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Abstract In this work a default revision mechanism is introduced into Spec-
ulative Computation to manage incomplete information. The default revision
is supported by a method for the generation of default constraints based on
Bayesian Networks. The method enables the generation of an initial set of
defaults which is used to produce the most likely scenarios during the compu-
tation, represented by active processes. As facts arrive, the Bayesian Network
is used to derive new defaults. The objective with such a new dynamic mecha-
nism is to keep the active processes coherent with arrived facts. This is achieved
by changing the initial set of default constraints during the reasoning process
in Speculative Computation. A practical example in clinical decision support
is described.

Keywords Default Revision, Incomplete Information, Speculative Compu-
tation, Bayesian Networks.

1 Introduction

In order to tackle situations of problem solving and decision making in which
cases of incomplete information may occur, a framework of Speculative Com-
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putation was proposed, first for yes/no questions [23,24] and then for gen-
eral questions using constraints [22,9]. The term Speculative Computation is
used to describe a series of procedures by which an answer for a problem is
searched and computed using default beliefs. A default belief is defined here
as something thought to be the case in replacement of the true information, if
the last is not available. Speculative Computation is formalized in terms of a
framework and process semantics featuring mechanisms for the reduction and
revision of processes. Such a framework allows an agent to reason with default
beliefs while waiting for the other agents to reply. In this way, the computa-
tion of answers is brought forward and, if the arriving information matches
the default beliefs, it is possible to save time in the search for an answer.
This kind of framework is particularly useful in multi-agent systems since it
is often difficult to guarantee efficient and reliable communications between
agents. A multi-agent system may be deployed in an unreliable network or
need human intervention to promote interactions between agents, which may
cause situations that delay or even prevent communications. An agent which is
part of such a system and uses information provided by the other agents may
see its inference process blocked or delayed. The use of the term information
here refers to the elements that serve as premises in the inference process and
which will later enable the agent to derive logical conclusions, in order to solve
a problem or make a decision.

In [23,24,22,9], fixed default beliefs are used in Speculative Computation.
However, when applied to a real setting, the default beliefs are highly depen-
dent on the context. The same is to say they depend on the set of circum-
stances and facts that surround a problem and change over time. A default
belief may change according to the information obtained by later replies from
the information sources and may become incoherent with the returned facts,
which would result in tentative answers that do not represent the most likely
scenarios. A scenario is a process representing an answer obtained through
reductions based on default beliefs, meaning that, in the context of a problem,
it represents an outline of a possible event.

To account for this drawback, the present work proposes a dynamic re-
vision of default beliefs. It is important to state that this revision does not
refer to the replacement of default beliefs with true information, but to their
replacement with new default beliefs. It is performed on-line since it occurs
as answers are searched and facts arrive. In a real setting, it is important to
anticipate changes of state and therefore, in the present work, default beliefs
are revised into new default beliefs as information arrives, which allows the
prompt adjustment of scenarios. These default beliefs assume the form of de-
fault constraints. The same is to say that the information used to reduce a
process involving a variable for which no real value is known (i.e., the de-
fault) is represented as a constraint in a Constraint Logic Program (CLP).
The behaviour of an agent is also specified in a CLP, where derivations are
handled as alternative answers. The manipulation of such alternative answers
is done with the processing of disjunctive constraints. In order to distinguish
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this framework from previous ones, the term Speculative Computation with
Default Revision will be used. Its main contribution is twofold:

– The first contribution is a default generation method for Speculative Com-
putation based on Bayesian Networks (BNs). A BN featuring the variables
used in the CLP is constructed with data of previous attempts of an agent
to solve a problem. The probability distribution provided by the BN enables
the derivation of default constraints before the beginning of the computa-
tion, without any information, and during the computation, with partial
information. This represents a new use for BNs, given that, in this context,
they assume a supportive role, feeding the CLP with default beliefs, and
are not the main component in solving the problem.

– The second, and most important, is a mechanism for the dynamic revi-
sion of default constraints. The Speculative Computation framework is
augmented with a default revision phase in which, upon the arrival of in-
formation and change in default beliefs, existing processes are revised in
order to become consistent with the new defaults. A gradual convergence
of scenarios towards the real answer of a problem is achieved with this
revision mechanism.

The paper is organized in six sections. Section 2 provides related work
about Speculative Computation and the use of default beliefs in concurrent
constraint programming, belief revision, and defeasible logic. In Section 3, the
Speculative Computation with Default Revision framework, with its elements
and procedures, is explained. Section 3 also presents the formalization of an
example using the framework and features a claim that shows the correct-
ness of the procedures in the phases of Speculative Computation with Default
Revision, thus demonstrating their effectiveness. The procedures for the gen-
eration of default constraints are explained in Section 4. An execution trace
of an example regarding a clinical decision support system is discussed in Sec-
tion 5. The situations recreated in the example allow the observation of the
convergence of scenarios towards the real answer of a problem. In Section 6,
conclusions are presented along with future work considerations.

2 Related Work

Speculative Computation was first presented as a search algorithm that per-
forms a speculative evaluation of expressions, i.e., if the value of an expression
is not known, a computation may proceed until the value for that expression is
needed [2]. The algorithm implements a form of parallelism in the evaluation
of function arguments. The proposal was based on the principle that problems
could be solved more quickly on parallel machines if some work could be started
before it is known to be necessary. The underlying principle was later adopted
by [23] to develop a decision making and problem solving framework using de-
fault beliefs for multi-agent systems in the presence of incomplete information.
The framework was subsequently extended with iterative belief revision [24],
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default constraints and constraint processing [22,9], and abductive reasoning
[21]. All these extensions targeted more dynamic and interactive environments,
where there is a potential for failure in communication and for the creation
of states of incomplete information. The strength of Speculative Computation
fits systems which have a well-defined procedural logic and are based on rules.
The framework performs the role of an interface that manages the state of the
information and the tentative computations. In previously developed work [23,
24,22,21,9], the set of default beliefs used is fixed, which may be a drawback
because newly arrived information may have an impact on the remaining vari-
ables for which default beliefs are being used. As a result, the scenarios from
the tentative computations might not represent the most likely outcomes in
terms of answers. The Speculative Computation with Default Revision is the
latest of a series of developments arising from the previously mentioned work.

The work developed in the field of concurrent constraint programming
bears resemblances with the present work, namely the focus on distributed
computing and computation with partial information. Some similarities with
the work presented herein may be found in constraint programming languages
such as the Andorra Kernel Language (AKL) [5] and the Oz programming
language [26]. AKL is a concurrent programming language that uses guards.
A guard consists of determinate goals, which only require the execution of
one clause. When a goal is selected in the guard, it is executed across all the
clauses, and those that succeed originate local speculative variable bindings.
Afterwards, each successful variable binding is tested against the goals be-
longing to the body of the clause in a depth-first search. The use of the term
speculative here refers to the uncertainty as to whether the variable bindings
in the guard will later succeed or not, which represents a guess about what
might happen or be true. As for Oz, it is based on the Oz Programming Model
for concurrent programming. The procedures in the model allow the control
of multiple computation spaces assigned to various agents. The synchroniza-
tion of the agents is achieved through a centralized update of a constraint
store. The speculative component of the model lies in the local computations
performed by the agents, which take place with partial information. The spec-
ulative elements used in both AKL and Oz are meant for parallel computing,
which means that all the possible computation pathways are simultaneously
explored until they fail. On the other hand, the Speculative Computation with
Default Revision framework channels the computation resources to the most
plausible computation pathways, which, from the point of view of this work,
are the ones worth exploring. This is achieved by extracting default constraints
using a probabilistic model and using them to fill in incomplete information.

Concurrent constraint programming covers a wide variety of systems. A
common denominator to all of them is that they may have to deal with partial
information. In the timed default concurrent constraint programming system
presented in [20], there is a timed default mechanism by which a default value
is assigned to a variable if any other value, different from the default, has not
been added to the constraint store at a given time. The distinctive feature
of this constraint system is that there is a time limit for constraints to be
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added after which the processes are reduced using default beliefs. The default
belief is also fixed and there is no mechanism by which it can be changed.
Treating default beliefs in an isolated way automatically discards dependence
relationships between variables.

Another approach sharing a few similarities with Speculative Computation
with Default Revision is probabilistic concurrent constraint programming [7].
In this model, a probability mass function is assigned to a variable, which
allows a constructor to choose a value for the variable according to its prob-
ability distribution. However, probabilistic constraint programming is used to
model non-deterministic choices in systems that require components to exhibit
different behaviours on different runs. Again, there is no notion of default be-
lief, but there is a set of random variables with a dynamic behaviour, without
fixed values. We aim to imprint this dynamic behaviour on default beliefs.
From our perspective, they should not be fixed and should change according
to newly arrived facts from the agent information sources. This is possible
using a probabilistic model to derive new default constraints for the variables
that are not covered by the newly arrived facts.

The LIFF [19] model devises an updating mechanism for logic programs
based on tags added during the computation of explanations. It allows the
addition of if-then rules by updating the existing solutions through the existing
tags, thus removing the need to perform backtracking and computing a new
answer from scratch. In Speculative Computation with Default Revision the
same underlying idea of updating parts of the answers rather than computing
new solutions is followed as well, with the difference that the updates are in
the form of constraints, and default constraints can be updated to definitive
constraints representing true information or to other default constraints.

Default revision has not been widely explored in non-monotonic logic. How-
ever, there are procedures described in the literature that are close to it. In
[17], a semantics and a proof theory of a system for defeasible argumenta-
tion are presented. The prevalence of some arguments over others is deter-
mined by priorities placed on the rules that support them. The defaults in
this case are the hierarchical relationships between rules. However, the pri-
orities between arguments are not fixed and, instead, are defeasibly derived
within the logic program. The proposal is based on the idea that fixed pri-
orities between arguments in a real world problem are impractical. Similarly,
in [6] the revision of rule priorities is considered in the legal domain. But, in
it, defaults are revised to accommodate the preferred answers of participants.
Although the relationship between these works and the work herein is only
at a conceptual level, the underlying principle that fixed default information
is unrealistic is the same. In Speculative Computation with Default Revision,
default constraints are dynamically revised according to newly known infor-
mation during reasoning, thus one may say that on-line default revision is
performed, as opposed to off-line default revision in previous works. In these
last two approaches, priorities are revised after facts are known and conclu-
sions are drawn. The mechanism operates independently and is disconnected
from the outside world. Conversely, herein a form of on-line default revision is
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proposed, which means that the mechanism interacts with the outside world
during the reasoning process, while answers are computed, and changes its
beliefs according to said interaction.

In [12] a Distributed Defeasible Speculative Reasoning (DDSR) framework
is presented. It combines Speculative Computation with defeasible logic in
order to model a multi-context system with autonomous logic-based agents.
Internally, each agent has a set of default hypotheses about the beliefs of its
peers and a local defeasible theory in which the default hypotheses are used
to draw conclusions. The conclusions depend on the hierarchical relationship
between the arguments that build them and the score of the beliefs. Such
scores are derived from a reputation table featuring each agent in the environ-
ment. Like previous works in Speculative Computation, it features a process
reduction phase, in which tentative conclusions are produced, and a fact ar-
rival phase, in which beliefs change and processes are revised according to the
replies from other agents. The defeasible logic component is used to sort out
conflicts within the local theory of an agent. In this sense, this work covers
an aspect that is not present in our proposal, which is conflicting information.
However, Speculative Computation with Default Revision is focused solely on
the mechanisms by which Speculative Computation takes place and it tackles
different problems. In [12] there is no indication of how to produce the default
hypotheses. Furthermore, these default hypotheses are fixed and can only be
changed into their real value according to the replies from other agents. These
aspects are addressed in Speculative Computation with Default Revision with
the introduction of a mechanism for the generation of defaults and a new phase
for the revision of default beliefs.

3 A Framework for Speculative Computation with Default Revision

Speculative Computation with Default Revision has two components. The first
is a Framework for Speculative Computation with Default Revision (SFDR),
which will be described in this section. It is where all the necessary elements
to solve a problem and the different procedures to manage information are
encoded. The other component is the Generation of Default Constraints, de-
scribed in Section 4, which contains a BN that generates default constraints,
both before and during the execution of procedures in the framework, based on
the replies received by the speculative agent. The term speculative agent will
be used to refer to the agent performing Speculative Computation. Within the
setting of the multi-agent system defined for this work, this agent is respon-
sible for providing an answer to a problem based on its internal logic theory
and the information he receives from the other agents. The speculative agent
hosts the SFDR.

A description of the elements and procedures in the SFDR is presented
in the sections below. A summary of the abbreviations and symbols used
throughout this section is provided in Table 1 of Annex A.
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3.1 Elements of the Framework

An SFDR featuring disjunctive constraint processing is defined in terms of
the tuple 〈Σ, E , ∆,P〉. This formulation is based on the work presented in [9].
The framework is hosted by a speculative agent in a multi-agent system. It
is used to structure the inference process and to manage the information the
agent needs from other agents in the system, in order to solve a problem. The
subsequent elements of the tuple have the following meaning:

– Σ is a finite set of constants. An element in Σ is the identifier of an agent
in a multi-agent system and represents an information source from which
the speculative agent obtains information;

– E is a set of predicates called external predicates. When Q is an atom with
an external predicate and S is the identifier of a remote agent information
source belonging to Σ, Q@S is called an askable atom;

– ∆ is the default answer set and consists of a set of default constraint rules
called default rules w.r.t. Q@S, of the following form:

“Q@S ←↩ C ‖.”
where
– Q@S is an askable atom;
– C is a set of constraints called default constraints for Q@S;
– A default rule w.r.t. Q@S is denoted as δ(Q@S).

– P is a constraint logic program of the following form:
“H ←↩ C ‖ B1, B2, . . . , Bn.”

where
– H is a positive ordinary literal called a head of rule R, denoted as
head(R);

– C is a set of constraints called body constraints of rule R, denoted as
const(R), where const(R) may be empty;

– Each of “B1, B2, . . . , Bn” is an ordinary literal or an askable literal.
“B1, B2, . . . , Bn” is referred to as the body of R, denoted as body(R),
where body(R) may be empty.

In order to show how a problem can be formalized in the SFDR and Spec-
ulative Computation with Default Revision can be applied to specific domains
and systems, an example featuring a clinical decision support system is pro-
vided. Clinical decision support is a domain where cases of incomplete infor-
mation frequently occur. The outline of the system is shown in Fig. 1, and
its main purpose is to provide advice to health care professionals in the form
of clinical tasks, based on machine-interpretable versions of clinical guidelines
[27]. The structure of this system mirrors similar examples that can be found
in the literature [10,16,14]. The elements of its architecture include:

– A guideline engine: responsible for interpreting clinical guideline instruc-
tions represented in the knowledge base against information about the state
of a patient;
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– A knowledge base: containing machine-interpretable versions of clinical
guidelines represented in an ontology;

– A local repository: with information for other patients in previous execu-
tions of a clinical guideline;

– A speculative module: an addition to the system and a module hosted by the
guideline engine which implements an SFDR with a Generation of Defaults
mechanism.

The guideline engine obtains information about the state of a patient from
distributed agent information sources, as described in Fig. 1, one of which is
the oncology information system (ois). As such, the guideline engine is the
speculative agent hosting the SFDR and, together with the agent information
sources, constitutes a multi-agent system.

The problem which the guideline engine has to solve is the choice of the
clinical task with the appropriate treatment following colon cancer surgery.
This decision is typically made based on the TNM Classification of Malignant
Tumors, a classification in which T describes the degree of tumor invasion
into the wall of the colon, N is the number of metastases in regional lymph
nodes, and M represents the detection of distant metastases in other organs,
such as the liver or the lungs. In cancer assessment, there are situations in
which physicians are uncertain of the value of T , because tumor invasion may
be difficult to assess solely from imagiology techniques. N and M may also
be unknown and are dependent on the completion of laboratory exams whose
results may take some time to be known. This setting was extracted from
the Clinical Practice Guideline in Oncology for Colon Cancer [1], and the
medical content is greatly simplified for the sake of explaining the dynamics
of Speculative Computation with Default Revision.

Fig.1

In Fig. 2, the problem is represented according to an ontology for clinical
guidelines [15] in which every step is displayed as a task. In the graph, first
there is a question task, question1, to obtain the values of the T , N and M
variables. Then, there are five action tasks, linked to the previous through
the hasAlternativeTask property. A task is selected based on the fulfilment
of trigger conditions, also depicted in Fig. 2. For instance, action2, which
recommends the participation in a clinical trial, a period of observation, or
chemotherapy with capecitabine or 5-FU/leucovorin, will only be proposed by
the guideline engine if the value of T is t3 and the value of M is m0.

Fig.2

Based on this situation the example for the SFDR can be completely stated
as follows.

Example The assumptions are that (1) the guideline engine will recommend
the next task for a patient; (2) the transition from one task to another is only
possible if the first is connected to the second through the hasAlternativeTask
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property; (3) to move to one of the alternative tasks, the trigger conditions
of that task must be met; (4) the information necessary to verify the trigger
conditions (namely the values for the T,N, and M parameters) will be ac-
quired from an external agent information source, in this case, the oncology
information system (ois) ; and (6) the guideline engine has an SFDR which
uses default constraints to continue the execution in the event that there is no
answer from ois.

The example can be now represented according to the tuple 〈Σ, E , ∆,P〉.
In the representation below, a few considerations were made regarding pred-
icate names. The predicate nt(a, b) indicates that b is the task that follows
a. The predicate alt(a, b) indicates that b is an alternative task linked to a
and reflects the meaning conveyed by the hasAlternativeTask property. tcv(b)
denotes that the trigger conditions for task b are validated. Predicate names
t, n, and m represent their homonymous elements in the TNM classification.
In the representation below, every capital letter symbolizes a variable. If the
variable is not bounded by a constraint, it is a general purpose variable. For
instance, the use of X in the first rule of P is a way to denote a generic task.
The complete representation is as follows:

– Σ = {ois}
– E = {t, n,m}
– P is the following set of rules:
nt(X,F )←↩‖ alt(X,F ), tcv(F ).
tcv(F )←↩ F ∈ {action1}, T ∈ {tis, t0} ‖ t(T )@ois.
tcv(F ) ←↩ F ∈ {action1}, T ∈ {t1, t2}, N ∈ {n0},M ∈ {m0} ‖ t(T )@ois,
n(N)@ois,m(M)@ois.
tcv(F )←↩ F ∈ {action2}, T ∈ {t3},M ∈ {m0} ‖ t(T )@ois,m(M)@ois.
tcv(F ) ←↩ F ∈ {action3}, T ∈ {t4}, N ∈ {n0},M ∈ {m0} ‖ t(T )@ois,
n(N)@ois,m(M)@ois.
tcv(F ) ←↩ F ∈ {action4}, T ∈ {t1, t2, t3, t4}, N ∈ {n1, n2},M ∈ {m0} ‖
t(T )@ois, n(N)@ois,m(M)@ois.
tcv(F ) ←↩ F ∈ {action5}, T ∈ {t1, t2, t3, t4}, N ∈ {n0, n1, n2},
M ∈ {m1} ‖ t(T )@ois, n(N)@ois,m(M)@ois.
alt(question1, F )←↩ F ∈ {action1} ‖.
alt(question1, F )←↩ F ∈ {action2} ‖.
alt(question1, F )←↩ F ∈ {action3} ‖.
alt(question1, F )←↩ F ∈ {action4} ‖.
alt(question1, F )←↩ F ∈ {action5} ‖.

Since, for the current example, the ois is the only agent information source,
it is the only element inΣ. The guideline engine, as the speculative agent, sends
questions to the ois to know the values for the variables of askable atoms t, n,
and m, which are the elements of E . The first rule in P reflects the primary
condition in the example; for a task to be recommended as the next task,
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it has to be connected to the previous one as an alternative and its trigger
conditions have to be validated. The rules that follow represent the trigger
conditions for task selection, and the last five rules represent the alternative
relationship between question1 and the other action tasks. However, there is
an element missing in the framework, that is the default answer set ∆, which is
generated through the procedures for the Generation of Default Constraints,
described in Section 4. The execution of the logic program P starts with a
query. In the example, the guideline engine would try to answer the query
nt(question1, F ), in order to determine which task should follow question1.
An execution trace for this example is provided in Section 5.2.

3.2 Preliminary Definitions

In order to understand the execution of a constraint logic program P in the
framework, it is important to introduce the notions of goal, reply set, reduction,
and derivation. The definitions for these concepts are as follows.

– Definition 1. A goal has the form of “←↩ C ‖ B1, . . . , Bn” where:
– C is a set of constraints;
– each of B1, . . . , Bn is either an atom or an askable atom.

The initial query becomes the first goal in the execution. Following the
example described in the previous section, it would be “←↩‖ nt(question1, F )”.
At this point there would be no constraints C for the goal.

– Definition 2. A reply set R for E is a set of rules of the form “Q@S ←↩
C ‖.”, where:
– Q@S is an askable atom;
– each argument of Q is a variable;
– C is a set of constraints over those variables.

– Definition 3. A reduction of a goal “←↩ C ‖ B1, . . . , Bn” w.r.t. a constraint
logic program P, a reply set R and a subgoal Bi is a goal “←↩ C ′ ‖ B′”
such that:
– there is a rule R in P ∪ R so that C ∧ {Bi = head(R)} ∧ const(R) is

consistent and {Bi = head(R)} is a conjunction of constraints equal to
the arguments of Bi and head(R);

– C ′ = C ∧ {Bi = head(R)} ∧ const(R);
– B′ = B1, . . . , Bi−1, Bi+1, . . . , Bn ∪ body(R).

– Definition 4. A derivation of a goal “←↩ C ‖ B1, . . . , Bn” w.r.t. to a specu-
lative computation constraint framework with default revision 〈Σ, E , ∆,P〉
and a reply set R is a chain of reductions “←↩ C ‖ B1, . . . , Bn, . . . ,←↩ C ′ ‖
∅” w.r.t. P and R, where ∅ denotes an empty goal. C ′ is called an answer
constraint w.r.t. the goal, the framework and the reply set.
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Regarding the execution of a program, a non-askable atom in a goal is
reduced into subgoals according to the rules in P. For an askable atom Q@S
in a goal, the speculative agent sends a question asking its real value to an agent
S in Σ and waits for the answer. Meanwhile, the goal is reduced according
to the current reply set R. This set holds the constraints for askable atoms
at a given point in the execution. It may contain default constraints, or fact
constraints if the speculative agent has already received a reply from S. If
no reply is returned, the default constraint is used as a tentative answer. An
answer for Q@S is returned in the form of constraints for the variables in the
query. A goal is continuously reduced until it becomes empty.

A central notion in the SFDR and its operational model is that of process.
It is used to express an alternative computation and a possible path for the
resolution of a problem. This concept and others related to it are defined as
follows.

– Definition 5. An active process is a tuple 〈←↩ C ‖ GS,UD〉 in which:
– “←↩ C ‖” is a set of constraints;
– GS is a set of literals to be proved, called a goal set, and expresses the

current status of an alternative computation;
– UD is a set of askable atoms called used defaults, and represents the

assumed information about the outside world, i.e., it contains the ask-
able atoms for which default constraints were used in order to reduce
a goal in the process.

– Definition 6. A suspended process is a tuple 〈SAS,←↩ C ‖ GS,UD〉 in
which:
– SAS is called a suspended atom set and contains askable atoms Q@S.

The askable atoms in this set are those whose constraints are responsi-
ble for suspending the process;

– GS is a set of literals to be proved, called a goal set, and expresses the
current status of an alternative computation;

– UD is a set of askable atoms called used defaults, and represents the
assumed information about the outside world, i.e., it contains the ask-
able atoms for which default constraints were used in order to reduce
a goal in the process.

– Definition 7. A current belief state CBS is a set of rules of the form
“Q@S ←↩ C ‖”. It contains the beliefs of the speculative agent about the
values of askable atoms.

– Definition 8. Let 〈←↩ C ‖ GS,UD〉 be a process and CBS be a current
belief state. A process is active w.r.t. CBS if C ⊆ CBS. A process is
suspended w.r.t. to CBS otherwise.

– Definition 9. APS is the set of active processes.
– Definition 10. SPS is the set of suspended processes.
– Definition 11. AAQ is the set of already asked questions for askable

atoms. AAQ is used to avoid asking redundant questions to agent infor-
mation sources.
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– Definition 12. The set of returned facts RF contains rules of the form:
“Q@S ←↩ C ‖” where Q@S is an askable atom and C is a set of constraints.
These rules stand for replies from the agent information sources.

– Definition 13. A scenario is an active process 〈←↩ C ‖ GS,UD〉 in which
UD 6= ∅.

Processes represent alternative ways of computation created when choice
points are reached, either by case splitting or default handling. An active pro-
cess succeeds if, when all the computation is done, there is no reply from the
information sources that contradicts the constraints used to reduce askable
atoms. A process fails whenever a newly arrived fact constraint contradicts
a used default constraint. The mechanisms for the creation, alteration and
removal of processes are included in the three phases of Speculative Computa-
tion with Default Revision: the process reduction phase, the fact arrival phase,
and the default revision phase. The last is a recent addition and the object of
study in this work. Process reduction is the normal execution of a program,
the computation begins with the default rules in ∆ and whenever a choice
point in the computation is reached, a new process is generated. Fact arrival
phase occurs when a reply from an agent arrives, it is an interruption phase.
After a round of process reduction there is the default revision phase, in which
changes to default constraint rules are assessed and the processes are revised
accordingly.

3.3 Process Reduction Phase

The possible steps of the process reduction phase are represented in Figs. 3
and 4. The former corresponds to the very first step of the execution of the
framework, while the latter describes the procedures for an iteration step.

The initial step of Fig. 3 coincides with the deployment of the framework,
in which a query is submitted and becomes the initial goal set GS. There is
only one active process, constructed based on the initial goal set. Since no
outside information is known, the current belief state assumes the constraints
in the default set. At this point, there are no suspended processes, already
asked questions, or returned facts, and, as such, the sets corresponding to
these elements are initiated as empty sets. Referring back to the example
presented in Section 3.1 and the query nt(question1, F ), by the iteration step,
the first active process would become 〈{←↩‖ nt(question1, F )}, ∅〉, with {←↩‖
nt(question1, F )} as the initial goal set. The complete procedures for the initial
step can be consulted in Algorithm 1 of Annex B.

Fig.3

The iteration step of Fig. 4 reflects the speculative nature of the frame-
work. Case 1 corresponds to a point in the execution where process reduction,
through the derivation of goals (as specified in Definition 4), produced an
active process with an empty goal set. When such a process is obtained, its
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constraints C and used defaults UD should be returned. As specified in Defi-
nition 14, if UD is not an empty set, the process is a scenario.

The procedures under Case 2 correspond to the reduction of a goal (as
specified in Definition 3) in the goal set of an active process. There are two
cases here. If the goal is a non-askable atom (Case 2.1), then the goal is unified
with the head of a rule, a new active process is created replacing the previous
in the set of active processes, the constraints in the rule are added to the
constraints of the process, and the atoms in the body of the rule are added to
the goal set of the process. However, if the goal is an askable atom (Case 2.2),
it is necessary to check whether it is in the already asked questions, and thus
has already been asked to the agent information sources, and whether it is
already a used default, i.e., if it is in the used default set of the process. If this
last condition is not fulfilled, the goal is reduced either with a fact constraint
in the set of returned facts or with a default constraint. If there is a default
constraint available, the constraint is assumed. Upon reduction using default
constraints, there are usually two resulting processes, an active process using
the default constraint and a suspended process as an alternative that does not
use the default. The alternative process is suspended since it is considered to
have a lower probability of success.

The complete operational semantics of the iteration step in process reduc-
tion is disclosed in Algorithm 2 of Annex B with an exact correspondence of
case numbers to those of Fig. 4.

Fig.4

3.4 Fact Arrival Phase

Suppose a constraint is returned from an agent denoting an information source
S for a question Q@S. This triggers a fact arrival phase, whose procedures
are outlined in Fig. 5. The returned constraint is denoted as “Q@S ←↩ Cr ‖”.

In fact arrival, the set of returned facts RF , which keeps all the replies
from the agent information sources, is updated with the fact constraint. The
CBS is also updated with the fact returned from S, which means the old
default constraint is replaced with the fact constraint. After that, three cases
are considered.

In Case 1 of Fig. 5, the reply entails the default constraint, and, as such,
the processes using the default in the set of active processes APS are replaced
with updated versions. These updated versions take into account the new
fact constraint and carry out the execution trace in their origin. The set of
suspended processes SPS is revised as well. Suspended processes which use
the default constraint are also replaced with updated versions. Additionally,
the processes suspended because of the default constraint, identified as the
ones having the corresponding predicate in the suspended atom set SAS, are
removed from the computation.

In Case 2, the reply contradicts the default constraint. The active processes
using the default are removed and the suspended processes which are consistent
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with the new fact constraint are resumed. Having a default revision phase has
repercussions on fact arrival. As a product of default revision, there can be
suspended processes with multiple suspended askable atoms, and thus it is
necessary to check whether, after fact arrival, the SAS of a suspended process
becomes an empty set or not. If it does, the process can be resumed, otherwise
it remains suspended.

Finally, in Case 3, the reply does not entail or contradict the default con-
straint, but is consistent with it. Only the active processes which are consistent
with the new fact constraint are kept as updated versions in APS. Similarly,
only the suspended processes which are consistent with the new fact constraint
are activated and added as updated versions to APS. All the others are re-
moved from the computation.

The complete operations for fact arrival are described in Algorithm 3 in
Annex B.

Fig.5

3.5 Default Revision Phase

When a fact arrives, the Generation of Defaults (presented in Section 4) pro-
duces a set containing only the changed default constraint rules. This set is
referred to as New∆ and each of its members is a new default denoted as
“Qd@S ←↩ Cnewd ‖.”. Default revision takes place after fact arrival and a
round of process reduction, based on New∆. This phase denotes a change
in the other default constraints as a result of fact arrival. For this to occur,
New∆ cannot be an empty set.

The default revision phase consists in changing all the processes according
to the new default constraints provided by the method for the generation of
defaults. Active and suspended processes are revised in order to determine if
their constraints are consistent with the new default constraint. According to
the position of the atom attached to the new default, i.e., if it is a suspended
atom or a used default, the existing processes may generate new active and
suspended processes, but their execution trace is never removed, unlike what
happens in the fact arrival phase. This keeps the scenarios coherent with the
newly arrived fact constraints. It is an on-line dynamic mechanism because it
responds to the replies from the outside agent information sources, updates the
default constraints used in the computation, and keeps the processes consistent
with those updates.

The procedures for default revision are shown in Fig. 6. Its first operation
is to update the CBS so that future process reduction phases take the changed
defaults into account.

In Case 1 of Fig. 6, the new default constraint entails the old default con-
straint, and, as such, the processes using the old default in the set of active
processes APS are replaced with updated versions. These updated versions
take into account the new default constraint and carry out the execution trace
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in their origin. The set of suspended processes SPS is revised as well. Sus-
pended processes which use the old default constraint are also replaced with
updated versions. However, it is important to note that the portions of ac-
tive and suspended processes that are consistent with the negation of the new
default constraint (the same is to say inconsistent with the new default con-
straint) are still kept in the computation as suspended processes.

In Case 2 of Fig. 6, the new default constraint contradicts the old default
constraint. The active processes using the old default become suspended and
the suspended processes which are consistent with the new default constraint
are resumed. However, suspended processes or parts of suspended processes
which are consistent with the negation of the new default constraint are still
kept in the computation as updated suspended versions.

Finally, in Case 3 of Fig. 6, the new default constraint does not entail
or contradict the old, but is consistent with it. In this case both active and
suspended processes are revised, and the parts of these processes which are
consistent with the new default constraint continue or become active in the
form of updated versions, while the parts that are consistent with the negation
of the new default constraint are suspended.

A curious aspect of default revision, and a major difference from previous
works [24,22,21,9], is that processes may be suspended due to default con-
straints about more than one askable atom. This happens when there is a
revision of the SPS for a new default constraint that contradicts the old one.
A process may be in a suspended state due to constraints about a variable
unrelated to the new default, and the old default constraint may already be
part of the process, which means that the corresponding askable atom is in
the set of used defaults UD. In such a situation, it is necessary to remove
that askable atom and add it to the suspended atom set, which means that
the process is now suspended due to an additional constraint. As a result,
it became necessary to perform additional operations for the management of
askable atoms in fact arrival, since a process can only be resumed if it has an
empty suspended atom set.

The complete operational semantics for the default revision phase is shown
in the Algorithms 4 and 5 in Annex B. There is an exact correspondence
between the cases in Fig. 6 and the cases featured in the algorithms.

Fig.6

3.6 Correctness of the Operational Model

The following claim shows the correctness of the operational model presented
in Sections 3.3, 3.4, and 3.5:

Claim 1: Let SFDR be a Speculative Computation Framework with Default
Revision. Let P be an ordinary process, GSinit be an initial goal set, UD a set
of askable atoms used as defaults, C an answer constraint obtained from the
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operational model, and RF a set of rules returned from the other information
sources when a reply arrives. Then, there exists an answer constraint C ′ w.r.t.
the constraint framework 〈Σ,P〉 and the reply set RF∪{δ(Q@S)|Q@S ∈ UD}
s.t. πV (C) entails πV (C ′) where V is the set of variables that occur in GSinit,
and πV is the projection of constraints onto V .

A sketch of proof for Claim 1 can be consulted in Annex C.

4 Generation of Default Constraints

The objective of this component of Speculative Computation with Default
Revision is to produce the set of default constraint rules ∆ and the set of
changed default constraint rules New∆.

The Generation of Default Constraints encompasses two different types of
procedures, both described in Fig. 7. The first is the Learning of the Default
Model and it consists of steps to produce a BN model from which it is later
possible to extract the default constraints. This extraction happens in the
second procedure, the Collection of Defaults, which has two different sets of
steps, depending on the moment of speculative computation the execution is
at. Although a part of Speculative Computation with Default Revision, the
Generation of Default Constraints is exterior to the operational model of the
SFDR described in Section ?? and assumes a supportive role.

The following sections describe our reasoning for choosing BNs as the un-
derlying default model and the different steps in the Generation of Defaults.

4.1 Choosing the Underlying Default Model

In order to extract a meaningful set of default constraints that can fill in infor-
mation gaps, the default generation method has to be data-driven. Additional
requirements of the method are that it should be capable of finding existing
dependence relationships between the variables of askable atoms in P so as
to produce the most likely set of default constraints, and be transparent in
the sense that it conveys those relationships in a clear way to both humans
and machines. Within the scope of predictive modelling, the problem at hand
deviates from a classification or regression problem because there is no tar-
get class/variable. Instead, the goal is to find the most probable collective
state of information, i.e., the most likely values for variables whose real values
are unknown. These requirements excluded predictive models such as Neural
Networks or Support Vector Machines [32].

Taking these aspects into account, the attention turned to graphical prob-
abilistic models, and more specifically to BNs, which are able to represent
this information. With BNs it is possible to update the calculations according
to evidences, which fits the kind of dynamic revision mechanism required for
Speculative Computation with Default Revision. Furthermore, it is possible
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to establish relationships of cause and effect as opposed to undirected models
such as pure Markov Networks. The works in [30] and [29] reflect the main
use of BNs in medicine, namely in the identification of disease dynamics for
diagnosis, prognosis or sudden changes in the state of a patient. Although the
medical field is a prominent domain of application for BNs, they have also been
used in many other domains to model dependability and perform risk analysis
and maintenance. For a comprehensive review please consult [31]. However, in
the work proposed here, BNs are used as a support for speculative computa-
tion in order to generate default constraints, which is a new application of this
knowledge representation model.

4.2 Learning of the Default Model

The Learning of the Default Model in Fig. 7 comprises four sequential steps.
The first is the analysis of askable atoms, in which the speculative agent anal-
yses the logic program component P of the SFDR and identifies the relevant
variables for speculative computation. In the example provided in Section 3.1,
the guideline engine would identify t, n, and m as askable atoms and T , N ,
and M as relevant variables.

These variables are then used in the second step, the retrieval of relevant
data from the database. The speculative agent retrieves data of previous cases
about the identified variables from a local information repository. Referring
again to the example in Section 3.1, the guideline engine would use the data
about previous executions of the clinical guideline in the local repository.

The following step is to perform cross-validation with different BN learn-
ing algorithms on the retrieved data set in order to determine which one will
generate the model with the best predictions on future data. BN learning algo-
rithms can be divided into two groups according to their search strategy [25]:
score-based learning and constraint-based learning. The former assign a score
to each candidate BN and try to maximize it with an heuristic search, while
the latter learn the network structure by analysing the probabilistic relations
entailed by the Markov property of BNs with conditional independence tests.
As this is not the main topic of the paper, additional details about struc-
ture learning are provided in [25]. The set of learning algorithms used in this
step includes: two score-based learning algorithms, the Hill-Climbing (hc) and
the Tabu-Search (tabu); three constraint-based search algorithms, the Grow-
Shrink (gs), the Incremental Association (iamb), and the Chow-Liu (chowliu);
and one hybrid algorithm, the Max-Min Hill-Climbing (mmhc). The loss func-
tion used in cross-validation is the Log Likelihood Loss (logl), typically applied
to this kind of problem and defined as in Equation 1 [8]:

logl = −log[P (D|G)] (1)
where D is the data used to learn the network structure and G is the

graph structure produced by the algorithm. The logl provides a measure of
the entropy that a model exports in order to keep its own entropy low. The



18 Tiago Oliveira et al.

target is to minimize this value and choose the model with the lowest logl [8].
The logl is a common way to compare how well a distribution for a model
fits the data. However, using the logl as a scoring function in learning BNs
has the disadvantage of producing networks that are too complex and slightly
overfitted. But the logl is at the core of other functions, such as the Akaike
Information Criterion, the Bayesian Information Criterion, and so forth, which
have penalties to compensate for that and produce more sparse structures [13].
The use of logl herein is intended as a demonstration of the role played by the
scoring function in the Generation of Default Constraints and, as such, the
simplest measure was used.

With the results from cross-validation, the best algorithm is selected and
with it the BN is constructed in the last step of the Learning of the Default
Model. The whole procedure takes place at a point in time before the execution
of a program in the SFDR and outputs a BN ready for the Collection of
Defaults. Going back to the example of Section 3.1, the output would be a BN
that establishes a relationship between the T , N , and M variables.

4.3 Collection of Defaults

The Collection of Defaults is a procedure by which the BN produced by the
Learning of the Default Model is conditioned in order to obtain default con-
straints. It is based on the maximum a posteriori estimation (MAP), a form of
posterior distribution in Bayesian statistics that allows one to obtain a point
estimation of unobserved variables based on collected evidence. It is defined
as in Equation 2 [11]:

θMAP = max
θ

P (θ|e) (2)

where θ represents the goal variables for which the estimation is calculated
and e represents the available evidence. A MAP calculates the values of the
unobserved variables that maximize the probability distribution, providing the
most likely setting for the variables in the network.

The first set of steps of the Collection of Defaults described in Fig. 7 occurs
before the execution of a program in the SFDR by the speculative agent. It
corresponds to the initial MAP estimation, in which there is no reply from
the agent information sources, and thus no evidence to submit. In the MAP
estimation the goal variables correspond to all the variables in askable atoms.
The result is a set of values for each variable that, once retrieved, are put into
the form of constraint rules like “Q@S ←↩ C ‖.” where Q is an askable atom,
S is an agent information source and C is a constraint. The constraints are
used to build the default answer set ∆ which is then delivered to the SFDR.

The second set of steps in Fig. 7 occurs during the execution of a program
in the SFDR. The speculative agent keeps track of all the replies from the agent
information sources and, when a fact constraint arrives with true information
about a variable in an askable atom, it performs a MAP estimation using the
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new fact and all the previous ones as evidence in order to obtain an estimation
for the yet unobserved variables. If there are no previous replies, the newly
arrived fact is the only evidence in the MAP. The resulting values are then
converted to constraints and compared with the existing default constraints
for the respective askable atoms. Those that are different are put into a new
default answer set New∆ and then delivered to the SFDR, triggering a default
revision phase. This procedure takes place every time a fact arrives.

The Collection of Defaults and the default revision phase provide agents
with a form of on-line revision capability. They ensure that the scenarios rep-
resented by active processes get progressively closer to the actual state of the
real world. This is an advantage for agents which have to deal with problems
that demand an outcome, even in the presence of incomplete information.

Fig.7

5 Example: Clinical Decision Support

The principles of Speculative Computation with Default Revision can be ap-
plied to various domains and tasks. To demonstrate the formalization of a
specific situation, an example in clinical decision support was provided in Sec-
tion 3.1. Now, the same example will be used to demonstrate how the default
set ∆ can be obtained in order to complete the SFDR, based on the steps
outlined in Section 4. Afterwards there is a step by step execution of the ex-
ample in the framework. Incomplete information in the example may be due
to the difficulty in determining the true value for a variable or problems in the
communication between the guideline engine, which assumes the role of the
speculative agent, and ois, with the role of agent information source. Another
possibility is that the ois does not possess the information required by the
guideline engine.

5.1 Default Model and Initial Set of Default Constraints

The first procedure to be applied from the Generation of Defaults, before the
execution of the program in the SFDR and any attempt from the guideline
engine to solve the problem in the program, is the Learning of the Default
Model. As stated above, the objective is to obtain a BN with the variables
that are featured in the problem the speculative agent has to solve. From
the analysis of askable atoms t, n, and m in the SFDR of Section 3.1, it is
necessary to extract data from the local repository about variables T , N , and
M . Following the example provided above, data about TNM staging of 515
patients were used for the Learning of the Default Model and to assess the
process. These patients had surgery to the colon and underwent colon cancer
treatment following the above-mentioned guideline [1] at the Hospital of Braga,
in Portugal.
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In order to estimate the performance of the predictive model, 5-fold cross-
validation was used, and its results, in terms of logl are shown in Fig. 8.
The algorithms with the worst performance were the score-based, while the
constraint-based and the hybrid algorithms performed fairly better. Given
that the iamb is the one with the lowest logl (logl = 1.815), it was selected
to construct the BN, yielding the network represented in Fig. 9. As can be
seen, the algorithm was able to establish a dependence relationship between T
and N , but not with M , which means that M remains unaffected by changes
in the other two variables. This is particularly useful for it indicates to the
speculative agent that tumor invasion and local lymph node metastases might
be correlated, but distant metastases are not dependent on the other two.
This type of conclusion is something the BN is capable of providing and has
an impact in the generation of default constraints. For instance, it is possible
to know that if a value for T is known to be true, it might affect the default
constraint of N , but it will not affect the default constraint of M .

With the BN of Fig. 9, it is possible to proceed to the Collection of Defaults
in order to generate the initial set of default constraints, before the execution
of the program in the SFDR. The goal variables are T , N , and M . After
performing the MAP estimation with no evidence on the network, the values
obtained were respectively T = t3, N = n2, and M = m1, with TNMMAP =
max
T,N,M

P (T,N,M | ∅) ≈ 0.4395. These will be the values used as initial default
constraints in speculative computation. The default answer set is thus defined
as follows:

– ∆ is the following set of rules:
t(T )@ois←↩ T ∈ {t3} ‖.
n(N)@ois←↩ N ∈ {n2} ‖.
m(M)@ois←↩ M ∈ {m1} ‖.

The ∆ set is added to the SFDR defined for the example in Section 3.1
and now all the elements of the framework are gathered. The network is later
used during the execution phases in order to derive new default constraints
according to newly arrived facts.

All the resources for the learning and evaluation of BNs mentioned above
are available in the bnlearn library for R [25], and the resources for the MAP
estimation are available in the Java inflib library from the SamIam project [4].

Fig.8

Fig.9

5.2 Execution of the Example and Discussion

Now, based on the formalization provided in Section 3.1 and predictive model
provided in Section 5.1, the execution of the program in the example is shown.
The starting point is the already specified SFDR = 〈Σ, E , ∆,P〉. The opera-
tions in Sections 3.3, 3.4, and 3.5 are applied to the program in P.



A Dynamic Default Revision Mechanism for Speculative Computation 21

A goal in the goal set GS at a leftmost position from a newly created or
newly resumed process is always selected for reduction. In the representation,
the selected goal is underlined, and, if a set remains unchanged from one step
to another, it is omitted. The following steps represent the execution trace
for the query nt(question1, F ), which aims to determine which task should
be recommended after question1 in the management of a patient with colon
cancer:

1. Process Reduction, Initial Step (Fig. 3):
– The query originates the first active process and takes the place of its

first goal for reduction;
– There are no suspended processes, already asked questions, or returned

facts, and, as such, the corresponding sets are empty;
– The current belief state assumes the constraint rules in the default

answer set.

APS = {〈{←↩‖nt(question1, F )}, ∅〉}

SPS = ∅

AAQ = ∅

RF = ∅

CBS = {
t(T )@ois←↩ T ∈ {t3} ‖,
n(N)@ois←↩ N ∈ {n2} ‖,
m(M)@ois←↩ M ∈ {m1} ‖
}

2. Process Reduction, by Case 2.1 (Fig. 4):
– nt(question1, F ) is not an askable atom and, as such, it unifies with

the head of a rule in P;
– The body of the rule replaces nt(question1, F ) in the goal set of the

updated version of the active process;
– Since alt(question1, F ) is the only element in the goal set, it is selected

for the next reduction step.

APS = {〈{←↩‖alt(question1, F ), tcv(F )}, ∅〉}

3. Process Reduction, by Case 2.1 (Fig. 4):
– alt(question1, F ) is not an askable atom and, as such, it unifies with

the head of five rules in P, splitting the active process into five new
active processes;

– The constraints of the rules are added to the constraints of the processes
they originated;
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– Since tcv(F ) is at a leftmost position in the goal set, it it selected for
the next reduction step in the active processes.

APS = {
〈{←↩ F ∈ {action1} ‖tcv(F )}, ∅〉,
〈{←↩ F ∈ {action2} ‖tcv(F )}, ∅〉,
〈{←↩ F ∈ {action3} ‖tcv(F )}, ∅〉,
〈{←↩ F ∈ {action4} ‖tcv(F )}, ∅〉,
〈{←↩ F ∈ {action5} ‖tcv(F )}, ∅〉
}

4. Process Reduction, by Case 2.1 (Fig. 4):
– tcv(F ) is not an askable atom and, as such, it unifies with the head

of rules in P, splitting the active processes into new active processes
according to the consistency of the constraints in the process and the
constraints in the rules;

– The body of the rules replaces tcv(F ) in the goal set of the updated
versions of the active processes and the constraints of the rules are
added to the processes;

– Since t(T )@ois is at a leftmost position in the goal set of active pro-
cesses, it it selected for the next reduction step.
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APS = {
〈{←↩ F ∈ {action1}, T ∈ {tis, t0} ‖t(T )@ois}, ∅〉,
〈{←↩ F ∈ {action1}, T ∈ {t1, t2}, N ∈ {n0},M ∈ {m0} ‖t(T )@ois,
n(N)@ois,m(M)@ois}, ∅〉,
〈{←↩ F ∈ {action2}, T ∈ {t3},M ∈ {m0} ‖t(T )@ois,m(M)@ois}, ∅〉,
〈{←↩ F ∈ {action3}, T ∈ {t4}, N ∈ {n0},M ∈ {m0} ‖t(T )@ois,
n(N)@ois,m(M)@ois}, ∅〉,
〈{←↩ F ∈ {action4}, T ∈ {t1, t2, t3, t4}, N ∈ {n1, n2},M ∈ {m0} ‖
t(T )@ois, n(N)@ois,m(M)@ois}, ∅〉,
〈{←↩ F ∈ {action5}, T ∈ {t1, t2, t3, t4}, N ∈ {n0, n1, n2},M ∈ {m1} ‖
t(T )@ois, n(N)@ois,m(M)@ois}, ∅〉
}

5. Process Reduction, by Case 2.2 (Fig. 4):

t(T ) is asked to ois and since (t(T )@ois←↩ T ∈ {t3} ‖) ∈ ∆):
– t(T )@ois is added to AAQ denoting that a question for this askable

atom has already been sent;
– Since the CBS holds the default constraint rule (t(T )@ois ←↩ T ∈
{t3} ‖), the active processes are reduced with it;

– The processes or parts of processes which are consistent with the default
constraint remain active as updated versions with t(T )@ois in the used
default set;

– The processes or parts of processes which are inconsistent with the
default constraint become suspended as updated versions with t(T )@ois
in the suspended atom set;

– Since n(N)@ois is at a leftmost position in the goal set of active pro-
cesses, it it selected for the next reduction step.

APS = {
〈{←↩ F ∈ {action2}, T ∈ {t3},M ∈ {m0} ‖ m(M)@ois}, {t(T )@ois}〉,
〈{←↩ F ∈ {action4}, T ∈ {t3}, N ∈ {n1, n2},M ∈ {m0} ‖n(N)@ois,
m(M)@ois}, {t(T )@ois}〉,
〈{←↩ F ∈ {action5}, T ∈ {t3}, N ∈ {n0, n1, n2},M ∈ {m1} ‖n(N)@ois,
m(M)@ois}, {t(T )@ois}〉
}

SPS = {
〈{{t(T )@ois},←↩ F ∈ {action1}, T ∈ {tis, t0} ‖ ∅}, ∅〉P1 ,
〈{{t(T )@ois},←↩ F ∈ {action1}, T ∈ {t1, t2}, N ∈ {n0},M ∈ {m0} ‖
n(N)@ois,m(M)@ois}, ∅〉P2 ,
〈{{t(T )@ois},←↩ F ∈ {action3}, T ∈ {t4}, N ∈ {n0},M ∈ {m0} ‖
n(N)@ois,m(M)@ois}, ∅〉P3 ,
〈{{t(T )@ois},←↩ F ∈ {action4}, T ∈ {t1, t2, t4}, N ∈ {n1, n2},
M ∈ {m0} ‖ n(N)@ois,m(M)@ois}, ∅〉P4 ,
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〈{{t(T )@ois},←↩ F ∈ {action5}, T ∈ {t1, t2, t4}, N ∈ {n0, n1, n2},M ∈
{m1} ‖ n(N)@ois,m(M)@ois}, ∅〉P5

}

AAQ = {t(T )@ois}

6. Process Reduction, by Case 2.2 (Fig. 4):

n(N) is asked to ois and since (n(N)@ois←↩ N ∈ {n2} ‖) ∈ ∆):
– n(N)@ois is added to AAQ denoting that a question for this askable

atom has already been sent;
– Since the CBS holds the default constraint rule (n(N)@ois ←↩ N ∈
{n2} ‖), the active processes are reduced with it;

– The processes or parts of processes which are consistent with the default
constraint remain active as updated versions with n(N)@ois in the used
default set;

– The processes or parts of processes which are inconsistent with the de-
fault constraint become suspended as updated versions with n(N)@ois
in the suspended atom set;

– Since m(M)@ois is the only element in the goal set of active processes,
it it selected for the next reduction step.

APS = {
〈{←↩ F ∈ {action2}, T ∈ {t3},M ∈ {m0} ‖m(M)@ois}, {t(T )@ois}〉,
〈{←↩ F ∈ {action4}, T ∈ {t3}, N ∈ {n2},M ∈ {m0} ‖m(M)@ois},
{t(T )@ois, (N)@ois}〉,
〈{←↩ F ∈ {action5}, T ∈ {t3}, N ∈ {n2},M ∈ {m1} ‖m(M)@ois},
{t(T )@ois, n(N)@ois}〉
}

SPS = {
〈{{n(N)@ois},←↩ F ∈ {action4}, T ∈ {t3}, N ∈ {n1},M ∈ {m0} ‖
m(M)@ois}, {t(T )@ois}〉P6 ,
〈{{n(N)@ois},←↩ F ∈ {action5}, T ∈ {t3}, N ∈ {n0, n1},M ∈ {m1} ‖
m(M)@ois}, {t(T )@ois}〉P7 ,
P1, P2, P3, P4, P5
}

AAQ = {t(T )@ois, n(N)@ois}

7. Process Reduction, by Case 2.2 (Fig. 4):

m(M) is asked to ois and since ((m(M)@ois←↩ M ∈ {m1} ‖) ∈ ∆):
– m(M)@ois is added to AAQ denoting that a question for this askable

atom has already been sent;
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– Since the CBS holds the default constraint rules (m(M)@ois ←↩ M ∈
{m1} ‖), the active processes are reduced with it;

– The processes or parts of processes which are consistent with the default
constraint remain active as updated versions with m(M)@ois in the
used default set;

– The processes or parts of processes which are inconsistent with the de-
fault constraint become suspended as updated versions with m(M)@ois
in the suspended atom set;

APS = {
〈{←↩ F ∈ {action5}, T ∈ {t3}, N ∈ {n2},M ∈ {m1} ‖ ∅}, {t(T )@ois,
n(N)@ois,m(M)@ois}〉P8

}

SPS = {
〈{{m(M)@ois},←↩ F ∈ {action2}, T ∈ {t3},M ∈ {m0} ‖ ∅},
{t(T )@ois}〉P9 ,
〈{{m(M)@ois},←↩ F ∈ {action4}, T ∈ {t3}, N ∈ {n2},M ∈ {m0} ‖ ∅},
{t(T )@ois, n(N)@ois}〉P10 ,
P1, P2, P3, P4, P5, P6, P7
}

AAQ = {t(T )@ois, n(N)@ois,m(M)@ois}

8. Process Reduction, by Case 1 (Fig. 4):

APS = {
〈{←↩ F ∈ {action5}, T ∈ {t3}, N ∈ {n2},M ∈ {m1} ‖ ∅}, {t(T )@ois,
n(N)@ois,m(M)@ois}〉P8

}

C = {F ∈ {action5}, T ∈ {t3}, N ∈ {n2},M ∈ {m1}}

UD = {t(T )@ois, n(N)@ois,m(M)@ois}

Up until step 4 process reduction occurs with the unification of the goals in
the GS with the head of rules in P. The initial CBS, at step 1, assumes the
values in∆. Initial SPS, AAQ, andRF are empty since there are no suspended
processes, no questions were asked to the agent information sources, and no
replies were received. At step 1, the first active process is created with the
query as its initial goal in GS. As a consequence of several steps of process
reduction, the process is split into new active processes with new goal sets. By
step 4 the active processes represent the different alternative tasks.

At step 5, the agent needs to reduce processes with t(T )@ois as the selected
goal and, since there is only a default constraint for that goal in the CBS,
that constraint is used in process reduction, yielding active processes which are
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consistent with the default and suspended processes which are not. t(T )@ois
is an askable atom and, as such, a question is sent to ois so as to know the real
value of t(T )@ois. The procedure is similar whenever an askable atom is found.
It is possible to observe that the active processes now have t(T )@ois in UD and
this askable atom was removed from the GS. At the same time, the suspended
processes resulting from the reduction have t(T )@ois as a suspended atom in
the SAS. The results of disjunctive constraint processing are also observable;
an example is the splitting of the active process concerning action4 in step 4.
At step 5 this process originates an active process and a suspended process.

By continuing process reduction it is possible to arrive at step 7, where
there is a process with an empty goal set. This was achieved purely by relying
on default constraints and, as such, the process is a scenario. By outputting C
and UD at step 8, the speculative agent informs that the most likely task to
follow question1 is action5, which recommends a series of workup exams such
as a colonoscopy, an abdominal/pelvic CT, and so forth. Based on this, the
health care professional may start the preparations for executing this task. The
effect of Speculative Computation with Default Revision is observed here; with
no information whatsoever, it is possible to arrive at the most likely scenario in
terms of probabilities, represented as an answer to the initial query. Depending
on the rules in P, there might be cases in which more than one active process
with an empty goal set is produced. In such situations all the processes are
presented as scenarios.

Assuming the information arrives from the ois at some point, regardless of
the order, one may have:

9. (n(N)@ois ←↩ N ∈ {n0} ‖) is returned from ois and by Fact Arrival
Phase (Fig. 5):
– The returned fact replaces the default constraint in the CBS;
– The returned fact is added to RF ;

CBS = {
t(T )@ois←↩ T ∈ {t3} ‖,
n(N)@ois←↩ N ∈ {n0} ‖,
m(M)@ois←↩ M ∈ {m1} ‖
}

RF = {n(N)@ois←↩ N ∈ {n0} ‖}

– Process P8 in the APS, along with processes P6 and P10 from SPS are
removed because they are inconsistent with the returned fact;

– P7 is resumed and originates P11;
– The newly activated process P11 still has goals in the goal set and thus
m(M)@ois is selected for process reduction.

APS = {
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〈{←↩ F ∈ {action5}, T ∈ {t3}, N ∈ {n0},M ∈ {m1} ‖ m(M)@ois},
{t(T )@ois}〉P11

}

SPS = {P1, P2, P3, P4, P5, P9}

10. Process Reduction, by Case 2.2 (Fig. 4):

Since m(M)@ois ∈ AAQ and ((m(M)@ois←↩ M ∈ {m1} ‖) ∈ ∆):

APS = {
〈{←↩ F ∈ {action5}, T ∈ {t3}, N ∈ {n0},M ∈ {m1} ‖ ∅}, {t(T )@ois,
m(M)@ois}〉P11

}

SPS = {P1, P2, P3, P4, P5, P9}

11. By Collection of Defaults:

Since there is now a returned fact for n(N)@ois, the MAP estimation is
TMMAP = max

T,M
P (T,M | N = n0) ≈ 0.9126 with T = t1 and M = m1,

thus producing New∆ = {t(T )@ois←↩ T ∈ {t1} ‖}.

As such, by Default Revision Phase (Fig. 6):
– The new default constraint replaces the old default constraint in the
CBS;

CBS = {
t(T )@ois←↩ T ∈ {t1} ‖,
n(N)@ois←↩ N ∈ {n0} ‖,
m(M)@ois←↩ M ∈ {m1} ‖
}
– Process P11 becomes suspended on t(T )@ois;
– Processes P2, P4 and P5 are resumed, forming processes P12 and P13,
P14 and P15, and P16 and P17, respectively;

– Process P9 originates process P18 because a new atom is added to the
suspended atom set;

– The newly activated processes still have elements in the goal set, so
they are further reduced according to the CBS.

APS = {
〈{←↩ F ∈ {action1}, T ∈ {t1}, N ∈ {n0},M ∈ {m0} ‖n(N)@ois,
m(M)@ois}, {t(T )@ois}P12 ,
〈{←↩ F ∈ {action4}, T ∈ {t1}, N ∈ {n1, n2},M ∈ {m0} ‖n(N)@ois,
m(M)@ois}, {t(T )@ois}〉P14 ,
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〈←↩ F ∈ {action5}, T ∈ {t1}, N ∈ {n0, n1, n2},M ∈ {m1} ‖n(N)@ois,
m(M)@ois}, {t(T )@ois}〉P16

}

SPS = {
〈{{t(T )@ois},←↩ F ∈ {action1}, T ∈ {t2}, N ∈ {n0},M ∈ {m0} ‖
n(N)@ois,m(M)@ois}, ∅〉P13 ,
〈{{t(T )@ois},←↩ F ∈ {action4}, T ∈ {t2, t4}, N ∈ {n1, n2},M ∈ {m0} ‖
n(N)@ois,m(M)@ois}, ∅〉P15 ,
〈{{t(T )@ois},←↩ F ∈ {action5}, T ∈ {t2, t4}, N ∈ {n0, n1, n2},M ∈
{m1} ‖ n(N)@ois,m(M)@ois}, ∅〉P17 ,
〈{{m(M)@ois,t(T )@ois},←↩ F ∈ {action2}, T ∈ {t3},M ∈ {m0} ‖ ∅},
∅〉P18 ,
P1, P3, P11
}

12. After steps of Process Reduction, by Case 2.2 (Fig. 4):
– Process P14 is deleted because it is inconsistent with the returned fact

for n(N)@ois;
– Process P12 is suspended.

APS = {
〈{←↩ F ∈ {action5}, T ∈ {t1}, N ∈ {n0},M ∈ {m1} ‖ ∅}, {t(T )@ois,
m(M)@ois}〉P16

}

SPS = {
〈{{m(M)@ois},←↩ F ∈ {action1}, T ∈ {t1}, N ∈ {n0},M ∈ {m0} ‖ ∅},
{t(T )@ois}〉P12 ,
P1, P3, P11, P13, P15, P17, P18
}

13. (t(T )@ois←↩ T ∈ {t1} ‖) is returned from ois and by Fact Arrival Phase
(Fig. 5):
– The returned fact coincides with the default constraint;
– The returned fact is added to RF ;

CBS remains unchanged.

RF = {t(T )@ois←↩ T ∈ {t1} ‖, n(N)@ois←↩ N ∈ {n0} ‖}

– t(T )@ois is removed from UD in the active processes because it is no
longer a default.

– Processes P1, P3, P11, P13, P15, P17 and P18 are deleted.
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APS = {
〈{←↩ F ∈ {action5}, T ∈ {t1}, N ∈ {n0},M ∈ {m1} ‖ ∅},
{m(M)@ois}〉P16

}

SPS = {P12}

14. By Collection of Defaults:

Since there is another returned fact, in this case for (t(T )@ois, the MAP
estimation is MMAP = max

M
P (M | T = t1, N = n0) ≈ 0.9126 with

M = m1, thus making it unnecessary to produce a New∆ and perform
default revision.

15. (m(M)@ois ←↩ M ∈ {m1} ‖) is returned from ois and by Fact Arrival
Phase (Fig. 5):
– The returned fact coincides with the default constraint;
– The returned fact is added to RF ;

CBS remains unchanged.

RF = {
t(T )@ois←↩ T ∈ {t1} ‖,
n(N)@ois←↩ N ∈ {n0} ‖,
m(M)@ois←↩ M ∈ {m1} ‖
}

– m(M)@ois is removed from UD in the active processes because it is no
longer a default;

– Process P12 is deleted.

APS = {〈{←↩ F ∈ {action5}, T ∈ {t1}, N ∈ {n0},M ∈ {m1} ‖ ∅}, ∅〉P16}

SPS = ∅

16. Process Reduction, by Case 1 (Fig. 4):

APS = {
APS = {〈{←↩ F ∈ {action5}, T ∈ {t1}, N ∈ {n0},M ∈ {m1} ‖ ∅}, ∅〉P16}
}

C = {F ∈ {action5}, T ∈ {t1}, N ∈ {n0},M ∈ {m1}}

UD = ∅

End of the execution.
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In fact arrival, active processes may be deleted and suspended processes
may be resumed as the answers from the ois are regarded as definitive. At
step 9 there are two new active processes resulting from the arrival of a fact
for n(N)@ois. The CBS is updated with the fact “n(N)@ois←↩ N ∈ {n0} ‖”,
replacing the default constraint. All the processes (both active and suspended)
that use the default constraint are removed from the execution, resulting in
the elimination of processes P8, P6, and P10. On the other hand, process P7
is resumed and, after processing the constraints for n(N)@ois, it originates
process P11. In this process n(N)@ois does not appear in UD since the askable
atom is not used as a default. Furthermore, upon resuming process P7, no
alternative suspended process is generated because there cannot be another
value for n(N)@ois besides the newly arrived fact. Upon the arrival of the
fact “n(N)@ois ←↩ N ∈ {n0} ‖” from the ois, the system does not add a
brand new suspended process “〈{←↩ F ∈ {action5}, T ∈ {t3}, N ∈ {n1},M ∈
{m1} ‖ m(M)@ois}, {t(T )@ois}〉”, generated from P7, because it would not
represent a feasible scenario. Further process reduction results in the processes
of step 10.

After applying the Collection of Defaults using the newly arrived fact as
evidence for the MAP estimation, a New∆ set is produced with a new de-
fault constraint for t(T )@ois. As such, default revision is performed at step
11. t(T )@ois ←↩ T ∈ {t1} ‖ replaces the old default constraint in the CBS
and process P11 is suspended because it becomes inconsistent with the new
default constraint. Previously suspended processes are resumed, yielding new
active processes consistent with the new default constraint and new suspended
processes consistent with the negation of the default constraint. That is what
happens with processes P2, P4, and P5, each one originating two new pro-
cesses. Another effect of Speculative Computation with Default Revision is
observed in the change operated in P9. This process used the previous default
for t(T )@ois and, when revised with the new default constraint, it becomes
P18 which is suspended on the account of two askable atoms. If this newly
suspended process were to be activated it would have to be revised for both
m(M)@ois and t(T )@ois, and SAS would have to become an empty set. This
situation can only be created with default revision. At the same time, the
probability value in the MAP estimation of this step is higher than the initial
MAP estimation, which indicates that the collective state of the information
and, thus, the scenarios resulting from the default revision phase are more
likely to be closer to the real outcome.

At the end of step 12, after process reduction, there is an active process
representing the most likely scenario given the configuration of the information
at the time, achieved through facts and default constraints. This is another ob-
servable effect of Speculative Computation with Default Revision; the default
constraints adjusted themselves to the arrived fact, which, in turn, triggered
the adjustment of processes, resulting in a scenario that is closer to reality. It is
an example of how the on-line default revision takes place. This would inform
a health care professional executing the guideline that, although the prediction
changed, the most plausible answer remains the same, that is action5. At step
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13, there is another reply from ois, which triggers a fact arrival phase, but,
as the fact matches the default constraint, the change in the active process is
only the removal of t(T )@ois from UD. All the suspended processes that are
not consistent with the newly arrived fact are removed. The MAP estimation,
from the Collection of Defaults at step 14, produces the same value as in step
11 due to M being independent from the other two variables, which means
that a New∆ is not produced. The remaining execution represents the arrival
of the information that is still missing, until a process composed solely of facts
is obtained. This happens at step 16, by outputting C and UD. The answer
remains the recommendation of action5, achieved through a different path.
The process that originated the solution, P16, suffered changes, going from a
process using facts and defaults to a process using only facts. This demon-
strates how a speculative computation can be used in order to advance the
computation of an answer and then be utilized to achieve a definitive answer.

Demonstrating all the possible cases in Speculative Computation with De-
fault Revision with an example would be impractical. The example above only
shows its main effects. However, with the claim of Section 3.6 it is possible
to show that the procedures in the different phases of the SFDR yield correct
results.

It is possible to argue that simply choosing the most probable set of default
constraints and deriving the most likely situation as a basis for action, with
no regard for the impact that action could have, may be unrealistic or, at the
very least, incomplete in terms of decision criteria.

Indeed, the framework presented herein lacks a more comprehensive and
well-defined strategy for selecting not only the most plausible scenario, but
also the most useful from the point of view of its costs and potential benefits.
The use of probabilities, and more specifically BNs, is motivated by the notion
that the knowledge we have about the world is imperfect and that, through
a Bayesian approach, it is possible to get a degree of belief that something
may be the case. As a complement to this degree of belief, an assessment of
the strengths and weaknesses of the different alternative actions that satisfy
a scenario could, or rather should, be combined with the probability result-
ing from the MAP assignments. This would ensure that the costs of taking a
certain action do not outweigh (or far outweigh, when compared with other
actions) its benefits. Cost-effectiveness analysis is used across multiple do-
mains to appraise the desirability of an alternative, given a certain decision
making problem [3]. It does so by comparing the relative costs and outcomes
(effects) of two or more courses of action. Cost-effectiveness analysis is differ-
ent from cost-benefit analysis in that it does not assign a monetary value to
the measure of effect. It is widely used in health care for allocation decisions
and to highlight interventions that are relatively inexpensive, but have the
potential to reduce the disease burden substantially [18]. Taking this domain
as an illustrative example, in the available literature for this kind of analysis,
the costs are expressed in monetary units and the effectiveness of interven-
tions are expressed in units of measure that are characteristic of health care
such as years of life gained with an intervention or the disability-adjusted life
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year (which measures not only the years gained but also the improved health).
By doing this, cost-effectiveness analysis, unlike cost-benefit analysis, draws
attention exclusively to health benefits, which are not monetized. Another ele-
ment commonly taken into account in cost-effectiveness analysis is time, more
specifically the changes in costs and effects of interventions with the passage of
time, which enhances the utility of an evaluation and makes it more realistic
[28]. Clinical guidelines often provide references to cost-effectiveness studies
regarding their recommendations. Although the guideline from which this ex-
ample was retrieved does not go as far as to quantify in any way the costs
and effects of the alternatives featured in the example, it features numerous
references of this type [1]. The main point to retain is that the combination of
MAP assignments with this kind of analysis would capture a given setting in
a more realistic way and, therefore, would result in more helpful scenarios.

That being said, cost-effectiveness analysis has inherent challenges and
involves a sequence of steps until a utility is achieved. Every analysis requires
a host of assumptions, complex calculations, and the careful judgement of
analysts. Furthermore, it is necessary to quantify the exact costs and effects
of alternatives, which is not always clear and available in the knowledge about
the domain. Thus, setting the framework for this kind of analysis would only
be possible for very specific domains where this information is available.

6 Conclusions and Future Work

In this work, BNs assume a supportive role, which is slightly different from
their common application. Here, the BN model itself is not the target, but an
auxiliary tool. With arrived facts MAP estimation values may change, yielding
new estimations for the information that is still unobserved. By dynamically
revising default constraints it becomes possible to ensure that the information
has the most likely configuration at all times and, in this way, produce the
most likely scenarios. Speculative Computation with Default Revision is a
way to manage the state of the information, fulfilling the role of an interface
to rule-guided problems. The mechanism for default revision is richer and more
encompassing than those presented in previous works. At the same time, it is
an on-line process that reflects the dynamic nature of real environments. It
takes into account the arrival of new facts to change default constraints, which
is a more realistic perspective about real-world problems.

As far as we know this is the first on-line framework that uses machine
learning techniques to adapt default rules. It provides a combination of logic
programming-based, declarative user interface and an effective, adaptive op-
erational behaviour in the background.

Future work includes further developing the model in order to compute
utility values for the scenarios and make full use of the probability provided in
the MAP estimation. So far, this probability is only used in the background,
but it would be useful to include it in the different phases of Speculative
Computation as a likelihood measure. As a complement to the MAP assign-
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ments and in order to build a utility function for speculative computation,
cost-effectiveness can be explored as a strategy to depict the usefulness of al-
ternatives more accurately and realistically. Furthermore, this kind of analysis
can be made in such a way that tackles the importance of time in these deci-
sion problems. In certain cases, it may be necessary to decide before the state
of a system deteriorates and changes irreversibly, which undoubtedly would
affect the utility of the scenarios generated for it. This is even more evident in
the domain chosen as an example for this work. In clinical decision support,
health care professionals may have to make hard decisions before the state of
a patient gets worse. As such, we are also working towards the inclusion of
time as a relevant dimension in Speculative Computation.

A small prototype was developed for this example. The Generation of De-
faults was implemented using the resources provided by the bnlearn library for
R [25] and the Java inflib library from the SamIam project [4]. The Specula-
tive Computation with Default Revision operational model was implemented
in Prolog.
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A Table of Abbreviations and Symbols

Table 1 Abbreviations and symbols used in the definitions and procedures of the Frame-
work for Speculative Computation with Default Revision

Abbreviation / Symbol Meaning

Σ
Set containing the agent identifiers representing the
information sources

∆ The default answer set
APS The set of active process processes
AAQ The set of already asked questions
body(R) The body of rule R
Cd A default constraint
Cnewd A new default constraint
CBS The current belief state
Cr A fact constraint
const(R) The constraints in the body of rule R
E Set containing external predicates representing askable atoms
GS The goal set in a process
head(R) The head of rule R
New∆ The set of changed default constraint rules

NewAAQ
An updated version of AAQ resulting from a process
reduction phase

NewAPS
An updated version of APS resulting from a phase in
Speculative Computation with Default Revision

NewCBS
An updated version of CBS resulting from an answer arrival
phase or a default revision phase

NewRF
An updated version of RF resulting from an answer arrival
phase

NewSPS
An updated version of SPS resulting from a phase in
Speculative Computation with Default Revision

P The constraint logic program
R The reply set
RF The set of returned facts from the agent information sources
SAS The suspended atom set

SFDR
Framework for Speculative Computation with Default
Revision

SPS The set of suspended processes
UD The used default set of a process
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B Algorithms for Speculative Computation with Default Revision

The following algorithms specify the operations involved in the different phases of Specula-
tive Computation with Default Revision.

Algorithms 1 and 2 refer to the initial step and iteration steps respectively of process
reduction. In this phase, changes occur in the process sets. In the algorithms, changed APS,
SPS, and AAQ are represented as NewAPS, NewSPS and NewAAQ. The last three
correspond to updated versions of the previous after the step of process reduction is applied.

Algorithm 1 Initial step of process reduction
Data: GS: the initial goal set
Data: ∆: the default answer set
1: give 〈←↩ C ‖ GS, ∅〉 to the proof procedure
2: APS ← {〈←↩ C ‖ GS, ∅〉}
3: SPS ← ∅
4: CBS ←↩ ∆
5: AAQ← ∅
6: RF ← ∅
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Algorithm 2 Iteration step of process reduction
Data: Σ: the set of agent information sources
Data: APS: the set of active processes
Data: SPS: the set of suspended processes
Data: CBS: the current belief state
Data: AAQ: the set of already asked questions
Data: RF : the set of returned facts
1: if there is an active process 〈←↩ C ‖ ∅, UD〉 w.r.t. CBS in APS then . Case 1
2: output constraints C and return used defaults UD
3: else . Case 2
4: select an active process 〈←↩ C ‖ GS,UD〉 from APS w.r.t. CBS
5: select an atom L in GS
6: APS′ ← APS − {〈←↩ C ‖ GS,UD〉}
7: GS′ ← GS − {L}
8: for the selected atom L do
9: if L is a non-askable atom then . Case 2.1

10: NewAPS ← APS′ ∪ {〈←↩ (C ∧ {Bi = head(R)} ∧ const(R) ‖ (body(R)∪
GS′), UD〉 | C ∧ {Bi = head(R)} ∧ const(R) is consistent}

11: else if L is an askable atom Q@S then . Case 2.2
12: if L /∈ AAQ then
13: send question Q to agent S in which S ∈ Σ
14: NewAAQ← AAQ ∪ {L}
15: AAQ← NewAAQ
16: end if
17: if L ∈ UD then
18: NewAPS ← APS′ ∪ {〈←↩ C ‖ GS′, UD〉}
19: else if (L←↩ Cr ‖) ∈ RF then
20: if C ∧ Cr is consistent then
21: NewAPS ← APS′ ∪ {〈←↩ C ∧ Cr ‖ GS′, UD〉}
22: else
23: NewAPS ← APS′

24: end if
25: else if there is a default constraint Cd for L then
26: if C ∧ Cd is consistent then
27: NewAPS ← APS′ ∪ {〈←↩ C ∧ Cd ‖ GS′, UD ∪ {L}〉}
28: else
29: NewAPS ← APS′

30: end if
31: if C ∧ ¬Cd is consistent then
32: NewSPS ← SPS ∪ {〈L,←↩ α ‖ GS′, UD〉} where C ∧ ¬Cd |= α
33: SPS ← NewSPS
34: end if
35: end if
36: end if
37: APS ← NewAPS
38: end for
39: end if

Algorithm 3 describes fact arrival. In the algorithm, NewRF , NewAPS, NewSPS and
NewCBS correspond to changed versions of RF , APS, SPS and CBS after fact arrival.
The prefixes “Added−” and “Deleted−” indicate portions of a set that are being added or
removed respectively.
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Algorithm 3 Fact arrival
Data: APS: the set of active processes
Data: SPS: the set of suspended processes
Data: CBS: the current belief state
Data: RF : the set of returned facts
Data: Q@S ←↩ Cr ‖: the returned fact constraint
1: NewRF ← RF ∪ {Q@S ←↩ Cr ‖}
2: RF ← NewRF
3: NewCBS ← CBS − {Q@S ←↩ Cd ‖} ∪ {Q@S ←↩ Cr ‖}
4: CBS ← NewCBS
5: if Cr entails Cd then . Case 1
6: . revision of the set of active processes
7: DeletedAPS ← {〈←↩‖ GS,UD〉 ∈ APS | Q@S ∈ UD}
8: AddedAPS ← {〈←↩ (C ∧ Cr) ‖ GS,UD〉 | 〈←↩ C ‖ GS,UD〉 ∈ DeletedAPS and

C ∧ Cr is consistent}
9: NewAPS ← APS −DeletedAPS ∪AddedAPS

10: . revision of the set of suspended processes
11: DeletedSPS ← {〈SAS,←↩ C ‖ GS,UD〉 ∈ SPS | Q@S ∈ SAS or Q@S ∈ UD}
12: AddedSPS ← {〈SAS,←↩ (C ∧ Cr) ‖ GS,UD〉 | 〈SAS,←↩ C ‖ GS,UD〉

∈ DeletedSPS, Q@S ∈ UD, and C ∧ Cr is consistent}
13: NewSPS ← SPS −DeletedSPS ∪AddedSPS
14: else if Cr contradicts Cd then . Case 2
15: . revision of the set of active processes
16: DeletedAPS ← {〈←↩ C ‖ GS,UD〉 ∈ APS | Q@S ∈ UD}
17: ResumedSPS ← {〈←↩ (C ∧ Cr) ‖ GS,UD〉 | 〈{Q@S},←↩ C ‖ GS, UD〉 ∈ SPS,

and C ∧ Cr is consistent}
18: NewAPS ← APS −DeletedAPS ∪ResumedSPS
19: . revision of the set of suspended processes
20: DeletedSPS ← {〈SAS,←↩ C ‖ GS,UD〉 ∈ SPS | Q@S ∈ SAS or Q@S ∈ UD}
21: AddedSPS ← {〈SAS−{Q@S},←↩ (C∧Cr) ‖ GS,UD∪{Q@S}〉 | 〈SAS,←↩ C ‖

GS,UD〉 ∈ DeletedSPS, Q@S ∈ SAS, SAS − {Q@S} 6= ∅, and
C ∧ Cr is consistent}

22: NewSPS ← SPS −DeletedSPS ∪AddedSPS
23: else if Cr does not entail Cd or contradict Cd then . Case 3
24: . revision of the set of active processes
25: DeletedAPS ← {〈←↩ C ‖ GS,UD〉 ∈ APS | Q@S ∈ UD}
26: AddedAPS ← {〈←↩ (C ∧ Cr) ‖ GS,UD〉 | 〈←↩ C ‖ GS,UD〉 ∈ DeletedAPS and

C ∧ Cr is consistent}
27: ResumedSPS ← {〈←↩ (C ∧ Cr) ‖ GS,UD〉 | 〈{Q@S},←↩ C ‖ GS,UD〉

∈ SPS and C ∧ Cr is consistent}
28: NewAPS ← APS −DeletedAPS ∪AddedAPS ∪ResumedSPS
29: . revision of the set of suspended processes
30: DeletedSPS ← {〈SAS,←↩ (C∧Cr) ‖ GS,UD〉 ∈ SPS | Q@S ∈ SAS or Q@S ∈

UD}
31: AddedSPS1 ← {〈SAS,←↩ (C ∧ Cr) ‖ GS,UD〉 | 〈SAS,←↩ C ‖ GS,UD〉

∈ DeletedSPS, Q@S ∈ UD, and C ∧ Cr is consistent}
32: AddedSPS2 ← {〈SAS − {Q@S},←↩ (C ∧ Cr) ‖ GS,UD ∪ {Q@S}〉 | 〈SAS,←↩

C ‖ GS,UD〉 ∈ DeletedSPS, Q@S ∈ SAS, SAS − {Q@S} 6= ∅,
and C ∧ Cr is consistent}.

33: NewSPS ← SPS −DeletedSPS ∪AddedSPS1 ∪AddedSPS2
34: end if
35: APS ← NewAPS
36: SPS ← NewSPS
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Finally, Algorithms 4 and 5 describe default revision. In the procedures given in the
algorithms, NewAPS, NewSPS, and NewCBS correspond to changed versions of APS,
SPS and CBS. The prefixes “Added−” and “Deleted−” indicate portions of a set that are
being added or removed respectively.

Algorithm 4 Default revision
Data: APS: the set of active processes
Data: SPS: the set of suspended processes
Data: CBS: the current belief state
Data: New∆: the set of changed default constraints
Data: Qd@S ←↩ Cnewd ‖: the new default constraint
1: if New∆ 6= ∅ then
2: for each Qd@S ←↩ Cnewd ‖. ∈ new∆ do
3: NewCBS ← CBS − {Qd@S ←↩ Cd ‖} ∪ {Qd@S ←↩ Cnewd ‖}
4: if Cnewd entails Cd then . Case 1
5: . revision of the set of active processes
6: DeletedAPS ← {〈←↩ C ‖ GS,UD〉 ∈ APS | Qd@S ∈ UD}
7: AddedAPS ← {〈←↩ (C ∧ Cnewd) ‖ GS,UD〉 | 〈←↩ C ‖ GS,UD〉 ∈

DeletedAPS and C ∧ Cnewd is consistent}
8: NewAPS ← APS −DeletedAPS ∪AddedAPS
9: . revision of the set of suspended processes

10: DeletedSPS ← {〈SAS,←↩ C ‖ GS,UD〉 ∈ SPS | Qd@S ∈ UD}
11: AddedSPS1 ← {〈SAS,←↩ (C ∧ Cnewd) ‖ GS,UD〉 | 〈SAS,←↩ C ‖

GS,UD〉 ∈ DeletedSPS, Qd@S ∈ UD, and C ∧Cnewd is
consistent}

12: AddedSPS2 ← {〈SAS∪{Qd@S},←↩ C ‖ GS,UD−{Qd@S}〉 | 〈SAS,←↩
C ‖ GS,UD〉 ∈ DeletedSPS and Qd@S ∈ UD}

13: SuspendedAPS ← {〈{Qd@S},←↩ (C ∧ ¬Cnewd) ‖ GS,UD〉 | 〈←↩ C ‖
GS,UD〉 ∈ APS and C ∧ ¬Cnewd is consistent}

14: NewSPS ← SPS − DeletedSPS ∪ AddedSPS1 ∪ AddedSPS2
∪AddedSPS3 ∪ SuspendedAPS

15: else if Cnewd contradicts Cd then . Case 2
16: . revision of the set of active processes
17: DeletedAPS ← {〈←↩ C ‖ GS,UD〉 ∈ APS | Qd@S ∈ UD}
18: ResumedSPS ← {〈←↩ (C ∧ Cnewd) ‖ GS,UD〉 | 〈{Qd@S},←↩ C ‖

GS,UD〉 ∈ SPS and C ∧ Cnewd is consistent}
19: NewAPS ← APS −DeletedAPS ∪ResumedSPS
20: . revision of the set of suspended processes
21: DeletedSPS ← {〈SAS,←↩ C ‖ GS,UD〉 ∈ SPS | Qd@S ∈ SAS or

Qd@S ∈ UD}
22: AddedSPS1 ← {〈SAS ∪ {Qd@S},←↩ (C ∧ ¬Cnewd) ‖ GS,UD −

{Qd@S}〉 | 〈SAS,←↩ C ‖ GS,UD〉 ∈ DeletedSPS,
Qd@S ∈ UD and C ∧ ¬Cnewd is consistent}

23: AddedSPS2 ← {〈SAS∪{Qd@S},←↩ C ‖ GS,UD−{Qd@S}〉 | 〈SAS,←↩
C ‖ GS,UD〉 ∈ DeletedSPS and Qd@S ∈ UD}

24: AddedSPS3 ← {〈SAS − {Qd@S},←↩ (C ∧ Cnewd) ‖ GS,UD ∪
{Qd@S}〉 | 〈SAS,←↩ C ‖ GS,UD〉 ∈ DeletedSPS,
Qd@S ∈ SAS, SAS − {Qd@S} 6= ∅, and C ∧ Cnewd

is consistent}
25: SuspendedAPS ← {〈{Qd@S},←↩ C ‖ GS,UD〉 | 〈←↩ C ‖ GS,UD〉

∈ APS and Qd@S ∈ UD}
26: NewSPS ← SPS − DeletedSPS ∪ AddedSPS1 ∪ AddedSPS2

∪AddedSPS3 ∪ SuspendedAPS
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Algorithm 5 Default revision - continued
27: else if Cnewd does not entail Cd or contradict Cd then . Case 3
28: . revision of the set of active processes
29: DeletedAPS ← {〈←↩ C ‖ GS,UD〉 ∈ APS | Qd@S ∈ UD}
30: AddedAPS ← {〈←↩ (C ∧ Cnewd) ‖ GS,UD〉 | 〈←↩ C ‖ GS,UD〉 ∈

DeletedAPS and C ∧ Cnewd is consistent}
31: ResumedSPS ← {〈←↩ (C ∧ Cnewd) ‖ GS,UD〉 | 〈{Qd@S},←↩ C ‖

GS,UD〉 ∈ SPS and C ∧ Cnewd is consistent}
32: NewAPS ← APS −DeletedAPS ∪AddedAPS ∪ResumedSPS
33: . revision of the set of suspended processes
34: DeletedSPS ← {〈SAS,←↩ C ‖ GS,UD〉 ∈ SPS | Qd@S ∈ SAS or

Qd@S ∈ UD}
35: AddedSPS1 ← {〈SAS,←↩ (C ∧ Cnewd) ‖ GS,UD〉 | 〈SAS,←↩ C ‖

GS,UD〉 ∈ DeletedSPS, Qd@S ∈ UD, and C ∧Cnewd is
consistent}

36: AddedSPS2 ← {〈SAS ∪ {Qd@S},←↩ (C ∧ ¬Cnewd) ‖ GS,UD −
{Qd@S}〉 | 〈SAS,←↩ C ‖ GS,UD〉 ∈ DeletedSPS,
Qd@S ∈ UD, and C ∧ ¬Cnewd is consistent}

37: AddedSPS3 ← {〈SAS,←↩ (C ∧ ¬Cnewd) ‖ GS,UD〉 | 〈SAS,←↩ C ‖
GS,UD〉 ∈ DeletedSPS, Qd@S ∈ SAS, and C∧¬Cnewd

is consistent}
38: AddedSPS4 ← {〈SAS − {Qd@S},←↩ (C ∧ Cnewd) ‖ GS,UD ∪

{Qd@S}〉 | 〈SAS,←↩ C ‖ GS, UD〉 ∈ DeletedSPS,
Qd@S ∈ SAS, SAS − {Qd@S} 6= ∅, and C ∧ Cnewd

is consistent}
39: SuspendedAPS ← {〈{Qd@S},←↩ (C ∧ ¬Cnewd) ‖ GS,UD〉 | 〈←↩ C ‖

GS,UD〉 ∈ APS and C ∧ ¬Cnewd is consistent}
40: NewSPS ← SPS − DeletedSPS ∪ AddedSPS1 ∪ AddedSPS2

∪AddedSPS3 ∪AddedSPS4 ∪ SuspendedAPS
41: end if
42: CBS ← NewCBS
43: APS ← NewAPS
44: SPS ← NewSPS
45: end for
46: end if

C Sketch of Proof for Claim 1

In the following sketch of proof, a round is defined as the execution of operations in the
iteration step part of process reduction, the whole of fact arrival, or the whole of default
revision, from their beginning to their end, without returning to the beginning and without
transferring to another phase.

It is shown that a more general property holds for active or suspended processes at each
round. The property, represented as λ, is the following: at any k-th round, for any active
process or suspended process P without negation of constraints, there exists a sequence of
reductions

“←↩‖ GS′′
init, . . . , “←↩ C′

P ‖ GS
′′
P

w.r.t. P and

R(k)
P = RFk ∪ {δk(Q@S)|Q@S ∈ UDP }

s.t. πV (CP ) entails πV (C′
P ),
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where CP = CPa , GSP = GSPa , and UDP = UDPa if P is an active process Pa =
〈←↩ CPa ‖ GSPa , UDPa 〉, and CP = CPs , GSP = SASPs ∪GSPs , and UDP = UDPs , if P
is a suspended process Ps = 〈SASPs ←↩ CPs ‖ GSPs , UDPs 〉, and RFk is the reply set of
constraints returned at the k-th round.

Property λ is proven by mathematical induction for the progress of the three phases of
Speculative Computation with Default Revision: process reduction, fact arrival, and default
revision. The induction base and the induction step are the following:

– Induction base. For k = 0, which is the initial round of Speculative Computation with
Default Revision and corresponds to the initial step of process reduction, an active
process 〈←↩‖ GSinit, ∅〉 is created, which satisfies property λ.

– Induction step. Assume that at the k-th round property λ holds. Now, considering the
(k + 1)-th round, it is shown that λ holds in the following way:
1. In the case that the round is a step of process reduction:

It is straightforward to show that λ holds for a step of process reduction because
no constraint is added to the reply set from the previous round. It is the normal
reduction of a process according to the operational model.

2. In the case that the round is a fact arrival:
In this phase, consider the processing of a returned answer Q@S ←↩ Cr in the fact
arrival phase and the existence of a default constraint Cd for Q@S.

Let Pa = 〈←↩ CPa ‖ GSPa , UDPa 〉 be any existing active process s.t. Q@S ∈ UDPa .
In this round, Pa is deleted. For the newly added active process created from Pa

one can have the following three cases:

(a) In the case that Cr entails Cd. If CPa ∧ Cr is consistent, the active process
P ′

a = 〈←↩ CPa ∧Cr ‖ GSPa , UDPa −{Q@S}〉 is created and one has R(k+1)
P ′

a
=

R
(k)
Pa
∪ {Q@S ←↩ Cr ‖}\{Q@S ←↩ Cd ‖}. By the induction hypothesis, Pa

satisfies λ for some C′
Pa

, i.e, there exists a sequence of reductions “←↩‖ GS′′
init,

. . . , “←↩ C1 ‖ {Q@S}∪GS′′, “←↩ C1∧Cd ‖ GS′′, . . . , “←↩ C1∧Cd∧C2 ‖ GS′′
Pa

w.r.t. P and R(k)
Pa

s.t. πV (CPa ) entails πV (C1 ∧ Cd ∧ C2), where C1 and C2
are the constraints obtained before and after processing Q@S respectively,
and C1 ∧ Cd ∧ C2 = C′

Pa
. Then one can consider the sequence of reductions

“ ←↩‖ GS′′
init, . . . , “ ←↩ C1 ‖ {Q@S} ∪ GS′′, “ ←↩ C1 ∧ Cr ‖ GS′′, . . . ,

“ ←↩ C1 ∧ Cr ∧ C2 ‖ GS′′
Pa

w.r.t. P and R(k+1)
P ′

a
. Since Cr entails Cd and

πV (CPa ) entails πV (C1∧Cd∧C2), then πV (CPa∧Cr) entails πV (C1∧Cr∧C2).
Thus λ holds for this new process.

(b) In the case that Cr contradicts Cd. No active process is created from Pa.
(c) In the case that Cr does not entail or contradict Cd. If CPa ∧Cr is consistent,

an active process is created from Pa, for which one can show λ in a similar way
to case (a).

Now, let Ps = 〈SASPs ←↩ CPs ‖ GSPs , UDPs 〉 be an existing suspended process
s.t. Q@S ∈ SASPs or Q@S ∈ UDPs . Ps is deleted at this step.

Consider the newly added active process that is created from Ps s.t. Q@S ∈ SASPs

and SASPs − {Q@S} = ∅ (which corresponds to the resumed process). One can
have the following cases:

(a) In the case that Cr entails Cd. No active process is created from Ps.
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(b) In the case that Cr contradicts Cd. If CPs ∧Cr is consistent, the active process
P ′

a = 〈←↩ CPs ∧Cr ‖ GSPs , UDPs ∪ {Q@S}〉 is created and one has R(k+1)
P ′

a
=

R
(k)
Ps
∪ {Q@S ←↩ Cr ‖}\{Q@S ←↩ Cd ‖}. By the induction hypothesis, Ps

satisfies λ for some C′
Ps

, i.e, there exists a sequence of reductions “←↩‖ GS′′
init,

. . . , “ ←↩ C′
Ps
‖ {Q@S} ∪ GS′′

Ps
w.r.t. P and R(k+1)

P ′
a

s.t. πV (CPs ) entails
πV (C′

Ps
). Then one can consider the sequence of reductions “←↩‖ GS′′

init, . . . ,
“←↩ C′

Ps
‖ {Q@S} ∪GS′′, “←↩ C′

Ps
∧ Cr ‖ GS′′

Ps
w.r.t. P and R(k+1)

P ′
a

. Since
πV (CPs ) entails πV (C′

Ps
), then πV (CPs ∧ Cr) entails πV (C′

Ps
∧ Cr). Thus λ

holds for this new process.
(c) In the case that Cr does not entail or contradict Cd. If CPs ∧Cr is consistent,

an active process is created from Ps, for which one can show λ in a similar way
to case (b).

Consider the newly added suspended process that is created from Ps so that Q@S ∈
SASPs and SASPs − {Q@S} 6= ∅. One can have the following cases:
(a) In the case that Cr entails Cd. No new suspended process is created from Ps.
(b) In the case that Cr contradicts Cd. If CPs ∧ Cr is consistent, the suspended

process P ′
s = 〈SASPs − {Q@S},←↩ CPs ∧ Cr ‖ GSPs , UDPs ∪ {Q@S}〉 is

created and one has R(k+1)
P ′

s
= R

(k)
Ps
∪{Q@S ←↩ Cr ‖}\{Q@S ←↩ Cd ‖}. By the

induction hypothesis, Ps satisfies λ for some C′
Ps

, i.e, there exists a sequence
of reductions “ ←↩‖ GS′′

init, . . . , “ ←↩ C′
Ps
‖ {Q@S} ∪ GS′′

Ps
w.r.t. P and

R(k+1)
P ′

s
so that πV (CPs ) entails πV (C′

Ps
). Then one can consider the sequence

of reductions “ ←↩‖ GS′′
init, . . . , “ ←↩ C′

Ps
‖ {Q@S} ∪ GS′′, “ ←↩ C′

Ps
∧ Cr ‖

GS′′
Ps

w.r.t. P andR(k+1)
P ′

s
. Since πV (CPs ) entails πV (C′

Ps
), then πV (CPs∧Cr)

entails πV (C′
Ps
∧ Cr). Thus λ holds for this new process.

(c) In the case that Cr does not entail or contradict Cd. If CPs ∧Cr is consistent,
a suspended process is created from Ps, for which one can show λ in a similar
way to case (b).

Now, consider the newly added suspended process that is created from Ps s.t.Q@S ∈
UDPs . One may have the following three cases:
(a) In the case that Cr entails Cd. If CPs ∧Cr is consistent, the suspended process

P ′
s = 〈SASPs ←↩ CPs ∧ Cr ‖ GSPs , UDPs 〉 is created and one has R(k+1)

P ′
s

=

R
(k)
Ps
∪ {Q@S ←↩ Cr ‖}\{Q@S ←↩ Cd ‖}. By the induction hypothesis, Ps

satisfies λ for some C′
Ps

, i.e, there exists a sequence of reductions “←↩‖ GS′′
init,

. . . , “←↩ C1 ‖ {Q@S}∪GS′′, “←↩ C1∧Cd ‖ GS′′, . . . , “←↩ C1∧Cd∧C2 ‖ GS′′
Ps

w.r.t. P and R(k)
Ps

so that πV (CPs ) entails πV (C1 ∧ Cd ∧ C2), where C1 and
C2 are the constraints obtained before and after processing Q@S respectively,
and C1 ∧ Cd ∧ C2 = C′

Ps
. Then one can consider the sequence of reductions

〈←↩‖ GSinit〉, . . . , 〈←↩ C1 ‖ {Q@S} ∪ GS〉, 〈←↩ C1 ∧ Cr ‖ GS〉, . . . , 〈←↩
C1∧Cr∧C2 ‖ {SASPs}∪GSPs 〉 w.r.t. P and R(k+1)

P ′
s

. Since Cr entails Cd and
πV (CPs ) entails πV (C1∧Cd∧C2), then πV (CPs∧Cr) entails πV (C1∧Cr∧C2).
Thus λ holds for this new process.

(b) In the case that Cr contradicts Cd. No suspended process is created from Ps.
(c) In the case that Cr does not entail or contradict Cd. If CPs ∧Cr is consistent,

a suspended process is created from Ps, for which one can show λ in a similar
way to case 1.
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As a result of fact arrival, no suspended process is created from an active process
since the constraints from the replies of the agent information sources are regarded
as definitive.

3. In the case that the round is a default revision:
Let Pa = 〈←↩ CPa ‖ GSPa , UDPa 〉 be an existing active process so that Q@S ∈
UDPa . In this step Pa is deleted. For the newly added active process created from
Pa one can have the following three cases:

(a) In the case that Cnewd entails Cd. If CPa ∧ Cnewd is consistent, the ac-
tive process P ′

a = 〈←↩ CPa ∧ Cnewd ‖ GSPa , UDPa 〉 is created and one has
R(k+1)

P ′
a

= R
(k)
Pa
∪ {Q@S ←↩ Cnewd ‖}\{Q@S ←↩ Cd ‖}. By the induction

hypothesis, Pa satisfies λ for some C′
Pa

, i.e, there exists a sequence of reduc-
tions “ ←↩‖ GS′′

init, . . . , “ ←↩ C1 ‖ {Q@S} ∪ GS′′, “ ←↩ C1 ∧ Cd ‖ GS′′,
. . . , “ ←↩ C1 ∧ Cd ∧ C2 ‖ GS′′

Pa
w.r.t. P and R(k)

Pa
so that πV (CPa ) entails

πV (C1 ∧ Cd ∧ C2), where C1 and C2 are the constraints obtained before and
after processing Q@S respectively, and C1∧Cd∧C2 = C′

Pa
. Then one can con-

sider the sequence of reductions “ ←↩‖ GS′′
init, . . . , “ ←↩ C1 ‖ {Q@S} ∪ GS′′,

“ ←↩ C1 ∧ Cnewd ‖ GS′′, . . . , “ ←↩ C1 ∧ Cnewd ∧ C2 ‖ GS′′
Pa

w.r.t. P and
R(k+1)

P ′
a

. Since Cnewd entails Cd and πV (CPa ) entails πV (C1 ∧ Cnewd ∧ C2),
πV (CPa ∧Cd) entails πV (C1∧Cnewd∧C2). Thus λ holds for this new process.

(b) In the case that Cnewd contradicts Cd. No active process is created from Pa.
(c) In the case that Cnewd does not entail or contradict Cd. If CPa ∧ Cnewd is

consistent, an active process is created from Pa, for which one can show λ in
a similar way to case (a).

Now, let Ps = 〈SASPs ←↩ CPs ‖ GSPs , UDPs 〉 be an existing suspended process so
that Q@S ∈ SASPs or Q@S ∈ UDPs . Ps is deleted at this step.

Consider the newly added active process that is created from Ps so that Q@S ∈
SASPs and SASPs −{Q@S} = ∅ (which corresponds to the resumed process). One
can have the following cases:

(a) In the case that Cnewd entails Cd. No active process is created from Ps.
(b) In the case that Cnewd contradicts Cd. If CPs ∧Cnewd is consistent, the active

process P ′
a = 〈←↩ CPs ∧ Cnewd ‖ GSPs , UDPs ∪ {Q@S}〉 is created and one

has R(k+1)
P ′

a
= R

(k)
Ps
∪ {Q@S ←↩ Cnewd ‖}\{Q@S ←↩ Cd ‖}. By the induction

hypothesis, Ps satisfies λ for some C′
Ps

, i.e, there exists a sequence of reductions
“ ←↩‖ GS′′

init, . . . , “ ←↩ C′
Ps
‖ {Q@S} ∪ GS′′

Ps
w.r.t. P and R(k+1)

P ′
s

so that
πV (CPs ) entails πV (C′

Ps
). Then one can consider the sequence of reductions

“ ←↩‖ GS′′
init, . . . , “ ←↩ C′

Ps
‖ {Q@S} ∪ GS′′, “ ←↩ C′

Ps
∧ Cnewd ‖ GS′′

Ps

w.r.t. P and R(k+1)
P ′

a
. Since πV (CPs ) entails πV (C′

Ps
), πV (CPs ∧Cnewd) entails

πV (C′
Ps
∧ Cnewd). Thus λ holds for this new process.

(c) In the case that Cnewd does not entail or contradict Cd. If CPs ∧ Cnewd is
consistent, an active process is created from Ps, for which one can show λ in a
similar way to case (b).

Consider the newly added suspended process that is created from Ps so that Q@S ∈
SASPs and SASPs − {Q@S} 6= ∅. One can have the following cases:

(a) In the case that Cnewd entails Cd. No new suspended process is created from
Ps.
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(b) In the case that Cnewd contradicts Cd. If CPs ∧ Cnewd is consistent, the sus-
pended process P ′

s = 〈SASPs − {Q@S},←↩ CPs ∧ Cnewd ‖ GSPs , UDPs ∪
{Q@S}〉 is created and one has R(k+1)

P ′
s

= R
(k)
Ps
∪{Q@S ←↩ Cnewd ‖}\{Q@S ←↩

Cd ‖}. By the induction hypothesis, Ps satisfies λ for some C′
Ps

, i.e, there ex-
ists a sequence of reductions “ ←↩‖ GS′′

init, . . . , “ ←↩ C′
Ps
‖ {Q@S} ∪ GS′′

Ps

w.r.t. P and R(k+1)
P ′

s
so that πV (CPs ) entails πV (C′

Ps
). Then one can con-

sider the sequence of reductions “←↩‖ GS′′
init, . . . , “←↩ C′

Ps
‖ {Q@S} ∪GS′′,

“←↩ C′
Ps
∧Cnewd ‖ GS′′

Ps
w.r.t. P andR(k+1)

P ′
s

. Since πV (CPs ) entails πV (C′
Ps

),
πV (CPs ∧Cnewd) entails πV (C′

Ps
∧Cnewd). Thus λ holds for this new process.

(c) In the case that Cnewd does not entail or contradict Cd. If CPs ∧ Cnewd is
consistent, a suspended process is created from Ps, for which one can show λ
in a similar way to case (b).

Now, consider the newly added suspended process that is created from Ps so that
Q@S ∈ UDPs . One may have the following three cases.

(a) In the case that Cnewd entails Cd. If CPs ∧Cnewd is consistent, the suspended
process P ′

s = 〈SASPs ←↩ CPs ∧ Cnewd ‖ GSPs , UDPs 〉 is created and one
has R(k+1)

P ′
s

= R
(k)
Ps
∪ {Q@S ←↩ Cnewd ‖}\{Q@S ←↩ Cd ‖}. By the induction

hypothesis, Ps satisfies λ for some C′
Ps

, i.e, there exists a sequence of reductions
〈←↩‖ GSinit〉, . . . , 〈←↩ C1 ‖ {Q@S} ∪ GS〉, 〈←↩ C1 ∧ Cd ‖ GS〉, . . . , 〈←↩ C1 ∧
Cd∧C2 ‖ GSPs 〉 w.r.t. P and R(k)

Ps
so that πV (CPs ) entails πV (C1∧Cd∧C2),

where C1 and C2 are the constraints obtained before and after processing Q@S
respectively, and C1 ∧ Cd ∧ C2 = C′

Ps
. Then one can consider the sequence of

reductions 〈←↩‖ GSinit〉, . . . , 〈←↩ C1 ‖ {Q@S} ∪GS〉, 〈←↩ C1 ∧ Cnewd ‖ GS〉,
. . . , 〈←↩ C1∧Cnewd∧C2 ‖ {SASPs}∪GSPs 〉 w.r.t. P andR(k+1)

P ′
s

. Since Cnewd

entails Cd and πV (CPs ) entails πV (C1∧Cd∧C2), then πV (CPs∧Cnewd) entails
πV (C1 ∧ Cnewd ∧ C2). Thus λ holds for this new process.

(b) In the case that Cnewd contradicts Cd. No suspended process is created from
Ps.

(c) In the case that Cnewd does not entail or contradict Cd. If CPs ∧ Cnewd is
consistent, a suspended process is created from Ps, for which one can show λ
in a similar way to case (a).

Processes that fall outside the scope of this proof still hold property λ since Q@S has
not been used in their reduction. As such, property λ holds for any active or suspended
process without negation of constraints after the fact arrival and default revision phases.
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Fig. 1 Architecture of the clinical decision support system with its basic components.

Fig. 2 Clinical setting for the example. The trigger conditions are expressed in terms of
three variables, according to the TNM staging system for colon cancer. The possible values
for T are t0, tis, t1, t2, t3, and t4. The possible values for N are n0, n1, and n2. The possible
values for M are m0 and m1

Fig. 3 Flowchart with the procedures for the initial step of the process reduction phase.
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Fig. 4 Flowchart with the procedures for the iteration step of the process reduction phase.
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Fig. 5 Flowchart with the procedures for the fact arrival phase.
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Fig. 6 Flowchart with the procedures for the default revision phase.
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Fig. 7 Procedures in the Generation of Default Constraints. The two types of procedures,
Learning of the Default Model and Collection of Defaults, comprise steps to construct a
probabilistic model with the variables in the problem the speculative agent has to address
and to collect the default constraints from that model

Fig. 8 Results from 5-fold cross-validation for the six BN learning algorithms in terms of
log likelihood loss. The set of learning algorithms used in this step includes: two score-based
learning algorithms, the Hill-Climbing (hc) and the Tabu-Search (tabu); three constraint-
based search algorithms, the Grow-Shrink (gs), the Incremental Association (iamb), and the
Chow-Liu (chowliu); and one hybrid algorithm, the Max-Min Hill-Climbing (mmhc)
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Fig. 9 Network structure produced by the iamb learning algorithm about the TNM staging
of colon cancer and respective probability distribution


