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Resumo: Humans coordinate their movements with nearby moving ob-
jects with a remarkable ease. This requires a highly timed processing of the
perception-action systems underpinning the movement control. In order to
investigate the underlying timing mechanisms, employed by the Central Ner-
vous System (CNS), researchers study individuals that attempt to synchronize
their movements with repetitive environmental events. Synchronization can
be understood as a simplified type of coordination because it is constrained in
space and time. It is particularly important in activities such as music, sports,
and manufacturing. For its inquiry, it was mostly focused on the motion of
effectors like the fingers, the forearms, or the feet. As external events were
presented simple auditory metronomes, light displays, or the movements of
interaction partners [1, 2].

To successfully synchronize with rhythmically repeating events, the indi-
vidual must perceive a) the event onsets, to compute an asynchrony between
the event and movement onsets and b) the temporal structure of the event se-
quence, to predict upcoming events. Based on these perceptual and cognitive
processes, appropriate motor commands can be computed that control the
rhythmical effector displacement so that future asynchronies are minimized
[3]. When the external event is presented in (relatively) constant temporal
intervals, this paradigm is called Sensorimotor Synchronization (SMS) [4].

There are cognitive models accounting for the empirical findings obtained
from SMS. Cognitive models have usually a formal mathematical representa-
tion as an approximation to the organization of the particular process at hand.
Here, this means that there are assumptions about the cognitive architecture
underlying movement timing. This is formalized as a system of equations that
receives variables as input and predicts output based on the input, the math-
ematical expression, and the parameters [5]. These models can be challenged
by comparing their analytical or simulated output (for a given input and set of
parameters) with experimental observations. By systematically manipulating



the input, it can be validated whether such processes—as postulated by the
particular model—underpin the information processing of the CNS.

Because in experiments, there are always variables that can neither be
manipulated nor controlled—i.e., there is noise within and beyond the CNS—
these problems are usually approached in a probabilistic manner. Within the
framework of probability theory, a model can be defined as a parametric fam-
ily of probability distributions. The combination of probability distributions
(indexed by parameters) determines the distribution of the input. This im-
plies that the probability of occurrence is associated with each output value
[6].

In order to understand human motor synchronization processes, Schulze
& Vorberg (2002) developed such a probabilistic cognitive model, called the
Linear Phase Correction model (LPC). It describes the asynchrony dynamics
obtained in SMS tasks:

An+1 = (1− α)An + Tn +Mn+1 −Mn − Cn,

where An is the asynchrony at cycle n, Cn is the corresponding metronome
interval, Mn is the motor delay (Mn ∼ N [µM , σ

2
M ] ∀n), and Tn is the Time

Keeper interval (Tn ∼ N [µT , σ
2
T ] ∀n). Thus, the LPC describes the dynamics

of the observed asynchronies as linear combination of the preceding asyn-
chronies A, a cognitive representation of the external event structure T , and
of the information processing delays within the CNS M . The model received
vast empirical evidence [5]

However, all presented approaches require that the asynchronies are gen-
erated from weak stationary processes and that the time series samples are
very large (n > 30). Many natural situations require initializing synchro-
nization within short periods of time when the movements are initially not
synchronized. In dance, dyads alternately synchronize the motion of their
body segments; in manufacturing work, the demand to coordinate with ma-
chines and other workers may be repetitive but short lasting; in a symphony
orchestra, instruments such as cello, viola, or violin, double bass, piano, and
celesta stand alone or together for very short time periods. Although the
musicians know the correct tempo in advanced—this is a crucial role of the
concertmaster—there still exist larger asynchronies when entering into the
ensemble. Also, the observations of amateur musicians or athletes who try to
“get into pace” highlight that a precise and accurate initial synchronization is
quite challenging. Decomposing and quantifying its underlying information
processes is crucial to capture, understand, and improve human motor timing.

Our main goal is to provide a method of parameter estimation of the
LPC built on multiple short asynchrony series. Figure 1 shows series of asyn-
chronies that are observed when an individual attempts to synchronize (here
m=20 times) discrete events of one’s movements (here finger tapping on a
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Figure 1: Illustration of 20 asynchrony times series (A in milliseconds, each
with length n=10). Each line segment represents one independent series. The
absolute value of µy and σy decreases as a function of cycle number n revealing
its non-stationarity.

surface) with isochronous sequences of 10 discrete events. Our approach in-
cludes all empirical series within an Extended Linear Model that allows for
serially correlated errors [8].

y = Bx+ Z,

where

y =

 A1 − E(A)
...

AN − E(A)

 , x = 1− α,Z =

 H0

...
HN−1

 , B =

 A0 − E(A)
...

AN−1 − E(A)

 ,
where An is the asynchrony between movement and event at cycle n, N =∑m

i=1 ni is the sum of the length of each series ni.
The asynchrony in the next cycle is linearly related to the asynchrony in

the previous cycle captured by Bx, because the individual attempts to correct
the perceived asynchrony by a correction coefficient α. However, there is also
an additional error Z. This error is supposed to arise from the CNS processes
(timekeeper, motor and perceptual processes, Z = [H0, H1, . . . ,HN−1]T ,Hk =
Tk +Mk+1 −Mk −E(T ), see LPC model [7]). This implies that the variance
of A is σ2

A = γA(0) = 2σ2
M + σ2

T and the autocovariance at lag 1 γA(1) is
−σM . Thus, Z ∼ MVN(0,Σ), where Σ is an NxN variance-covariance ma-
trix determined by the autocovariance functions γA(0) and γA(1).

Our estimation procedure consists of two steps: first, a global cubic spline
removes the non-stationary aspect of the asynchronies. Second, the unknown



parameters of x and Σ (i.e., α, σ2
T , σ

2
M ) are obtained by iteratively max-

imizing a log-likelihood function departing from some initial values for the
parameters x or Σ. We are currently running Monte Carlo simulations of the
model to validate the estimation approach. Also, we attempt to implement a
Generalized Least Square fitting technique to include both estimation steps
within a single model. Subsequently, these approaches may be validated on
experimental observations.
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