2) ⇔ (3) ⇔ (4).
Dually, we have the following results.

Theorem 2.5. Let a,m, p, p′, q, q′ ∈ R with m regular and k ≥ 1. If p′pm = m = mqq′, then
the following are equivalent:
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(1) a is right invertible along pmq;
(2) u = (qapm)k + 1−m−m is right invertible;
(3) v = (mqap)k + 1−mm− is right invertible.

In this case, pm(qapm)k−1u−1r q is a right inverse of a along pmq.

Corollary 2.6. [14, Theorem 3.4] Let a,m, p, p′, q, q′ ∈ R with m regular. If p′pm = m =
mqq′, then the following are equivalent:

(1) a is right invertible along pmq;
(2) u = qapm + 1−m−m is right invertible;
(3) v = mqap + 1−mm− is right invertible.

In this case, pmu−1r q is a right inverse of a along pmq.

Corollary 2.7. Let a,m ∈ R with m regular and k ≥ 1. Then the following are equivalent:
(1) a is right invertible along m;
(2) u = (am)k + 1−m−m is right invertible;
(3) v = (ma)k + 1−mm− is right invertible.

In this case, m(am)k−1u−1r is a right inverse of a along m.

Corollary 2.8. Let a ∈ R be regular and k ≥ 1. Then the following are equivalent:
(1) aR = a2R;
(2) 1 is right invertible along a;
(3) u = ak + 1− a−a is right invertible;
(4) v = ak + 1− aa− is right invertible.

In this case, aku−1r is a right inverse of ak−1 along a.

According to Corollary 2.3, Corollary 2.7 and Lemma 1.2(4), we have the following result,
which generalize [10, Theorem 3.2].

Corollary 2.9. Let a,m ∈ R with m regular and k ≥ 1. Then the following are equivalent:
(1) a is invertible along m;
(2) u = (am)k + 1−m−m is invertible;
(3) v = (ma)k + 1−mm− is invertible.

In this case, a‖m = v−1(ma)k−1m = m(am)k−1u−1.

We know that 1 is invertible a if and only if a ∈ R# (see [10, Corollary 3.4]). By Corollary
2.9, we get

Corollary 2.10. Let a ∈ R be regular and k ≥ 1. Then the following are equivalent:
(1) a ∈ R#;
(2) u = ak + 1− a−a is invertible;
(3) v = ak + 1− aa− is invertible.

In this case, a# = aku−1 = v−1ak.
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In [14], H. H. Zhu etc. showed a ∈ R† if and only if a is left(or right) invertible along a∗.
In [11], P. Patŕıcio proved that a ∈ R† if and only if aa∗ + 1− aa− is invertible if and only if
a∗a + 1 − a−a is invertible. In the following theorem, we characterize the existence of a† by
means of one-side invertibility.

Theorem 2.11. Let a ∈ R be regular and k ≥ 1. Then the following are equivalent:
(1) a is Moore-Penrose invertible;
(2) u = (aa∗)k + 1− aa− is left invertible;
(3) u = (aa∗)k + 1− aa− is right invertible;
(4) v = (a∗a)k + 1− a−a is left invertible;
(5) v = (a∗a)k + 1− a−a is right invertible.

In this case,
a† = a∗(u−1l (aa∗)k−1)2aa∗ = a∗a((a∗a)k−1v−1r )2a∗

= a∗(aa∗)k−1(u−1l )∗ = (v−1r )∗(a∗a)k−1a∗.

Proof. (1)⇔ (2) Since a is regular, then a∗ is regular and (a∗)− = (a−)∗. In Corollary 2.7, let
m = a∗. Then we have that a is right invertible along a∗ if and only if (aa∗)k + 1− (a∗)−a∗ =
(aa∗)k+1−(a−)∗a∗ = (aa∗)k+1−(aa−)∗ = u∗ is right invertible. Note that u is left invertible
if and only if u∗ is right invertible. In addition, (u∗)−1r = (u−1l )∗. Thus, we get (1) ⇔ (2). In
this case, a∗(aa∗)k−1(u−1l )∗ is a right inverse of a along a∗. Applying Lemma 1.2(4), we get
a† = a∗(aa∗)k−1(u−1l )∗.

(1) ⇔ (5) Similar to the proof of (1) ⇔ (2). Also, we can have a† = (v−1r )∗(a∗a)k−1a∗.
(2) ⇔ (4) and (3) ⇔ (5) Applying Lemma 1.1.
Next, we give the expression for a†. Since u is left invertible, there exists r ∈ R such that

ru = 1, which implies rua = a. Thus, a = rua = r((aa∗)k + 1 − aa−)a = r(aa∗)k−1aa∗a, by
Lemma 1.5(2), we get a† = a∗(u−1l (aa∗)k−1)2aa∗. Similarly, we can prove another expression
for a†.

Take k = 1 in Theorem 2.11, then we obtain the following corollary.

Corollary 2.12. Let a ∈ R be regular. Then the following are equivalent:
(1) a is Moore-Penrose invertible;
(2) u = aa∗ + 1− aa− is left invertible;
(3) u = aa∗ + 1− aa− is right invertible;
(4) v = a∗a + 1− a−a is left invertible;
(5) v = a∗a + 1− a−a is right invertible.

In this case, a† = a∗u−2l aa∗ = a∗av−2r a∗ = a∗(u−1l )∗ = (v−1r )∗a∗.

In [9], X. Mary showed that a ∈ R is invertible along ak if and only if a is Drazin invertible.
Naturally, we next consider when ak is invertible along a.

Theorem 2.13. Let a ∈ S and k ≥ 0. Then the following are equivalent:
(1) ak is left invertible along a;
(2) Sa = Sa2.
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Proof. (1) ⇒ (2) Suppose that ak is left invertible along a, by Lemma 1.2(1), we have Sa ⊂
Saka2 ⊂ Sa2, which implies Sa = Sa2.

(2) ⇒ (1) Assume Sa = Sa2, then there exists r ∈ S such that a = ra2. Thus, a = ra2 =
r2a3 = · · · = rk+1ak+2 ∈ Saaka. According to Lemma 1.2(1) again, we get ak is left invertible
along a.

Dually, we have

Theorem 2.14. Let a ∈ S and k ≥ 0. Then the following are equivalent:
(1) ak is right invertible along a;
(2) aS = a2S.

Using Theorem 2.13 and Theorem 2.14, we obtain

Corollary 2.15. Let a ∈ S and k ≥ 0. Then the following are equivalent:
(1) ak is invertible along a;
(2) a ∈ S#.

We next consider when the product paq is invertible along d under certain condition.

Theorem 2.16. Let a, d, p, p′, q, q′ ∈ S. If q′qd = d = dpp′, then the following are equivalent:
(1) paq is invertible along d with inverse y;
(2) pa is right invertible along qd with a right inverse x and aq is left invertible along dp

with a left inverse z.
In this case, y=zax.

Proof. (1) ⇒ (2) Suppose paq is invertible along d, by Lemma 1.2(3), we have dpaqdS = dS
and Sdpaqd = Sd, which imply qdpaqdS = qdS and Sdpaqdp = Sdp. According to Lemma
1.2(1)(2), we have pa is right invertible along qd and aq is left invertible along dp.

(2) ⇒ (1) Suppose pa is right invertible along qd with a right inverse x, then qdpax = qd
and xS ⊂ qdS. From xS ⊂ qdS, it follows that x = qdt1 for suitable t1 ∈ S. Hence qdpaqdt1 =
qd. Multiplying the previous equation by q′ from the left side, we get q′qdpaqdt1 = q′qd. Using
the equation q′qd = d, we obtain dpaqdt1 = d.

Similarly, since aq is left invertible along dp with a left inverse z, then zaqdp = dp and
Sz ⊂ Sdp. From Sz ⊂ Sdp, we get z = t2dp for some t2 ∈ S. Therefore, t2dpaqdp = dp,
which implies t2dpaqdpp

′ = dpp′. Since dpp′ = d, then t2dpaqd = d.
Let u = zax. We will prove u is the inverse of paq along d. Then, from above equations,

we have

upaqd = zaxpaqd = t2dpaqdt1paqd = t2dpaqd = d

and
dpaqu = dpaqzax = dpaqt2dpaqdt1 = dpaqdt1 = d.

Also, u = zax = t2(dpaqdt1) = t2d = (t2dpaqd)t1 = dt1 implies uS ⊂ dS and Su ⊂ Sd. Thus,
u is the inverse of paq along d.

Note that, Theorem 2.16 is in general false without the condition q′qd = d = dpp′:

8



Example 2.17. Let S be the algebra M2(F) of all 2× 2 matrices over a field F. Take

p = a = q =

[
1 0
0 0

]
, d =

[
1 0
0 1

]
.

Then, we can see that paq is not invertible, so paq is not invertible along d. However, pa‖qd =
aq‖dp = a.

3 When a∗a ( or aa∗) is invertible along a

In this section, we mainly consider the relation between the (left, right) inverse of aa∗(a∗a)
along a and the classical generalized inverses in a ∗-monoid. In what follows, R always denotes
a ∗-ring and S denotes a ∗-monoid.

Theorem 3.1. Let a ∈ S and k ≥ 1. Then the following are equivalent:
(1) a ∈ S† and aS = a2S;
(2) (a∗a)k is right invertible along a.

Proof. (1) ⇒ (2) From the condition a ∈ S† and by Lemma 1.4, it follows that a ∈ aa∗aS,
which imply a = aa∗ah for some h ∈ S. Then, we have a = aa∗ah = a(a∗a)2h2 = · · · =
a(a∗a)khk. According to the equality aS = a2S, there exists s ∈ S such that a = a2s. Then,
we have a = a(a∗a)khk = a(a∗a)k−1a∗ahk = a(a∗a)k−1a∗a2shk = a(a∗a)kashk ∈ a(a∗a)kaS.
Applying Lemma 1.2(2), we can deduce that (a∗a)k is right invertible along a.

(2) ⇒ (1) Suppose that (a∗a)k is right invertible along a, by Lemma 1.2(2), there exists
t ∈ S such that a = a(a∗a)kat and hence a∗ = t∗a∗(a∗a)ka∗. Since (a∗a)kat = a∗a(a∗a)k−1at =
t∗a∗(a∗a)ka∗a(a∗a)k−1at = t∗a∗(a∗a)2kat, then we have ((a∗a)kat)∗ = (a∗a)kat. Next, we will
prove that (a(a2t)∗)∗ = a(a2t)∗. Since

a(a2t)∗

= at∗(a2)∗ = at∗a∗a∗

= at∗a∗t∗a∗(a∗a)ka∗

= a(tat)∗a∗(a∗a)k−1a∗aa∗

= a(tat)∗a∗(a∗a)k−1a∗a(a∗a)kata∗

= a(tat)∗a∗(a∗a)2k−1a∗aata∗

= a(tat)∗a∗(a∗a)2k−1a∗a(a∗a)katata∗

= a(tat)∗a∗(a∗a)3ka(tat)a∗,

it follows that (a(a2t)∗)∗ = a(a2t)∗. Therefore, we get a = a(a∗a)kat = a((a∗a)k−1a∗a2t)∗ =
a(a2t)∗a(a∗a)k−1 = (a(a2t)∗)∗a(a∗a)k−1 = a2t(a∗a)k ∈ a2S, which implies aS = a2S.

Also, from the equality a = a(a∗a)kat = aa∗a(a∗a)k−1at ∈ aa∗aS, by Lemma 1.4, we
deduce that a ∈ S†.
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Remark 3.2. Note that a ∈ S† and aS = a2S can not imply a ∈ S#. For example, take S to
be the ring of both row-finite and column-finite infinite matrices over a field F. Let involution

∗ be the transpose. Take a =
∞∑
i=1

ei,i+1, where ei,j denotes the infinite matrix whose (i, j)-entry

is 1 and others are zero. Then aa∗ = I. Hence, we have a† = a∗, and aS = a2S. However,
Sa 6= Sa2, which implies a is not group invertible.

Applying the previous theorem in a ∗-ring R, we have the following corollary.

Corollary 3.3. Let a ∈ R be regular and k ≥ 1. Then the following are equivalent:
(1) a ∈ R† and aR = a2R;
(2) (a∗a)k is right invertible along a;
(3) u = a(a∗a)k + 1− aa− is right invertible;
(4) v = (a∗a)ka + 1− a−a is right invertible.

In this case, a† = a∗a((a∗a)k−1av−1r )2a∗.

Proof. (1) ⇔ (2) By Theorem 3.1.
(2) ⇔ (3) By Lemma 1.3.
(3) ⇔ (4) By Lemma 1.1(2).
Next, we give the expression for the Moore-Penrose inverse a†. Since v is right invertible,

we have vv−1r = 1, which implies a = a(a∗a)kav−1r = aa∗a(a∗a)k−1av−1r . By Lemma 1.5(1),
we obtain a† = a∗a((a∗a)k−1av−1r )2a∗.

Dually, we have the following results.

Theorem 3.4. Let a ∈ S and k ≥ 1. Then the following are equivalent:
(1) a ∈ S† and Sa = Sa2;
(2) (aa∗)k is left invertible along a.

Corollary 3.5. Let a ∈ R with a regular and k ≥ 1. Then the following are equivalent:
(1) a ∈ R† and Ra = Ra2;
(2) (aa∗)k is left invertible along a;
(3) u = a(aa∗)k + 1− aa− is left invertible;
(4) v = (aa∗)ka + 1− a−a is left invertible.

In this case, a† = a∗(u−1l a(aa∗)k−1)2aa∗.

In the following theorem, we consider when a∗a (resp. aa∗) is left (resp. right) invertible
along a under the condition a ∈ S†.

Theorem 3.6. Let a ∈ S† and k ≥ 1. Then
(1) Sa = Sa2 if and only if (a∗a)k is left invertible along a.
(2) aS = a2S if and only if (aa∗)k is right invertible along a.
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Proof. (1) Suppose Sa = Sa2, we have a = sa2 for some s ∈ S. According to the condition
a ∈ S† and Lemma 1.4, there exists r ∈ S such that a = raa∗a. Hence, we deduce that
a = sa2 = s(raa∗a)a = srraa∗aa∗aa = sr2a(a∗a)2a = · · · = srka(a∗a)ka ∈ Sa(a∗a)ka. By
Lemma 1.2(1), we get (a∗a)k is left invertible along a.

Conversely, suppose that (a∗a)k is left invertible along a. Using Lemma 1.2(1) again, there
exists t ∈ S such that a = ta(a∗a)ka = t(aa∗)ka2, which implies Sa = Sa2.

(2) This statement can be proved in the same manner as (1).
Note that, in the proof of sufficiency of Theorem 3.6, we need not a ∈ S†. So, we have the

following questions.

Question 3.7. Suppose that a∗a is left invertible along a, does a ∈ S† hold? In addition,
assume that aa∗ is right invertible along a, does a ∈ S† hold?

We now give the relations of these inverses, such as the inverse of a∗a along a, the inverse
of aa∗ along a, Moore-Penrose inverse and group inverse.

Theorem 3.8. Let a ∈ S and k ≥ 1. Then the following are equivalent:
(1) a ∈ S†

⋂
S#;

(2) (a∗a)k is right invertible along a and (aa∗)k is left invertible along a;
(3) (a∗a)k is invertible along a;
(4) (aa∗)k is invertible along a.

In this case,

a† = a∗a((a∗a)k−1((a∗a)k)‖a)2a∗ = a∗(((aa∗)k)‖a(aa∗)k−1)2aa∗,

a# = (((a∗a)k)‖a(a∗a)k−1a∗)2a = a(a∗(aa∗)k−1((aa∗)k)‖a)2,

((a∗a)k)‖a = aa#(a†(a†)∗)k and ((aa∗)k)‖a = ((a†)∗a†)ka#a.

Proof. (1) ⇔ (2) By Theorem 3.1 and 3.4.
(1) ⇒ (3) According to the condition a ∈ S†

⋂
S# and Theorem 3.6, we get (a∗a)k is left

invertible along a. Applying Theorem 3.1, (a∗a)k is right invertible along a. Hence, (a∗a)k is
invertible along a.

(3)⇒ (2) Suppose that (a∗a)k is invertible along a, by Theorem 3.1, then a ∈ S†. Note that
(a∗a)k is left invertible along a, by Lemma 1.2(1), we have a ∈ Sa(a∗a)ka = Sa(a∗a)k−1a∗a2 ⊂
Sa2. By Theorem 3.4, we get (aa∗)k is left invertible along a.

(1) ⇒ (4) ⇒ (2) It is similar to the proof of (1) ⇒ (3) ⇒ (2).
Next, we give representations of a†, a#, ((a∗a)k)‖a and ((aa∗)k)‖a. Since (a∗a)k is invertible

along a, we have
a = a(a∗a)k((a∗a)k)‖a = aa∗a(a∗a)k−1((a∗a)k)‖a

and
a = ((a∗a)k)‖a(a∗a)ka = ((a∗a)k)‖a(a∗a)k−1a∗a2,

which imply a† = a∗a((a∗a)k−1((a∗a)k)‖a)2a∗ and a# = (((a∗a)k)‖a(a∗a)k−1a∗)2a by Lemma
1.5 and Lemma 1.6, respectively.

Similarly, we get a† = a∗(((aa∗)k)‖a(aa∗)k−1)2aa∗ and a# = a(a∗(aa∗)k−1((aa∗)k)‖a)2.
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Note that a = a(a∗a)kaa#(a†(a†)∗)k, by Lemma 1.2, we have ((a∗a)k)‖a = aa#(a†(a†)∗)k.
Similarly, from a = ((a†)∗a†)ka#a(aa∗)ka, it follows that ((aa∗)k)‖a = ((a†)∗a†)ka#a.

Letting k = 1 in Theorem 3.8, we get

Corollary 3.9. Let a ∈ S. Then the following are equivalent:
(1) a ∈ S†

⋂
S#;

(2) a∗a is right invertible along a and aa∗ is left invertible along a;
(3) a∗a is invertible along a;
(4) aa∗ is invertible along a.

In this case,
a† = a∗a((a∗a)‖a)2a∗ = a∗((aa∗)‖a)2aa∗,

a# = ((a∗a)‖aa∗)2a = a(a∗(aa∗)‖a)2,

(a∗a)‖a = a#(a†)∗ and (aa∗)‖a = (a†)∗a#.

Applying Theorem 3.8, Lemma 1.3 and Lemma 1.9 in a ∗-ring R, we have the following
corollary.

Corollary 3.10. Let a ∈ R be regular and k ≥ 1. Then the following are equivalent:
(1) a ∈ R†

⋂
R#;

(2) a ∈ R#©
⋂
R#©;

(3) u = a(a∗a)k + 1− aa− is invertible;
(4) v = (aa∗)ka + 1− a−a is invertible;
(5) s = (a∗a)ka + 1− a−a is invertible;
(6) t = a(aa∗)k + 1− aa− is invertible.

In this case,
a#© = u−1a(a∗a)k−1a∗, a#© = a∗(aa∗)k−1av−1,

a† = (t−1a(aa∗)k−1a)∗ = (a(a∗a)k−1as−1)∗

and
a# = (u−1a(a∗a)k−1a∗)2a = a(a∗(aa∗)k−1av−1)2.

Proof. We only need to prove the expressions of a#©, a#©, a† and a#. Observe that ua =
a(a∗a)ka = a(a∗a)k−1a∗a2, which implies a = u−1a(a∗a)k−1a∗a2. Since a ∈ R#, by Lemma
1.6, we have a# = (u−1a(a∗a)k−1a∗)2a. Using Lemma 1.9, we obtain

a#© = a#aa(1,3) = (u−1a(a∗a)k−1a∗)2a2a(1,3)

= u−1a(a∗a)k−1a∗(u−1a(a∗a)k−1a∗a2)a(1,3)

= u−1a(a∗a)k−1a∗aa(1,3)

= u−1a(a∗a)k−1a∗.

Similarly, we can get a# = a(a∗(aa∗)k−1av−1)2 and a#© = a∗(aa∗)k−1av−1.
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From as = a(a∗a)ka and ta = a(aa∗)ka, it follows that a = aa∗a(a∗a)k−1as−1 and a =
t−1a(aa∗)k−1aa∗a. Applying Lemma 1.7 and Lemma 1.8, we have

a† = (a(a∗a)k−1as−1)∗a(t−1a(aa∗)k−1a)∗

= (s−1)∗a∗(a∗a)k−1a∗aa∗(aa∗)k−1a∗(t−1)∗

= (s−1)∗(a(a∗a)ka)∗(aa∗)k−1a∗(t−1)∗

= (s−1)∗(as)∗(aa∗)k−1a∗(t−1)∗

= a∗(aa∗)k−1a∗(t−1)∗

= (t−1a(aa∗)k−1a)∗.

Also, we can have a† = (a(a∗a)k−1as−1)∗.

4 When a is invertible along aa∗ ( or a∗a)

In [13], D. S. Rakić etc. showed that the inverse of a along aa∗ coincides with core inverse of
a, under the condition a ∈ R†. Next, we will consider these kinds of inverses under weaker
condition in a ∗-monoid.

It is well known that a ∈ S{1,4} if and only if a ∈ aa∗S. Under the hypothesis a ∈ S{1,4},
we discuss the relation between the one-side inverse of a along aa∗ and the one-side inverse
of a∗a along a.

Theorem 4.1. Let a ∈ S{1,4}. Then the following are equivalent:
(1) a is left invertible along aa∗;
(2) a∗a is left invertible along a.

Proof. (1) ⇒ (2) Suppose that a is left invertible along aa∗, by Lemma 1.2(1), we have aa∗ ∈
Saa∗a2a∗, which implies aa∗ = t1aa

∗a2a∗ for some t1 ∈ S. From the condition a ∈ S{1,4}, there
exists t2 ∈ S such that a = aa∗t2. Hence, we deduce that a = aa∗t2 = t1aa

∗a2a∗t2 = t1aa
∗a2.

According to Lemma 1.2(1) again, we get a∗a is left invertible along a.
(2) ⇒ (1) Since a∗a is left invertible along a, by Lemma 1.2(1), we have a = t3aa

∗a2

for some t3 ∈ S. Multiplying the previous equation by a∗ from the right side yields aa∗ =
t3aa

∗a2a∗. Hence, a is left invertible along aa∗.

Corollary 4.2. Let a ∈ R{1,4}. Then the following are equivalent:
(1) a is left invertible along aa∗;
(2) u = aa∗a + 1− aa(1,4) is left invertible;
(3) v = a∗a2 + 1− a(1,4)a is left invertible;
(4) f = (a∗)2a + 1− a(1,4)a is right invertible;
(5) g = a(a∗)2 + 1− aa(1,4) is right invertible.

In this case, u−1l aa∗ is a left inverse of a along aa∗.

Proof. (1) ⇔ (2) Since a ∈ R{1,4} and by Lemma 1.3(1), we have a∗a is left invertible along
a if and only if aa∗a+ 1− aa(1,4) is left invertible. By Theorem 4.1, it follows that (1) ⇔ (2).
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(3) ⇔ (4) Note that v = f∗, then we get (3) ⇔ (4).
(2) ⇔ (3) and (4) ⇔ (5) By Lemma 1.1(1)(2).
Suppose that u is left invertible, then u−1l u = 1, which implies u−1l uaa∗ = aa∗. Note that

aa∗ = u−1l uaa∗ = u−1l (aa∗a + 1 − aa(1,4))aa∗ = u−1l aa∗aaa∗. Hence, u−1l aa∗ is a left inverse
of a along aa∗ by Lemma 1.2(1).

Similarly, we have the following results.

Theorem 4.3. Let a ∈ S{1,4}. Then the following are equivalent:
(1) a is right invertible along aa∗;
(2) a∗a is right invertible along a.

Proof. Since a ∈ S{1,4}, there exists t2 ∈ S such that a = aa∗t2.
(1)⇒ (2) Note that aa∗ = aa∗a2a∗t1 for some t1 ∈ S by Lemma 1.2(2). Thus, a = aa∗t2 =

aa∗a2a∗t1t2 ∈ a(a∗a)aS, which implies a∗a is right invertible along a.
(2) ⇒ (1) Suppose that a∗a is right invertible along a, there exists t3 ∈ S such that

a = a(a∗a)at3 = aa∗a(aa∗t2)t3. Then aa∗ = (aa∗)a(aa∗)t2t3a
∗ ∈ (aa∗)a(aa∗)S, which gives a

is right invertible along aa∗.

Corollary 4.4. Let a ∈ R{1,4}. Then the following are equivalent:
(1) a is right invertible along aa∗;
(2) u = aa∗a + 1− aa(1,4) is right invertible;
(3) v = a∗a2 + 1− a(1,4)a is right invertible;
(4) f = (a∗)2a + 1− a(1,4)a is left invertible;
(5) g = a(a∗)2 + 1− aa(1,4) is left invertible.

In this case, aa∗(g−1l )∗ is a right inverse of a along aa∗.

Theorem 4.5. Let a ∈ S{1,4}. Then the following are equivalent:
(1) a is invertible along aa∗;
(2) a∗a is invertible along a;
(3) a ∈ S† ∩ S];
(4) a ∈ S#©.

In this case, a#© = a‖aa
∗
.

Proof. (1) ⇔ (2) According to Theorem 4.1 and Theorem 4.3, we have (1) ⇔ (2).
(2) ⇔ (3) The equivalence of (2) and (3) can be obtained by Corollary 3.9.
(3) ⇔ (4) Using Lemma 1.9 and a ∈ S{1,4}, we have (3) ⇔ (4).
Next, we will prove the inverse of a along aa∗ coincides with core inverse of a under the

condition a ∈ S{1,4}. Since a#© = a]aa(1,3), we have a#©a(aa∗) = a]aa(1,3)a(aa∗) = aa∗ and
a#© = a]aa(1,3) = a#(a(1,3))∗a(1,4)aa∗ ∈ Saa∗, which imply a#© is a left inverse of a along aa∗.
According to Lemma 1.2 (4), we have a#© = a‖aa

∗
.

Remark 4.6. Note that a is invertible along aa∗ can not imply a ∈ S# or a ∈ S{1,3} or
a ∈ S{1,4}. For example, let S = Z4 and x∗ = x for any x ∈ S. Take a = 2, then aa∗ = 0 and
a‖aa

∗
= 0. But a is not regular, so a /∈ S#, a /∈ S{1,3} and a /∈ S{1,4}.
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Remark 4.7. Under the condition a ∈ S†, we can not have the conclusion a is left(right) in-
vertible along aa∗. For example, let S = M2(H) and the involution be the conjugate transpose,
where H denotes the division ring of quaternions. We know that any element in S is Moore-

Penrose invertible. Take a =

[
i− j 1− k
1 + k −i− j

]
. Then d =: aa∗ = 4

[
1 i
−i 1

]
,

aa∗a = 8a and dad = aa∗aaa∗ = 8aaa∗ = 0. Hence, d /∈ Sdad (d /∈ dadS), which imply a is
not left(right) invertible along aa∗.

Remark 4.8. We have seen that a is left invertible along a∗ if and only if a is right invertible
along a∗. However, the following example shows that a is left invertible along aa∗ is not
equivalent to a is right invertible along aa∗ in general.

Example 4.9. Let S be the ring which is the same as the infinite matrix ring in Remark 3.2

and let a =
∞∑
i=1

ei+1,i. Then, d =: aa∗ =
∞∑
i=2

ei,i and dad =
∞∑
i=2

ei+1,i. We can easily see that

d /∈ dadS, which implies a is not right invertible along d. While, d = (
∞∑
i=2

ei,i+1)dad ∈ Sdad,

we deduce that a is left invertible along d.

Remark 4.10. In Theorem 4.5, we can not replace a ∈ S{1,4} with a ∈ S{1,3}. For example,
let S = M2(C) and the involution is the transpose. Take a = [ 1 i

0 0 ]. Then a ∈ Sa∗a, which
implies a ∈ S{1,3}. Note that aa∗ = 0, a is invertible along aa∗. But, a /∈ aa∗S, which yields
a /∈ S{1,4} and a /∈ S†.

Similar to Theorem 4.5, we have the following result.

Theorem 4.11. Let a ∈ S{1,3}. Then the following are equivalent:
(1) a is invertible along a∗a;
(2) aa∗ is invertible along a;
(3) a ∈ S† ∩ S];
(4) a ∈ S#©.

In this case, a#© = a‖a
∗a.

According to Theorem 4.5 and Theorem 4.11, we get

Corollary 4.12. [13, Theorem 4.3] Let a ∈ R†. Then
(1) a is core invertible if and only if a is invertible along aa∗. In this case, the inverse of

a along aa∗ coincides with core inverse of a.
(2) a is dual core invertible if and only if a is invertible along a∗a. In this case, the inverse

of a along a∗a coincides with dual core inverse of a.
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