
Ti
ag

o
M

an
ue

l R
ib

eir
o

Go
m

es

setembro de 2017UM
in

ho
 |

 2
01

7
A

Se
ns

or
 N

od
e

So
C

 A
rc

hi
te

ct
ur

e
fo

r
Ex

tr
em

el
y

Au
to

no
m

ou
s

W
ir

el
es

s
Se

ns
or

 N
et

w
or

ks

Universidade do Minho
Escola de Engenharia

Tiago Manuel Ribeiro Gomes

A Sensor Node SoC Architecture for
Extremely Autonomous Wireless
Sensor Networks

setembro de 2017

Tese de Doutoramento
Programa Doutoral em
Engenharia Eletrónica e de Computadores (PDEEC)
Área de Especialização:
Informática Industrial e Sistemas Embebidos

Trabalho efetuado sob a orientação do
Professor Doutor Jorge Miguel Nunes dos Santos Cabral
Professor Doutor Pedro Miguel Mestre Alves da Silva

Tiago Manuel Ribeiro Gomes

A Sensor Node SoC Architecture for
Extremely Autonomous Wireless
Sensor Networks

Universidade do Minho
Escola de Engenharia

DECLARAÇÃO

Nome: Tiago Manuel Ribeiro Gomes

Correio electrónico: gomes.tmr@gmail.com

Tei./Tim.: 963522404

Número do Bilhete de Identidade: 12487593

Título da dissertação: A Sensor Node SoC Architecture for Extremely Autonomous Wirelcss Sensor

Nctworks

Ano de conclusão: 2017

Orientadores:

Doutor Jorge Miguel Nunes dos Santos Cabral

Doutor Pedro Miguel Mestre Alves da Silva

Designação do Doutoramento: Programa Doutoral em Engenharia Eletrónica e de Computadores (PD EEC)

Área de Especialização: Informática Industrial e Sistemas Embebidos

Escola: Escola de Engenharia

Departamento: Departamento de Electrónica Industrial

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA DISS ERTAÇÃO AP ENAS PARA

EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO, QUE A

TAL SE COMPROMETE.

Acknowledgments
I wish foremost to express my sincere gratitude to Dr. Adriano Tavares for the
continuous support, for his patience and ceaseless motivation. His priceless guid-
ance always turned big problems into non-problems. Thank you for being such a
stimulating person.

My sincere thanks to the best advisor and friend, Dr. Jorge Cabral, for his in-
sightful comments and valuable discussions, which incited me to widen my research
from different perspectives and smoothed my PhD journey. Thank you for all the
encouragement and continuous support.

I am also grateful to Dr. Mongkol Ekpanyapong at the Asian Institute of Technology,
Dr. Sergio Montenegro at the University of Würzburg and Dr. Hao Xu at the Jilin
University, for hosting me in their labs during my visits to their institutions.

A special thank to my fellow labmates for the stimulating discussions and for the
sleepless nights we were working together in our endless "night shifts". You surely
know about all that we have been through. Special mention to Dr. Sandro Pinto, Dr.
Tiago Gomes and (soon to be Dr.) Filipe Salgado, for whom I express my deepest
gratitude and eternal friendship. Thank you for all the great moments we have spent
abroad in working and traveling together, and thank you for the grateful discussions
and important enlightenments on those hard times of this journey. Seriously guys:
Thanks for all the fun!

Last but not the least, I would like to thank some of the most important persons
in my life. To my mom, dad and sisters, thank you for supporting me spiritually
through such a long five years. Special thanks to Nuno Araújo for his friendship and
tremendous support. To Cláudia, thank you for your eternal support and endless
patience during these last two years. You have been wonderful.

This thesis was supported by a PhD scholarship from Fundação para a Ciência e
Tecnologia, SFRH/BD/90162/2012.

Tiago Gomes

Guimarães, September 2017.

iii

"It always seems impossible until it’s done"
— Nelson Mandela

Abstract
The Internet of Things (IoT) is revolutionizing the Internet of the future and the
way new smart objects and people are being connected into the world. Its pervasive
computing and communication technologies connect myriads of smart devices, pre-
sented at our everyday things and surrounding objects. Big players in the industry
forecast, by 2020, around 50 billion of smart devices connected in a multitude of sce-
narios and heterogeneous applications, sharing data over a true worldwide network.
This will represent a trillion dollar market that everyone wants to take a share.

In a world where everything is being connected, device security and device inter-
operability are a paramount. From the sensor to the cloud, this triggers several
technological issues towards connectivity, interoperability and security requirements
on IoT devices. However, fulfilling such requirements is not straightforward. While
the connectivity exposes the device to the Internet, which also raises several secu-
rity issues, deploying a standardized communication stack on the endpoint device
in the network edge, highly increases the data exchanged over the network. More-
over, handling such ever-growing amount of data on resource-constrained devices,
truly affects the performance and the energy consumption. Addressing such issues
requires new technological and architectural approaches to help find solutions to
leverage an accelerated, secure and energy-aware IoT end-device communication.

Throughout this thesis, the developed artifacts triggered the achievement of impor-
tant findings that demonstrate: (1) how heterogeneous architectures are nowadays
a perfect solution to deploy endpoint devices in scenarios where not only (heavy
processing) application-specific operations are required, but also network-related ca-
pabilities are major concerns; (2) how accelerating network-related tasks result in a
more efficient device resources utilization, which combining better performance and
increased availability, contributed to an improved overall energy utilization; (3) how
device and data security can benefit from modern heterogeneous architectures that
rely on secure hardware platforms, which are also able to provide security-related
acceleration hardware; (4) how a domain-specific language eases the co-design and
customization of a secure and accelerated IoT endpoint device at the network edge.

vii

Resumo
Internet of Things (IoT) é o conceito que está a revolucionar a Internet do futuro
e a forma como coisas, processos e pessoas se conectam e se relacionam numa in-
fraestrutura de rede global que interligará, num futuro próximo, um vasto número de
dispositivos inteligentes e de utilização diária. Com uma grande aposta no mercado
IoT por parte dos grandes líderes na industria, algumas visões otimistas preveem
para 2020 mais de 50 mil milhões de dispositivos ligados na periferia da rede, par-
tilhando grandes volumes de dados importantes através da Internet, representando
um mercado multimilionário com imensas oportunidades de negócio.

Num mundo interligado de dispositivos, a interoperabilidade e a segurança é uma
preocupação crescente. Tal preocupação exige inúmeros esforços na exploração de
novas soluções, quer a nível tecnológico quer a nível arquitetural, que visem im-
pulsionar o desenvolvimento de dispositivos embebidos com maiores capacidades de
desempenho, segurança e eficiência energética, não só apenas do dispositivo em si,
mas também das camadas e protocolos de rede associados. Apesar da integração
de pilhas de comunicação e de protocolos standard das camadas de rede solucionar
problemas associados à conectividade e a interoperabilidade, adiciona a sobrecarga
inerente dos protocolos de comunicação e do crescente volume de dados partilhados
entre os dispositivos e a Internet, afetando severamente o desempenho e a disponi-
bilidade do mesmo, refletindo-se num maior consumo energético global.

As soluções apresentadas nesta tese permitiram obter resultados que demonstram:
(1) a viabilidade de soluções heterogéneas no desenvolvimento de dispositivos IoT,
onde não só tarefas inerentes à aplicação podem ser aceleradas, mas também tarefas
relacionadas com a comunicação do dispositivo; (2) os benefícios da aceleração de
tarefas e protocolos da pilha de rede, que se traduz num melhor desempenho do
dispositivo e aumento da disponibilidade do mesmo, contribuindo para uma melhor
eficiência energética; (3) que plataformas de hardware modernas oferecem mecan-
ismos de segurança que podem ser utilizados não apenas em prol da segurança do
dispositivo, mas também nas capacidades de comunicação do mesmo; (4) que o de-
senvolvimento de uma linguagem de domínio específico permite de forma mais eficaz
e eficiente o desenvolvimento e configuração de dispositivos IoT inteligentes.

ix

Contents

Acknowledgments iii

Abstract vii

Resumo ix

Acronyms xxi

1 Introduction 1
1.1 Introduction . 2
1.2 Scope . 10
1.3 Research Questions and Methodology 15
1.4 State-of-the-Art . 16
1.5 Thesis Contributions . 22
1.6 Thesis Structure . 23
1.7 Conclusions . 24

2 Research Platform and Tools 25
2.1 Platform Requirements . 26
2.2 Embedded Operating Systems for Low-end IoT Devices 27

2.2.1 Contiki-OS . 29
2.2.2 RIOT . 32

2.3 TI’s Wireless Connectivity Portfolio 34
2.4 Microsemi’s SmartFusion2 SoC . 36
2.5 Test and Evaluation Tools . 38
2.6 Conclusions . 39

3 Heterogeneous Architectures for Low-end IoT Devices 41
3.1 Introduction . 43

xi

3.2 Heterogeneous Architectures . 44
3.2.1 Securing the Architecture . 48

3.3 CUTE Mote . 49
3.3.1 Adding an Embedded OS . 50
3.3.2 Adding Hardware Accelerators 54

3.4 Contiki-OS Evaluation . 60
3.4.1 API Evaluation . 60
3.4.2 Thread-Metric Evaluation . 61

3.5 CUTE Mote Power Characterization 63
3.6 Conclusions . 66

4 Accelerating the MAC Sub-layer 69
4.1 Introduction . 71
4.2 IEEE 802.15.4 Data Frame . 75

4.2.1 IEEE 802.15.4 Header Fields 77
4.3 MAC Sub-layer Accelerator (MLA) 78

4.3.1 General Architecture . 80
4.3.2 Deployed Filtering Modules 80
4.3.3 Peripheral Interface . 81
4.3.4 MLA-compliant API . 84

4.4 System Evaluation . 86
4.4.1 MAC Sub-layer: API Evaluation 87
4.4.2 Thread-Metric Evaluation . 88

4.5 Conclusions . 90

5 Accelerating the Network Layer 93
5.1 Introduction . 95
5.2 6LoWPAN Adaptation Layer . 96

5.2.1 6LoWPAN Frame . 96
5.2.2 LOWPAN_IPHC Encoding 98

5.3 6LoWPAN Accelerator (6LA) . 100
5.3.1 General Architecture . 101
5.3.2 Deployed Modules . 102
5.3.3 Peripheral Interface . 104
5.3.4 6LA-compliant API . 106
5.3.5 Handling Security in 6LoWPAN 107

5.4 System Evaluation . 109
5.4.1 Network Layer: API Evaluation 109

5.4.2 Thread-Metric Evaluation . 110
5.4.3 Energy Consumption Analysis 112
5.4.4 RCU Resources Utilization . 113
5.4.5 ASIC Resource Estimation . 114

5.5 Conclusions . 114

6 Enabling Design Automation Through a Modeling DSL 117
6.1 Introduction . 119
6.2 DSL for IoT Endpoint Devices . 120

6.2.1 EL4IoT - EL Framework Overview 121
6.2.2 EL’s Constructs and Operations 123

6.3 Modeling the IoT Stack . 125
6.4 Implementation . 127
6.5 Evaluation Tool . 129
6.6 Conclusions . 132

7 Conclusions and Future Work 135
7.1 Conclusions . 136
7.2 Limitations . 138
7.3 Future Work . 139
7.4 List of Publications . 140

About the Author 143

Bibliography 144

xiii

xiv

List of Figures

1.1 Gartner 2015 hype cycle for IoT emerging technologies. 2
1.2 The IoT vs. world population (Cisco forecasts). 3
1.3 IoT Value at Stake. 4
1.4 The IoT ecosystem from an embedded system point of view. 5
1.5 Functional-decomposition viewpoint of the IoT-ARM. 6
1.6 IoT Connectivity Problem Space. ED - endpoint device. 8
1.7 5-layer IoT-ARM Communication Model. 12

2.1 Contiki-OS stack and supported IoT/IP stack. 30
2.2 RIOT stack and embedded IP stack. 32
2.3 SmartFusion2 Security Evaluation Kit. 36
2.4 SmartFusion2 SoC FPGA architecture. 37
2.5 Libero SoC Design Suite design flow. 39

3.1 Design alternatives for the heterogeneous architecture. 45
3.2 Heterogeneous Architecture for IoT low-end devices. 47
3.3 CUTE mote prototype. 50
3.4 MAC and IPv6 API evaluation. 61
3.5 Thread-Metric evaluation. 62

4.1 General IEEE 802.15.4 Data frame type. 75
4.2 Example of an IEEE 802.15.4 Data frame. 76
4.3 IEEE 802.15.4 Frame Control Field encoding. 77
4.4 Adding the MLA to the heterogeneous architecture. 79
4.5 RTL design of the MLA in the heterogeneous architecture. 80
4.6 Peripheral memory address space. 82
4.7 FILTER_REG register field. 82
4.8 CMD_1_REG register field. 83

xv

4.9 CMD_2_REG register field. 84
4.10 Test scenario. 86
4.11 OS API evaluation with the MLA enabled and disabled. 87
4.12 Thread-Metric benchmark score with the MLA disabled. 88
4.13 Thread-Metric benchmark score with the MLA enabled. 89

5.1 6LoWPAN frame format. 97
5.2 LOWPAN_IPHC encoding format. 98
5.3 Adding the 6LA to the heterogeneous architecture. 100
5.4 Architectural RTL representation of the 6LA. 101
5.5 FILTER_REG register field. 104
5.6 CMD_1_REG register field. 105
5.7 CMD_2_REG register field. 105
5.8 API performance evaluation. 109
5.9 UDP Client sending packets to UDP Server 1. 110
5.10 UDP Client sending packets to UDP Server 2. 111

6.1 Framework workflow. 122
6.2 High-level composite model of the Contiki-OS network implementation.126
6.3 Internals of the Transport Layer component. 126
6.4 XML component editor with the Transport Layer component. 131
6.5 A simple UDP client connecting and exchanging messages with the

automatically generated UDP Server. 132

xvi

List of Tables

1.1 Gap analysis between existing heterogeneous solutions. N/A - feature
not available, N/P - information not provided. 20

2.1 Embedded OSes from three different categories and their key features. 29
2.2 Popular Contiki-OS supported hardware platforms. 31
2.3 Popular RIOT supported hardware platforms. 33
2.4 Texas Instruments Wireless Connectivity portfolio. 34
2.5 Wireless MCU SoC devices with 6LoWPAN and BLE support. 35

3.1 Qualitative analysis between heterogeneous solutions. 59
3.2 CUTE mote hardware characterization. 66

4.1 IEEE 802.15.4 compliant devices with acceleration engines. 73
4.2 Synthesis results for the M2S090TS SoC. 90

5.1 6LoWPAN Headers. 98
5.2 Energy consumption analysis per received packet on different IoT

low-end platforms. 112
5.3 Synthesis results obtained from Libero SoC v11.7. 113

6.1 Available EL’s keywords. 124

xvii

xviii

Listings

4.1 File core_accelerator_regs.h with the register definitions required for
accessing the peripheral. 83

4.2 Simple example for configuring the PAN address to filter. 84
4.3 Device driver API exemple. 85
4.4 Microsemi’s HAL functions. 85
5.1 Updated core_accelerator_regs.h file. 106
5.2 Simple example for configuring the UDP ports in the peripheral reg-

isters. 106
6.1 EL code snippet from the component sixlowpan. 123
6.2 UIP_CONF_TCP and UIP_CONF_UDP annotations. 127
6.3 Elaboration method of the Transport Layer component in Java. . . . 128
6.4 Annotated file with UIP_CONF_TCP and UIP_CONF_UDP configuration

directives. 129
6.5 XML configuration file for the Transport Layer component. 130
6.6 UDP Server application specific XML configuration file. 131

xix

xx

Acronyms

6LA 6LoWPAN accelerator

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

6P 6top Protocol

ACK acknowledgment

AES Advanced Encryption Standard

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

API application programming interface

ARQ Automatic Repeat reQuest

ASH Auxiliary Security Header

ASIC application-specific integrated circuit

BLE Bluetooth Low Energy

BR border router

CDMA code division multiple access

CID Context IDentifier

CoAP Constrained Application Protocol

COTS commercial off-the-shelf

CPU central processing unit

xxi

CRC cyclic redundancy check

CSMA carrier-sense multiple access

CSMA/CA carrier-sense multiple access with collision avoidance

CT Context Table

CWT continuous wavelet transform

DAC Destination Address Compression

DAM Destination Address Mode

DFD Duplicate Frame Detector

DFF D Flip-Flop

DoS denial-of-service

DPA Differential Power Analysis

DPM dynamic power management

DSL domain-specific language

DSP Digital Signal Processsor

DTLS Datagram Transport Layer Security

DVFS dynamic voltage and frequency scaling

DVS dynamic voltage scaling

DWT discrete wavelet transform

ECC elliptic curve cryptography

EL Elaboration Language

EMT Embedded Trace Macrocell

eNVM embedded Non-Volatile Memory

ERCC error correction codes

FCF Frame Control Field

FCS frame check sequence

xxii

FEC forward error coding

FFT fast Fourier transform

FIR finite impulse response

FLPC Physical Layer Power Conservation

FPGA field-programmable gate array

GP generative programming

GPIO general-purpose input/output

HAL hardware abstraction layer

HDL hardware description language

HLIM Hop LIMit

HTTP Hypertext Transfer Protocol

I/O input/output

ICMP Internet Control Message Protocol

IDE integrated development environment

IDS intrusion detection system

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IoE Internet of Everything

IoT Internet of Things

IoT-ARM Internet of Things - Architectural Reference Model

IPC inter-process communication

IPHC Internet Protocol Header Compression

IPsec Internet Protocol Security

LE logic elements

LLN Low power and Lossy Networks

xxiii

LPP Low-Power Probing

LPDDR low-power double data rate

LQE linear-quadratic estimator

LQI Link Quality Indication

LR-WPAN low-rate wireless personal area networks

LSRAM large static random-access memory

LUT Look-Up Tables

M2M machine-to-machine

MAC Medium Access Control

MACA Multiple Access with Collision Avoidance

MCU microcontroller

MD5 MD5 Message-Digest Algorithm

MDD model driven development

mDNS multicast Domain Name System

MFR MAC Footer

MHR MAC Header

MLA MAC layer accelerator

MPDU Mac Protocol Data Unit

MQTT Message Queuing Telemetry Transport

MSS microcontroller subsystem

MTU Maximum Transmission Unit

NH Next Header

OS operating system

OSes operating systems

PAN personal area network

xxiv

PDR packet discard rate

PHY physical layer

PSR packet sending rate

PUF Physically Unclonable Function

RA reference architecture

RAM random-access memory

RCU reconfigurable computing unit

RDC radio duty cycling

RMS root mean square

ROM read-only memory

RPL Routing Protocol for Low power and Lossy Networks

RSSI Received Signal Strength Indicator

RT real-time

RTL register-transfer level

RTOS real-time operating system

SAC Source Address Compression

SAM Source Address Mode

SCA Service-Component Architecture

SDP sensor data processing

SDR software-defined radio

SDRAM synchronous dynamic random-access memory

SerDes Serializer/Deserializer

SFD start frame delimiter

SHA-1 Secure Hash Algorithm 1

SN Sequence Number

xxv

SNMP Simple Network Management Protocol

SOA service-oriented architecture

SOAP Simple Object Access Protocol

SoC system-on-chip

SPI Serial Peripheral Interface

SRAM static random-access memory

TCP Transmission Control Protocol

TDMA time division multiple access

TF Traffic Class & Flow Level

TSCH Time Synchronized Channel Hopping

TSMP Time Synchronized Mesh Protocol

TLS Transport Layer Security

TTA transport triggered architecture

UDP User Datagram Protocol

VHDL VHSIC Hardware Description Language

WPAN wireless personal area network

WSN wireless sensor networks

XML Extensible Markup Language

XMPP Extensible Messaging and Presence Protocol

xxvi

Chapter 1
Introduction

The ubiquitous connectivity of endpoint devices in the Internet of Things (IoT)
brings new challenges to the traditional wireless sensor networks, whose network
architectures are mainly centralized and most of the time disconnected from the
Internet. Such challenges not only comprise the connectivity and its subsequent
interoperability of heterogeneous wireless nodes, as specified by several architecture
reference models, but also encompass security and privacy-related features, along
with robust solutions to handle the ever-growing amounts of data transferred over
the network. However, tackling such challenges on resource-constrained devices is
not straightforward. The need for energy-efficient wireless devices, while preserving
their performance and security capabilities, requires for new architectural solutions
at the hardware mote.

This chapter presents the overall content of this thesis. It is prefaced by an introduc-
tion and then succeeded by the following sections: Section 1.2 describes the problem
statement and the main scope of this work, while Section 1.3 raises some research
questions and the proposed methodology to address them. Section 1.4 presents the
state-of-the-art for endpoint devices on the network edge, along with the associated
challenges and the envisioned solution to tackle the problems identified in Section
1.2. Section 1.5 summarizes the contributions of this thesis and Section 1.6 presents
the adopted thesis structure. Finally, Section 1.7 concludes this chapter.

1

1.1 Introduction

In the past few years, wireless sensor networks (WSN) have become extremely popu-
lar on a wide range of domains, such as critical monitoring systems, security, habitat
monitoring or industrial applications [1–3]. Traditionally, the low-power nodes form
a network where a large number of devices communicate with each other, collect-
ing data, processing and sending them to a centralized controlling application. The
overriding need to send data over the Internet to online servers has considerably
increased, triggering the paradigm shift from the centralized and isolated WSN to
the new Internet era, the Internet of Things (IoT) [4–6]. The IoT pervasive tech-
nology materializes the concept of a worldwide infrastructure which enables people,
processes and devices to interact and interconnect at any time, from anywhere.

The IoT is growing at a breathtaking pace. According to the U.S. National Intelli-
gence Council (NIC), "By 2025 Internet nodes may reside in everyday things, food
packages, furniture, paper documents, and more" [7], and will start to play a key
role in our surrounding infrastructures and daily routines. Figure 1.1 depicts the
heap cycle for the emerging technologies in 2015, according to Gartner [8]. The IoT
is at the peak of the inflated expectations and it is expected to reach the plateau
of productivity in less than ten years. In the near future, a countless number of

Figure 1.1: Gartner 2015 hype cycle for IoT emerging technologies [8].

2

heterogeneous smart objects, e.g., sensors, personal and wearable devices, within a
wide range of applications will have to coexist, sharing large amounts of valuable
data over the Internet [9]. The rapid growth of the IoT concept, where every de-
vice can seamlessly connect to the Internet, generated significant interest from big
players in the semiconductor and network industries, such as ARM, Intel, Cisco,
IBM, Microsoft, among others, pushing them into creating solutions, from the sili-
con to the cloud, that aim to satisfy a broad range of requirements on a multitude
of applications and scenarios.

ARM predicted in 2015 that, by 2020, there will be around 26 billion (26,000 million)
of smart devices installed and connected to the cloud, sharing valuable data securely
through the Internet. By its turn, Cisco expects around 50 billion devices, in a wider
network designated by the Internet of Everything (IoE). The IoE is described as
a huge network where people, processes, data and things co-exist in this globally
connected world [10]. In a more optimist prediction, Intel expected the IoT to be
a multi-trillion dollar market with an install base of 15 billion connected things in
2015, being this number increased to 200 billion by the end of 2020, which will
represent an annual growth higher than 20% [11]. Estimated to have been born
between 2008 and 2009, the IoT is well under way. As detailed in Figure 1.2, Cisco
forecasts by 2020 around 50 billion connected devices. With an expected world
population of 7.5 billion, this gives around six smart objects for every human being
on Earth [12]. Those distinct predictions have one common thing: myriads of smart
connected devices are expected to surround us in the very near future, which will
represent a huge revenue opportunity for several market investments.

 Cisco IBSG © 2011 Cisco and/or its affiliates. All rights reserved. Page 3

Cisco Internet Business Solutions Group (IBSG)

Cisco IBSG © 2011 Cisco and/or its affiliates. All rights reserved. 01/11

White Paper

Explosive growth of smartphones and tablet PCs brought the number of devices connected
to the Internet to 12.5 billion in 2010, while the world’s human population increased to 6.8
billion, making the number of connected devices per person more than 1 (1.84 to be exact) for
the first time in history.5

Methodology

In January 2009, a team of researchers in China studied Internet routing data in six-month
intervals, from December 2001 to December 2006. Similar to the properties of Moore’s Law,
their findings showed that the Internet doubles in size every 5.32 years. Using this figure in
combination with the number of devices connected to the Internet in 2003 (500 million, as
determined by Forrester Research), and the world population according to the U.S. Census
Bureau, Cisco IBSG estimated the number of connected devices per person.6

Refining these numbers further, Cisco IBSG estimates IoT was “born” sometime between
2008 and 2009 (see Figure 1). Today, IoT is well under way, as initiatives such as Cisco’s
Planetary Skin, smart grid, and intelligent vehicles continue to progress.7

Figure 1. The Internet of Things Was “Born” Between 2008 and 2009

Looking to the future, Cisco IBSG predicts there will be 25 billion devices connected to the
Internet by 2015 and 50 billion by 2020. It is important to note that these estimates do not
take into account rapid advances in Internet or device technology; the numbers presented
are based on what is known to be true today.

Additionally, the number of connected devices per person may seem low. This is because the
calculation is based on the entire world population, much of which is not yet connected to the
Internet. By reducing the population sample to people actually connected to the Internet, the
number of connected devices per person rises dramatically. For example, we know that

Source: Cisco IBSG, April 2011 Figure 1.2: The IoT vs. world population (Cisco forecasts) [12].

3

5Understanding the Internet of Things

1.2	 The Internet of Everything vs. IoT

As critical as IoT is in connecting the unconnected, it is only part
of the story. Along with physical objects, people and intangible
“things” must also be connected in new and better ways. IoT is
a vital enabler of certain types of connection that together make
up what Cisco refers to as the “Internet of Everything” (IoE). IoE
connections can be machine-to-machine (M2M); machine-to-
person (M2P); or person-to-person (P2P). IoE includes not just
the networked connection of physical objects, but also includes
the links between people, process, and data (see Figure 2). IoT is
most often equated to M2M connections but, as noted, definitions
of IoT are nearly as diverse as its applications. Nevertheless, most
observers agree that IoT implies value beyond just the physical or
logical interconnection of objects.6

Why is the distinction between IoT and IoE important? While IoT
is one of IoE’s key technology enablers, so too are cloud and big
data, P2P video/social collaboration, mobility (including location-
based services), and security. Together, they create the opportunity
for unprecedented innovation and organizational transformation.
IoE is dissimilar from IoT in that it is not of itself a single techno-
logy transition, but rather a larger platform for digital disruption
comprised of multiple technologies. In this sense, IoT is a subset of IoE.

6 Machina Research, “What’s the Difference Between M2M and IoT?” September 2014. See also IDC, “The Digital Universe of Opportunities:
  Rich Data and the Increasing Value of the Internet of Things,” April 2014
7 http://internetofeverything.cisco.com/sites/default/files/docs/en/ioe_vas_public_sector_top_10%20insights_121313final.pdf
8 Cisco Consulting Services

Figure 3: IoT Value at Stake8

Current calculations estimate that IoE represents $19 trillion in
“Value at Stake” globally over the next decade.7 Value at Stake can
be understood as the new net profits created as a result of IoE (i.e.,
from markets that could not have existed before), as well as the
migration of profits from losers to winners as a result of IoE-led
market dynamics.

IoT by itself will generate $8 trillion worldwide in Value at Stake
over the next decade (see Figure 3) which accounts for more than
42 percent of IoE’s overall Value at Stake. This value will come from
five primary drivers: innovation and revenue; asset utilization;
supply chain and logistics; employee productivity improvements;
and enhanced customer and citizen experience. Supply chain and
logistics alone are estimated to provide $1.9 trillion in value, which
is a promising indication of the untapped potential and profits to
gain from utilizing IoT in the logistics industry.

The Value at Stake calculations stem from a bottom-up economic
analysis conducted by Cisco on dozens of IoT use cases, both pub-
lic and private sector. Each use case represents a business capability
and resulting economic value brought about by connecting the
unconnected.

Figure 1.3: IoT Value at Stake [13].

A collaborative report by DHL and Cisco on implications and use cases for the lo-
gistics industry [13], as illustrated in Figure 1.3, predicts that IoT will generate $8
trillion worldwide in Value at Stake over the next decade. This value will come from
five primary drivers: innovation and revenue; asset utilization; supply chain and
logistics; employee productivity improvements; and enhanced customer and citizen
experience. Supply chain and logistics alone are estimated to provide $1.9 trillion in
value, which is a promising indication of the untapped potential and profits to gain
from utilizing IoT in the logistics industry. The Value at Stake calculations stem
from a bottom-up economic analysis conducted by Cisco on several IoT use cases,
both public and private sectors. Each use case represents a business capability and
resulting economic value brought about by connecting the unconnected. Forward-
looking forecasts by analysts at McKinsey institute, expect a potential impact of
$3.9 trillion up to $11.1 trillion per year in 2025 [14], in a cross-sector view between
nine big sector markets: Vehicles, Home, Offices, Factories, Retail environments,
Worksites, Human, Outside and Cities. It becomes clear that this flourish of in-
terconnected devices promise to drive a plethora of applications with technological,
economic, and social prospects.

Based on the target context and application scenario, every IoT deployment may
adopt different processing and network communication architectures, standard tech-
nologies and design approaches. Present-day IoT scenarios already include smart

4

cities [15, 16], intelligent buildings [17], robust home monitoring systems [18], in-
dustrial smart-controlled environments [19], health care systems [20, 21], intelligent
electrical grid systems [22,23], smart vehicles [24] and many more.

Figure 1.4: The IoT ecosystem from an embedded system point of view [25].

Figure 1.4 depicts a simplified IoT ecosystem, from the sensor to the cloud, from an
embedded system point of view [25]. It can be divided in four main components: (1)
the Thing, which represents the physical sensor, i.e., the device that is able to collect
and generate data; (2) the Local Network (which may also include specific gateways)
that is responsible to collect data-in-transit, perform some additional processing
such as data aggregation and further data retransmission over the Internet; (3) The
Internet, which consists of the big infrastructure that connects all the participating
entities, servers, gateways, routers, web services, databases, and so on; (4) the Back-
End Services, which are mainly responsible to receive data-in-transit, keep data-in-
rest and make them available to authorized users and business data analytics.

In actual fact, IoT systems are inherently complex. For every target context, it is
crucial to define how the participating devices can efficiently communicate, interop-
erate and securely exchange information among them and/with remote cloud web
servers. Such implementation involves a wide set of technology layers e.g., cloud ser-
vices, communication protocols, connectivity interfaces, embedded device software,
embedded device security, and so on. On each technology layer, the complexity
increases, as there are several choices to perform specific requirements and tasks.

5

IoT Architecture Reference Models

To drive the realization of the IoT, tremendous efforts in creating IoT alliances and
consortium, reference architecture (RA) models, and design guidelines have been
issued by most of the important players in industry. As wireless communication
technologies proliferate, industry players are creating partnerships to unite the IoT
by developing consistent standards and broad interoperability in all the important
sectors. For instance, Intel IoT Solutions Alliance, Industrial Internet Alliance,
OneM2M, AllSeen Alliance, Internet of Things Consortium, IPSO Alliance, Alliance
for Internet of Things Innovation, Industrial Internet Consortium, and LORATM
have been formed to tackle the fragmented IoT industry in a multilayer approach.
Other alliances and working groups, such as, IEEE, DASH7 Alliance, Wi-Fi Alliance,
LoRa Alliance, ZigBee Alliance, focus on the communications layer, while the IETF,
Open Mobile Alliance, UPnP, W3C focus on the messaging and transport layers.
Moreover, and vertically focused on their application domain, other alliances also
try to make their way: HealthKit and Wireless Life Sciences Alliance in wireless
body networks solutions; HomePLUG, HomeKit, ZWave, Thread Group for home
automation applications; Enocean Alliance and The Connected Lighting Alliance
for smart cities and connected buildings; GENIVI and Open Automotive Alliance
in connected smart transports; Modbus and HART also for the Industrial IoT.

In the following sub-sections, the FC’s of each FG will be described in more

detail.

The Functional View presented in this chapter will give a description of the

Functional Components, but will not describe the interactions taking place between

the Functional Components.

The reason is that these interactions are typically depending on Design Choices

which are not made at this level of abstraction.

Chapter 10 will go more into detail and depict some typical interaction

scenarios.

In addition to the description in this chapter, more detailed information such as

requirement mapping, system use cases, interaction diagrams and interface

definitions can be found in Carrez et al. (2013).

8.2.2.2 IoT Process Management

The IoT Process Management FG relates to the integration of traditional process

management systems with the IoT ARM. The overall aim of the FG is to provide the

functional concepts and interfaces necessary to augment traditional (business)

processes with the idiosyncrasies of the IoT world.

The IoT Process Management FG consists of two Functional Components (see

Fig. 8.3 below):

• Process Modelling;

• Process Execution.

VE Service

VE & IoT
Service Monitoring

VE Resolution

IoT Service
IoT Service
Resolution

Service
Orchestration

Service
Composition

Network
Communication

End To End
Communication

Hop to Hop
Communication

Management Security

Application

Virtual Entity IoT Service

Communication

Configuration

Fault

Authorisation

Key Exchange &
Management

Trust & Reputation

Identity Management

Authentication

Device

Reporting

Member

State

IoT
Process Management

Process
Modeling

Process
Execution

Service
Choreography

Service
Organisation

Fig. 8.2 Functional-decomposition viewpoint of the IoT Reference Architecture

168 M. Bauer et al.

Figure 1.5: Functional-decomposition viewpoint of the IoT-ARM [26].

6

Aiming in defining solutions to tackle the interoperability at the communication
level, as well at the service level across various platforms, several reference architec-
tures have also been proposed by industry and academia [26–32]. Moreover, several
guidelines to leverage secure designs and truly connected IoT endpoint devices have
also been proposed [25,33–43]. Their main goal is to help and guide designers and de-
velopers in creating IoT solutions always bearing in mind several important common
issues and concerns. For instance, Figure 1.5 depicts the functional view diagram
of the Internet of Things - Architectural Reference Model (IoT-ARM), composed
by nine functionality groups: Application, Management, Service Organization, IoT
Process Management, Virtual Entity, IoT Service, Security, Communication and
Device [26].

Connectivity and Security are a Paramount

The IoT requires solutions that allow for the creation of products adapted to the
specific constraints of a certain market: security, power efficiency, standard-based
communications and scalability. This leads to an increasing need for standardized
and reliable networks. The IoT-ARM Communication Model aims at defining the
main communication paradigms for connecting elements, as defined in the IoT Do-
main Model. It provides a reference set of communication rules to build interoperable
stacks, together with insights about the main interactions among such elements of
the IoT Domain Model. It proposes a Communication Model that leverages the
ISO-OSI 7-layer model for low-rate networks and aims at highlighting those pecu-
liar aspects inherent to the interoperation among different stacks, which are called
interoperability features.

From the device communication point of view, three main requirements can be
identified:

• Connectivity: Traditional connectivity barriers to the connectedness con-
tinue to drop. For instance, IPv6 overcomes the IPv4 limit by allowing for
340,282,366,920,938,463,463,374,607,431,768,211,456 (2128) more people, pro-
cesses, data, and things to be connected to the Internet. "Amazingly, IPv6
creates enough address capacity for every star in the known universe to have
4.8 trillion addresses" [10].

• Interoperability: Concerns the interoperability between heterogeneous de-
vices and environments. Interoperability at the local network level, can be

7

achieved by employing a standard network stack or, when needed, the utiliza-
tion of protocol gateways/translators in order to convert from one technology
or standard to another, e.g., ZigBee to standard IP network.

• Reachability: Refers to the availability of the endpoint device on the network,
over the time. It results from the utilization of standard protocols, such as
the IPv6 on the normally resource-constrained endpoint devices, turning it
directly reachable from everywhere, at any time, without the need for gateways
or network translators.

6LoWPAN
WiFi

Bluetooth

ZigBee

GSM
GPRS

3G
4G

UI Cloud
Services

Data Bases
and Services

Gateways

Mobile Access
Desktop
Access

LAN
IPv4
IPv6

Ethernet

AMQP
JMS

REST/HTTP

CoAP

DDS
MQTT
XMPP

Figure 1.6: IoT Connectivity Problem Space. ED - endpoint device.

8

As mentioned before, the exponential growth of the IoT infrastructure leads to sev-
eral challenges, among these: security, scalability and interoperability [32]. Scalable
and standard communication protocols will better fulfill these requirements [36,39],
as standard protocols target the interoperability, contributing for a rapid devel-
opment by easily enabling heterogeneous devices to communicate. However, this
requirement is highly affected due to the existence of a multitude of proprietary
solutions connected to the Internet, which resulted in low interoperability between
devices and low scalable networks. This is pointed as the IoT Connectivity Problem
Space, as illustrated in Figure 1.6 and identified by [36], which defines four variations
of such problem: (1) inter-device communication; (2) device-to-cloud communica-
tion; (3) inter-data-center communication; (4) intra-device communication. These
problems are proposed to be solved using standard protocols and messaging tech-
nologies, further discussed in the next section.

Challenges on the embedded devices in the IoT domain are due not only to the
ever-growing amount of data to be handled, but are also due to the increasing im-
portance of security and privacy [4, 5, 44, 45]. As long as security and privacy are
concerned, data confidentiality, integrity and anonymity need to be guaranteed, as
well as authentication and authorization mechanisms, in order to prevent unautho-
rized entities, such as devices and/or humans, from accessing the system components
and data. It is also crucial to ensure both data protection and confidentiality, since
devices may manage personal and/or sensitive information. Finally, trust is a fun-
damental issue since the IoT environment is characterized by different devices that
have to process and handle data in compliance with user needs and rights. Trusted
software and trusted devices must fulfill this requirement. From the endpoint per-
spective, security features must be provided at three distinct levels:

• Data Security: which mainly concerns the data security at the network
level, i.e., data in transit. This is commonly provided by employing robust
communication protocols and it is frequently described as the CIA triad:

– Confidentiality: roughly equivalent to privacy, confidentiality ensures
that data can be exposed to attackers or unintended end users. However,
its content is always kept in secret. Data encryption is the traditional
method applied to ensure data confidentiality.

– Integrity: Involves maintaining data consistency (usually associated
with data-in-transit), i.e., unauthorized people cannot change it during
its life-cycle, without being noticed by the end destination.

9

– Availability: Typically ensured by the device, which may keep data
available and accessible when required, while keeping always the associ-
ated security measures.

• Hardware Security: It is, on the latest technology, provided by secure silicon
and any other secure hardware building block or feature, such as:

– Root of Trust: Provided by highly secure hardware, typically includes,
from the silicon manufacturing phase, unique security keys that are only
known to the device and used for security keys exchange and by strong
cryptography algorithms. Differential Power Analysis (DPA) counter
measures are also included in the hardware security.

– Tamper detection and counter measures: On-chip tamper detectors
with available counter measures, which may include: device zeroization
that is used to permanently erase sensitive data, such as cryptographic
keys, device lock, among others.

– Crypto-engines: Certified built-in crypto-engines needed by the most
used cryptographic algorithms in data protection or in securing commu-
nication channels.

Few examples of mechanisms that provide a hardware-based security are: Intel Boot
Guard [46], tRoot [47] and ARM TrustZone [48]. Recently extended to Cortex-M
processors, ARM TrustZone can now be applied to endpoint devices [49]. TrustZone
technology provides a foundation for system-wide security and the creation of a
trusted platform. Any part of the system can be designed to be part of the secure
world, including debug, peripherals, interrupts and memory. By creating a security
subsystem, assets can be protected from software and common hardware attacks [48].

1.2 Scope

This thesis focus on the communication model and the security requirements for IoT
endpoint devices operating at the network edge. It is motivated by the ever-growing
number of resource-constrained devices and the challenges the designer faces to
satisfy such important requirements to the device. Concerning the connectivity, this
research work is motivated by the connectivity space problem identified in [36] and
tackled by the IoT-ARM Communication model and other IoT guidelines [32,39,50].

10

Standardized Communication Stack

The Internet as we know it cannot address the expected big number of connected
endpoint devices. Although the Internet Protocol version 4 (IPv4) leverages a good
infrastructure and robust protocol to reach devices from anywhere, it cannot pro-
vide unique global reachability since it is limited to 32-bit of singular addressable
interfaces and it was not initially designed to handle such kind of devices. As seen
above, IPv6 is the key for connecting myriads of smart devices on the new Inter-
net era [37, 50]. Initially conceived to support scalability, with 128-bit for unique
addressing along with other enhanced and new features, it allows all devices to be
singly identified and reachable at any time and from anywhere.

Traditional WSN, whose forming devices are mainly resource-constrained in terms
of memory, processing capabilities, power source, etc., are predominantly IEEE
802.15.4-based networks. On such networks, the IPv6 over Low power Wireless
Personal Area Networks (6LoWPAN) protocol is the key to allow the usage of the
IPv6 protocol, as it enables IPv6 packets to be sent and received over IEEE 802.15.4
Data frames [50,51]. Due to its lightweight implementation and its ability to enable
the ubiquitous connectivity and interoperability between heterogeneous devices, the
6LoWPAN has become a de facto standard for low-rate wireless personal area net-
works (LR-WPAN), adopted by many machine-to-machine (M2M) communication
systems and protocols [39,52]. Thus, in order to use the most of the IPv6 standard
with the current technology, the 6LoWPAN was also designed to support a wide
set of features, such as packet fragmentation and packet reassembly, packet header
compression mechanisms, network protocols, such as Internet Control Message Pro-
tocol (ICMP), among others.

Figure 1.7 depicts the proposed stack to be used in the network edge, which aims to
increase the connectivity and the interoperability among devices [26]. For instance,
interoperability can be achieved at any layer, depending on the selected technology,
i.e., for the Wi-Fi and the IEEE 802.15.4 this is achieved in Layer 3 where the IPv6
is the common protocol. The 5-layer stack can be perceived as follows:

• Layer 1: The physical layer (PHY) is provided by the IEEE 802.15.4, as this
standard is the foundation of LR-WPAN and proven to suit the PHY.

• Layer 2: The Data-Link layer is composed by the Medium Access Control
(MAC) layer (which is also defined by the IEEE 802.15.4 standard) and the
adaptation layer provided by the 6LoWPAN standard protocol. Thanks to the

11

IEEE 802.15.4 PHY

UDP, TCP

IPv6, RPL

6LoWPAN

IEEE 802.15.4 MAC

1. Physical Layer

2. Data Link Layer

3. Network Layer

4. Transport Layer

CoAP, MQTT, XMPP, DDS5. App Layer

Figure 1.7: 5-layer IoT-ARM Communication Model [26].

6LoWPAN, the IPv6 protocol can now reach even the tiny resource-constrained
devices.

• Layer 3: The Network layer, typically represented by the IPv4, is now up-
graded to support IPv6. The Routing Protocol for Low power and Lossy
Networks (RPL) resides also at this layer of the stack.

• Layer 4: The Transmission Control Protocol (TCP) and User Datagram Pro-
tocol (UDP) protocols are still the most suitable for handling the Transport
layer requirements of the stack. However, the message control mechanism used
by TCP can be hard to handle in extremely resource-constrained devices. In
such cases, the UDP is the most suitable protocol to be used.

• Layer 5: Traditional web technologies, such as Hypertext Transfer Protocol
(HTTP), cannot be efficiently used by endpoint devices, thus new protocols
are proposed to replace them. The Constrained Application Protocol (CoAP)
is defined to be used over UDP, while the Extensible Messaging and Presence
Protocol (XMPP) and Message Queuing Telemetry Transport (MQTT) may
run over TCP.

Security Concerns

In what concerns the security requirements, software-based security approaches do
not provide the strongest protection, as many are led to believe [53]. Hardware-

12

based security delivers a much more rock-solid methodology. Today’s embedded
security devices can provide an easier and lower cost way to integrate endpoint de-
vices designs early on with layers of advanced security, support for cryptographic
algorithms, tampering detection, and many other protections. As the communi-
cations definitely require strong end-to-end security to ensure protection against
a variety of attacks [45, 54–56], such important component must also benefit from
hardware approaches that aim to provide hardware security as well as accelera-
tion to mitigate the complexity of the communication and data security protocols.
In what concerns the protocols, some approaches for deploying hardware-assisted
network stack capabilities have already been tried, e.g., in [57] an "RTOS in hard-
ware for energy efficient Software-based TCP/IP Processing" was proposed, while
in [58] specific packet processors have been used to perform specific application-
related tasks. However, concerning the network layer specified by the IoT-ARM,
only few hardware-assisted approaches have been partially attempted. Regarding
cryptographic algorithms, several devices already provide on-chip crypto-engines to
accelerate the processing of the most important and most used encryption standards
and algorithms. These are later discussed in this thesis.

Modeling and Automation Enabling Tools

The configuration and deployment of an endpoint device can be complex, mainly
due to the devices’ hardware heterogeneity and the high variability of the embedded
operating system (OS) and network stacks. The task of configuring and customizing
network parameters, such as the device’s MAC and IP addresses, as well as OS
services and protocols, e.g., 6LoWPAN for the network and CoAP for the application
layer, can be mitigated by enabling design automation through the development
of a tool that allows full system configuration and code generation, according to
the user needs and application requirements. The applicability of such tool can
be explored in a way that generating firmware for several nodes in an IoT network,
while providing mechanisms for code verification and validation, can be performed by
automated systems and/or embedded systems designers without deep knowledge of
the OS and/or the network stack. Usually these tools are based in a domain-specific
language (DSL), and target a specific domain with specific problems [59–61].

Several approaches targeting design automation by providing a DSL to model a
desired system, have already been undertaken in the recent years. For instance,
dynamic code-generation in binary translation systems [62], general system design

13

both at the software and register-transfer level (RTL) layers [63], business-oriented
DSL for sensor networks [64] and IoT-based applications, where the complexity and
the heterogeneity of the WSN nodes is facilitated by the DSL-4-IoT [65]. In this
thesis, a configuration tool based on a DSL that targets an embedded communication
stack, which runs on IoT endpoint devices, is also explored. Such language will
help reduce and simplify the development time by promoting a design automation
tool that can configure, and automatically generate code, ready to be compiled, for
devices running an IoT-compliant communication stack.

Out of Scope

As already stated, this thesis focus on IoT endpoint devices at the network edge.
Since they are mainly resource-constrained, the connectivity, interoperability and se-
curity features require optimizations not only at the network/communications level,
but also at the device’s hardware itself. This primarily aims to tackle the large
amounts of data exchanged between endpoint devices, which is mainly caused by
the standardized stack and the overhead introduced by the new protocols supported.
Furthermore, such optimization problem is compounded by security-related issues
raised by connecting things to the Internet. As already explored in [53], and because
commercial off-the-shelf (COTS) solutions are based on homogeneous architectures
that do not provide full flexibility to explore acceleration capabilities, this thesis
will focus on exploring heterogeneous solutions to mitigate the emerging challenges
brought by the IoT-ARM Communication and Security model requirements.

Although related, this thesis does not directly concerns with:

1. Energy consumption analysis and energy-saving techniques.

2. Middle- and high-end devices, even if they operate at the network edge.

3. High-end communication that use other standard communication protocols,
rather than the simplified 5-layer stack presented in Figure 1.7.

4. High-level security, such as complex end-to-end data security protocols like
Transport Layer Security (TLS) or Datagram Transport Layer Security (DTLS).

5. Security at the OS level.

14

1.3 Research Questions and Methodology

By employing a standardized communication stack at the network edge, not only pro-
motes the connectivity and interoperability among all devices, but also substantially
increases the amount of data exchanged. While the handling of such ever-growing
amounts of data on resource-constrained devices will mainly compromise its perfor-
mance and the overall energy consumption, the connectivity will totally expose the
device to the Internet, which will raise several security issues. Given this, this thesis
poses this main question:

How to leverage an accelerated, secure and energy-aware
IoT end-device communication?

For a better understanding, such a broad question can be further divided as follows:

1. How to identify functionalities and common operations for hardware-acceleration
according to the specificities of the endpoint device under design?

2. How to implement and deploy the identified accelerators’ candidates according
to the demanded design metrics?

3. How to further improve the endpoint communication under the demanded
design metrics?

4. How to contribute for a secure, reliable and trustable endpoint device?

5. How to leverage reduction in terms of engineering effort, while tackling security
at the onset?

To evaluate these questions, the following methodology is proposed:

1. Exploration of heterogeneous solutions for the low-end devices at the edge net-
work, in order to enhance the performance by deploying acceleration modules
into the solution. Such accelerators not only comprise application-specific tasks
but also typical operations in any IoT endpoint device, such as network-related
tasks.

15

2. Adopt a hardware-software co-design methodology, which contributes to find
strategies to help identify the best offloading approaches to integrate cus-
tomized accelerators.

3. Improve the endpoint communication by accelerating the network stack, in a
bottom-up strategy, since IPv6 is the key to interconnect the myriads of end-
point devices that participate in the IoT. Accelerating the network layer (IPv6)
requires acceleration at the MAC layer (IEEE 802.15.4) as well, because this
standard is the foundation for the IPv6 support on the low-end devices at
the network edge. This not only improves the endpoint performance but also
enables the device to explore energy-saving operation modes for larger periods
of time, which contributes for a better energy usage.

4. Deploy secure endpoints at the network edge, which can be achieved by employ-
ing cutting-edge secure hardware architectures, as well as secure and reliable
communication protocols to secure and protect data-in-transit over the net-
work. In an age of an unprecedented technological development, where devices
and data security are a paramount, this strategy will play a key role in the
future of the endpoint devices.

5. Development of a DSL that aims to promote and facilitate design automation
tools. Such tools contribute for a fast and reliable development of different
solutions based on the same low-end device capabilities.

1.4 State-of-the-Art

COTS Endpoint Devices at the Network Edge

Traditional WSN systems are homogeneous architectures based on software tasks
running on processors ranging from a small microcontroller (MCU) to a more com-
plex Digital Signal Processsor (DSP), which mainly integrates or connects to a radio
transceiver used for the communication requirements. From available COTS solu-
tions, several available devices developed by academia or the industry can already
provide the connectivity and interoperability requirements [66–72]. However, they
fail into provide the flexibility of exploring heterogeneous architectures with acceler-
ation capabilities and the security-related requirements. Thus, they are considered
out of the scope of this thesis.

16

Heterogeneous Architectures for Low-end Devices

Due to the increasing complexity of heavy sensing-related tasks on wireless motes,
field-programmable gate array (FPGA)-based heterogeneous architectures, which
combine a reconfigurable computing unit (RCU) and a low-power MCU with an
attached radio transceiver, are gaining special focus. Such sensing wireless solutions
that rely on FPGA, either based upon standalone platforms or as a combination
of an MCU and FPGA, are proven to play a key role in the future of sensor net-
works [73, 74] in fields where heavy processing capabilities such as strong cryptog-
raphy algorithms [75–80], low-level hardware security [81, 82], self-testing and data
compression schemes [83–86], image and multimedia processing [87–91], local and
remote reconfigurability [92–99], among others, are a major requirement in a broad
range of applications [100–102].

With the arising interest in creating heterogeneous IoT-enabled wireless motes,
sensor systems based on FPGA have included an IEEE 802.15.4-compliant radio
transceiver [103] in the solution, in accordance with the IoT-ARM specification
for the layer 2. The low-priority and the low-level radio operations are usually
kept on the MCU, while complex and performance-demanding tasks are executed
in the RCU. Such tasks typically consist in collecting data from available sen-
sors, followed by its subsequent processing and aggregation for further transmission
over the network. From the current state-of-the-art and the available literature,
the most relevant research, closely related with the hard-core of this thesis, are
the HaLoMote [104], the CookiesWSN [105], the PowWow Mote [106], among oth-
ers [107–109], which are discussed below.

The HaLoMote [104] is described as a hardware-accelerated low-power mote target-
ing the IoT. It combines FPGA technology, used for energy-efficient data aggre-
gation, with a system-on-chip (SoC) radio transceiver (the ATmega256RFR2 from
Microchip) used for network management and data exchange. Integrating the RCU
into a sensor mote and endowing it with wireless capabilities, this solution aims
to provide a reconfigurable and energy efficient wireless architecture for IoT low-
end endpoint devices. The RCU performs a dynamic power management (DPM)
system and lossless data compression operations for application-specific implemen-
tations. In [110], the HaLoMote deploys a forward-adaptive differential pulse code
modulation with a Rice symbol coder to compress vibration data from microelectro-
mechanical systems sensors, while in [111], its previous version, it is used in a struc-
tural health monitoring system that performs data aggregation mechanisms to re-

17

duce the collected data before they are sent through the wireless interface. The
first version of the HaLoMote included a CC2531 RF-SoC with an integrated IEEE
802.15.4 radio transceiver, while the latest version is composed by an 8-bit AVR AT-
mega256FRTR2 RF-SoC, also with integrated radio transceiver, with an Microsemi
Igloo M1AGL1000 FPGA (which performs the RCU) for the hardware-accelerated
computations.

The CookiesWSN mote [105] and the PowWow Mote [106] have combined a TI
MSP430 MCU with FPGA technology beside the CC2420 IEEE 802.15.4 radio
transceiver. They mainly differ in the type of application supported and the type
of accelerators used, which is directly related with the application domain. The
CookiesWSN mote provides several types of accelerators, such as elliptic curve cryp-
tography (ECC) [112] for helping in securing the WSN communications, a specific
sensor data processing (SDP) accelerator, applied in a coffee factory to monitor the
manufacturing process as well as some environmental parameters [113], and a re-
configurable Kalman Filter - also known as a linear-quadratic estimator (LQE) - to
remove noisy samples during data acquisition [114]. Additionally to the LQE accel-
erator, and aiming to provide Data Security mechanisms (data integrity and data
authentication), the CookiesWSN mote includes acceleration blocks for the Secure
Hash Algorithm 1 (SHA-1) and MD5 Message-Digest Algorithm (MD5) algorithms.
However, such algorithms are nowadays discouraged from being used due to several
well-known attack surfaces and vulnerabilities [115].

The PowWow mote explores the FPGA in order to deploy low-level network-related
accelerators. Such accelerators aim to assist the Contiki-OS, which is hosted by the
MCU, in some link-layer tasks, such as error correction codes (ERCC) mechanisms.
The goal of the link-layer is to manage the Automatic Repeat reQuest (ARQ) and
the forward error coding (FEC) to ensure a reliable link established between two
nodes. The FEC at the link-layer can be done using several techniques among block
and convolutional code. The ARQ mechanism used is known as selective acknowl-
edgment (SACK) where only erroneous packets are requested to be retransmitted.
This way the MCU is kept in a low-power mode when the received IEEE 802.15.4
frames are not intended to be forward to Contiki-OS. Aiming to improve the energy
efficiency, PowWow also includes a dynamic voltage and frequency scaling (DVFS)
feature to handle the digital processing part. This feature consists in a power man-
agement technique where the voltage of the MCU can be decreased to lower levels
(when not in use) in order to minimize the energy consumption.

18

Other relevant contributions on this field [107,108], discuss important advances in re-
configurable systems oriented for FPGA-based WSN applications, where once again,
application-specific tasks are deployed on FPGA in order to increase the systems
performance. Vera-Salas et al. [107] used a micropositioning measurement system to
test and deploy their platform. The deployed accelerators consist of a specific SDP
for the given application, a root mean square (RMS) statistical process for data anal-
ysis and interpretation, a finite impulse response (FIR) filter for signal processing,
a fast Fourier transform (FFT) algorithm used for differential digital signal pro-
cessing, and algorithms for signal and image compression such as discrete wavelet
transform (DWT) and continuous wavelet transform (CWT) [116,117]. Nyländen et
al., have also deployed in their solution RMS, FFT and SDP accelerators. The main
difference between both is the absence of an MCU on the first, and the presence of
a transport triggered architecture (TTA) soft-core processor on the second. Aiming
to tackle security-related issues, highly secure WSN nodes with an efficient cryp-
tosystem are proposed in [109]. The main goal is to provide cryptographic security
to the low-power WSN nodes, while maintaining the energy efficiency and perfor-
mance requirements. Stelte [109] proposes a heterogeneous architecture for WSN
motes that comprises a soft-core MCU that can deploy SDP and ECC accelerators
to assist security-related tasks. Also, he proposes the addition of device hardware
security features by introducing ARM TrustZone technology to his mote. However,
such mote was only proposed and never implemented. Other important components
such as the radio interface and the network-related accelerators are also present in
the architecture but not addressed in the publication.

In short, by exploring low-power operation modes with very low static energy drain
(provided by modern FPGA flash-based technology) and using a DPM system allied
with a DVFS or dynamic voltage scaling (DVS) technique [118,119], heterogeneous
solutions emerge as a great option for low-power heterogeneous WSN motes. Apply-
ing the DPM principle, the mote can select single components to be completely shut
down in idle or low-power modes, contributing for further energy saving schemes.
However, by only performing application-specific tasks on the RCU, such solutions
are confined to their applications and domains. With the ever-growing amount of
data over the network that needs to be handled, and considering the standardized
communication stack, network-related tasks must be also considered to be performed
by the RCU.

19

GAP Analysis

Table 1.1 summarizes the gap analysis on heterogeneous architectures that target
WSN applications, displaying their differences on the most important features when
developing low-end devices for the edge network.

Table 1.1: Gap analysis between existing heterogeneous solutions. N/A - feature
not available, N/P - information not provided.

Ha
loM

ote
[10
4]

Co
ok
ies

W
SN

[10
5]

Po
wW

ow
[10
6]

Ve
ra
-S
ala
s e
t a
l. [
10
7]

Ny
län
de
n
et
al.

[10
8]

St
elt
e [
10
9]

Application Support bare metal bare metal Contiki-OS bare metal bare metal N/P

Real-Time Support No No No N/P N/P N/P

IoT-ARM Stack No No Yes No N/A N/P

Radio AT256FRTR2
CC2420 CC2420 MRF24J40 N/A N/P

IEEE 802.15.4 (RF-SoC)

MCU Arch. 8-bit AVR TI MSP430 TI MSP430
N/A

TTA soft-core MCU soft-core

(Type) (RF-SoC) (MCU) (MCU) (FPGA) (FPGA)

Acceleration Used
RDT [111]

Rice [110]

ECC [112]

SDP [113]

LQE, SH-1,

MD5 [114]

ERCC, DFVS
RMS, FIR

FFT, SDP

RMS FFT,

SDP
ECC, SDP

Net. Acceleration
MAC filter

(RF-SoC)

MAC addr.

filter (RF)

MAC addr.

filter (RF),

ARQ & FEC

(FPGA)

MAC addr.

filter (RF)
N/A N/P

Advanced Net.

Acceleration
No No No No No N/P

Device Security No No No No No N/A

Data Security N/P
ECDSA,

SH-1, MD5
N/P N/P N/A N/A

Maturity Proto./Final Proto./Final Proto./Final Proto./Final Concept/Proto. Concept

Such requirements/characteristics are described as follows:

• Application Support: It characterizes the solution in terms of the applica-
tion support, which can use a bare metal approach or add an embedded OS

20

to the system. This latter option often includes interoperability support and
abstracts the communication stack, which is very useful for rapidly connecting
smart things to the Internet.

• Real-Time Support: It evaluates the real-time (RT) support of the global
solution, which means that the RT capabilities shall be provided not only by
the hardware, but also from the Application Support (bare metal or OS).

• IoT-ARM Stack: The communication stack, as favored by the IoT-ARM,
eases and promotes the connectivity and the interoperability among all de-
vices. In this comparison, the minimum requirement is the compliance with
the Network layer which enables the communication at the IP level (IPv6).

• IEEE 802.15.4-compliant radio transceiver: The IEEE 802.15.4 is the
recommended standard for the MAC layer, also defined by the IoT-ARM stack
model. Since the main goal is to work with endpoint devices in the edge
network, the IEEE 802.15.4 is set as a primary requirement.

• MCU Architecture (Type): It concerns with the MCU architecture used
by the presented solution. It is also considered its deployment type, which can
be either a hard-core or a soft-core MCU performed by available FPGA.

• Acceleration Used: It refers to the available accelerators deployed on the
proposed solution. They can range from application-specific accelerated tasks,
or generic algorithms that can be used in different application scenarios.

• Network Acceleration: It refers to available accelerators used for network-
related tasks. Such accelerators are set available in the RCU or traditionally
provided by the radio transceiver.

• Advanced Network Acceleration: Since the studied solutions are based
on heterogeneous architectures, this enables the deployment of customized
accelerators for the higher layers of the network stack, e.g., Network, Transport
and Application layers. Such accelerators are classified in this analysis as
Advanced Network Accelerators. If supported, they must be specified.

• Device Security: It concerns with the device’s security features from the
hardware point of view. Such features may comprise security mechanisms
to prevent unauthorized reproductions of the deployed system, reverse engi-
neering, on-chip security keys, cryptographic hardware accelerators for secure
algorithms and protocols that can also assist available Data Security features.

21

• Data Security: It approaches available mechanisms that can provide data
security, comprising the three major requirements when developing secure com-
munications and secure data exchange: confidentiality, integrity and authen-
ticity. Such requirements can be achieve by security mechanisms that can
resort software- and/or hardware-assisted cryptographic blocks.

• Maturity: This metric classifies the maturity state of the solution: (1) Con-
cept, which refers to an idea or proposal but not yet implemented; (2) Proto-
type, which consists of a real implementation of the solution but with on-going
developments; (3) Final product, when the solution reaches a high level of ma-
turity and may be already in use in real case scenarios.

When the information is not provided or cannot be retrieved, the keyword N/P
is used, and in case the solution is only at its concept stage or the feature is not
available, the keyword N/A is displayed. Trading-off all the requirements and the
characteristics of the identified works, it is clear that is hard to achieve a device that
fulfills all the desired characteristics.

1.5 Thesis Contributions

This thesis aims to improve the state-of-the-art with the following contributions:

• A reconfigurable heterogeneous architecture for low-end devices in the IoT
network edge;

• A secure endpoint device deployment at the network edge, which can benefit
both from secure hardware architectures and from secure and reliable commu-
nication protocols;

• An improved endpoint communication with network stack acceleration for net-
work services and communication protocols performance, with resilience en-
hancement against common denial-of-service (DoS) attacks.

• A DSL to facilitate design automation tools, contributing for a fast and reliable
development of IoT low-end devices.

22

1.6 Thesis Structure

The remaining of this thesis is structured as follows:

• Chapter 2 presents the research tools and materials used throughout the de-
veloped work, describing the requirements and motivations that led to their
choice. Due to the lack of turnkey solutions, customized tools specially devel-
oped for assisting this work are also discussed in this chapter.

• Chapter 3 shows the challenges of designing and developing a heterogeneous
architecture for IoT low-end devices and the associated hard task of following
a hardware/software co-design methodology. Such methodology is used to
help select and evaluate software functionalities suitable to be offloaded and
performed by dedicated hardware accelerators. The selected functionalities are
mainly related to generic and network-related tasks. This chapter also presents
the concept and prototype of the CUTE mote, described as a customizable and
trustable end-device, which performs the proposed architecture and is able to
deploy customized hardware accelerators.

• Chapter 4 presents the design and deployment on an IEEE 802.15.4 acceler-
ator that is able to filter and process the received Data frames as specified by
the standard for the First, Second and Third-level of filtering, suitable for any
IEEE 802.15.4-based network. As this standard is the foundation for the IoT
network layer (IPv6 over IEEE 802.15.4 provided by the 6LoWPAN adaptation
layer), further research relies on these developed functionalities.

• Chapter 5 describes the development and deployment of an IPv6 Network
accelerator in the CUTE mote, that is able to retrieve and generate IPv6 pack-
ets from the IEEE 802.15.4 Data frames (through the 6LoWPAN adaptation
layer), in order to filter and process specific IPv6 packet header fields. Such ac-
celerator performs some important tasks related to the 6LoWPAN standard,
such as the implementation of the IPv6 header compression/decompression
mechanism.

• Chapter 6 presents automation tools developed through the design of a DSL.
Due to the increasing complexity of adding new features at several layers of
the network stack, this tool facilitates the development of customized solutions
in highly configurable systems.

23

• Chapter 7 concludes this research work and discusses the limitations faced
during the development of the presented solutions. In conclusion, further work
and research directions towards fulfilling the aforementioned limitations are
suggested. Moreover, a list of publications that have directly or indirectly
contributed for the development of this work are presented in this chapter.

1.7 Conclusions

This chapter contributed with a brief introduction about the core-study of this thesis.
After the problems identified in the scope of this thesis, some research questions were
raised in search of possible solutions. Such questions are then answered throughout
the development of this thesis, following the proposed research methodology. After-
wards, it was identified the state-of-the art on the most related contributions and a
gap analysis among them was performed, showing where such contributions fail to
provide a complete solution that can directly or indirectly tackle the identified issues
and how this thesis plans to address them. Finally, it was described a brief summary
of the contributions and the remaining of this thesis. The next chapter presents the
research platform and tools used during this thesis for the testing deployment and
evaluation of the proposed solution.

24

Chapter 2
Research Platform and Tools

This chapter presents the research platform and tools used throughout this thesis, for
the testing, evaluation and deployment purposes. Section 2.1 describes the platform
requirements for researching on the proposed solution, while Section 2.2 discusses
available embedded OS that deploy a network stack, suitable for constrained IoT
endpoint devices. This section also contains a study on the hardware platforms
supported by the embedded OS, which enables the possibility of further comparisons
of the proposed implementation with other similar software-based COTS solutions,
like the Wireless Connectivity family devices from Texas Instruments, described in
Section 2.3. In Section 2.4 it is presented the selected hardware platform, which
consists of a secure hardware solution that integrates on the same SoC flash-based
FPGA and an MCU, enabling the deployment of heterogeneous architectures with
customized accelerators for endpoint devices in the IoT domain.

Further results can be obtained in order to perform a total comparison between
software-based COTS solutions and a hardware mote that deploys the heterogeneous
architecture on the selected hardware platform. The platform also eases power
consumption analysis, by including on-board measuring hardware circuitry. The
development and simulation of the designed hardware, before its final deployment
on FPGA, is done using the Libero SoC and ModelSim tools, provided by Microsemi
and described in Section 2.5. For the software validation purposes, the Thread-
Metric Benchmark Suite was selected over other available benchmarking suites.

25

2.1 Platform Requirements

When developing heterogeneous solutions, which leverage customized accelerators
for IoT endpoint devices, several aspects must be considered. Due to the common
low-budget concerns, e.g., price value, processing capabilities, low-power consump-
tion, among others, the following requirements must be considered, both for the
platform and for the final solution that is desired to achieve:

1. Support an IoT-enabled communication stack that promotes the three
most important aspects when it concerns to the device’s communication sup-
port: (1) Connectivity; (2) Interoperability; (3) Reachability.

2. Promote design Scalability, to easily accommodate more hardware accelera-
tion engines.

3. Support component Modularity and device Customization, enabling only
the selection of required components, in order to meet tight requirements and
application constrains.

4. Enable solution’s Portability, to reduce the time-to-market cost when devel-
oping such kind of embedded systems. Similarly to a COTS microcontroller
architecture, which may be supported by most of the IoT-enabled embed-
ded operating systems (OSes), the hardware platform must allow component’s
portability and smooth the integration of the architecture in other similar
platforms.

5. Provide a Secure Hardware Architecture, in a commercially available low-
power SoC. Such solution, combining both FPGA technology and a well-
known MCU architecture suitable for low-end embedded systems, empowers
a fast development of the research topics proposed in Chapter 1, while keep-
ing the low-budget requirements. The SoC platform must facilitate the fast
development of accelerators and simplify their integration in the form of soft-
hardware peripherals, loosely coupled to the MCU architecture by using stan-
dard architectural communication buses.

6. Boost the incorporation of Data Security mechanisms, in accordance with
the CIA triad requirements identified in Chapter 1.

Due the lack of available turnkey solutions for all the aforementioned requirements,
and due to the fact that similar solutions are only provided in non-disclosed systems,

26

it was necessary to select a hybrid SoC that enables the deployment of custom accel-
erators with an MCU architecture supported by an available embedded OS suitable
for low-end IoT devices. Moreover, the selected embedded OS must also support
all the wireless standards proposed in the IoT-ARM network stack, while keeping
the interoperability requirements among all the available heterogeneous devices and
supported hardware platforms.

2.2 Embedded Operating Systems for Low-end IoT
Devices

From the sensor to the cloud, the participating devices in the IoT may range from
simple and resource-constrained endpoint devices to extremely complex cloud servers
and Internet hosts. While middle- and high-end devices, e.g., servers, routers and
gateways, can support traditional OSes such as Linux, this is not possible with low-
end endpoints. Moreover, traditional OSes currently running on high-end devices, or
typical OSes suitable for traditional WSN, such as TinyOS [120] or Nano-RK [121],
are not able to fulfill the diverse requirements of an IoT environment. To leverage the
IoT, redundant development should be avoided where deployment and maintenance
costs must be reduced.

Until now, only powerful computer hosts, robust embedded devices and complex
networks have been able to participate natively with the Internet [122]. Direct com-
munication with traditional IP networks requires many Internet protocols, often re-
quiring an OS to deal with the inherent complexity and maintainability. Traditional
Internet protocols are required for embedded devices for the following reasons:

• Security: IPv6 includes optional support for IP Security, traditionally pro-
vided by the Internet Protocol Security (IPsec) [123], authentication mecha-
nisms and encryption schemes. Moreover, web services also make use of secure
sockets or transport layer security mechanisms. However, these techniques
are too complex, specially to be deployed on simple and resource-constrained
embedded devices.

• Web services: Internet services today rely on web-services, mainly using the
TCP, HTTP, Simple Object Access Protocol (SOAP) and Extensible Markup
Language (XML) with complex transaction patterns.

27

• Management: Management with the Simple Network Management Protocol
(SNMP) and web-services is often inefficient and complex.

• Frame size: Current Internet protocols require links with sufficient frame
length (minimum of 1280 bytes for IPv6), and heavy application protocols
require substantial bandwidth.

These requirements have in practice limited the IoT to devices with powerful pro-
cessing capabilities, an OS with a full TCP/IP stack and with an IP-capable commu-
nication link. Still, it is expected from the low-end devices, extremely constrained
in terms of computing power, available memory, communication, and energy source,
to support an adaptive communication stack to integrate the Internet seamlessly.

Linux certainly is a mature, robust and developer-friendly OS that has been getting
attention as a platform for IoT, supporting an ever-increasing number of embedded
devices, particularly the ones that provide graphically rich user interfaces. However,
there are thousands of applications for which Linux is ill suited [25], due to its large
memory footprint and required random-access memory (RAM) for kernel support,
turning this OS not suitable for endpoint devices at the network edge.

An embedded OS for the IoT must fulfill a set of important requirements [124]:

• Small Memory Footprint: since low-end IoT devices are much more re-
source constrained, particularly in terms of memory, this requirement is set to
few KB, both for RAM and persistent read-only memory (ROM) requirements.

• Support for Heterogeneous Hardware: IoT faces nowadays a large variety
of hardware and communication technologies. This requirement sets the OS
to run on a wide spectrum of hardware, ranging from nodes based on a low-
power MCU, to nodes powered by new generations of energy-efficient 32-bit
processors, where the available memory sizes may also vary.

• Network Connectivity: The main key of the IoT devices is the ability to
interconnect and communicate with one another or with the Internet. Since it
is expected from IoT devices to connect the Internet seamlessly, the support
for a standard communication stack [32,39] is mandatory.

• Energy Efficiency: Since most IoT devices will be running on batteries, they
must support energy-aware protocols in order to provide a better and more
efficient energy utilization. This can be explored by managing the most energy-
consuming elements of a WSN node such as the MCU, the radio transceiver and

28

Table 2.1: Embedded OSes from three different categories and their key features.

Name Category
MCU w/o

MMU

<32 kB

RAM
6LoWPAN

RT

scheduler
HAL

Energy-efficient

MAC layers

Contiki-OS Event-driven X X X 7 X X

RIOT Multithreading X X X X X 7

FreeRTOS RTOS X X 7 X 7 7

available sensors. The MCU achieves low-power capabilities when operating in
sleep or idle modes, while the radio transceiver contributes for the low-power
consumption when energy-efficient MAC protocols are explored.

• Real-Time Capabilities: RT characteristics may be crucial in some IoT
applications where precise timing and timely execution are mandatory, such
as required by smart health-care applications [20].

• Security: Security plays an important role in the IoT and it must be also
provided by the OS. A requirement (and challenge) for an OS for the IoT
is to provide the necessary mechanisms (cryptographic libraries and security
protocols) while retaining flexibility and usability that help in keeping the CIA
triad requirements.

There are several embedded OSes provided open-source which are good candidates
for the IoT such as the Contiki-OS [125], RIOT [126], FreeRTOS [127], TinyOS [120],
OpenWSN [128], NuttX [129], eCos [130], uClinux [131], ChibiOS/RT [132], CoOS
[133], Nano-RK [121], Nut/OS [134], among others. However, not all fulfill most of
the desired aspects specified above. Table 2.1 summarizes the three best candidates,
grouped according to their kernel type, that best represent their category: Contiki-
OS, RIOT and FreeRTOS. Contiki-OS and RIOT stand out from the list due to
their intrinsic support to the 6LoWPAN protocol stack, reduced RAM size that is
required to run the kernel, and their support to energy-efficient MAC protocols.
Such MAC protocols are fully supported by Contiki-OS but only partially present
in RIOT. However, their support is scheduled to be included in the near future.

2.2.1 Contiki-OS

Contiki-OS [135, 136] is an embedded and open-source OS for IoT that enables
connecting tiny low-cost and low-power microcontrollers to the Internet. The ar-
chitecture and the network stack is depicted in Figure 2.1. It is implemented in C

29

uIP Network
Stack

CPUPlatform

Hardware

Built-in AppsUser Apps

RIME (MAC)

6LoWPAN

UDP TCP ICMP

Socket API

Contiki Core

Process Linked List

Event Queue

Scheduler

Contiki-OS IoT/IP stack

Radio

Radio Duty Cycle

MAC

Adaptation

Network, Routing

Transport

Application

802.15.4

ContikiMAC
CX-MAC

CSMA/CA

6LoWPAN

IPv6, IPv4, RPL

TCP, UDP

HTTP, CoAP,
websockets

PHY Layer

Link Layer

Network Layer

Transport
Layer

App Layer

Figure 2.1: Contiki-OS stack and supported IoT/IP stack.

language and uses a make build environment for cross-compilation on most popular
hardware platforms. The low-level hardware abstraction is split into "Platform"
and "CPU" for portability purposes, which include hardware drivers, e.g., for sensors
and other peripherals, for each different platform. In Contiki-OS, code in executes
in either of two execution contexts: cooperative or preemptive. Cooperative code
executes sequentially with respect to other cooperative code, while preemptive code
temporarily stops the cooperative code. Processes are the primary way applications
are run in Contiki-OS. They run, triggered by an event, in the cooperative con-
text, whereas interrupts and real-time timers run in the preemptive context. There
are two types of events: asynchronous events and synchronous events. When an
asynchronous event is posted, the event is pushed into the kernel’s event queue and
delivered to the receiving process at a later time. When a synchronous event is
posted, the event is immediately delivered to the receiving process. The purpose of
the process scheduler is to invoke processes, by calling the function that implements
their associated threads, when it is their time to run. All process invocation in
Contiki-OS is done in response to an event being posted to a process, or a poll being
requested for the process, and then the process scheduler passes the event identifier
to the process that is being invoked.

For the network stack, it offers the Rime system, a flexible MAC layer and net-
work protocol library which includes many low-level communication paradigms. The
uIPv6 stack makes use of Rime, and provides a socket-like application programming
interface (API) for use by applications, called protosockets. Both built-in and user
applications are executed over Contiki-OS using a lightweight thread model called
protothreads [136]. The uIPv6 stack provides a full network stack with all the lay-

30

ered protocol standards recommended by the IoT-ARM, supporting IPv6 and IPv4
Internet protocols along other recent wireless standards such as 6LoWPAN, RPL,
CoAP, among others. For the MAC control, Contiki-OS implements by default
the carrier-sense multiple access with collision avoidance (CSMA/CA) mechanism.
On top of that, it offers different drivers for accessing the MAC layer, e.g., Con-
tikiMAC [137] or XMAC [138] protocols. They offer an energy-efficient radio duty
cycling (RDC) mechanism that allow the radio to be switched off when unneeded,
fostering all the network devices to be battery-powered, even routers. Offering a
variety of software applications and examples, the Cooja simulation tool, and a very
active developing community, ease the development of software for a broad range of
applications and scenarios.

Table 2.2: Popular Contiki-OS supported hardware platforms.

Platform MCU/SoC CPU Radio Simulator

CC2538DK TI CC2538 ARM Cortex-M3 Integrated 7

SensorTag TI CC2650 ARM Cortex-M3 Integrated 7

CC2530DK TI CC2530 8051 Integrated 7

wismote TI MSP430x MSP430 TI CC2520 X

RE-Mote TI CC2538 ARM Cortex-M3 Integrated, CC1200 7

micaz Atmel AVR ATMega128L TI CC2420 X

Z1 TI MSP430x MSP430 TI CC2420 X

Sky TI MSP430 MSP430 TI CC2420 X

ESB TI MSP430 TI MSP430 RFM TR1001 X

MSB430 TI MSP430 TI MSP430 TI CC1020 7

nRF52 DK nRF52832 ARM Cortex-M4 Integrated 7

exp5438 TI MSP430x MSP430 TI CC2420 X

redbee-xxx MC1322x ARM7 Integrated 7

AVR-Raven Atmel AVR ATmega2561 AT RF230 7

From the hardware side, Contiki-OS can run on small MCU architectures such as the
AVR, the MCS-51 and the MSP430 and supports a wide range of low-power wireless
devices and radio transceivers used by several research and commercial platforms.
Table 2.2 summarizes the main Contiki-OS supporting platforms with the respective
MCU and supported radio transceiver, which can be internally available or externally
attached [139].

31

Cooja Simulator

Cooja is the Contiki-OS network simulator. Cooja allows large and small networks
of Contiki-OS motes to be simulated. Motes can be emulated at the hardware level,
which is slower but allows precise inspection of the system behavior, or at a less
detailed level, which is faster and allows simulation of larger networks. Cooja is a
highly useful tool for Contiki-OS development, as it allows developers to test their
code and systems before running it on the target hardware. Developers regularly
set up new simulations both to debug their software and to verify the behavior of
their systems [125].

2.2.2 RIOT

RIOT [140–142], Figure 2.2, is also a small size embedded OS designed for the
particular requirements of the IoT. Typical requirements comprise a low memory
footprint, high energy efficiency, real-time capabilities, a modular and configurable
communication stack, and support for a wide range of low-power wireless devices.
RIOT was implemented as a microkernel and it provides utilities like cryptographic
libraries, data structures (bloom filters, hash tables, priority queues), a shell and
different network stacks. RIOT provides support to several MCU architectures,
radio drivers, sensors, and configurations for entire platforms, e.g., CC2538DK or
STM32 Discovery Boards.

Network Stack

Kernel

Hardware Platform

Applications
Wiselib RIOT-OS Embedded IP stack

Radio

MAC

Adaptation

Network, Routing

Transport

Application

802.15.4

CSMA/CA

6LoWPAN

IPv6, ICMP, RPL*

UDP

CoAP

PHY Layer

Link Layer

Network Layer

Transport
Layer

App Layer

6LoWPAN

UDP ICMP

Hardware Abstraction Layer

*Partially supported

Scheduler

Thread Management

IPCMutex

Timer

System
Libraries

Figure 2.2: RIOT stack and embedded IP stack.

The microkernel architecture is inherited from FireKernel [142], comprising multi-
threading, thread management, a priority-based scheduler, a powerful API for inter-

32

process communication (IPC), a system timer and mutexes. To fulfill strong real-
time requirements, RIOT enforces constant periods for kernel tasks (e.g., scheduler
run, IPC, timer operations). An important prerequisite for guaranteed constant
runtime duration is the exclusive use of static memory allocation in the kernel. Yet,
dynamic memory management is provided for applications. Constant runtime of
the scheduler is achieved by using a fixed-sized circular linked list of threads. The
devices lifetime is related to the time the MCU spends in deep sleep modes. RIOT
introduces a scheduler that works without any periodic events. Whenever there
are no pending tasks, RIOT will switch to the idle thread, which determines the
deepest possible sleep mode depending on peripheral devices in use. Only interrupts
(external or kernel-generated) wake up the system from idle state.

Low complexity of kernel functions is a main factor for the energy efficiency of an
OS. Therefore, the duration and occurrence of context switching must be minimized.
In RIOT, context switching is performed in two cases: (1) a corresponding kernel

Table 2.3: Popular RIOT supported hardware platforms.

Platform MCU/SoC CPU Radio Simulator

CC2538DK TI CC2538 ARM Cortex-M3 Integrated 7

OpenMote TI CC2538 ARM Cortex-M3 Integrated 7

Z1 TI MSP430x MSP430 TI CC2420 7

RE-Mote TI CC2538 ARM Cortex-M3 Integrated, CC1200 7

UDOO SAM3X8E ARM Cortex-M3 N/A 7

HiKoB Fox STM32F103 ARM Cortex-M3 AT86RF231 7

chronos CC430 MSP430 CC1100 7

telosb MSP430x MSP430 CC2420 7

IoT-LAB M3 STM32F103 ARM Cortex-M3 AT86RF231 7

Samr21-xpro ATSAMR21 ARM-Cortex-M0 AT86RF233 7

arduino-due SAM3X8E ARM Cortex-M3 N/A 7

Arduino ATmega2560 ATmega2560 N/A 7

stm32iscovery

boards
STM32Fxxx ARM Cortex-M0/M4 N/A 7

stm32nucleo boards STM32F0xx ARM Cortex-M0/M4 N/A 7

pca10000 NRF51822 ARM-Cortex-M0 BLE 7

msba2 LPC2387 ARM7 CC1100 7

33

operation is called, e.g., a mutex locking or creation of a new thread, or (2) an
interrupt causes a thread switch. The first case will occur rarely. For example,
every thread is usually created once. Hence, it is important to reduce the processing
time in case of a thread switch. Therefore, RIOT’s kernel provides a minimized
context switch that enables a task switch to be performed in few clock cycles.

The network stack is IoT-compliant and offers the most important standards and
protocols such as IPv6, UDP and CoAP, yet, does not give full support to some
other protocols, e.g., the RPL. Simulation is not directly supported, but it is still
possible through modifications to the generated firmware which can run in Cooja
under the supported Contiki-OS hardware platforms. However, this can be hard to
be performed. RIOT also provides a great variety of hardware [143], as summarized
in Table 2.3. However, the support to some platforms is still in progress as, for
those, the radio connectivity is not yet implemented.

2.3 TI’s Wireless Connectivity Portfolio

Table 2.4: Texas Instruments Wireless Connectivity portfolio.

Smart RF

transceivers

Wireless network

processors

Wireless microcontrollers

(MCUs)

Wi-Fi

combo

Application 7 7 X 7

Wireless stack 7 X X 7

RF Radio X X X X

Despite Contiki-OS being supported and widely tested over a wide range of hard-
ware [139], the CC2538 and the CC2650 devices, along with their respective develop-
ment hardware, are selected (by the development team) as the primary Contiki-OS
hardware platforms. These are part of a wide range of devices composing the Texas
Instruments Wireless Connectivity portfolio, presented in Table 2.4 [144]. Such de-
vices accomplish the Connectivity, Interoperability and Reachability requirements
when developing connectivity for IoT devices. Each category contains a broad range
of devices suitable for almost any kind of application with a vast variety of require-
ments:

• SmartRF transceivers, such as the CC2420 and the CC2520, are used for
connecting any MCU that does not directly provide wireless capabilities. The
CC2520 is the latest IEEE 802.15.4 radio transceiver and provides exten-

34

sive hardware support for frame handling, data buffering, burst transmissions,
hardware data encryption, data authentication, clear channel assessment, link
quality indication and frame timing information. These features reduce the
load on the host controller.

• Wireless network processors, suitable for connecting IoT applications to
the cloud. Available standalone (without MCU) or on a SoC, they run network
related operations such as web servers or TCP/IP protocol handling. For
the wireless connectivity, they provide standard IEEE 802.11 support. These
devices mostly play the role of a middle-end device since they provide more
powerful capabilities, yet, they are not suitable for battery-powered nodes.

• Wireless MCU SoC solutions (Wireless MCU, SimpleLink and Wireless
Connectivity families), which are composed by a wireless MCU with integrated
IEEE 802.15.4 radio transceiver. Available with different MCU architectures,
they also provide several options in terms of the supported radio transceivers
and communication standards. Table 2.5 summarizes some of the available
devices with 6LoWPAN and Bluetooth Low Energy (BLE) support.

• Development Platforms, such as the SmartRF05EB, SmartRF06EB and
SensorTag, by giving support to their respective devices (Table 2.5), they can
provide low-cost solutions for testing and prototyping wireless nodes in the
IoT domain.

Table 2.5: Wireless MCU SoC devices with 6LoWPAN and BLE support.

Device CPU Radio Standard Family

CC1310 ARM Cortex-M3 IEEE 802.15.4 (Sub-1 GHz) SimpleLink

CC2530 8051 IEEE 802.15.4 (2.4 GHz) Wireless Connectivity

CC2540 8051 BLE 4.0 SimpleLink

CC2538 ARM Cortex-M3 IEEE 802.15.4 (2.4 GHz) Wireless Connectivity

CC2564 ARM Cortex-M3 Bluetooth BR/EDR & BLE 4.1 Wireless Connectivity

CC2630 ARM Cortex-M3 IEEE 802.15.4-based (2.4 GHz) Wireless Connectivity

CC2640 ARM Cortex-M3 IEEE 802.15.4-based (2.4 GHz) Wireless Connectivity

CC2650 ARM Cortex-M3 IEEE 802.15.4 & BLE 4.2 SimpleLink

35

2.4 Microsemi’s SmartFusion2 SoC

Regarding the hardware platform, several modern FPGA solutions could have been
considered such as PolarFire and IGLOO2 FPGA Family [145, 146], but they pri-
marily fail into provide a hard-core MCU, which was set as a major requirement
to comply with this thesis research work. In what concerns hybrid platforms with
both MCU and FPGA support, from the available solutions, Zynq-7000 [147], Cy-
clone V [148], LatticeXP2 SoC [149] or PSoC 5 [150], none of them perfectly suits
low-end endpoint devices with the previously demanded requirements. For instance,
PolarFire, IGLOO2 and LatticeXP2 provide the MCU only in a soft-core version,
while Zynq-7000 and Cyclone V, widely used for supporting hardware security, are
only available with powerful hard-core ARM Cortex-A8/A9 processors, thus not
suitable for the desired solution. Although PSoC families providing FPGA technol-
ogy with low-power hard-core ARM Cortex-M CPUs, they are very limited in terms
of available hardware reconfigurability and customized peripherals support.

Figure 2.3: SmartFusion2 Security Evaluation Kit.

The SmartFusion2 SoC, included in the SmartFusion2 Security Evaluation Kit (Fig-
ure 2.3) from Microsemi [151], perfectly fits the hardware platform requirements.
It consists of a cost effective SoC that integrates reliable flash-based FPGA fab-
ric along a 166 MHz ARM Cortex-M3 processor and high-performance commu-
nication standard interfaces. Such interfaces include a 1Gbit Ethernet, a full-
duplex Serializer/Deserializer (SerDes) lane, and a 64-bit general-purpose input/out-

36

put (GPIO) header interfacing the SoC hard-peripherals. In addition, the Smart-
Fusion2 memory management system supports 512 Mb on-board low-power double
data rate (LPDDR) synchronous dynamic random-access memory (SDRAM) and a
64 Mb Serial Peripheral Interface (SPI) flash memory.

The Security Evaluation Kit offers the SmartFusion2 SoC M2S090TS with 90K logic
elements (LE) FPGA along the hard-core MCU, including Embedded Trace Macro-
cell (EMT) and Instruction Cache with on-chip embedded static random-access
memory (SRAM), embedded Non-Volatile Memory (eNVM) and a microcontroller
subsystem (MSS) with extensive peripherals including CAN, TSE and USB. Archi-
tecture highlights include advanced security processing accelerators (DPA Hardened,
AES256, SHA256), DSP blocks, SRAM and eNVM, PCIe Gen 2, hardware-based
667 Mbps DDR2/3 controllers, and a 7 mW (typical) standby power consumption.
Because of the available eNVM, the system can be completely powered down with-

Microcontroller Subsystem (MSS) Hard
Hardware

Peripherals
SPI
I2C

UART
Timers

ARM Cortex-M3

System
Controller

AES256,
SHA256,

In-App Prog

AHB Bus Matrix

APB

APB

FICs

I/O Controllers
PCIx

I/O Controller
PCIx

I/O Controller
DDR

I/O I/O

I/O I/O I/O

APB APB APB Int

FPGA Fabric

Soft Hardware Peripherals

SmartFusion2 SoC

HPDMA eSRAM

uSRAMuSRAMuSRAMuSRAM

eNVM

Figure 2.4: SmartFusion2 SoC FPGA architecture.

37

out losing its configuration or data. This SoC FPGA-based solution is a great
choice for implementing hardware accelerators on the available FPGA fabric, inte-
grating them with the MSS through standard Advanced Microcontroller Bus Ar-
chitecture (AMBA) communication buses. The available standard communication
hard-peripherals, such as SPI, Inter-Integrated Circuit (I2C) and UART, make pos-
sible to connect any IEEE 802.15.4 compliant radio transceiver. The detailed SoC
block diagram is depicted in Figure 2.4.

2.5 Test and Evaluation Tools

For the testing and evaluating purposes, two main tool suites are used: (1) Thread-
Metric Benchmark suite [152], used for evaluating the OS performance achievements
and the (2) Libero SoC Design Suite, for designing with the SmartFusion2. This last
includes the ModelSim verification tool, used to simulate hardware modules before
they are deployed inFPGA.

Regarding the Thread-Metric, it consists of a freely available benchmark suite,
used for measuring any real-time operating system (RTOS) performance. Targeting
RTOS services, e.g., cooperative and preemptive context switching and interrupt
processing with and without preemption, it can be used, in the context of this
thesis, for evaluating the embedded OS performance by measuring how much the
system load is alleviated by offloading software-based tasks to dedicated hardware
accelerators. For the Contiki-OS, and despite supporting preemptive and coopera-
tive modes, preemptive scheduling is not yet implemented for the ARM Cortex-M3
architecture, thus, only the cooperative context switching benchmark can be sup-
ported. Regarding RIOT, since it is an RT OS, more benchmarks can be performed.

Libero SoC Design Suite (design flow depicted by Figure 2.5) offers high produc-
tivity with its comprehensive, easy-to-learn, easy-to-adopt development tools for
designing with Microsemi’s IGLOO2, SmartFusion2, RTG4, SmartFusion, IGLOO,
ProASIC3 and Fusion families. The suite integrates industry standard Synopsys
Synplify Pro synthesis and Mentor Graphics ModelSim simulation with best-in-class
constraints management, Programming & Debug Tools capabilities, and secure pro-
duction programming support. The ModelSim ME HDL Simulator [153], included
in the Microsemi’s development suite, is a tool for verifying and simulate hardware
description language (HDL) code, line by line. It can perform simulations at all lev-
els, i.e., behavioral (pre-synthesis), structural (post-synthesis), and back-annotated

38

Programmer
FlashPro 4/5

Demo/Evaluation
Board

 IGLOO2, SmartFusion2,
RTG4, SmartFusion,

IGLOO, ProASIC3

Graphical
Configuration &

Applications

Hardware Debug

Timing
Analysis

Power
Analysis

Layout

Synthesis

Simulation

IP
Catalog

Smart
Design

Debugger

Compiler

Firmware
Catalog

Sample
Projects

Soft Console IDEDesign

Figure 2.5: Libero SoC Design Suite design flow.

dynamic simulation. ModelSim ME fully supports current VHSIC Hardware De-
scription Language (VHDL) and Verilog language standards, allowing to simulate
behavioral, RTL, and gate level code separately or simultaneously. ModelSim sup-
ports all Microsemi FPGA libraries and it can simulate AMBA protocols through
available simulation scripts. This feature is quite useful when developing periph-
erals connected to the MCU via such standard bus protocols, before the FPGA
deployment.

2.6 Conclusions

This chapter presented and discussed the development platform and tools required
to fulfill all the requirements when deploying and testing the proposed research
performed throughout this thesis. The Microsemi’s SmartFusion2 SoC hardware
platform, which combines fabric FPGA with an ARM Cortex-M3 CPU attached
with an IEEE 802.15.4 compliant radio transceiver, enables the development of a
heterogeneous architecture for IoT low-end devices. As it will be presented in the
next chapter, such platform provides the flexibility for exploring customized and
generic-purpose hardware accelerators to be deployed under resource-constrained
endpoint devices, while keeping low-budget requirements. The next chapter will also
present the selection of the embedded OS that best suits the hardware platform.

39

40

Chapter 3
Heterogeneous Architectures for

Low-end IoT Devices

The ubiquitous connectivity of IoT low-end devices brings new challenges over tradi-
tional WSN. Such challenges require not only security- and privacy-related features,
but also solutions to handle the ever-growing amount of data that is transferred over
the network. Ideally, low-end devices would be able perform complex tasks, with
low energy consumption. However, performing such heavy processing tasks on these
resource-constrained devices is not straightforward. The need for energy-efficient
devices, while preserving their performance and security capabilities, requires new
solutions at the architectural level of the wireless device.

This chapter describes the challenges of designing a heterogeneous architecture that
targets low-end and resource-constrained devices, which combines a hard-core MCU
and a RCU beside an IEEE 802.15.4 radio transceiver. The MCU hosts an embedded
OS with an IoT-enabled network stack, as specified by the IoT-ARM [32], explor-
ing the available FPGA technology to perform the RCU and to deploy customized
sensing- and network-related accelerators, offloading heavy and/or complex software
tasks to dedicated hardware blocks. After a brief introduction given by Section 3.1,
the remaining of this chapter is organized as follows: Section 3.2 proposes a hetero-
geneous architecture for IoT low-end devices and details the design choices that led
to its adoption. Section 3.3 discusses implementation of the CUTE mote, described
as a CUstomizable and Trustable End-device for the Internet of Things, which is
based on the proposed architecture. It also presents an embedded OS to be included

41

in the heterogeneous architecture and the associated porting and integrity efforts.
Moreover, an evaluation on the best software candidates that could be deployed on
the RCU is shown, where software components, processes and network-related tasks
of the OS are analyzed. Section 3.4 evaluates and characterizes the proposed offload-
ing candidates in terms of software-based computational resources, while Section 3.5
evaluates the proposed mote and the architecture in terms of hardware resources and
energy consumption for different power modes. Finally, Section 3.6 concludes this
chapter.

Related Publications

Ideas and findings presented in this chapter resulted in the following publications:

• T. Gomes, S. Pinto, T. Gomes, A. Tavares and J. Cabral, "Towards an FPGA-
based edge device for the Internet of Things," 2015 IEEE 20th Conference on
Emerging Technologies & Factory Automation (ETFA), Luxembourg, 2015,
pp. 1-4.

• T. Gomes, F. Salgado, A. Tavares and J. Cabral, "CUTE Mote, A CUstomiz-
able and Trustable End-device for the Internet of Things," in IEEE Sensors
Journal, vol.PP, no.99, pp.1-1.

42

3.1 Introduction

The ubiquitous connectivity of IoT networks brings many challenges when develop-
ing and designing wirelessly connected devices [6]. This technological trend to shift
from traditional WSN to IoT-enabled environments requires not only security- and
privacy-related mechanisms, but also solutions to handle the ever-growing amount
of data that is transferred over the network [4,5,45]. When compared to traditional
WSN, whose network architectures are mainly centralized and most of the times iso-
lated from the Internet, bringing such connectivity and subsequent interoperability
to the wireless nodes, as specified by the IoT-ARM network stack, is not straight-
forward. Although the IEEE 802.15.4 standard performing well in terms of energy,
due to its low-power transmissions and low data-rate links, it was not initially con-
ceived bearing in mind the IoT connectivity paradigm, which requires more data
to be transferred. Ideally, the low-end devices would be able to perform complex
tasks with the lowest energy consumption. Typical strategies consist in reducing
the amount of data transmitted over the network, both in terms of the packet size
(which can also benefit from data compression mechanisms) and the overall number
of required transmissions. In addition, reducing the node’s duty cycle and disabling
the radio transceiver when not in use, contributes for a better energy usage and
an extended node’s lifetime. Trading-off the overall energy consumption with the
performance and security capabilities of the low-budget wireless devices is quite
challenging, as these requirements usually point into opposite directions.

As seen in Section 1.4 of Chapter 1, recent solutions aim to tackle the performance
and power issues at the architectural level of the wireless mote. Such solutions
not only integrate a traditional MCU beside an IEEE 802.15.4 radio transceiver
but also rely on FPGA technology to assist the complex processing tasks. As also
seen, an architecture based on the combination of an MCU, an FPGA and a radio
transceiver, can play a key role in the future of sensor networks, in fields where pro-
cessing capabilities such as strong cryptographic algorithms, data aggregation, data
compression, among others, are major requirements. One of the biggest problems
previously pointed to FPGA technology was the high power consumption, which
was always one of the main constrains in traditional WSN solutions. However, in
the recent years, FPGA technology has been thoroughly addressing the energy con-
sumption problem, turning this technology into a great alternative for developing
customized systems applied to wireless sensing applications [103]. Low-power opti-
mized FPGA-based solutions are now able to enhance the computation of several

43

types of algorithms in terms of speed and energy consumption, when compared with
COTS microcontroller-based solutions for sensor nodes. Power consumption issues
related to the use of FPGA technology applied to WSN can be found in [154]. Based
on the principle that a radio transceiver can be completely turned off when it is not
in use, a full implementation of the PHY layer in hardware takes great advantages
of the Physical Layer Power Conservation (FLPC) principle. Other techniques such
as DVS applied to FPGA-based sensor nodes can help in reducing the overall power
consumption.

Following the approach of studied solutions and considering the previously identified
requirements, this chapter contributes to the state-of-the-art with: (1) a reconfig-
urable heterogeneous architecture for IoT low-end devices; (2) the integration of
the heterogeneous architecture in a customizable and trustable end-device (CUTE)
mote that targets IoT applications; (3) the integration of an embedded OS, with a
standardized communication stack, hosted by the MCU, that can benefit from hard-
ware acceleration; (4) a deep analysis on software-based network-related tasks to be
offloaded to hardware accelerators, aimed to integrate the RCU; (5) a performance,
energy and hardware resource evaluation of the proposed heterogeneous architecture
over the CUTE mote.

3.2 Heterogeneous Architectures

Designing heterogeneous motes for low-end wireless devices requires, at least, three
main components: (1) a radio transceiver, for handling and supporting data commu-
nication; (2) an RCU unit, used to perform dedicated hardware-assisted tasks and
deploy the acceleration parts; (3) an MCU, responsible to handle the software-based
tasks. When developing such systems, several aspects must be considered, such as
the interface between components (as well as the interaction between them) and
the respective functionalities performed by each one. These aspects must be taken
in consideration during the design phase following a hardware/software co-design
approach, focusing mainly on energy and performance trade-offs between software-
and hardware-based components.

Figure 3.1 depicts several design alternatives for deploying a heterogeneous archi-
tecture on the hardware platform selected in Chapter 2. In all architectural options,
there are connected sensors (S) and available memory (M) that can be used by the
MCU and/or the RCU, when needed. Typically, FPGA solutions do not include

44

IEEE 802.15.4
Radio

MS

RCU

MCU

(a)

RCU

MCU

IEEE 802.15.4
Radio

MS

(b)

RCU

MCU

IEEE 802.15.4
Radio

MS

(c)

RCU

MCU

IEEE 802.15.4
Radio

MS

(d)

RCU

MCU

IEEE 802.15.4
Radio

MS

(e)

RCU

MCU

IEEE 802.15.4
Radio

MS

(f)

Figure 3.1: Design alternatives for the heterogeneous architecture.

a radio transceiver to provide wireless connectivity and such component must be
attached (standalone or combined with other systems) to the architecture. Figure
3.1a corresponds to the design alternative that only includes the RCU attached to
an IEEE 802.15.4 radio transceiver, adopted by [107]. Since the radio mainly han-
dles the PHY and the MAC layers (which correspond to the wireless transmission,
RF modulations schemes and MAC Data frames), higher layers and corresponding
tasks must be deployed and performed by a soft-core MCU deployed on the RCU.
Since the IoT network stack comprises several layers with quite complex algorithms
and protocols, this would require a big amount of available programmable logic and
a long development time. Deploying a soft-core MCU on the RCU, as performed
and suggested by [108,109], should be also avoided since the MCU typically requires

45

also a considerable amount of available programmable logic to be deployed. This
architecture also requires the RCU to be active all the time in order to make the
MCU available to run the software-based application that performs the IoT network
stack operations, which would contribute to a higher energy consumption.

When a hard-core MCU is added to the architecture, the workload of the wireless
node can be efficiently distributed over the available components and the heterogene-
ity of the architecture truly explored. In Figure 3.1b, the RCU is placed between the
MCU and the IEEE 802.15.4 radio transceiver. This design decision is adopted by
the PowWow [106] mote architecture. The MCU is based on the MSP430 microcon-
troller and runs the low-level radio tasks (performed and provided by Contiki-OS)
along with other application-specific processes, while the RCU (based on a Igloo
FPGA) accelerates a 32-bit cyclic redundancy check (CRC) algorithm, used for er-
ror detection in the data-link layer of the PowWow software. In order to save energy,
the power saving schemes, such as the DVFS, are performed by the RCU. The design
option adopted by the Cookie WSN [105] (Figure 3.1c), places the MCU between
the RCU and the radio transceiver. This architecture relies on a wake-up radio
(operating at 915 MHz frequency) connected to the RCU to wake-up the sensor
node before activating other power consuming parts, e.g., the main IEEE 802.15.4
radio transceiver, when data exchange is required between two nodes. Low-power
management control is performed by the RCU, which uses the wake-up signal from
the attached wake-up radio. The MCU is used to serve the low-level radio and
application tasks. The bottleneck of these two last architectural designs is the com-
munication protocol needed between the RCU and the MCU that relies on GPIO pins
available from the MCU, which not only reduces the available input/output (I/O)
ports but it is also limited by the selected protocol bandwidth (e.g., SPI, I2C).

HaLoMote [104] implements the architecture depicted by Figure 3.1d. This approach
allows the node to temporarily shut down system components that are not in use,
e.g., the radio transceiver that is tightly coupled to the MCU in a SoC, which can
be easily suspended when not in use or during idle time. In the HaLoMote the inter-
processor communication, i.e., data sharing between the RCU and the MCU, is done
through a communication protocol that also uses GPIO pins. Because heavy compu-
tational tasks are performed by the RCU, only processed and aggregated data (to be
transmitted over the IEEE 802.15.4 radio transceiver) are transferred between the
RCU and the MCU using the memory attached to these blocks. Although providing
an energy efficient heterogeneous WSN mote, all the sensing tasks are performed
by the RCU, e.g., the processing algorithms and heavy computational loops, which

46

are application-specific and dictated by the application demands, turning the overall
solution not suitable for a wide range of solutions.

Figure 3.1e illustrates a different solution from the previous ones for implementing a
heterogeneous architecture for the low-end devices. The RCU is coupled to the hard-
core MCU on a single SoC solution and only the IEEE 802.15.4 radio transceiver
is externally attached. This SoC design allows the RCU to deploy customizable
hardware accelerators (available to the MCU as typical hardware peripherals) that
can be accessed through standard communication buses, widely used by well-known
MCU architectures. The DPM blocks are also added to the RCU to accomplish
the low-power requirements of the heterogeneous architecture. When strategically
placing the RCU between the MCU and the radio transceiver, all the wireless data
can be intercepted and processed by network accelerators before reaching or leaving
the MCU. This architectural design eases the handling of the low-level radio tasks,
typically performed by the MCU on the aforementioned architectures, by the RCU,
which connects the MCU by standard AMBA protocols. Since one of the main re-
search questions of this thesis is to explore the utilization of accelerators for low-end
IoT devices, this design choice is the one that allows special focus on the commu-
nication stack, while all the previous design options better fit application-specific
tasks. The ideal solution would implement the alternative architecture illustrated
by Figure 3.1f, which integrates every component on a single SoC. However, this
solution is not yet provided by any known commercially available device.

IEEE
802.15.4

Radio

 SmartFusion2 SoC

MCU (ARM Cortex-M3)

IoT-OS
IoT

Network Stack

Radio API

Peripheral Driver

RCU (FPGA Accelerators)

GPIO/BUS Interface(s)

Radio

Crypto
Block(s)

Data
Aggregator

IoT
Accelerator(s)

Power
Management

Power
Supply

Sensor (s)Memory

Figure 3.2: Heterogeneous Architecture for IoT low-end devices.

47

Figure 3.2 illustrates the proposed heterogeneous architecture based on design choices
of Figure 3.1e and deployed on the SmartFusion2 SoC. The ARM Cortex-M3 MCU
hosts the embedded OS with an embedded IoT-compliant network stack, which is
responsible for handling low-level radio tasks and low-priority application processes.
By its turn, the RCU integrates:

1. A DPM system, which is responsible to perform power saving schemes in order
to save energy, i.e., disabling the radio device or acceleration blocks when not
in use;

2. AMBA bus protocol standard interfaces for accessing different available mem-
ories and peripherals deployed on the FPGA;

3. Access to other external devices, such as sensors and the IEEE 802.15.4 radio
transceiver though standard peripheral communication protocols;

4. A Data aggregation accelerator, used for data gathering and data compression
before making it available to the OS;

5. Network-related accelerators for handling the message exchange between nodes
over the network;

6. Security-related accelerators for handling the encryption/decryption mecha-
nisms applied in data confidentiality, integrity and authenticity processes.

Since all the accelerators are available to the OS as standard peripherals (accessed by
internal buses), the deployment of such components on the RCU and its integration
with the OS becomes simple, through the utilization of low-level software device
drivers for memory-mapped peripheral access.

3.2.1 Securing the Architecture

Cyber security is one of the major concern when developing connected devices on the
network edge. Not only the functional requirements of the embedded applications
must be fulfilled, but they also must be achieved in a secured way. The SmartFusion2
SoC provides security mechanisms, which start during silicon manufacturing process
and continue through system development and deployment. Security is provided (in
a layered approach) at tree levels: (1) Secure Hardware, (2) Design Security and (3)
Data Security.

48

From the hardware point of view, the hardware and design security features com-
prise:

1. Overbuilding & Cloning Prevention system, that avoids any unauthorized
reproduction of the developed system;

2. Design Security system, that prevents deployed IP cores to be copied or
retrieved from the chip for reverse engineering purposes;

3. DPA Protection Counter Side Channel Attacks system, which helps in
protecting on-chip security keys and configuration bit streams, and tamper
detectors with respective countermeasures.

To help securing data and applications, Data Security mechanisms provide an ex-
tensive range of cryptographic hardware accelerators for secure algorithms (such as
AES, SHA, HMAC, ECDH, ECDSA) and security protocols (such as IPsec, SSL,
TLS, SSH). Since the Root of Trust starts from the silicon, all the provided secu-
rity mechanisms and accelerators are as well trusted. Security keys are stored using
a Physically Unclonable Function (PUF) mechanisms which makes them impossi-
ble to retrieve from the hardware. Moreover, the provided Secure Boot mechanism
protects the start-up code for processors and MCUs from intentional attacks. In
summary, this platform provides a robust solution for both Design Security, when
protecting the hardware and design IP is critical, and Data Security, when protecting
application data is necessary. Resorting such mechanisms, along with the proposed
heterogeneous architecture, a customizable and trustable mote for low-end devices
can be developed over the hardware platform.

3.3 CUTE Mote

For testing the proposed architecture on the hardware platform, the Customizable
and Trustable End-device (CUTE) mote was developed. The CUTE mote, which
deploys the heterogeneous architecture on the SmartFusion2 SoC, not only bene-
fits from the flexibility to add customized accelerators (network- and application-
specific) to the final system, but also from all the security features and services the
hardware platform provides. Such features and services on the network edge device
are mainly intended to be explored for Data Security and secure communication
protocols, e.g., the IPsec. The root of trust provided by the SmartFusion2 SoC
hardware platform eases the usage of this protocol as it provides built-in encryption

49

Figure 3.3: CUTE mote prototype.

keys that can be used by network nodes in a pre-shared mechanism or used in an
Internet Key Exchange (IKE) protocol.

Figure 3.3 depicts the first prototype of the CUTE mote, with the CC2520 IEEE
802.15.4 radio transceiver attached. This device, integrated in the CUTE mote, en-
dorses the hardware platform with the connectivity, interoperability and reachability
capabilities. Other devices (e.g., CC2538 and CC2650), which are supported by the
embedded OSes, will be used as comparison platforms to verify the OS behavior
and validate the developed solution (architecture and accelerators). At this stage of
development, the prototype only utilizes the energy provided by the platform, thus
energy supply systems are not yet developed.

3.3.1 Adding an Embedded OS

As seen in Chapter 2, from the available embedded OSes [124] for low-end resource
constrained devices, Contiki-OS and RIOT are the most suitable to run on the

50

CUTE mote, as they both provide support for the ARM Cortex-M3 architecture
with a very small footprint IoT-enabled network stack. The Contiki-OS implements
the µIP [155] while RIOT inherited the OpenWSN [156] stack. Since they mainly
differ on their kernel implementation (monolithic with a cooperative scheduler for
Contiki-OS, while RIOT implements a preemptive tickless microkernel), they cover
a wide range of applications where both can be used, according to application re-
quirements. Other embedded OSes would fit the selected platform, based both on
monolithic and on microkernel implementations, as they also support the micro-
controller architecture (ARM Cortex-M3) and provide the low size network stack.
However, Contiki-OS and RIOT prime for their popularity in good on-line support
and development communities. Contiki-OS has one main advantage over RIOT,
it provides the Cooja simulator for testing any parameters or changes to the net-
work topology and/or stack protocols. For this reason, the first choice goes towards
Contiki-OS to run on the heterogeneous architecture of the CUTE mote.

Porting Contiki-OS

Despite of Contiki-OS supporting several hardware platforms and architectures,
there is no direct support for the selected hardware platform, therefore a software
porting is necessary. Although providing an easy development, Contiki-OS is set
available as open-source and independent from any development tools, therefore,
does not give support or integration to any specific integrated development environ-
ment (IDE) or framework. This hampers the setup of new development environments
with code debugging support and the generation of the final binary file. Further-
more, using 3rd-parties software with hybrid platforms such as the SmartFusion2 is
not straightforward, since it is necessary, when creating soft-hardware peripherals
on the FPGA, to generate the correspondent SoC configuration files and respec-
tive firmware artifacts, both for the FPGA and the MSS. These configuration files
include software libraries, drivers and different memory setups.

Since Microsemi provides its own Eclipse-based IDE with full debugging support
(Microsemi SoftConsole IDE v3.4), the porting was carried out over the firmware
provided and generated from the SoC designing tool suite (Libero SoC v11.7). The
firmware artifacts include startup code for the ARM Cortex-M3 microcontroller,
hardware abstraction layer (HAL) code, linker-script files, as well as drivers for
the hardware peripherals added to the SoC configuration. On the folders added
to the Contiki-OS directory structure, it was needed to provide an API to remap

51

OS system calls to the platform and CPU dependent libraries generated by the
SoC designing tool. Support for external devices, such as the IEEE 802.15.4 radio
transceiver, requires a different implementation and it will be later detailed. From
the Libero tool, two directories are created: (1) CONTIKI_MSS_CM3_app folder, where
the Contiki-OS source-code is placed and (2) CONTIKI_MSS_CM3_hw_platform folder,
where the generated SoC firmware can be found.

Inside the Contiki-OS directory structure, there are two important folders (and their
corresponding files), that must be created:

1. contiki/cpu/newcpu, where the microcontroller-dependent code and libraries
must be placed:

• Hardware libraries: The peripheral drivers, USB support, etc., remapped
to the MSS libraries on the CONTIKI_MSS_CM3_hw_platform folder;

• Clock: The Contiki-OS system clock driver. Remapped to the corre-
sponding MSS libraries, which uses available timers to perform time-
dependent operations;

• rtimer: Contiki-OS requires a high-precision timer for timing-critical
features. This implementation allocates one dedicated hardware timer;

• Startup code, linker scripts and makefiles: In opposite to the
original development style, these are now generated by the IDE and
Libero tools, and later changed by the user according to the application
requirements, e.g., stack configuration (IPv4 or IPv6) and main applica-
tion behavior;

• Watchdog: Watchdog timer library remapped to the MSS watchdog sup-
port, which is necessary to compile and properly run the Contiki-OS;

• Interrupts: Corresponding handlers for the respective interrupt source,
e.g., GPIO and UART;

• Node MAC address & node ID: Since the platform has no built-in IEEE
802.15.4 MAC interface, it is necessary to generate a node MAC address
and a node ID (both required by Contiki-OS) to set in the IEEE 802.15.4
radio. This number was retrieved from the unique board serial number,
which is provided by the on-chip services. Since it is built-in on the
hardware, it is unique for every SoC and can never be changed.

52

2. contiki/platform/newplatform, which contains platform specific code:

• main.c: Platform dependent main file which initializes the entire system;

• hardware platform peripherals: External peripherals, such as LEDs,
are remapped to the corresponding MSS GPIO library;

• Sensors: Software libraries used for push buttons and other connected
sensors. Buttons are connected to the GPIO peripheral and are consid-
ered as sensors to Contiki-OS;

• contiki-conf.h file: Consists of the platform dependent configuration
file that contains all the system setup and all customized network stack
parameters, such as the RF channel in use (RF_CHANNEL), the IEEE
personal area network (PAN) identifier (IEEE802154_CONF_PANID), de-
vice routing support (UIP_CONF_ROUTER), etc.;

• Radio: The low-level driver support to access and configure an IEEE
802.15.4 radio transceiver.

Although the multi-thread limitation for the ARM Cortex-M3 is no longer present
in Contiki-OS, at this stage of development it was still not available, thus, it was
not implemented.

Contiki’s Radio Driver

The CC2520 provides an SPI interface for connecting the host MCU. Since the RCU
interfaces the MCU and the radio transceiver, an SPI IP core provided by Microsemi
was deployed on the RCU, instead of using the hard SPI peripheral present on the
SoC. This design option will allow to deploy accelerators with network-related func-
tions to execute on the RCU, which directly interfaces the radio via the provided
SPI IP core. By its turn, the MCU interfaces the SPI IP core via the Advanced
Peripheral Bus (APB) 3 protocol. Regarding the SoC configuration, which is ex-
ported from Libero SoC, it includes on the CONTIKI_MSS_CM3_hw_platform folder
the core_spi folder, which contains the driver for accessing the deployed SPI core.
The provided API is then remapped, as done with previous peripheral drivers such
as the LEDs and push buttons, with the corresponding Contiki-OS system calls for
accessing the IEEE 802.15.4 radio transceiver.

53

From now on, this setup is set as the native solution, which is all software-based,
for the Microsemi SmartFusion2 SoC and the selected hardware platform. Future
software analysis and comparisons with deployed accelerators will always be related
to this setup. Further accelerators, which are meant to be deployed as customized
hardware peripherals on the architecture’s RCU, will also need their own device
drivers to enable access to their data buffers and configuration registers. Such drivers
will be later added to the Contiki-OS software stack. Ideally, if the accelerators only
comprise network-related tasks, only modifications ot the radio driver are needed.
This OS agnostic implementation allows an easy integration with other IoT-enabled
embedded OSes, requiring only minimal modifications to the device drivers that
interface the IEEE 802.15.4 radio. Due to the efforts required to port an OS to the
selected hardware platform tool-chain, and since the results will take the same effect
on any OS, RIOT was, at this time, left out of the research work of this thesis.

3.3.2 Adding Hardware Accelerators

Traditional sensor nodes that rely on FPGA (either based on a combination of mi-
crocontroller and FPGA or as a standalone platform) mainly take benefit from such
technology on sensing-related tasks, like sensor data collecting, data aggregation
and/or compression, and data protection. These solutions, by leveraging the avail-
able FPGA to enhance the computation of heavy tasks and algorithms, can offer
even-more optimized sensors nodes in terms of speed and overall power consump-
tion. However, their tasks are highly customized and usually application-specific,
thus, not suitable to every connected node. Connecting such devices to the Internet,
adds new requirements to the node, such as the communication stack (or part of it),
needed to provide the Connectivity, Interoperability and the Reachability require-
ments. In resource-constrained devices, such a network stack introduces significant
overhead in terms of energy consumption and MCU processing time. This is due to
the nature of radio communications, where a device with an enabled radio receiver
will be able to receive and decode transmissions from all devices in range that use
the same standard and operate on the same channel, along with interference from
other sources.

For every incoming frame, it is necessary to allocate resources for retrieving the frame
from the radio transceiver and processing the data on each layer until it reaches its
final destination. Reducing these overheads, by accelerating network related tasks
can result in more efficient wireless nodes, and since the stack is standardized, such

54

accelerators can be used by any connected node that relies on heterogeneous ar-
chitectures. Because not everything is suitable to be hardware-accelerated, it is
necessary to evaluate, following a hardware/software co-design approach, each layer
of the communication stack, as there are features/tasks suitable to be offloaded
to dedicated accelerators, while others might not. Such approach requires a deep
analysis on the OS network stack (which can also benefit from a cross-layer design
optimization), regarding standard operations and protocols. It also provides agnos-
ticism to the solution, as the offloaded tasks are turned available in the form of
soft-hardware peripherals, accessed through standard communication buses. This
way other IoT-enabled OSes can take advantage of such features by only performing
slight modifications to the IEEE 802.15.4 radio driver.

Following the network stack bottom-up, several offloading candidates can be iden-
tified. From the MAC to the application, going through the network and transport
layers (6LoWPAN and TCP/IP), which may require security mechanisms such as
IPsec for authentication, data encryption, and data integrity, the processing of an
IEEE 802.15.4 Data frame comprises several operations and verification steps that
can be simplified and better performed in hardware.

MAC Sub-layer

The IEEE 802.15.4 standard already specifies some tasks that are usually accelerated
by compliant devices and which can be found in most of the available COTS radio
transceivers, such as the CC2420, CC2530 and the CC2538 integrating radio. Such
tasks comprise mainly the automatic acknowledgment (ACK) and filtering of the
received frames, which rejects frames that are not of interest to the receiving device.
The filtering task is performed at three levels. The first level is related to the frame
integrity, which rejects malformed frames or with errors, mainly caused by low-
quality links at the PHY layer. The second level corresponds to the promiscuous
mode operation, which specifies that a device operating in this mode shall forward
all the received frames (after passing the first filter) to the upper layers without
applying further filtering rules. The Third-Level of filtering, takes action when the
frame passes the first level and the devices operates in non-promiscuous mode. Such
filtering comprises the following verifications:

• The Frame Type field shall not contain a reserved frame type;

• The Frame Version field shall not contain a reserved value;

55

• The destination PAN identifier shall match the macPANId or shall be the
broadcast PAN identifier, 0xFFFF;

• If a short destination address is being used, it shall match either the node’s
macShortAddress field or the broadcast address. Otherwise, if an extended des-
tination address is used instead, it shall only match the macExtendedAddress
value;

• If a Beacon frame is received, the source PAN identifier must match the mac-
PANId, unless the macPANId is the broadcast PAN identifier (0xFFFF) and
the frame must be accepted;

• If a data or command frame is received and only the source addressing fields are
present, the frame must be only accepted if the device is the PAN coordinator
and the PAN identifier matches the macPANId value;

If any of the filtering rules, at any filtering level, are not satisfied, the MAC sublayer
shall discard the incoming frame without any additional processing. Otherwise, the
frame must be accepted for further processing and considered valid. If the received
frame is an ACK request, the MAC sublayer shall send an ACK frame. At last, if
the valid frame corresponds to a data frame, the MAC sublayer must be delivered
to the next higher layer.

Aiming to efficiently reduce some overhead from the MCU, such filtering features
are full or partially implemented by some IEEE 802.15.4 radio transceivers, e.g., the
CC2520, used in the architecture. However, since not all the transceivers provide
filtering and processing hardware blocks for the IEEE 802.15.4 frames, by default
the Contiki-OS still performs these verifications. Moreover, some other features are
provided by the Contiki-OS and not yet presented in any radio transceiver, such as
the verification and detection of multiple receptions of the same frame by a device.

Network Layer

Contrarily to the MAC layer, all the processing of a received IPv6 packet on the
Network layer is purely performed in software. After the packet is retrieved and
restored by the 6LoWPAN adaptation layer, such tasks mainly encompass the fol-
lowing procedure:

• The first packet inspection corresponds to IP address checking and packet
header checksum. If the destination IP address of the incoming packet does

56

not match any of the local IP addresses, or if the header checksum mismatches,
the packet must be dropped;

• The second packet inspection relates to the IP fragment reassembly feature.
If packet reassembly is in use, the incoming fragment is copied into the right
place in the buffer and a bit map is used to keep track of which fragments
have been received. When the packet is reassembled, the resulting IP packet
is ready to be passed to the Transport layer. If all the fragments are not
received within a specified time frame, the packet must be discarded. This
mechanism avoids the system to run out of memory and prevents low-system
availability to store and process other incoming IP packets;

• If the packet is a broadcast or multicast packet, it shall be handled accordingly.
Currently, the Contiki-OS µIP stack supports receiving broadcast packets as
well as sending multicast messages for handling vital network protocols, such
as the multicast Domain Name System (mDNS). Joining multicast groups and
receiving non-local multicast packets is, however, not currently supported;

• If the packet corresponds to an ICMP version 6 message, which main use is the
echo mechanism implemented by the PING application, a reply message must
be sent to the requesting node. Such feature is implemented by Contiki-OS in
a very simply manner, by mainly swapping the source and destination IPv6
addresses and rewriting the ICMP header with the Echo-Reply message type,
forwarding it next back to the IEEE 802.15.4 radio interface.

Further protocol processing, such as the RPL, is still performed at this layer of the
stack, however the received packets must pass through these previous verifications.
Due to complexity reasons, the RPL protocol handling is left to be performed by
the Contiki-OS, thus it is considered to be out of the scope of this thesis.

As previously mentioned, the IPv6 support on low-end devices is provided by the
6LoWPAN protocol, which defines an adaptation layer to enable IPv6 packets to
be carried by IEEE 802.15.4 data frames. However, retrieving IPv6 packets from
IEEE 802.15.4 data frames is not straightforward and requires additional process-
ing as most of the fields must be retrieved and calculated following a set of rules
provided by the robust IPv6 header compression mechanism. Such compression is
needed mainly due to the Maximum Transmission Unit (MTU) size limitation for
IPv6 packets over IEEE 802.15.4 data frames, which corresponds to 1280 octets.
Hence, far from the maximum PHY layer packet size of 127 octets specified by the
IEEE 802.15.4 standard. With the added headers needed by the IEEE 802.15.4 Data

57

frames and also additional features such as Link-layer security, the available payload
to carry an IPv6 packet is now reduced, varying from 102 to 81 octets. This leads
to packet fragmentation and reassembly requirements, aided by the Internet Proto-
col Header Compression (IPHC) mechanism. For this purpose, an IPHC compres-
sion/decompression engine is needed and also implemented by the Contiki-OS. Such
mechanism is supported by the HC1, HC0 and IPv6 standard specifications [51].
When a packet is required to be sent, it is compressed at its maximum level, ac-
cording to the network topology and settings, as well as the protocol in use. When
a packet is received, it must be decompressed and all the IPv6 fields retrieved. The
above mentioned features can be good candidates to be offloaded from the Contiki-
OS to dedicated hardware accelerators. Thus, it is required to evaluate them in
terms of performance and load that can be alleviated from the MCU.

Transport Layer

In the Contiki-OS µIP stack, the Transport layer, represented by the TCP and
UDP, is tightly coupled to the Network layer for optimization purposes. Moreover,
because most of the services require a pair of remote/local ports to bind connections
between the local and remote hosts, such verifications perform better at this level
of the stack. For instance, in a simple UDP connection, after the packet being
transferred from the Network layer, the paired local/remote ports must be verified
and if the received packet (which specifies an UDP payload) does not match the
local port, it must be dropped. That is to say, if a valid IPv6 packet is received
with all matching IP addresses and protocols in use, it can still be dropped if there
are no active connections on the listening ports between the host and remote nodes.
Such situation occurs when unintentionally malformed packets are received by a
node or in a DoS [54] attack scenario. Such verifications can also be evaluated as
they represent a good candidate to be deployed in hardware. As TCP encompasses
a more complex process (e.g., flow and congestion control), it is left to be performed
by the Contiki-OS and only the port verification process is going to be analyzed.

Security-dependent Features

When the network requires security features, such as data encryption, security mech-
anisms with strong cryptographic algorithms must be implemented. In the current
state-of-art, IPsec is the standard method to secure communications over the Inter-
net. Despite being a viable option [157], on its original form cannot be deployed in

58

resource-constrained devices, mainly due to its heavy processing requirements. A
Lightweight version of IPsec [158], was proposed and deployed under the Contiki-
OS network security layer. According to its authors, despite performing well in
low-end devices, such mechanism can still be highly improved when supported by
hardware. This is due to the security algorithms, such as the Advanced Encryption
Standard (AES), which requires heavy computations. A hardware-based implemen-
tation of such features are way faster than pure software implementations. According
to [159], when processing 512-byte datagrams over a single hop, the overhead of pure
software authentication header is 65 % which decreases to 12 % with the help of a
cryptographic co-processor.

Application Layer

Because the use of a standardized communication stack also specifies application
protocols to be used, such as the CoAP and MQTT, they can also be fully or
partially extended to hardware-assisted blocks. This is however, out of the scope of
this thesis.

Qualitative Analysis

Table 3.1: Qualitative analysis between heterogeneous solutions.

HaloMote [104]Cookies WSN [105]PowWow [106] CUTE mote

Application Support bare metal bare metal Contiki-OS Contiki-OS

Real-Time Support No No No U/D

IoT-ARM Stack No No Yes Yes

Radio IEEE 802.15.4 AT256FRTR2 CC2420 CC2420 CC2520

MCU Arch. 8-bit AVR TI MSP430 TI MSP430 32-bit ARMv7-M

Acceleration App-specific App-specific,
crypto-engines

App-specific App-specific,
crypto-engines

Net. Acceleration MAC filter MAC filter MAC filter,
ARQ & FEC

MAC filter,
ARQ & FEC

Advanced Net.

Acceleration
No No No

MAC, IPv6,

IPsec, TCP/UDP

Device Security No No No Yes

Data Security N/P ECDSA, SH-1, MD5 N/P Yes 1

1Both algorithms and protocols: AES, SHA, HMAC, ECDH, ECDSA, IPsec, SSL, TLS, SSH.

59

Table 3.1 summarizes a qualitative analysis between the heterogeneous architectures
previously identified and discussed in Chapter 1 and the CUTE mote, displaying
their differences on the same features. In this analysis the architectural options
that include a soft-core MCU, i.e., the contributions given by Vera-Salas et al. [107],
Nyländen et al. [108] and Stelte [109] have been discarded, as they are not suitable for
the desired solution. Concerning the RT support on the CUTE mote, it is currently
under development (U/D) as the RIOT is being prepared to be also supported,
beside the Contiki-OS. In regard to the other parameters, the CUTE mote clearly
highlights its superiority.

3.4 Contiki-OS Evaluation

In this preliminary phase, it was evaluated the impact of the verification and pro-
cessing of a received IEEE 802.15.4 Data frame and the subsequent payload con-
taining a 6LoWPAN frame, used to retrieved the corresponding IPv6 packet. The
performed experiments mainly concern the time taken by the software-based tasks
and their impact on the overall system load. That is to say, the system availability
when performing such tasks in the most important network-related operations, such
as the reception of an IPv6 packet and further accepting/rejection at the Network
and Transport layers, according to the standard requirements such as the address
filtering and IPv6 packet compression.

3.4.1 API Evaluation

For the API valuation, it was measured the execution time taken from reading a
received IEEE 802.15.4 Mac Protocol Data Unit (MPDU) from the radio transceiver
until it is delivered to the Network layer. Next, the same experiment was repeated for
the Network layer, measuring the execution time taken from reading a IEEE 802.15.4
MPDU from the MAC layer, until is delivered to the Network layer. Such execution
time also includes the Data frame processing by the 6LoWPAN adaptation layer,
needed to retrieve the IPv6 packet from the IEEE 802.15.4 Data frame. The overhead
due to the OS was also taken in consideration. It consists of: (1) interrupting the
OS execution to register a new event; (2) run pending OS processes; (3) run the
process responsible to transfer the packet from the radio RX buffer to the MAC and
Network layers. The performance evaluation was calculated based on the average

60

time of receiving 1000 valid packets from a trusted sender, with a packet sending
rate (PSR) of 8 packet per second (pkt/s).

82613

78156

55000 60000 65000 70000 75000 80000 85000 90000

MAC

IPv6

Clock Cycles

MAC

IPv6

Figure 3.4: MAC and IPv6 API evaluation.

From the given results, depicted in Figure 3.4, the number of clock cycles needed to
process and filter one received MPDU is, on average, 82613. On the other hand, to
process an IPv6 packet the number of needed clock cycles is, on average, 78156. Such
results can be possibly improved if the Contiki-OS could resort hardware accelerators
to help in performing the packet filtering tasks and further processing of the received
IEEE 802.15.4 data frames (as performed at the radio transceiver level), as well as
subsequent IPv6 packet extraction, processing and verification.

3.4.2 Thread-Metric Evaluation

This test consists in running the cooperative context switching benchmark from the
Thread-Metric Benchmark Suite [152] in order to evaluate how the software-based
filtering and processing tasks, at MAC and Network layers of the communication
stack, impact the normal OS execution. This benchmark consists of creating five
Contiki-OS processes, which output a score value which can represent the systems
availability. A higher score denotes more system availability to execute application
tasks, rather than OS services. On the other hand, a lower score represents less
availability as the central processing unit (CPU) is busy processing scheduled OS
services/events.

Figure 3.5a and Figure 3.5b depict the benchmark result for the filtering and pro-
cessing tasks of an IEEE 802.15.4 data frame (and the resulting IPv6 packet) for
the accepting and rejecting situations. This means, when a packet is received and

61

50000

100000

150000

200000

250000

300000

350000

400000

0 4 8 16 32 64 128 256

Th
re

ad
-M

e
tr

ic
 S

co
re

UDP Packets/s

MAC Layer

Accept Reject

(a) Software-based packet processing: MAC Layer.

50000

100000

150000

200000

250000

300000

350000

400000

0 4 8 16 32 64 128 256

Th
re

ad
-M

e
tr

ic
 S

co
re

UDP Packets/s

Network Layer

Accept Reject

(b) Software-based packet processing: Network Layer.

Figure 3.5: Thread-Metric evaluation.

intended to the CUTE mote, it is processed and accepted to be delivered to upper
layers, otherwise it is discarded. The tests were performed with a simple network
setup consisting of one node exchanging data with the CUTE mote through a simple
UDP connection. Data was sent at different PSR values (4, 8, 16, 32, 64, 128 and
256 pkt/s), both for the accepting and rejecting situations. In order to cause the

62

packet reject situation, the destination IP was set to be a different one, rather than
the CUTE mote address. A real-case network topology, with more than only two
nodes, was implemented and better explained later in Chapter 4.

For each received packet, the OS must trigger and register new events into the
scheduler. Since the Contiki-OS implements an event-based kernel, the scheduler
polls every time all the active system processes, running only those which associated
events were triggered, thus, increasing the number of events, the system’s availability
is expected to decrease. Also, enabling new events to be processed by the OS
will decrease the system’s predictability, as running the new scheduled processes
responsible to read and filter any invalid MPDU will delay the execution of other
system processes.

From the obtained results, for both analyzed layers, it can be concluded that for
a PSR of 0 pkt/s, the score is at its highest level, as there are no packets being
received by the node. Increasing the PSR the score tends to decrease, since the OS
is busy attending the active system processes to handle the incoming MPDU frames
and the corresponding IPv6 packets. The received IPv6 packets intended to another
destination are meant to be discarded, thus, the benchmark score is higher than the
score when the packets are to be accepted and processed by upper layers. Offloading
such tasks to the RCU, would not only improve the score when the packets are meant
to be accepted (taking benefit from the hardware acceleration), but the benchmark
score is expected to be at its highest level when the packets are meant to be rejected.
This is because the OS will not create new processes for the newly arrived IEEE
802.15.4 frames, as they are processed in hardware. Despite both graphics having
the same look, the score is even lower when the processing is needed at the Network
layer. This is mainly due to the overhead introduced by the 6LoWPAN adaptation
layer and the heavy task performed by the IPHC mechanism.

3.5 CUTE Mote Power Characterization

Microsemi’s flash-based architectures offer a very low-power solution for low duty
cycle applications, with zero in-rush power (during power up) and very low power
operations due to the Flash Freeze technology on the SmartFusion2 SoC family. This
enables the CUTE mote to be used in typical very low-power applications, benefiting
from all the advantages the deployed heterogeneous architecture can provide. The
Flash Freeze power mode consists of an ultra low-power standby mode that sets the

63

FPGA fabric in a low-power quiescent state in which the state of the internal large
static random-access memory (LSRAM), µRAM, and flip-flops are preserved. Entry
into Flash Freeze typically occurs in less than 100 µs and exiting from this mode to
I/O’s operational typically occurs in less than 200 µs. This can be simply done by
using a system service API call to the system controller and/or using any external
trigger.

Enabling this technology into the FPGA fabric, combined with the ARM Cortex-M3
low-power modes, results in a great design choice for heterogeneous low-power motes
that can directly compete with typical COTS solutions based on homogeneous WSN
sensor nodes. The Flash Freeze control can be integrated into the CUTE mote and
Contiki-OS in applications that only operate reactively or periodically. This can be
done in the following ways:

1. Integration of wake-up radios in the heterogeneous architecture;

2. Activation of radio duty cycling protocols in Contiki-OS;

3. Take benefit from the Contiki’s low-power mode operation.

Wake-up Radios

The design option of integrating wake-up radios into the architecture, such as used
by the CookieWSN [105], can be applied to trigger the Flash Freeze control module.
This way the system keeps operating into a very low power state while there are no
communications or tasks needed to be performed by the node. When a node desires
to communicate, the wake-up radio will enable the regular operation mode again.

Radio Duty Cycling Protocols

Low-power radio hardware is not always enough to fulfill the low power requirements
of some applications. Aiming to promote energy saving modes, Contiki-OS provides
several duty cycling mechanisms that can be used to turn off the IEEE 802.15.4 radio
transceiver when not in use. The purpose of a power-saving duty cycling protocol is
to keep the radio disabled, while providing enough rendezvous points for two nodes
to be able to communicate with each other. Such rendezvous points in a duty cycling
protocol can be achieved in several ways, but usually a time-synchronized mode is
preferred.

64

In Contiki-OS, such RDC protocols can be found at the MAC layer of the stack,
more precisely in a sub-layer called RDC layer. By default Contiki-OS provides
three duty cycling MAC protocols: ContikiMAC [137], X-MAC [138] and LPP [160].
ContikiMAC is a low-power listening-based protocol, such as the B-MAC [161], but
with better power efficiency. Contiki’s X-MAC is based on the original X-MAC
protocol, but with a significant set of improvements and extensions which contributes
with reduced power consumption and helps in maintain good network conditions.
Contiki’s Low-Power Probing (LPP) is based on the original LPP protocol but with
enhancements that improve power consumption, as well as provide mechanisms for
sending broadcast data.

Aiming to save energy, the RDC layer tackles only the radio transceiver, controlling
its utilization in the wireless network. In most of IoT applications, the device only
enters into regular operation modes when the radio needs to send or receive messages.
Therefore, the overall energy consumption on the mote can be reduced if during
the non-operational modes the device enters into the Flash Freeze mode, going
periodically to the operation mode during the radio active time according to the RDC
protocol in use. Despite of Contiki-OS providing such energy saving mechanisms at
the radio level, for the testing purposes of the deployed accelerators, the RDC layer
is disabled and the CSMA/CA mode (in the radio transceiver) is used instead.

Contiki-OS Low-power Operation Modes

Contiki-OS provides an API to enable low-power modes when all pending OS events
are serviced. This is done by calling lpm_enter() on every scheduler run. Low-
power modes are dependent from the MCU architecture and the device’s platform,
thus, it must be implemented into Contiki-OS accordingly. When such modes are
activated, the OS goes to the lowest supported power mode. In the CUTE mote
hardware platform, such mode corresponds to the Flash Freeze sleep mode. Waking-
up the system from this mode is done by resorting a sleep timer, which is internally
controlled by the Contiki-OS according to the scheduler behavior.

Power Characterization

Table 3.2 summarizes the power characterization of the CUTE mote with two main
low-power modes, active mode and Flash Freeze mode, running at 32 MHz. When
running in normal operation the power consumption is, on average, 56.52 mW and

65

Table 3.2: CUTE mote hardware characterization.

Parameter Value
SoC SmartFusion2 SoC FPGA 90K LE
MCU Architecture 32-bit
Instruction Set Cortex-M3
Clock (MHz) 32
VCC (V) 1.2
PFlashFreeze (mW) 8.23
Pactive (mW) 56.52
IPv6 packet soft-processing Accept Reject

taverage (µs) 254 292
Paverage (mW) 56.52 56.52
Eaverage (nJ) 14356 16503

when the Flash Freeze mode is activated this value drops to 8.23 mW. Also, the
energy needed to process one IPv6 packet in software is on average 14356 nJ and
16503 nJ for the accepting and rejecting situations, respectively. After offloading
such tasks to hardware the energy consumption is expected to decrease. Since the
duration of the active and Flash Freeze modes depends on the mote configuration
and application requirements, the overall energy consumption cannot be directly
calculated. Such task can only be performed after the CUTE mote being used in a
real application scenario and the network requirements well defined.

3.6 Conclusions

This chapter proposed and described a heterogeneous architecture for endpoint de-
vices in the IoT edge network. The architecture combined with the SmartFusion2
hardware platform forms the CUTE mote, which is described as a customizable and
trustable end-device, specially tailored for low-power IoT applications. The architec-
ture explores its heterogeneity by combining an MCU, which runs the Contiki-OS,
and an RCU attached to an IEEE 802.15.4 radio transceiver. The RCU allows
the development of accelerators for the network stack which can be used by the
Contiki-OS for energy saving and performance purposes.

Despite these evaluations are important to characterize the CUTE mote and test
the feasibility of the solution, the main focus of this thesis concerns the evaluation of
accelerators that can be securely deployed on the RCU of the proposed architecture,

66

which can benefit from network-related accelerators at two levels: (1) by accelerating
complex network-related tasks; (2) subsequent reduced system load by offloading
software-based tasks to the accelerators. Since the main processing time concerns
the processing of IEEE 802.15.4 Data frames and subsequent IPv6 packet processing,
the evaluations are to be performed when the CUTE mote is in active mode, thus
the mote will not enter low-power modes, such as the Flash Freeze. Security-related
requirements are provided by the hardware platform, which complies with all the
concerns previously discussed in Chapter 1. In the next chapters, the evaluated tasks
and processes are deployed and tested on the RCU. This will help to understand
the benefits of offloading selected tasks to hardware by comparing their performance
with the software-based approach.

67

68

Chapter 4
Accelerating the MAC Sub-layer

The 6LoWPAN enables traditional WSN devices to be IP-connected, allowing IPv6
packets to be sent and received over IEEE 802.15.4-based networks. However, bring-
ing IPv6 connectivity to low-end wireless sensor nodes leads to considerable device
resources utilization, e.g., CPU and energy, caused by the increased amount of data
transferred over the network that needs to be handled. In order to tackle and
reduce these overheads, this chapter proposes the MAC layer accelerator (MLA),
an IEEE 802.15.4 hardware accelerator to be deployed on the heterogeneous archi-
tecture presented in the Chapter 3, which mainly targets endpoint devices in the
IoT network. Specially tailored for handling the MAC Data frames, the MLA im-
plements the First-, Second- and Third-level of filtering, as specified by the IEEE
802.15.4 standard, performing all the processing and filtering of a received MPDU
before it reaches the OS network stack. The MLA also supports extra features, such
as the detection of multiple receptions of the same frame.

This chapter is structured as follows: Section 4.1 gives a brief overview over the IEEE
802.15.4 standard and its evolution over the years, while Section 4.2 presents the
protocol Data frame, which is the main targeted component of the MLA. Afterwards,
the MLA and its internal modules and functionalities are presented and explained in
Section 4.3. The achieved results presented in Section 4.4, obtained from a typical
IoT network scenario, show the benefits of including such an accelerator on the RCU
of the heterogeneous architecture, offering nearly 17% of overhead reduction. All
filtering functionalities are executed by the accelerator in order to discard unneeded
frames, which avoids unnecessary interrupts to the OS and increases the system
availability up to 59%. Finally, Section 4.5, concludes this chapter.

69

Related Publications

Ideas and findings presented in this chapter resulted in the following publication:

• T. Gomes, S. Pinto, F. Salgado, A. Tavares and J. Cabral, "Building IEEE
802.15.4 Accelerators for Heterogeneous Wireless Sensor Nodes," in IEEE
Sensors Letters, vol. 1, no. 1, pp. 1.4, Feb. 2017.

70

4.1 Introduction

Maintained by the IEEE 802.15 working group [162], the IEEE 802.15.4 standard
specifies the PHY and the MAC layers for LR-WPAN. With a high maturity level
and widely used by technologies like ZigBee-1.0 [163] and -2006 [164], it has become
the de facto standard for the MAC layer. It is also adopted by the IoT-ARM commu-
nication stack and other IoT reference architectures, providing wireless connectivity
and promoting interoperability for IoT low-end devices in the edge network.

Since it was defined and released in 2003, the IEEE 802.15.4 standard [165] has
been continually facing revisions and improvements over the years, always with the
goal to provide a framework to the communication protocols of emerging wireless
technologies, both at the MAC and PHY layers. Aiming to embrace a wide range of
application scenarios, a broad number of MAC protocols [166] have been proposed.
Regarding the way they access the medium, such protocols can be classified into two
different categories:

1. Contention-Based protocols, like carrier-sense multiple access (CSMA) and
Multiple Access with Collision Avoidance (MACA), where nodes contend for
the channel in various ways in order to acquire the channel and transmit data;

2. Contention-Free MAC Protocols, like the time division multiple access
(TDMA) and code division multiple access (CDMA), where nodes preallocate
transmission resources in the network.

Contention-Based protocols are characterized for having simple implementations,
however, they are weak in terms of scalability, mainly caused by the increase number
of collisions when the number of participating nodes increases. On the other hand,
Contention-Free protocols provide good scalability as they eliminate the issue of
collisions by slotting the channel resources. However, they are more complex in
terms of protocol setup and implementation. These improvements and features at
the MAC layer only define different ways by which the shared medium is accessed
and controlled. Contiki-OS, as seen in Chapter 2 and Chapter 3, supports and
provides MAC protocols in these two categories.

On the recently updated version of the IEEE 802.15.4-2015 standard [167], the Time
Synchronized Channel Hopping (TSCH) protocol (maintained by the IEEE 802.15.4e
working group) was added to the PHY layer. It uses a channel-hopping mechanism
that aims to tackle multi-path fading and external interference problems. Initially

71

developed and commercialize by Dust Networks [168], this protocol, called Time
Synchronized Mesh Protocol (TSMP) [169] is now part of the standard and mainly
targets the challenges brought by IoT-based networks, such as the high volumes of
exchanged data and the large number of participating devices. In turn, the TSCH
originated the late 6top Protocol (6P) [170], which enables distributed scheduling
over 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e) networks, showing that
it is possible to provide both high reliability and energy-efficiency to the low-power
smart devices. These improvements only tackle the PHY layer.

Commercial Off-The-Shelf Solutions

From available COTS solutions, several low-power IEEE 802.15.4 compliant radio
systems already implement hardware functionalities that aim to improve the overall
system performance of the network node. Implementing both the PHY and MAC
features, these solutions enable low-power connectivity among smart IoT devices.
The CC2520 [171], an IEEE 802.15.4 -2006 compliant radio transceiver from Texas
Instruments, available standalone or included on the latest SoC devices with single
or multi-standard wireless support, implements a very low-power PHY layer with an
ultra-low current consumption on the transmitting and receiving modes. Concerning
the MAC layer, it implements the Microcontroller Support system, which integrates
critical portions of the RX requirements from the IEEE 802.15.4-2003 and -2006
standard, in dedicated hardware acceleration blocks. This approach reduces the
MCU interruption rate, simplifies the software that handles the frame reception,
and provides the results with minimum latency. These features include a Frame
filtering and processing engine, which performs two main tasks:

1. Processing of received frames, which enables several PHY features such
as the detection and removal of the received PHY synchronization header and
the automatic frame check sequence (FCS) verification. The first is composed
by the preamble and the start frame delimiter (SFD), while the latter attaches
the retrieved Received Signal Strength Indicator (RSSI) and Link Quality Indi-
cation (LQI) fields to the received frame. At the MAC layer, the implemented
features encompass the MAC Header (MHR) processing, that is able to filter
and process incoming frames, e.g., by checking the frame version field, frame
type, PAN ID, Source and Destination addresses, rejecting the ones intended
to another destination, as specified in the IEEE 802.15.4-2006 revision, Section
7.5.6.2, Third-level of filtering [172].

72

2. Automatic transmission of the ACK frame, which consists in automat-
ically sending the ACK frame to a sender when a valid frame is received and
an ACK is requested.

Other well-known devices, such as the AT86RF231 [173] from Microchip, provide
full IEEE 802.15.4-2003 and -2006 support and incorporate a MAC Hardware Ac-
celerator, which performs automated acknowledgments, implement the CSMA/CA
mechanism and can execute packet retransmissions. The AT86RF231 also includes
an automated FCS verification mechanism to extract the packet integrity and to re-
trieve the RSSI and LQI field values. For the MHR handling, similarly the CC2520,
it contains an Automatic Address Filtering block that is able to perform basic filter-
ing tasks such as the PAN ID, Frame Type and Destination Address.

Other COTS solutions include, on the same chip, not only the IEEE 802.15.4 radio
transceiver but also an MCU. These SoC solutions are mostly used for low-end
devices due to their low-power capabilities and the low-budget characteristics. The
EM357 [174] from SiliconLabs and the CC2538 [175] from TI are also available IEEE
802.15.4-compliant SoC solutions that include on the same chip the radio transceiver
and a 32-bit ARM Cortex-M3. Moreover, other hardware accelerators are included
on the same SoC, or provided separately, such as cryptographic blocks for securing
communications and maintain data integrity [176,177]. As these algorithms perform
in hardware, they provide fast execution of heavy cryptographic tasks. Table 4.1
summarizes, in terms of the power characteristics and device type, some commer-
cially IEEE 802.15.4 compliant transceivers with MAC hardware blocks available in
the market and widely used in traditional WSN and IoT solutions.

Table 4.1: IEEE 802.15.4 compliant devices with acceleration engines.

Vendor Product RX
Sensitivity

TX Current
@ 0 dBm

RX
Current Type

Texas Instr. CC2520 -98 dBm 25.8 mA 18.8 mA radio only
CC2538 -97 dBm 24.0 mA 20.0 mA SoC

Atmel AT86RF231 -101 dBm 14.0 mA 12.4 mA radio only
SiliconLabs EM357 -100 dBm 27.5 mA 25.0 mA SoC

FPGA-based Solutions

Recent software-defined radio (SDR) solutions, consisting of radio communication
systems where components that have been typically implemented in hardware are

73

now defined by means of software, have also being contributing with FPGA-based
implementations of the IEEE 802.15.4 standard. In [178] it is proposed a sensor
gateway with a reconfigurable PHY layer that makes it possible to switch, from
IEEE 802.15.4 to IEEE 802.11 links, accordingly to the required speed and network
parameters. Also targeting SDR systems, another FPGA-based open-source imple-
mentation has been proposed in [179]. However, it only deploys the PHY layer of
the IEEE 802.15.4 in the FPGA.

Other FPGA implementations, for the MAC layer, consist in accelerating the data
transmission by reducing the data frame size by using robust data compression tech-
niques performed by dedicated hardware blocks [180]. More solutions, based on re-
configurable sensing hardware blocks with dedicated data gathering and compression
systems, can be found in recent literature [107, 108], already discussed in previous
chapters. However, and despite all this range of solutions, they fail in providing
a reconfigurable hardware solution that combines the filtering scheme specified by
the standard, along with other features related to the Data frame type of the IEEE
802.15.4 protocol, for heterogeneous architectures used in IoT endpoint devices.

Despite all the improvements at MAC and PHY layers, provided by their respective
Internet Engineering Task Force (IETF) working groups and other relevant research,
these contributions do not tackle the way data is exchanged and formatted, which
is independent from any MAC and PHY protocol in use. From available COTS
solutions, and focusing on the present hardware filtering capabilities, although they
provide all the three levels of filtering (as specified by the standard), they fail into
bring more filtering options, such as the support for multiple PAN and more Source
and Destination MAC addresses. Moreover, deploying such standard on a heteroge-
neous architecture makes possible to add new capabilities, such as the detection of
the reception of multiple frames mechanism, which is not yet implemented in any
available COTS solution and only provided by the OS network stack.

This chapter describes an IEEE 802.15.4 hardware accelerator, which is implemented
and deployed on the heterogeneous architecture presented in Chapter 3. It performs
the tasks previously identified and proposed to be offloaded to hardware and, con-
sidering the best contribution of this chapter, it serves as a foundation for deploying
upper layer stack features that rely on the IEEE 802.15.4 standard such as the
6LoWPAN protocol. Such task would be impossible to perform by only using the
IEEE 802.15.4 features provided by COTS solutions. This implementation mainly
focus on the filtering tasks since other features, e.g., the automated ACK system, are
already offered by the radio transceiver and further improvements are not achievable.

74

4.2 IEEE 802.15.4 Data Frame

Payload

Frame
Control

Seq
Number Dest

PAN
Dest
Addr

Src
PAN

Src
Addr

FCS
PAYLOAD

DATA

FooterHeader

Addressing Fields

Figure 4.1: General IEEE 802.15.4 Data frame type.

Figure 4.1 depicts an IEEE 802.15.4 Data frame, which will gather special focus
in this chapter. The other frame types, i.e., ACK, MAC Command and Beacon,
will not be covered. The Data frame type is composed by three main sections: the
MHR, the MAC payload and the MAC Footer (MFR). All of these sections contain
at least one parameter field.

1. MHR:

• Frame Control Field (FCF): It contains information about the MAC Data
frame, which defines the type, addressing fields, and other control flags.

• Sequence Number (SN): The SN field specifies the sequence identifier,
e.g., Beacon Sequence Number (BSN) and Data Sequence Number (DSN)
of the frame.

• Addressing Fields: These contain the information about the Destination
and/or Source PAN address, as well as the Destination and Source MAC
addresses.

2. MAC Payload: The data payload is variable and can use up to 127 bytes per
frame, according to the application requirements or (other) in-line protocols.

3. MFR: Contains the FCS, which follows the last MAC Payload byte. The
FCS is calculated over the MPDU, using a 16-bit CRC algorithm.

The FCF, the SN and the FCS are required to be part of every frame whereas the
addressing fields, the auxiliary security header and the MAC Payload might not
be included in a frame type. Using the IEEE 802.15.4 Data frame illustrated by
Figure 4.2 as an example (taken from a message exchange between two nodes in the

75

R
SS

I

LQ
I

Le
n

gt
h

FC
F

Se
q

.
N

u
m

b
er

D
st

P
A

N

D
st

A

d
d

re
ss

e

xt
6

4

Sr
c

A
d

d
re

ss
e

xt
6

4

44 61 DC CC BE BA BF 3F 13 04 00 4B 12 00 2E 04 41 95 17 32 88 09

PAYLOAD DATA 20 EC

Figure 4.2: Example of an IEEE 802.15.4 Data frame.

same wireless personal area network (WPAN)), the MHR and the MFR sections can
be analyzed and its corresponding data retrieved. The FCF field value is 0xDC61
(further analyzed in Section 4.2.1) and the SN field value is 0xCC. For the Addressing
fields, the following information is carried on this section of the MHR:

• Destination PAN Address: Indicates the address of the destination PAN,
to where the MAC Destination address belongs. This field is always present,
whereas the frame should reach the same PAN or not. In this example, the
PAN address was set to 0xBABE;

• Destination Address (ext64 mode): Specifies the MAC Destination ad-
dress the frame must reach. Its representation is determined by the FCF
and, in this example, corresponds to the address 00:12:4B:00:04:13:3F:BF
(64-bit). When the frame is intended for broadcasting messages to the nodes
belonging to the same WPAN, a 16-bit version (short mode) is used instead,
with the address value 0xFFFF;

• Source Address (ext64 mode): Corresponds to the MAC Source address
that has sent the frame. Its representation is also determined by the FCF and,
in this example, is 09:88:32:17:95:41:04:2E (64-bit).

From the MFR it can be extracted the RSSI and the LQI values:

• RSSI: This field is part of the MFR section and indicates the power present
on the received radio frame, measured by the analog front-end of the radio

76

transceiver. This value can be used for several purposes, including distance
estimation between two nodes and localization schemes. However, its value
can vary greatly due to the wireless nature of an LR-WPAN and this should
always be taken into consideration;

• LQI: Also part of the MFR section, it is a metric that represents the quality
of the communication link and it is computed based on the received RSSI and
the number of errors detected on the link.

4.2.1 IEEE 802.15.4 Header Fields

D
A

M

Fr
am

e

V
e

rs
io

n

Fr
am

e

Ty
p

e

1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1

Se
c.

en

ab
le

d

MAC Frame Control Field

0xDC 0x61

Fr
am

e
P

en
di

ng

A
C

K

R
e

qu
es

t

In
tr

a
P

A
N

SA
M

R
es

e
rv

ed

Figure 4.3: IEEE 802.15.4 Frame Control Field encoding.

The FCF, Figure 4.3, dictates how the MAC frame is formatted and how its infor-
mation must be derived:

• Frame Type: Indicates the type of the received frame. It mainly uses four
types: Beacon (0b000), Data (0b001), Acknowledgment (0b010), and MAC
Command (0b011).

• Security Enabled: This bit indicates if the MAC sublayer is using security.
If so, the Auxiliary Security Header (ASH) header must also be present.

• Frame Pending: Indicates if the sender node has more data pending for the
destination node.

• ACK Request: Indicates if the sender requires an ACK.

• PAN ID Compression: Indicates if only one PAN identifier field has to be
present. This happens when both sender and receiver are on the same WPAN,
and thus, same source and destination PAN address.

77

• Destination Address Mode:

– 00: Both PAN and Address fields are not present.

– 01: Reserved.

– 10: Destination Address field contains a short address (16-bit).

– 11: Destination Address field contains an extended address (64-bit).

• Frame Version: Refers to the version of the IEEE 802.15.4 protocol in use.

• Source Address Mode:

– 00: Both PAN and Address fields are not present.

– 01: Reserved.

– 10: Source Address field contains a short address (16-bit).

– 11: Source Address field contains an extended address (64-bit).

Analyzing the given fields, and following the selected software-based tasks identified
and analyzed on the Chapter 3, the accelerator will focus on the frame type, frame
version, the SN and the Addressing fields, which will enable the deployment of
features provided by the MLA.

4.3 MAC Sub-layer Accelerator (MLA)

Figure 4.4 depicts the heterogeneous architecture, which now integrates the net-
work accelerator with IEEE 802.15.4-standard features. The accelerator performs
previous software-based tasks, selected from the Contiki-OS and offloaded to hard-
ware. Traditionally, after a received IEEE 802.15.4 Data frame being delivered to
the network stack, the software processing of an MPDU consists in verifying the
MAC Header, which contains on the FCF, Figure 4.3, the information relative to
the received frame. Subsequently, the Addressing fields have to be processed in or-
der to verify, for instance, if the received frame matches the receiver’s PAN address,
the Destination address or if a broadcast message was received. The SN field is
also checked and used to avoid multiple processing when several receptions of the
same frame occurs, caused by multi-path or when it is (un)intentionally sent by a
source in the network. This verification allows the OS to accept or discard the re-

78

IEEE
802.15.4

Radio

 SmartFusion2 SoC

MCU (ARM Cortex-M3)

IoT-OS
IoT

Network Stack

Radio API

Peripheral Driver

RCU (FPGA Accelerators)

Interface(s)

Radio

MAC
Layer

Accelerator Crypto
Block(s)

Data
Aggregator

Figure 4.4: Adding the MLA to the heterogeneous architecture.

ceived frames at the MAC layer level, before they are forwarded to the upper layers,
avoiding worthless further processing.

Despite the hardware support provided by the radio devices, these tasks are still
performed in software by Contiki-OS, whereas the packet is meant to be accepted
or discarded. For deploying and testing the MLA, software features such as the
PAN and source/destination address verification, a frame version checker, and a
Duplicate Frame Detector (DFD) module were developed and deployed on the RCU
of the heterogeneous architecture.

The MLA connects to the MCU via the AMBA APB3 interface and the IEEE
802.15.4 radio transceiver using an SPI bus. It can be configured at runtime as it
allows the OS to dynamically add/remove addresses to/from the comparing registers,
as well as to define the number of packets to be held by the duplicate MPDU
detector. When the radio transceiver holds a new MPDU on the RX buffer, the
MLA is responsible to transfer it to its own RX buffer in order to be processed.
Thereafter, the MLA will accept or discard the received frame according to the
configured rules and matching addresses on the respective address registers. Also, if
the MPDU passes the filtering processing it can still be discarded if the DFD module
signals multiple receptions of the same frame. The MLA only interrupts the OS if
the MPDU is accepted to be forward to the network stack. Hence, unnecessary event
triggering and subsequent processing by the corresponding OS processes (e.g., Radio
process and TCP/UDP process) is avoided, preventing also undesired wake-up calls
to the MCU when it is power saving modes. For statistical purposes, the MLA also
stores the number of dropped/accepted packets, as well as the number of detected
duplicated packets.

79

4.3.1 General Architecture

MCU

Src/Dst address
filter

Accelerator Interface(s)

mac_addr_n

mac_addr_0

802154_config

...

Logic
Control

RCU

IEEE
802.15.4

Transceiver

=

=

en

en

en

FCF
PAN address

filter

pan_addr_n

pan_addr_0

802154_config

...

=

=

en

en

FCF

IEEE 802.15.4 Frame Buffer

frame_n

frame_0

...

en

en

=

config

=

DFD
filter

FCF

APB3
Int.

Figure 4.5: RTL design of the MLA in the heterogeneous architecture.

The RTL design of the MLA is depicted in Figure 4.5 and it is mainly composed
by the following modules: (1) PAN Filter module; (2) Destination and Source Ad-
dress Filter modules (only represented once, but deployed separately); (3) the DFD
module. These modules are further explained in detail in the next sections.

4.3.2 Deployed Filtering Modules

PAN Filter Module

The MLA implements a PAN filter which verifies the PAN field of the received packet
and compares its value to a set of addresses stored on a preconfigured address list.
If the received value matches any from the list, the PAN Filter module signalizes it
to the logic control module. More than one comparing address can be added to the
list, which can be useful for the inter-PAN routing or when a (router) device has
more than one network interface on different WPAN.

80

Destination and Source Address Filter Modules

A Destination and Source Address Filter module was also deployed on the MLA.
It analyzes the packet’s MAC Destination and Source address fields and compares
them with a set of addresses stored in a list of addresses. If the fields match any
address according to their source/destination values, an output is triggered to the
logic control module, flagging the matching addresses. Then, accordingly to the
configuration, the MPDU is discarded or accepted.

Duplicate Frame Detector Module

The DFD functionality checks the SN field value and verifies if this value, combined
with the MAC source address, was detected on previous received packets. This
means that, if a Data frame passes other filtering rules, it can still be discarded
if this module detects the multiple reception of the same frame. This is done by
checking the Sequence number and the source address of the received Data frame
and comparing it with (a configurable number of) the last received frames.

4.3.3 Peripheral Interface

The deployed accelerator is a memory-mapped peripheral, interfaced with the MCU
through the internal APB3 bus. Therefore, it requires a memory base address,
matching the target hardware design, from where the registers of the accelerator
instance are initialized and accessed. Figure 4.6 depicts the address space for the
deployed accelerator and respective registers, while Listing 4.1 includes part of the
file core_accelerator_regs.h, which contains the register definitions required for
accessing the peripheral. The NETWORK_ACC_BASE_ADDR defines the peripheral base
address, which in this case corresponds to 0x30000000, matching the SmartFusion2
M2S090TS SoC hardware design. The FILTER_REG, corresponds to the peripheral
configuration register, which is used to enable or disable the peripheral, as well
as the desired filtering features. If all bits are set to zero, FILTER_REG is set to
FILTER_DISABLE, the peripheral is disabled and bypasses all data exchange between
the MCU and the CC2520. Otherwise, the peripheral is enabled and each bit field
has the following definition (as shown in Figure 4.7): PAN_ADDR enables/disables the
peripheral to filter received packets by the PAN ID; SRC_ADDR enables/disables the
peripheral to filter the received IEEE 802.15.4 Data frames according to the MAC

81

0x30000058 HWRXDATA_REG } Receive data register
0x30000054 BUFF_7_REG

0x30000050 BUFF_6_REG

0x3000004C BUFF_5_REG

0x30000048 BUFF_4_REG

0x30000044 BUFF_3_REG

0x30000040 BUFF_2_REG

0x3000003C BUFF_1_REG

0x30000038 BUFF_0_REG



Buffer for data sharing

0x30000034 CMD_2_REG } Register (2) to send/store commands
0x30000030 CMD_1_REG } Register (1) to send/store commands
0x3000002C FILTER_REG } Filter Configuration register

...
...

0x30000000 NETWORK_ACC_BASE_ADDR
}
Peripheral Base Address

Figure 4.6: Peripheral memory address space.

source address; DST_ADDR enables/disables the peripheral to filter IEEE 802.15.4
Data frames according to the MAC destination address; and DFD enables/disables
the DFD mechanism, which can detect the multiple reception of the same frame,
up to a configured number of frames. By default DFD is configured to store the
information for the last 32 MAC Data frames. The remaining bits are kept reserved
to be later used for upgradability purposes if more features are need to be added to
the network accelerator.

Rese
rv

ed

Rese
rv

ed

Rese
rv

ed

Rese
rv

ed

DFD
DST_ADDR

SRC_ADDR

PAN
_ADDR

01234567

FILTER_REG

Figure 4.7: FILTER_REG register field.

The CMD_1_REG and CMD_2_REG registers are used to send commands to the periph-
eral. CMD_1_REG is used to send a read command for retrieving the number of MPDU
frames that were filtered according to a certain field. It can be used for statistical
purposes only or made available to an intrusion detection system (IDS) system, as
it will be explained in the next chapter.

82

Listing 4.1: File core_accelerator_regs.h with the register definitions required for
accessing the peripheral.

1 ...
2 #define NETWORK_ACC_BASE_ADDR 0x30000000UL
3 /* Core Registers */
4 /*---*/
5
6 /* Configuration Register */
7 #define FILTER_REG_OFFSET 0x2Cu
8
9 #define FILTER_DISABLE 0x00u //disable the peripheral

10
11 #define PAN_ADDR_MASK 0x01u //enable pan address filtering
12 #define SRC_ADDR_MASK 0x02u //enable dst address filtering
13 #define DST_ADDR_MASK 0x04u //enable src address filtering
14 #define DFD_MASK 0x08u //enable dfd module
15 #define FREE4_MASK 0x10u //remaining bits are reserved
16
17 /* Command 1 Register */
18 #define CMD1_REG_OFFSET 0x30u
19
20 #define PAN_PCKT_MASK 0x01u //filtered pan packets
21 #define DST_PCKT_MASK 0x02u //filtered dst packets
22 #define SRC_PCKT_MASK 0x03u //filtered src packets
23 #define DFD_PCKT_MASK 0x04u //dfd frames
24 #define CMD1_FREE4_MASK 0x05u //remaining bits are reserved
25
26 /* Command 2 Register */
27 #define CMD2_REG_OFFSET 0x34u
28
29 #define WR_PAN_MASK 0x01u //write pan address
30 #define WR_DST_MAC_MASK 0x02u //write mac dst address
31 #define WR_SRC_MAC_MASK 0x03u //write mac src address
32 #define CMD2_FREE3_MASK 0x04u //remaining bits are reserved
33 /*---*/
34 /* Buffer[8] Register */
35 #define BUFF_0_REG_OFFSET 0x38u
36 ...
37 #define BUFF_7_REG_OFFSET 0x54u
38 /*---*/
39 /* RXData Register */
40 #define HWRXDATA_REG_OFFSET 0x58u
41 ...

The bit fields of CMD_1_REG, Figure 4.8, can be used as follows: PAN_PCKT is used to
request the number of filtered MPDU frames according to their PAN ID, the fields
DST_PCKT and SRC_PCKT are used to request the number of filtered packets according
to their destination and source MAC addresses, respectively, and DFD_PCKT is used

Rese
rv

ed

Rese
rv

ed

Rese
rv

ed

Rese
rv

ed

DFD_PCK
T

SRC_PCK
T

DST_PCK
T

PAN
_PCK

T

01234567

CMD_1_REG

Figure 4.8: CMD_1_REG register field.

83

to request the number of duplicated frames detected. After sending the request, the
reply is stored in the BUFF_0_REG to BUFF_7_REG registers and accessed through the
peripheral driver provided. The remaining bit fields of the CMD_1_REG register are
available for further added features.

Rese
rv

ed

Rese
rv

ed

Rese
rv

ed

Rese
rv

ed

Rese
rv

ed

W
R_SRC_M

AC_M
ASK

W
R_DST_M

AC_M
ASK

W
R_PAN

_M
ASK

01234567

CMD_2_REG

Figure 4.9: CMD_2_REG register field.

The CMD_2_REG is used to store addresses to the corresponding address list stored
in the peripheral as internal hardware registers. The bit fields of CMD_2_REG, Figure
4.9, are used as follows: WR_PAN_MASK, WR_DST_MAC_MASK and WR_SRC_MAC_MASK
fields indicate, respectively, the PAN, MAC destination and MAC source addresses
that are going to be sent and stored in the peripheral. After sending the command,
the address values are sent through the BUFF_0_REG to BUFF_7_REG transfer buffer.
Registers BUFF_0_REG to BUFF_7_REG are used as a buffer for data exchange and,
finally, the HWRXDATA_REG register is used for normal data transfers, e.g., the accepted
IEEE 802.15.4 frame, from the peripheral IEEE 802.15.4 Frame Buffer to the MCU.

4.3.4 MLA-compliant API

A software device driver was developed to provide a standard programming interface
to the network accelerator. It provides a set of functions for controlling the hardware
accelerator by managing each configurable register and its bit field, while hiding these
details from the programmer. This driver was tailored and mapped with Contiki-
OS system calls, so it can be used transparently by any application or OS internal
process. For instance, Listing 4.2 contains a code snippet that shows how the PAN
ID is set in the system main function, during the initialization. The radio abstraction
layer, Line 14 from Listing 4.2, provides flexibility and simplifies the integration of
the peripheral into the OS.

84

Listing 4.2: Simple example for configuring the PAN address to filter.

1 static void set_rf_parameters(void)
2 {
3 ...
4 #if FILTER_PAN
5 PRINTF("\nRadio: enable FILTER_PAN\n");
6 uint8_t paddr[2];
7 paddr[0] = IEEE802154_PANID & 0xff;
8 paddr[1] = IEEE802154_PANID >> 8;
9

10 radio_filter_result = radio_frame_filter_set(PAN_ADDR_MASK, paddr);
11 filter_config |= PAN_ADDR_MASK;
12 #endif /* FILTER_PAN */
13 ...
14 NETSTACK_RADIO.set_value(RADIO_PARAM_RX_MODE, filter_config);
15 }

By its turn, the radio abstraction layer will call the software device driver services
to set the desired values, e.g., the PAN address. Listing 4.3 displays a code snippet
of the function used to set the PAN address. This function uses the HAL functions
provided by Microsemi’s Libero in the exported firmware. As an example, Listing
4.4 shows how the service is used to set a value into a given register.

Listing 4.3: Device driver API exemple.

1 radio_filter_t radio_frame_filter_set(uint8_t param, uint8_t* value)
2 {
3 ...
4 switch(param)
5 {
6 case PAN_ADDR_MASK:
7 HAL_set_8bit_reg(NETWORK_ACC_BASE_ADDR, BUFF_0, value[0]);
8 HAL_set_8bit_reg(NETWORK_ACC_BASE_ADDR, BUFF_1, value[1]);
9 HAL_set_8bit_reg(NETWORK_ACC_BASE_ADDR, CMD2, WR_PAN_MASK);

10 ...
11 return RESULT_OK;
12 case SRC_ADDR_MASK:
13 ...
14 return RESULT_OK;
15 default:
16 return RESULT_NOT_SUPPORTED;
17 }
18 }

Listing 4.4: Microsemi’s HAL functions.

1 /***
2 * The macro HAL_set_8bit_reg() allows writing a 8 bits wide register.
3 * BASE_ADDR: A variable of type addr_t specifying the base address of the
4 * peripheral containing the register.
5 * REG_NAME: A string identifying the register to write. These strings are
6 * specified in a header file associated with the peripheral.
7 * VALUE: A variable of type uint_fast8_t containing the value to write.
8 */
9 #define HAL_set_8bit_reg(BASE_ADDR, REG_NAME, VALUE) \

10 (HW_set_8bit_reg(((BASE_ADDR) + (REG_NAME##_REG_OFFSET)), (VALUE)))

85

4.4 System Evaluation

R

ED

ED

R
GWBR

ED

R

Cloud

aaaa::/64

6LoWPAN Network

R – router
GW – gateway
BR – border router
ED – end device

aaaa::212:4b00:40e:ff55/64
UDP Server 2

UDP Client

aaaa::212:4b00:40e:ff61/64

aaaa::b88:3217:9541:42e
UDP Server 1

Figure 4.10: Test scenario.
Figure 4.10 depicts the network topology used for conducting the evaluation exper-
iments, where all devices run the Contiki-OS. It consists of a border router (BR)
which connects two different networks (interfaces the Internet and the 6LoWPAN
network), one Router (R) running a UDP server application (UDP Server 2) and two
endpoint devices (ED) with the routing capabilities disabled. These last two run a
UDP Client and Server applications, respectively. For the BR, the R and the ED
running the UDP client, the Contiki-OS was deployed on a CC2538 SoC and per-
forms all the network packet processing. The SmartFusion2 SoC, which deploys the
heterogeneous architecture, runs the UDP Server 1 with the MLA accelerator. The
UDP Server 1 uses a connection on UDP ports 4000/4001, while the UDP Server
2 uses ports 5000/5001. The UDP client creates one UDP socket with each server.
In order to enable the evaluation of the MLA, that is, comparing the performances
between hardware and software-based tasks, all basic filtering features provided by
the radio transceiver were disabled. This simple setup performs a typical IoT appli-
cation (from the sensor application perspective) with high-rate data sampling and
packet sending over the network. The UDP connection allows the test of the MLA
as the 6LoWPAN relies on the IEEE 802.15.4 Data frames. Hence, when an MPDU
is filtered and processed by the MLA the OS is not interrupted and the UDP Server
will not receive the frames.

Aiming to evaluate the performance and system availability, two different experi-
ments were conducted. Experiment 4.4.1 targets the Contiki MAC layer APIs and
assesses the benefits of the hardware packet filtering over the native Contiki-OS

86

execution. Experiment 4.4.2 runs the Thread-Metric benchmark, along with the
UDP Server at the application level, in order to evaluate how the MLA accelerator
decreases the OS overhead in terms of system availability to execute other running
processes.

4.4.1 MAC Sub-layer: API Evaluation

This experiment evaluates the overall system performance of hardware and software-
based MAC Layer APIs for the packet filtering and processing, measuring the elapsed
execution time from reading a received MPDU from the radio transceiver until it
is delivered to the Network layer. The overhead caused by the OS was also taken
into consideration. It consists of: (1) interrupts to the OS execution to register a
new event; (2) run pending processes; (3) run the process responsible to transfer the
packet from the radio RX buffer to the MAC sub-layer. The performance evaluation
is carried out based on the average time of receiving 1000 valid packets from a
trusted sender, with a PSR of 8 packet per second (pkt/s). With the MLA disabled,
the number of clock cycles needed to process and filter one received MPDU is, on
average, 82613, while with the MLA enabled, this value is reduced to 68465, which
represents a system’s overhead decrease of nearly 17% (1.21 × speed-up) per received
packet. The standard deviation (2δ) is, respectively, 1230 and 978, which means,
the hardware implementation is more predictable than the software. Figure 4.11
illustrates the aforementioned results.

82613

68465

55000 60000 65000 70000 75000 80000 85000 90000

Filter OFF

Filter ON

Clock Cycles

Filter OFF

Filter ON

Figure 4.11: OS API evaluation with the MLA enabled and disabled.

87

4.4.2 Thread-Metric Evaluation

With the MLA disabled, the UDP Client is configured to send packets to the UDP
Server at different sending rates (4, 8, 16, 32, 64, 128 and 256 pkt/s), varying the
packet discard rate (PDR) value by 10 percentage points at a time, i.e., the num-
ber of packets to be discarded by the MLA (0% to 100%). The same experiment
was repeated with the MLA enabled. Since Contiki-OS implements an event-based
kernel, the scheduler polls all the active system processes, running only those which
associated events were triggered. Thus, increasing the number of events, the sys-
tem’s availability is expected to decrease. Enabling new events to be processed by
the OS will decrease the system’s predictability, since the execution of new sched-
uled processes, responsible for reading and filtering invalid MPDUs, will delay the
execution of other OS processes.

MLA Accelerator Disabled

4
8

16
32

64
128

256
0 10 20 30 40 50 60 70 80 90 100

150000
200000
250000
300000
350000
400000

Thread-Metric score

Mac Layer Accelerator OFF

Figure 4.12: Thread-Metric benchmark score with the MLA disabled.

Figure 4.12 depicts the benchmark score results with the MLA disabled. The highest
and lowest scores are 150691 and 395273 respectively, representing the highest and
lowest PSR for a PDR value of 0%. The score decrease indicates the lowest system’s
availability as the radio process event is being triggered every time a packet is ready
to be read from the radio RX buffer. Increasing the PDR will slightly increase the
score. For the best case scenario, i.e., with a PDR value of 100%, the score is 249353
at a PSR of 256 pkt/s and 395273 at a PSR of 0 pkt/s. This is due to the packet
rejection being performed at the MAC layer, which means the OS will not trigger

88

the process to handle the new incoming packets and the benchmark process will run
earlier. However, it is still visible the impact in the OS’s performance when packets
are being rejected.

MLA Accelerator Enabled

4
8

16
32

64
128

256
0 10 20 30 40 50 60 70 80 90 100

150000
200000
250000
300000
350000
400000

Thread-Metric score

Mac Layer Accelerator ON

Figure 4.13: Thread-Metric benchmark score with the MLA enabled.

Similarly to Figure 4.12, Figure 4.13 depicts the benchmark score results with the
MLA enabled. The highest and lowest benchmark scores are 193484 and 398134
respectively, corresponding to a PSR of 256 pkt/s and 0 pkt/s. The benchmark
score increase is directly correlated with the performance gain achieved by the MLA,
as discussed in experiment 4.4.1. Increasing the PDR, the benchmark score value
increases very fast and at the highest PDR, the variation of the PSR shows no impact
on the benchmark score. This is due to the packets being filtered and discarded by
the MLA and, consequently, the OS is not interrupted to process dummy frames.
Comparing the benchmark score results from both experiments in the best case
scenario, i.e., receiving packets at the highest sending rate (PSR of 256 pkt/s) with
all frames to be discarded (PDR of 100%), the MLA offers an overhead reduction of
59.6%.

RCU Resources Utilization

Table 4.2 shows the synthesis results, taken from the Microsemi Libero SoC tool,
for the MLA accelerator along with its filtering modules, on the RCU side of the
heterogeneous architecture. The obtained results are expressed in terms of 4-input

89

Table 4.2: Synthesis results for the M2S090TS SoC.

Module 4LUT DFF
network_acc_0 1916 1895
pan_filter_0 64 73
mac_src_filter_0 300 265
mac_dst_filter_0 159 265
dfd_filter_0 194 297
Total (out of 86184) 2633 (3.06%) 2795 (3.24%)

Look-Up Tables (LUT) and D Flip-Flop (DFF) used, for each deployed module.
The network_acc_0 is the most costly (4LUT and DFF) since it is responsible to
interface the radio transceiver, the adjacent filtering modules, the MCU APB3 bus,
as well as to accommodate the IEEE 802.15.4 Frame Buffer. For the remaining
modules, the deployment costs are extremely reduced, representing around 3% of
the available RCU resources.

4.5 Conclusions

This chapter presented a co-designed hardware/software IEEE 802.15.4 MAC layer
accelerator, the MLA, for heterogeneous endpoint devices that target IoT applica-
tions. It is responsible for processing and filtering the received IEEE 802.15.4 Data
frames, as specified in IEEE 802.15.4-2006 standard, Section 7.5.6.2 (the three levels
of filtering). The unwanted MPDUs are processed and discarded by the hardware
accelerator, prior the MCU, without interfering with the normal OS execution or in-
terrupting the MCU, that be kept in energy-saving modes. The hardware offloading
offered a systems overhead reduction of nearly 17%, while the hardware filtering may
reach a reduction of 59.6% when all the received packets are meant to be discarded.
The obtained results reveled the benefits of integrating network accelerators, at the
MAC Layer of the communication stack, on a heterogeneous architecture, which
may contribute for a reduced systems latency and increased predictability. The of-
fered functionalities can be used by any network protocol for Low power and Lossy
Networks (LLN) as long as it relies on the IEEE 802.15.4 standard.

Following the standardized IoT-ARM network stack, and since the 6LoWPAN relies
on the IEEE 802.15.4 standard, the accelerator must be expanded to other stack
layers, since on its current form it does not provide enough contribution to the
state-of-the-art available COTS solutions. Hereafter, and since the IPv6 addresses
are usually inferred from the IEEE 802.15.4 MAC Header, further accelerators will

90

be deployed for handling the IPv6 address filtering and UDP/TCP port checking.
A complete energy characterization for the proposed hardware accelerators is ad-
dressed in the next chapter (where all the developed modules are present), in order
to compare the heterogeneous solution with related work and analyze the impact of
bringing network accelerators to such kind of heterogeneous architectures.

91

92

Chapter 5
Accelerating the Network Layer

Bringing IPv6 connectivity to resource-constrained devices in the IoT network results
in large amounts of data exchanged between devices, leading to unneeded received
packets to be processed and consequent reduced system availability to perform other
tasks. This chapter presents the 6LoWPAN accelerator (6LA), an enhanced network
accelerator for IP-based IoT networks, that is able to process and filter IPv6 packets
received by an IEEE 802.15.4 radio transceiver without the MCU intervention. The
6LA offers nearly 13.2% overhead reduction for the packet processing and filtering
tasks, while guaranteeing full system availability when unwanted IPv6 packets are
received. An overhead reduction up to 42% can be achieved when all packets are
discarded. This contribution is meant to be deployed side-by-side with the MLA on
the heterogeneous architecture presented in Chapter 3, which includes on the same
architecture, FPGA technology beside an MCU and an IEEE 802.15.4-compliant
radio transceiver. Apart from evaluating the energy cost of such accelerator on the
heterogeneous architecture, where the processing of packets to be rejected achieved
an energy reduction over 99%, this chapter also shows how future generations of
radio transceivers can benefit from the proposed solution with an extra cost of 15718
standard cells to their application-specific integrated circuit (ASIC) implementation.

The remaining of this chapter is organized as follows: Section 5.1 introduces this
chapter, while Section 5.2 goes through an overview over the 6LoWPAN protocol.
Section 5.3 explains the system architecture with its respective integrated accelera-
tors, their functionalities and the provided API and Section 5.4 discusses the system
evaluation, where performance experiments and energy analysis tests were realized.
Section 5.5 concludes this chapter.

93

Related Publications

Ideas and findings presented in this chapter resulted in the following publications:

• T. Gomes, F. Salgado, S. Pinto, J. Cabral and A. Tavares, "Towards an
FPGA-based network layer filter for the Internet of Things edge devices," 2016
IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA), Berlin, 2016, pp. 1-4.

• T. Gomes, F. Salgado, S. Pinto, J. Cabral and A. Tavares, "A Hardware
6LoWPAN Packet Filter for IoT Edge Devices," in IEEE Internet of Things
Journal (Under Review).

94

5.1 Introduction

Bringing IPv6 connectivity to IEEE 802.15.4-based networks, which are mainly char-
acterized by the low-bandwidth communications channels and resource-constrained
devices, is not straightforward. For instance, due to the IPv6 default minimum MTU
size, a non-fragmented IPv6 packet would be too large to fit in an IEEE 802.15.4
MPDU. Also, the 40 bytes size IPv6 header would waste the limited available PHY
bandwidth. To tackle these issues, the 6LoWPAN working group has defined an ef-
fective adaptation layer between IPv6 and IEEE 802.15.4 MAC levels (RFC6282 and
RFC4944 [51,181]) allowing IP packets to be sent over LLN. The major concerns on
maintaining the regular IPv6 services, e.g., IPv6 addresses auto-configuration, link-
layer subnet broadcast support in shared networks, adoption of new and lightweight
application protocols and reduced routing overhead with efficient routing protocols,
were always taken into great consideration. In addition, the inherent security as-
pects, e.g., information confidentially and integrity on data collection and message
exchange, are completely preserved.

Aiming to speed-up application-related operations and to reduce the complexity of
processing overhead caused by heavy processing algorithms, hardware-accelerated
solutions for IoT-enabled devices are already available, as it was presented and
discussed in Chapter 1. Regarding the current state-of-the-art on the 6LoWPAN
standard, it is proposed by [182–187] some enhancements at the protocol level, e.g.,
Neighbor Discovery and Network managing services. However, this research only
focus on the network services aspects without considering the handling of the trans-
mitted/received IPv6 packets. Hardware-accelerated approaches targeting the net-
work packet processing overhead, such as the processing and filtering of the received
IPv6 packets in IoT-enabled low-end devices, have never been attempted.

The main contributions of this chapter are: (1) an efficient and reconfigurable
6LoWPAN accelerator, the 6LA, specially tailored to retrieve, process, filter and
detect multiple receptions of IPv6 packets on heterogeneous endpoint devices in IoT
networks; (2) a performance, energy and hardware resources evaluation of the 6LA;
(3) the deployment of the 6LA on the heterogeneous architecture and its integration
into the CUTE mote, presented on Chapter 3. Software APIs were also developed
in order to integrate and evaluate the 6LA with the Contiki-OS. These APIs enable
a seamless integration with any available IoT OS. Since the 6LoWPAN relies on the
IEEE 802.15.4 standard, the 6LA also integrates features from the MAC accelerator
presented on Chapter 4.

95

5.2 6LoWPAN Adaptation Layer

Starting from a maximum physical layer packet size of 127 octets, provided by
the IEEE 802.15.4 Data frames, and a maximum frame overhead of 25 octets, the
remaining maximum frame size at the media access control layer is 102 octets. When
used, Link-layer security imposes further overhead, which in the maximum case (21
octets of overhead in the AES-CCM-128 case, versus 9 and 13 for AES-CCM-32
and AES-CCM-64, respectively) leaves only 81 octets available. This is far below
the IPv6 packet size of 1280 octets, thus an efficient compression and fragmentation
and reassembly mechanism is mandatory. The 6LoWPAN adaptation layer defines
encapsulation and header compression mechanisms that allow IPv6 packets to be
sent and received over IEEE 802.15.4-based networks.

All the 6LoWPAN datagrams transported over a IEEE 802.15.4 MPDU are pre-
fixed by a group of headers, each one identified by a type field. By defining an
efficient header compression mechanism [181], where redundant information can be
inferred from other layer payloads, large header fields such as the 128-bit long IPv6
addresses can be easily calculated from the IEEE 802.15.4 headers. This way, IPv6
packets and regular network traffic can be efficiently sent over IEEE 802.15.4-based
networks. The drawback caused by this mechanism is the overhead added to the
packet processing, since the header fields cannot be directly retrieved and therefore
must be, most of the times, derivate from the MAC layer. Also, and since on the
network edge the devices are mostly battery powered, the high traffic load induced
by the IPv6 heavily affects the overall energy consumption. Reducing the number of
packets to be processed by the device’s CPU, while maintaining the application re-
quirements, would result in a more efficient device operation and thus, an increased
battery lifetime.

5.2.1 6LoWPAN Frame

As specified by the 6LoWPAN adaptation layer, the IPv6 frames are carried on an
IEEE 802.15.4 Data frame payload. Figure 5.1 depicts an example of an UDP Data
frame sent between two nodes carried out in an IEEE 802.15.4 data frame payload,
where the IPv6 headers are compressed and must be derivate from the MAC layer.

96

Le
ng

th

FC
F

Se
q

.
N

um
b

er
D

st
P

A
N

D
st

A

dd
re

ss

ex
t6

4

Sr
c

A
dd

re
ss

ex
t6

4

IP
H

C
H

ea
de

r
U

D
P

H
ea

de
r

Sr
c

Po
rt

D
st

Po
rt

U
D

P
Ch

ec
ks

u
m

MAC Payload

R
SS

I

LQ
I

44 61 DC CC BE BA BF 3F 13 04 00 4B 12 00 2E 04 41 95 17 32 88 09

7E 33 F0 0B B9 0B B8 04 06 PAYLOAD DATA 20 EC

6L
oW

PA
N

P
ay

lo
ad

Figure 5.1: 6LoWPAN frame format.

For the 6LoWPAN header, there are four possible categories, regarding their role on
the network:

1. No 6LoWPAN: when the MAC payload is not 6LoWPAN compliant and
must be discarded at the adaptation layer;

2. Dispatch Header: used for Header compression purposes while keeping the
backwards compatibility with former encapsulation and compression schemes,
e.g., the LOWPAN_HC1 ;

3. Mesh Addressing Header: used for forwarding IEEE 802.15.4 frames at
link-layer;

4. Fragmentation Header: used when a datagram does not fit into a single
frame and must be fragmented.

Table 5.1 summarizes the four categories with the first two bits and the following
subcategories with the remaining bits.

According to Table 5.1, the example frame illustrated in Figure 5.1 consists of an
IEEE 802.15.4 MAC frame with a 6LoWPAN payload. The first two bytes (0x7E33)
correspond to the Header Compression mechanisms, which indicates that the frame
is a 6LoWPAN using a LOWPAN_IPHC Header Compression scheme and the following
bits must be used to retrieve all the corresponding header fields.

97

Table 5.1: 6LoWPAN Headers.

First 2 bits Following bit combinations
No 6LoWPAN 00 xxxxxx Any combination

Dispatch 01

000000 Additional Dispatch byte follows
000001 Uncompressed IPv6 Addresses
000010 LOWPAN_HC1 compressed IPv6
010000 LOWPAN_BC0 broadcast
1xxxxx LOWPAN_IPHC compressed IPv6

Mesh Addressing 10 xxxxxx Any combination

Fragmentation 11 000xxx First Fragmentation Header
111xxx Subsequent Fragmentation Header

5.2.2 LOWPAN_IPHC Encoding

Within the same WPAN, Header Compression mechanisms are expected to be often
used and the headers easily obtained without explicit indication by the source node.
For the sake of simplicity, only relevant fields and how they can be retrieved from
the encoded bits are explained. Remaining LOWPAN_IPHC base encoding bits are
explained on Section 3.1 of the RFC6282 [181]. If some of the IPv6 header fields
have to be carried in-line, they follow the LOWPAN_IPHC encoding rules. In the best
case, the LOWPAN_IPHC can compress the IPv6 header down to 2 bytes in an IPv6
link-local communication (i.e., a direct single-hop communication). When a packet
is routed through multiple hops, LOWPAN_IPHC can compress the IPv6 header down
to 7 bytes.

IP
H

C

Pa
tt

er
n

0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1

TF N
H

H
LI

M

SA
M

CI
D

LOWPAN_IPHC Compression

D
A

MM

D
A

C

SA
C

Byte _1 Byte_0

Figure 5.2: LOWPAN_IPHC encoding format.

Taking the 6LoWPAN example frame from Figure 5.1, the information obtained on
Figure 5.2 can be retrieved by decoding the 16-bit LOWPAN_IPHC field, which
starts with the LOWPAN_IPHC Pattern (0b011).

98

Some parameters and compressed header fields, are retrieved in the following way:

• The Traffic Class & Flow Level (TF) information that, in this case, states
that the Traffic Class and Flow Label are elided (0b11).

• The 6LoWPAN Payload Length can be inferred either from the MAC Frame
Length or from theDatagram Size Field in the fragmentation header (if present).

• The Hop LIMit (HLIM), set to a well-known value by the source node,
indicates that the HLIM field is compressed and the hop limit value is 64,
corresponding to the bit fields set to 0b10.

• Next Header (NH) field: the 6LoWPAN provides compression formats for
different next-headers, which are identified by a variable-length bit-pattern
immediately following the LOWPAN_IPHC compressed header. Each next-header
in the original IPv6 packet will be present in the compressed one in the same
order and it will be encoded with the appropriate LOWPAN_NHC format. In
this example, the NH field is compressed, 0b1, and encoded by using the
LOWPAN_NHC mechanism. For the packet displayed in Figure 5.1, the NH field
corresponds to an UDP Header (0xF0).

• Source Address Compression (SAC) field: the LOWPAN_IPHC encoding
mechanism performs effective compression of unique local, global, and multi-
cast IPv6 addresses. Addresses assigned to 6LoWPAN interfaces are formed
with an Interface Identifier derived directly from MAC addresses. Regard-
ing the Source address, for this example, the SAC field indicates that Source
address compression uses stateless compression (0b0).

• The Source Address Mode (SAM) bits state how to retrieve the source
address field. If SAC=0 and SAM=11, the Source address is fully elided.
The first 64 bits of the address are the link-local prefix padded with zeros
and the remaining 64 bits are computed from the encapsulating header (e.g.,
IEEE 802.15.4 or IPv6 source address). The resulting link-local IPv6 address
is [fe80:0000:0000:0000:0b88:3217:9541:042e/64] and it can be calcu-
lated using the SAC and SAM information. It also can be represented by
[fe80::b88:3217:9541:42e/64], if represented in the IPv6 compressed ver-
sion.

• The M field indicates if the Destination address is a multicast address. In this
case is 0b0 and states that the Destination address is a unicast address.

99

• Destination Address Compression (DAC) field: like in the SAC encoding
bits, the DAC indicates the Destination address compression used, and in
this case, it uses stateless compression (0b0). The Destination Address Mode
(DAM) works similarly to SAM. If M=0, DAC=0 and DAM=11, the address
is fully elided. The first 64 bits of the address are the link-local prefix padded
with zeros and the remaining 64 bits are computed from the encapsulating
header. [fe80:0000:0000:0000:0212:4b00:0413:3fbf/64] is the resulting
link-local IPv6 address, calculated using the DAC and DAM information. It
can be simplified as [fe80::212:4b00:413:3fbf/64].

Performing the heavy task of retrieving the header fields, before processing them, re-
quires processing capabilities and system availability. Considering that on the same
WPAN several nodes are in communication range of each other, most of the traffic
received by a node is intended for another, resulting in a redundant packet process-
ing, since unwanted received packets will be dropped. Offloading the LOWPAN_IPHC
header decompression task from the OS to an accelerator block, alleviates the over-
head caused by the processing of the 6LoWPAN headers, while avoiding unnecessary
processing when unwanted packets are discarded.

5.3 6LoWPAN Accelerator (6LA)

In order to assess and explore the possibilities and challenges of a network packet
processor for low-end IoT devices, the hardware accelerator was developed and de-
ployed on heterogeneous architecture presented in Chapter 3. Figure 5.3 depicts

IEEE
802.15.4

Radio

 SmartFusion2 SoC

MCU (ARM Cortex-M3)

IoT-OS
IoT

Network Stack

Radio API

Peripheral Driver

RCU (FPGA Accelerators)

Interface(s)

Radio

MAC
Layer

Accelerator

Crypto
Block(s)

Data
Aggregator

Network
Layer

Accelerator

Figure 5.3: Adding the 6LA to the heterogeneous architecture.

100

the IEEE 802.15.4 and 6LoWPAN accelerators, deployed side-by-side. It provides
several protocol-related filtering and processing mechanisms, which can help in al-
leviating processing load from the MCU and assist software-based tasks such as
intrusion detection systems.

5.3.1 General Architecture

ARM Cortex-M3
IoT Stack (Contiki-OS)

 Network Accelerator API

Filter 1

Network Accelerator Interface

dst_ip6_addr_n

dst_ip6_addr_0

6LoWPAN_config

...

Logic
Control

BUS

...

FPGA

IEEE
802.15.4

Transceiver

=

=

IEEE 802.15.4 Frame Buffer

en

en

en

Filter n

filter_reg_n

filter_reg_0

filter_config

...

=

=

en

en

IPHC x_header

Int.

Figure 5.4: Architectural RTL representation of the 6LA.

The system RTL model is depicted in Figure 5.4. Globally, it is composed by the
network accelerator interface, which connects the hard-core processor via the APB3
protocol and the IEEE 802.15.4 transceiver using the SPI protocol bus. Different
filter modules can be independently configured and connected to the network ac-
celerator block to perform the desired filtering/processing operation, accordingly to
the application requirements. This building blocks approach provides scalability to
the solution since it enables new filtering modules to be easily added to the 6LA.
Regarding the received packets, these blocks can integrate processing and filtering
tasks for the MAC and network layer (6LoWPAN), as well as performing specific

101

security-related tasks such as packet encryption/decryption algorithms, resorting
the most recent security mechanisms. Creating filter modules in a building blocks
approach provides design-time scalability by mitigating the development and the
integration of new filtering modules to the heterogeneous architecture.

When the radio transceiver receives and holds a valid packet, the network accelera-
tor interface is triggered to transfer the packet to the IEEE 802.15.4 Frame Buffer.
Then, the enabled filtering/processing modules will take action and trigger an out-
put to the network accelerator interface if the packet passes or fails the settled rules.
If the packet passes, it is transferred to the OS in order to be processed in the upper
stack layers. If the packet fails the filter rules, it is discarded and the current pro-
cessor’s flow is not interrupted, leaving it available to run other tasks. Components
of the network accelerator interface, e.g., configuration, status registers, packet pa-
rameters, filtering statistics, can be accessed at any time by the OS through the
developed API. Because the 6LoWPAN relies and uses features from the IEEE
802.15.4 MAC protocol, modules from the MAC sub-layer accelerator were needed
to be integrated and deployed side-by-side. In this way, the MAC accelerator can
be used as standalone when the IoT network implements a different Transport data
protocol, rather than the 6LoWPAN, over the IEEE 802.15.4 standard as well as
when such features are not available on the radio transceiver hardware.

5.3.2 Deployed Modules

Header Compression and Packet Handling

In order to enable and provide packet filtering solutions, the IPv6 packet must be
previously retrieved from the MAC Data frame payload. Therefore, when an IEEE
802.15.4 Data frame is stored in the IEEE 802.15.4 Frame Buffer, it is automatically
decompressed into an IPv6 packet and all the fields set available to the OS and
the filtering modules. The decompression mechanisms are based on the algorithm
explained previously in Section 5.2.2.

Address Filtering

The 6LoWPAN packet filter is composed by a source and destination address filter
modules. Both can be configured with a desired number of IPv6 addresses to be
compared with the received packet. If the received packet matches any of the con-

102

figured addresses (e.g., Link-Local and Global addresses), an output for the network
accelerator interface module is triggered. For vital network protocols, e.g., mDNS,
RPL routing messages, and ICMPv6 messages, the 6LoWPAN modules will always
flag a valid packet. This way, the network nodes can keep up-to-date information
about the network topology while maintaining the network integrity. For handling
the IPHC mechanisms of the IPv6 protocol, these modules are able to retrieve all
the existing fields and calculate the IPv6 addresses, when compressed, from the cor-
responding MAC Addressing fields. Offloading this task from the OS alleviates the
overhead caused by the heavy processing of the 6LoWPAN headers.

TCP/UDP Filter

When the received packet contains a UDP/TCP payload, this module verifies the
local and remote ports. When combined with the previous modules it turns the
network accelerator into a powerful IPv6 UDP/TCP filter that is able to discard
packets if there are no bind connections with the node’s IP address. If the configured
socket is listening on different ports than the received on the UDP/TCP packet fields,
the packet is discarded. When the node is configured as a router, the module can
still forward the packet to the OS in order to generate an ICMPv6 "Destination
Unreachable Message" to notify the sender. This can be disabled if port scan probes
are undesired.

Other 6LoWPAN modules in development

There are other crucial features that are required by the 6LoWPAN in order to main-
tain the IPv6 network working in a more efficient way. Besides compressing the IPv6
addresses in an efficient manner, the LOWPAN_IPHC also introduces an extension that
is used to identify IPv6 Global Addresses that are commonly used in the network,
e.g., a remote server address. Thus, the addresses have not to be carried in-line
every time a message is exchanged between a node and the remote server. For that
purpose, the LOWPAN_IPHC introduces the Context IDentifier (CID) Extension that
expects a conceptual context is shared between the node that compresses a packet
and the node(s) that needs to expand it. However, how the contexts are shared and
maintained is out of the scope of the standard specification [181]. The specification
enables a node to use up to 16 contexts and the context used to encode the source
address has not to be the same as the context used to encode the destination ad-
dress. If the CID field is set to 1 in the LOWPAN_IPHC encoding, then an additional

103

octet will extend the LOWPAN_IPHC encoding following the DAM bits, but before the
IPv6 header fields that are carried in-line. The additional octet identifies the pair of
contexts to be used when the IPv6 source and/or destination address is compressed.
The context identifier reserves 4 bits for each address type, supporting up to 16
contexts, where context 0 is the default context. A Context Table (CT) maps the
most frequent Internet address prefixes to context identifiers of several bits, which
are used in the packets generated by the border router. The CT design and how the
tables are maintained are not specified. However, few approaches to dynamically
update each CT, and how the information is disseminated over the network have
been proposed by [185,186]. Since the dynamic algorithm applied is heavy, and with
the increased number of global host that might need to communicate with the nodes
inside the 6LoWPAN network, it is also proposed the addition of a module to the
6LoWPAN accelerator in order to handle these tables and how the information is
disseminated. Such task, in the Contiki-OS, is being under evaluation and proposed
to be offloaded.

5.3.3 Peripheral Interface

After deploying the 6LA on the RCU, and since it shares the same memory space
with the MAC accelerator, it was necessary to update the peripheral interface created
in Section 4.3.3 from Chapter 4. The update concerns the registers FILTER_REG,
CMD_1_REG and CMD_1_REG bit fields on the core_accelerator_regs.h file. Regarding
the FILTER_REG, Figure 5.5, the reserved bit fields were updated as follows:

Rese
rv

ed

UDP_PORTS

DST_IP

SRC_IP

DFD
DST_ADDR

SRC_ADDR

PAN_ADDR

01234567

FILTER_REG

Figure 5.5: FILTER_REG register field.

SRC_IP, DST_IP and enables/disables, respectively, the filtering functionalities of
source/destination IPv6 addresses (can be Local-Link, Global, etc.), and UDP_-
IP adds the functionality to additionally filter the packet by the UDP remote/lo-
cal) ports in use. Regarding the CMD_1_REG register, Figure 5.6, the reserved bit

104

fields are now used as follows: SRCUDP_PCKT, DSTUDP_PCKT, SRCIP6_PCKT_MASK and
DSTIP6_PCKT_MASK are used to request the number of filtered packets for source and
destination UDP ports and source and destination IPv6 addresses, respectively.

SRCIP
6_PCK

T_M
ASK

DSTIP
6_PCK

T_M
ASK

DSTUDP_PCK
T

SRCUDP_PCK
T

DFD_PCKT

SRC_PCKT

DST_PCKT

PAN_PCKT

01234567

CMD_1_REG

Figure 5.6: CMD_1_REG register field.

For the CMD_2_REG register, Figure 5.7, there were added new bit fields as follows:
WR_UDP_PORTS_MASK is used to set a new pair of local/remote ports to be added
to the filter. New ports were added to the BUFF_0_REG, BUFF_1_REG, BUFF_2_REG
and BUFF_3_REG, to be next added to the list of remote/local ports. The same
procedure is used to add source and destination IPv6 addresses. Because the IPv6
uses 16 octets, the transfer occurs in two steps, first the network prefix is set by
asserting the WR_SRCIP6_PREFIX_MASK bit and followed by the 64-bit IPv6 address
when the WR_DSTIP6_ADDR_MASK bit is set. Listing 5.1 summarizes the file with the
performed updates.

W
R_DSTIP

6_ADDR_M
ASK

W
R_DSTIP

6_PREFIX
_M

ASK

W
R_SRCIP

6_ADDR_M
ASK

W
R_SRCIP

6_PREFIX
_M

ASK

W
R_UDP_PORTS_M

ASK

W
R_SRC_M

AC_M
ASK

W
R_DST_M

AC_M
ASK

W
R_PAN_M

ASK

01234567

CMD_2_REG

Figure 5.7: CMD_2_REG register field.

105

Listing 5.1: Updated core_accelerator_regs.h file.

1 ...
2 #define NETWORK_ACC_BASE_ADDR 0x30000000UL
3 ...
4 #define FILTER_REG_OFFSET 0x2Cu
5 ...
6 #define SRC_IP6_MASK 0x10u //enable src IPv6 address filtering
7 #define DST_IP6_MASK 0x20u //enable dst IPv6 address filtering
8 #define UDP_PORTS_MASK 0x40u //enable UDP remote/local filtering
9

10 /* Command 1 Register */
11 #define CMD1_REG_OFFSET 0x30u
12 ...
13 #define SRCUDP_PCKT_MASK 0x05u //filtered src udp packets
14 #define DSTUDP_PCKT_MASK 0x06u //filtered dst udp packets
15 #define DSTIP6_PCKT_MASK 0x07u //filtered dst ipv6 packets
16 #define SRCIP6_PCKT_MASK 0x08u //filtered src ipv6 packets
17
18 /* Command 2 Register */
19 #define CMD2_REG_OFFSET 0x34u
20 ...
21 #define WR_UDP_PORTS_MASK 0x04u //write udp ports
22 #define WR_SRCIP6_PREFIX_MASK 0x05u //write src ipv6 prefix
23 #define WR_SRCIP6_ADDR_MASK 0x06u //write dst ipv6 address
24 #define WR_DSTIP6_PREFIX_MASK 0x07u //write src ipv6 prefix
25 #define WR_DSTIP6_ADDR_MASK 0x08u //write dst ipv6 address
26 ...

5.3.4 6LA-compliant API

The software driver developed to access the network accelerator in Chapter 4 was
updated to support the new functionalities of the filter. As an example, Listing 5.2
depicts a code snippet for a UDP port filtering configuration. In short, after the
application starts, it sets an UDP connection with the defined local/remote ports.

Listing 5.2: Simple example for configuring the UDP ports in the peripheral registers.

1 ...
2 #define UDP_REMOTE_CONN_PORT 4001
3 #define UDP_LOCAL_CONN_PORT 4000
4 ...
5 server_conn = udp_new(NULL, UIP_HTONS(UDP_REMOTE_CONN_PORT), NULL);
6 udp_bind(server_conn, UIP_HTONS(UDP_LOCAL_CONN_PORT));
7 ...
8 udp_ports[0] = UDP_LOCAL_CONN_PORT & 0xff;
9 udp_ports[1] = UDP_LOCAL_CONN_PORT >> 8;

10 udp_ports[2] = UDP_REMOTE_CONN_PORT & 0xff;
11 udp_ports[3] = UDP_REMOTE_CONN_PORT >> 8;
12 ...
13 //write UDP ports to buffer
14 filter_config |= UDP_PORTS_MASK;
15 radio_frame_filter_set(UDP_PORTS_MASK, udp_ports);
16 //write the filter config
17 NETSTACK_RADIO.set_value(RADIO_PARAM_RX_MODE, filter_config);
18 ...

106

Afterwards, it writes the local/remote ports to the peripheral buffer registers fol-
lowed by the new filter configuration which is written to the FILTER_REG register.
From now, the network accelerator will reject any UDP connection if the local/re-
mote ports mismatch the configured ones. The rest of the software driver follows
the same principle as depicted before in Chapter 4, Section 4.3.4.

5.3.5 Handling Security in 6LoWPAN

Data Security

As security is becoming a major requirement for most of IoT applications, cur-
rent technology must provide mechanisms that can protect, verify and authenti-
cate data exchanged between trusted nodes [45]. However, the traditional security
mechanisms that are widely used on the Internet, e.g., IPsec, are too heavy to be
integrated on small-constrained devices. Some approaches have already been pro-
posed and deployed at two different layers of the IoT network stack, as discussed
in [55]. For the MAC layer, the IEEE 802.15.4e standard specifies mechanisms to
achieve data encryption and authentication. Despite the last versions of the stan-
dard providing security, keys management schemes and authentication policies are
not specified, being these issues addressed in the upper layers. For securing the
6LoWPAN communications, and since available IPv6 protocol stacks use IPsec to
secure data exchange, Compressed IPsec [159] is proposed as a 6LoWPAN exten-
sion for IPsec support. It mitigates the usage of IPsec over the IoT low-end devices
while keeping the existing end-points on the Internet unmodified. The Compressed
IPsec was implemented in the Contiki-OS µIP stack and its impact was evaluated
in terms of memory footprint, packet size, energy consumption and performance
under different configurations. Such contribution suggests that future IPsec systems
should use cryptographic algorithms such as AES-CBC-128 for encryption and AES-
XCBC-MAC-96 mode for authentication. Although these algorithms are suitable to
integrate into the low constrained devices, when deployed as software-only, they
demand a high level of resources, such as CPU, memory requirements and energy,
thus the efficiency of the IPsec can still be improved by resorting hardware support.
The future work pointed by the Compressed IPsec motivate the 6LoWPAN IPsec
extension features integration on the CUTE mote, which is not only architecturally
compliant, but also complementary to the developed solution. Despite the CUTE
mote architecture being able to support security mechanisms for handling the secure

107

6LoWPAN packets, by easily adding security blocks that resort hardware crypto-
graphic modules, their implementations and evaluations, are out of the scope of this
thesis, but will be addressed in the future.

DoS Security

The strong connectivity of IoT environments requires a holistic, end-to-end security
approach, addressing security and privacy risks at all abstraction levels [54]. Ex-
posing resource-constrained endpoint devices to the Internet opens many doors to
attackers to exploit device vulnerabilities by creating Denial of Service (DoS) events
to reduce, disrupt or completely eliminate the network communication and device
availability [54, 188]. There can be different kinds of DoS attacks observed at the
MAC layer such as misbehavior and selfish attacks. Malicious nodes manipulate the
MAC protocol parameters such as back-off time, network allocation vector value and
short inter frame space, or flood the network with a large number of dummy pack-
ets. Under such scenarios, the attacker nodes can capture entire network bandwidth
causing legitimate nodes to fail to communicate with other nodes, consequently
decreasing the throughput of the nodes significantly. A proper DoS detection mech-
anism allied to an efficient packet filter can contribute for more efficient and reliable
communication systems. Given this, the proposed work can trigger future research
focused on hardware DoS detection mechanisms for low-end devices.

In [188], Suricata, an open-source IDS system, was used to create an IDS for
6LoWPAN-based networks and implemented over Contiki-OS. Suricata helps creat-
ing packet actions (i.e., pass, drop, reject, alert) for a specific protocol (UDP, TCP,
ICMP, etc.). Rules are based on packet’s source address and respective source port,
destination address with corresponding destination port, followed by other rule op-
tions. Such options provide the flexibility to the IDS and novel rule options can be
developed to extend the detection parameters. For instance, in the case of a UDP
flood attack, an alert can be triggered if the number of received packets is above a
defined threshold, e.g., 50 packets per second. The developed filtering features de-
ployed under the 6LA, such as the UDP/TCP port filtering, combined with the IDS,
can help preventing DoS attacks in a variety of scenarios such as an UDP flooding
attack. Taking benefit from the available hardware, the additional overhead caused
by the IDS can also be mitigated by the 6LA. Despite related, integrating such
functionalities with the IDS is out of the scope of this thesis, but proposed as future
work.

108

5.4 System Evaluation

For evaluating the 6LA, a similar experiment setup to the one presented in Figure
4.10 of Chapter 4, was conducted. The 6LoWPAN filtering (with the source and
destination filter modules) along with the IEEE 802.15.4 MAC filters were enabled
(needed to extract the IPv6 addresses from the MAC Headers). In addition, the
DFD module was enabled, despite not affecting the results. The PAN filter as well
as the TCP/UDP modules were disabled. The accelerator was configured to accept
packets to its own IPv6 addresses, i.e., Global and Link-Local.

5.4.1 Network Layer: API Evaluation

This first experiment evaluates the system’s performance, comparing both hardware
and software implementations for the packet processing and filtering. To evaluate
the achieved performance due to offloading filtering software functions to hardware,
micro-benchmarks were executed. These were used to measure the execution time
needed to read a packet from the radio transceiver and deliver it to the network layer.
The performance evaluation is calculated based on the average time for receiving
1000 packets by the UDP Server 1. Figure 5.8 shows the obtained results for software
and hardware filtering when a valid IPv6 packet is received. With the filter disabled,
the number of clock cycles required to process and filter one packet is on average
78156. When the filter is enabled, this value is reduced to 67806. This represents a
system’s overhead reduction of 13.24% (1.15× speed up), per received packet.

78156

67806

55000 60000 65000 70000 75000 80000 85000

Filter OFF

Filter ON

Clock Cycles

Filter OFF

Filter ON

Figure 5.8: API performance evaluation.

109

5.4.2 Thread-Metric Evaluation

50000

100000

150000

200000

250000

300000

350000

400000

0 4 8 16 32 64 128 256

Th
re

ad
-M

e
tr

ic
 S

co
re

UDP Packets/s

Destination: aaaa::b88:3217:9541:42e

Filter ON Filter OFF

Figure 5.9: UDP Client sending packets to UDP Server 1.

UDP Client to UDP Server 1

Figure 5.9 depicts the results obtained from running the benchmark on the UDP
Server 2 (with the 6LA enabled and disabled) with packets being sent from the UDP
Client to the UDP Server 1. The UDP Client was configured to send messages at
different PSR values, varying from 0 to 256 pkt/s. When PSR is 0, the score is at its
highest value, nearly 395093 with the 6LA enabled and disabled, which represents
the highest system availability since there are no packets being processed. Increasing
the PSR value, the score tends to decrease exponentially, since the OS is processing
and discarding new packets, intended to another node. However, with the 6LA
enabled, the score is slightly higher (35.9% better compared with the previous score,
for the highest value of PSR). This is due to the performance gain, achieved by the
packet filtering and discarding being processed by the hardware.

110

50000

100000

150000

200000

250000

300000

350000

400000

0 4 8 16 32 64 128 256

Th
re

ad
-M

e
tr

ic
 S

co
re

UDP Packets/s

Destination: aaaa::212:4b00:40e:ff5a

Filter ON Filter OFF

Figure 5.10: UDP Client sending packets to UDP Server 2.

UDP Client to UDP Server 2

Figure 5.10 shows the results obtained from running the benchmark with the accel-
erator filter features enabled and disabled, when the packets are sent from the UDP
Client to the UDP Server 2, at different values of PSR. This experiment aims to eval-
uate the impact on the benchmark (that runs on the Server 1), when the packets are
meant to be discarded (sent from UDP Client 1 to UDP Server 2). When the PSR
value is 0, the score is also at its highest value, around 395046 for the 6LA enabled
and disabled, since there are no packets being transmitted in the network. With the
6LoWPAN filter disabled, increasing the PSR tends to exponentially decrease the
score, but at a lower rate when compared with the previous experiment. This is due
to packets being received and dropped by the OS. Although these packets are meant
to be discarded, the OS still has to flag an OS process to read and compute new
packets. With the 6LA enabled, the score is not affected due to the packets being
processed and discarded by the network accelerator. This represents full availability
of the OS services when no packets are intended to be received and processed by
the node. Comparing the benchmark scores, for the worst case scenario, with the
6LA enabled, the obtained score is about 394684 while with the 6LoWPAN filter
disabled it is around 228947. This result represents an increase of nearly 42% on
system availability.

111

5.4.3 Energy Consumption Analysis

To validate the solution in terms of energy consumption, the heterogeneous platform
was evaluated and compared with a COTS solution, typically used in WSN and IoT
applications. The performed evaluation focused on the energy needed for processing
a single 6LoWPAN packet (to be accepted or rejected) on each platform, comparing
the software solution with the 6LA, which is only available in the proposed heteroge-
neous architecture. Both platforms were configured to run at the same clock speed
(32MHz) for their typical voltage supply (3.3V for the CC2538EM and 1.2V for the
SmartFusion2 core), running the Contiki-OS with the UDP server application com-
piled under the same conditions (GNU Toolchain 5.4.1 with the optimizations flag
-O2). When running the experiments, only the IPv6 filtering was handled and the
filtering of the UDP source/destination ports was not performed. A full energy char-
acterization of the developed platform and further comparison with related systems,
goes beyond of the scope of this thesis and it is proposed as future work.

From the obtained results (presented in Table 5.2) when comparing only the soft-
ware approaches, the energy required to process one 6LoWPAN packet is around
9445 nJ (processing time of nearly 210 µs) for the CC2538 and 14356 nJ for the
SmartFusion2 (average processing time of 254 µs), with the 6LA disabled. This
small divergence is related to the architectural differences of the CPU, as well as the
overall differences on the SoC of both platforms. Moreover, for the overall power
consumption, exploring the Flash Freeze control on the SmartFusion2, which en-

Table 5.2: Energy consumption analysis per received packet on different IoT low-end
platforms.

Device

Parameter CC2538 SmartFusion2 SmartFusion2
(Acc. N/A) (Acc. OFF) (Acc. ON)

Compiler ARM-GCC 5.4.1 ARM-GCC 5.4.1 ARM-GCC 5.4.1

MCU Architecture 32-bit 32-bit 32-bit
Instruction Set Cortex-M3 Cortex-M3 Cortex-M3
Clock (MHz) 32 32 32
VCC (V) 3.3 1.2 1.2
Packet operation Accept Reject Accept Reject Accept Reject

taverage (µs) 210 270 254 292 221.4 0.40
Paverage (mW) 44.98 44.98 56.52 56.52 54.95 54.95
Eaverage (nJ) 9445 12144 14356 16503 12168 22

112

ables the FPGA to be disabled when not in use, can reduce the energy consumption
required for processing received packets. The superiority of the proposed solution is
emphasized when the 6LA (deployed on the RCU) is exploit on the heterogeneous
architecture. When a 6LoWPAN packet is meant to be discarded, the processing
time is nearly 0.4 µs, with an average energy consumption of around 22 µJ, which
represents an energy reduction over 99%, if compared with the software processing
of a rejecting packet. Despite the accelerator assisting the software processing, when
the packet is meant to be accepted, the processing time is around 221 µs with an
energy consumption of around 12168 µJ. This happens because Contiki-OS is not
optimized to use hardware accelerators and the heterogeneous architecture does not
take the benefits (at this stage of development) of the Flash Freeze control. Ad-
dressing these issues in the future will result in a better energy consumption on the
heterogeneous architecture, when compared with the native software-only solution.

5.4.4 RCU Resources Utilization

Table 5.3 shows the synthesis results of the implemented network accelerator with
MAC and 6LoWPAN filter modules connected. Results are expressed in terms of
4LUT and DFF used, for each deployed filter. The network_acc_0 module is the
most costly in terms of resources (4LUT and DFF) as it is responsible to interface the
radio transceiver and the desired filter modules, as well as to accommodate the IEEE
802.15.4 Frame Buffer. Regarding the filter modules, 6LoWPAN filters are the most
expensive in terms of FPGA fabric, mainly due to the implementation of the IPHC
header processor. The ip6_src_filter_0 resources (in terms of 4LUT) are less when
compared with the ip6_dst_filter_0 due to the synthesis tool optimizations. This

Table 5.3: Synthesis results obtained from Libero SoC v11.7.

Module 4LUT DFF
network_acc_0 1916 1895

M
A
C

pan_filter_0 64 73
mac_src_filter_0 300 265
mac_dst_filter_0 159 265

dfd_filter_0 194 297

6
L
o
W

P
A
N ip6_src_filter_0 159 521

ip6_dst_filter_0 1916 521
udp_ports_filter_0 1813 137
Total (out of 86184) 6521 (7.57%) 3974 (4.61%)

113

happens because some resources, such as the registers that store the received IEEE
802.15.4 Data frame, can be shared between these two modules and thus, reduced
to only one slot of resources instead of one for each module. For the remaining filter
modules, the deployment costs are reduced.

5.4.5 ASIC Resource Estimation

Next generation of IEEE 802.15.4 transceivers can also benefit from the developed
6LoWPAN accelerator. Despite being deployed and tested on the RCU of a hetero-
geneous architecture, it can be integrated on an ASIC. As the FPGA technology
is commonly used for prototyping and used as proof of concept prior ASIC imple-
mentations, it is possible to predict the hardware cost of the accelerator for ASIC
deployments from the RTL design. The gate-level synthesis was conducted using
the Synopsys Design Compiler for the AMS 0.35µm CMOS technology with a 32
MHz clock speed. The result from the synthesis tool regarding the 6LA RTL de-
sign, which evaluated the ASIC cost in terms of the number of standard cells (from
Corelib library) needed, is 15718. This value indicates the extra cost of adding such
accelerator to ASIC implementations of IEEE 802.15.4 radio transceivers.

5.5 Conclusions

This chapter described the 6LA, a co-designed hardware/software 6LoWPAN ac-
celerator for filtering and processing IPv6 packets carried on IEEE 802.15.4 Data
frames. Its building-block approach offers design-time scalability by easing the in-
tegration of new customized modules and features. The contributions are meant to
be deployed on the developed heterogeneous architecture for IoT-based networks,
which use an IEEE 802.15.4 compliant radio transceiver for data exchange and are
mainly present on IoT low-end devices. The achieved results show that the soft-
ware offloading allows a system’s overhead reduction of nearly 13.24% while the
packet discarding by the 6LA may reach a reduction of 42%, achieved when all the
received packets are meant to be rejected. The performed evaluations highlighted
the superiority of the 6LA (which reduced the energy consumption of processing
received packets from 16503 µJ to nearly 22 µJ) when the packets are processed
and discarded by the hardware. The contribution can also be deployed on future
generations of IEEE 802.15.4 radio transceivers at a cost of 15718 cells for the 6LA.

114

As future work, new modules for handling security should be fully implemented and
tested on the current heterogeneous architecture. Hereafter, since the accelerator
was only tested with non-router devices, the implementation should be tested and
included in a router. In IP-based networks, where the packets are mainly forward
to intermediate nodes until they reach the destination, the accelerator should also
explore the implementation of an RPL module in order to forward packets to their
destination without the OS intervention. Furthermore, while security has emerged
as a major design goal for smart connected devices, future work will not only focus
on securing communications data (through the 6LoWPAN extension to IPsec), but
also when in processing and at rest. To achieve that, the applicability of recent
work, the IIoTEED [49], to resource-constrained low-end devices, supported by the
new generation of ARM Cortex-M TrustZone-based processors, must be researched.

As the system complexity increases, the design and time-to-market metrics tend to
decrease. Despite using a building-block approach, adding features to the proposed
6LA will later add an extra developing cost in terms of design-time scalability and
software verification. Promoting system-design automation and reconfigurability to
the system through a DSL, will contribute for a fast and better development. These
topics are next discussed in Chapter 6.

115

116

Chapter 6
Enabling Design Automation

Through a Modeling DSL

With the increased complexity of the IoT low-end devices, mainly due to their con-
nectivity and interoperability requirements, the development and configuration of
an embedded OS for such devices is not straightforward. The complexity of the
communication requirements is usually mitigated by the OS, as it already incor-
porates an IoT-compliant network stack. However, the configuration of such stack
requires major knowledge on the code structure, leading to additional development
time, particularly when the network comprises several wireless nodes and individual
configurations, with subsequent firmware functionalities to be generated.

This chapter presents the EL4IoT framework, a DSL for embedded OSes that tar-
gets IoT low-end devices. It aims to reduce the development time by promoting
a design automation tool that can configure and generate Contiki-OS code, ready
to be compiled. Although leveraging the Contiki-OS architecture model, this work
only re-factored and modeled the network stack, approaching the OS itself as one big
component. The proposed DSL can also be extended to other embedded OSes or it
can be integrated in other design automation tools. Section 6.1 introduces this chap-
ter, while Section 6.2 presents the Elaboration Language (EL), going through the
framework’s workflow and language constructs. Section 6.3 presents the modeling
of the Contiki-OS network stack following a composite design pattern, and Section
6.4 illustrates the implementation of a component and the EL4IoT internals. The
system evaluation is discussed in Section 6.5 and Section 6.6 concludes the chapter.

117

Related Publications

Ideas and findings presented in this chapter resulted in the following publication:

• T. Gomes, P. Lopes, J. Alves, P. Mestre, J. Cabral, J. L. Monteiro, and Adri-
ano Tavares, "A Modeling Domain-Specific Language for IoT-enabled Operat-
ing Systems," IECON 2017 - 43rd Annual Conference of the IEEE Industrial
Electronics Society, Beijing, 2017.

118

6.1 Introduction

Existing IoT embedded OSes, e.g., Contiki-OS, mainly aim to promote a lightweight
implementation of a standardized network stack for the low-end devices. However,
their configuration and deployment is still complex, mainly due to the devices’ hard-
ware heterogeneity and the high variability of the OS and network stack. The task
of configuring and customizing network parameters, such as the PAN value and de-
vice’s addresses (MAC and IPv6), the OS services and protocols, e.g., 6LoWPAN
and CoAP, can be mitigated by enabling design automation through the develop-
ment of a tool that allows full system configuration and code generation, according
to user needs and application requirements. The applicability of such tool can be
explored in a way that generating firmware for several nodes in an IoT network,
while providing mechanisms for code verification and validation, can be performed
by automated systems and/or embedded systems designers without deep knowledge
of the OS and/or the network stack.

Several approaches targeting design automation by providing DSLs to model a de-
sired system have already been undertaken in the recent years. In [62] is proposed a
low-level DSL for dynamic code-generation in binary translation systems, enabling
code snippets to be added during compile time. The code is then generated by
the translator on demand at runtime and integrated into the translated application
code. Targeting the development of FPGA-based systems, several well-known DSLs
have been proposed to smooth the system design both at the software and RTL
layers [63]. These DSLs aim to simplify the development of building hardware/-
software co-designed systems, which requires high levels of expertise on different
domains. SensorScript [64] proposes a business-oriented DSL for sensor networks,
that aims to provide a model that avoids to overwhelm any user with all the data
gathered from the sensor network, regardless if it is actually required by the user.
This allows users to easily search, query and aggregate information from the avail-
able sensors. Targeting IoT-based applications and aiming to relieve designers from
the complexity and the heterogeneity of the WSN nodes, the DSL-4-IoT [65] was
recently proposed. It provides a visual model based language that, using a high
level of abstraction, allows different node configurations to be deployed over a WSN
environment. However, the level of abstraction provided DSL-4-IoT does not specify
the low-level configurations such as the network settings (e.g., addressing and radio
channel parameters) and protocols in use.

119

This chapter presents the EL4IoT framework, a modeling DSL for IoT-enabled OSes.
The EL4IoT allows the configuration and automatic generation of code for low-end
devices in IoT applications that require an IoT-compliant network stack to provide
interoperability and seamless connectivity to the Internet. The main contributions
of the EL4IoT are: (1) a DSL for modeling embedded OSes targeting the Internet
of Things (Contiki-OS); (2) reduced modeling efforts over 4 layers of the Contiki-OS
network stack; (3) the development of a design automation and code verification tool
for embedded systems designers, promoting its integration with design automation
tools.

6.2 DSL for IoT Endpoint Devices

A DSL is a programming language with limited expressiveness which, in contrast
with general purpose languages, targets a specific domain by providing constructs
to solve its specific problems [59]. An ideal DSL allows specifying what is required
to be computed, while relegating its implementation to automated tools. Its usage
is quite appealing since it promotes a simpler and faster development, while provid-
ing higher gains in expressiveness, ease of use and productivity [60]. Developing a
DSL is quite hard, since it requires high levels of domain knowledge and technical
expertise. However, once well designed and created, it tends to pay off all the in-
herent development efforts [61]. There is a growing interest in DSLs for generative
programming (GP) [189] and model driven development (MDD) [190] programming
styles, as both provide higher levels of abstraction, leveraging software reuse and fast
software development. While GP targets the automatic system generation according
to a defined specification [189], MDD is an approach in which extensive models are
created (before, during or after source code is written) to describe system’s architec-
ture abstracting implementation details, easing development and testing purposes.
Both MDD and GP rely on software reuse and complex code generation. Thus, a
DSL must provide constructs to enable the mapping between models and code that
will be generated [191].

The EL is a modeling DSL designed to be an efficient GP tool, while approaching
MDD. Based on the Service-Component Architecture (SCA) standard, it mainly
targets the code generation automation from the source files of a designated system.
SCA specifies that various system components may be assembled by the form of
service-oriented architecture (SOA) components, following a composite pattern [192].

120

The key concepts of the SCA standard are: Composite, Component, Service, Refer-
ence, Property and Wire. According to the standard, it is possible to create reference
architectures identifying the system components and interactions between them, as
well as their configurable properties. The EL was developed using the Xtext and
Xtend frameworks, widely adopted when developing a DSL [59]. Xtext is an Eclipse
framework used to create the language grammar, which dictates how the parser and
the Abstract Syntax Tree is created, while Xtend is a general-purpose program-
ming language that is translated into a comprehensible Java representation [59]. It
is interchangeable with Java code and used to implement language validators, code
generation software, and some other Eclipse language specific tools (e.g., quick fixes).
In this chapter the aspects of developing a DSL are not covered. The chapter aims
to technically present the EL as a solution for software modeling, validating its us-
ability through a real use case, i.e., the modeling of the Contiki-OS communication
stack. The following sections will cover EL’s workflow and framework architecture,
in addition to its constructs and rules.

6.2.1 EL4IoT - EL Framework Overview

The framework workflow, depicted in Figure 6.1, encompasses four main stages:
Modeling, Elaboration, Configuration and Code Generation. During each stage, the
artifacts that will be used in the next stages are created. During the Modeling
stage, the main goal is to create an architectural model, according to the SCA
standard, that will be later used as a reference architecture. During the architectural
model creation, system’s components must be identified, as well as the dependencies
between them, allowing the specification of well-defined interfaces and properties.
After its creation, it must be compiled. If the compilation process succeeds, the
compiler should generate, for each component, its Java representation, elaboration
stub class, the configuration XML files, and an architecture-specific Java Elaborator.
All these artifacts are then used in the following stages.

The Elaboration stage encompasses the provision of annotated source files and the
implementation of the elaboration classes’ behavior (using the elaboration stub
classes). Once implemented, elaboration files dictate how the source code must
be generated. For each component, more than one implementation may be avail-
able, as well as its respective elaboration. Only one elaboration class per component
will be executed in the Elaborator, as specified by the configuration files. Also, an
API is available to ease the annotation process (find and replace), within the respec-

121

Configuration
Files

.java

.el

Component
Component

Component Component

.java

Generated Files

.c .c

.xml

.xml

.c

.xml

Designs &
Implements

System
Designer

Implements

Modeling
Model

Source Files Elaboration
Files

Elaboration

.c

.c

.c

Compiler

Elaborator

Generates

Code Generation

Generates

Executes

Configuration

Configures

Generates

User

Figure 6.1: Framework workflow.

tive source code files (e.g., function calls, property values), and also to fetch other
properties from the configuration files.

Previously generated XML artifacts (configuration files), contain the values for all
the component properties, which may be changed during the Configuration stage,
to modify the system configuration and its subsequent code generation. These files
also specify which component elaboration will be loaded into the Elaborator process.
In addition, each elaboration may have its own implementation-specific properties.
Since such properties are not available in the reference architecture’s configuration
files, another XML file should be provided by the elaboration developer. Once
properly configured, the generated elaborator must be executed. This process will
fetch each component’s properties and will load elaboration classes through Java
reflexion, according to which rules are specified in the XML files. As the result, the
Code Generation should be according to corresponding Elaboration Classes.

122

Three different actors, which interact with the system at different stages of the code
generation process, are identified:

• The Architect: the individual with technical knowledge and specific domain ex-
pertise, that is responsible for translating system characteristics into a model;

• The Component Designer: the one with technical expertise, which provides
the annotated source code files and implements the elaboration classes.

• The End User: the final user that will benefit from the provided resources to
configure and generate application-specific code. Usually, the end user only
focus on setting up the configuration files (defining properties values and choos-
ing the elaboration file to be imported) before invoking the Elaborator.

6.2.2 EL’s Constructs and Operations

As previously said, the EL is a DSL that allows the description of an architectural
model according to SCA specified concepts. An EL file, depicted in Listing 6.1,
is defined with the .el extension and contains three types of top-level constructs:
(1) components, (2) interfaces and (3) language descriptions. Each component is
described as an aggregation of subcomponents, properties, and its relations with
other components in the form of services and/or references. It is also described as
having one language type, which should be its own implementation language.

Listing 6.1: EL code snippet from the component sixlowpan.

1 final ("sixlowpan.java") component sixlowpan (C){
2 subcomponents:
3 fragmentation fragmentator
4 compression compressor
5 sixlowpan_out output
6 sixlowpan_in input
7
8 promote service input.S_in as S_in
9 promote service output.S_out as S_out

10 promote reference input.R_tcpip_in as R_tcpip_in
11 promote reference output.R_sp as R_sp
12 bind input.R_decomp to compressor.S_d
13 bind input.R_defrag to fragmentator.S_d
14 bind output.R_comp to compressor.S_c
15 bind output.R_frag to fragmentator.S_f
16 }

123

Table 6.1: Available EL’s keywords.

Keyword Description
annotation Defines the character that limits the annotations.
as Renames a promoted reference or service.
bind Binds a reference to a service.
bool Component’s property data type.
compile Tells to compiler which is the top level component.
component Defines a component.
final Defines that a component has a concrete elaboration.
import Imports the content of the specified file.
int Component’s property data type.
interface Defines a set of functions used by a service or pointed by a reference.
is Inherits the specified component.
float Component’s property data type
language Defines a language.
promote Promotes a reference or service from a subcomponent to a component.
properties Defines the properties set of a component.
reference Defines the reference used in a promote or in a bind operation.
references Defines the references set of a component.
restrict Restricts the values that a property can take to a user’s defined set.
service Defines the service used in a promote or in a bind operation.
services Defines the services set of a component.
string Component’s property data type.
subcomponent Defines the subcomponents set of a component.
to Connects a reference to a service in a bind operation.

The Language construct specifies the implementation language of components
(e.g., C, C++ or Python), imposing restrictions to a given component, which can
only relate with others described in the same language.

The Interface construct describes interfaces for which other components will as-
sociate. An interface declaration must always state the services it can provide.
Components connect through bindings of services and references that follow the
same interface type, using the keyword bind. Table 6.1 contains all the keywords
provided by the EL DSL. For instance, in Listing 6.1 (line 12), there is a binding be-
tween the service S_d from the component compressor and the reference R_decomp
for the component sixlowpan.

The Component construct is the most important and it consists of four sections:

• Properties: EL enables properties declaration for the basic programming types
(i.e., char, int, string), in which it is possible to impose restrictions and to
perform assignment operations.

• Subcomponents: Where the aggregated subcomponents are stated.

124

• Services and References: Here, interfaces are instantiated as services or refer-
ences. The interfaces belonging to the Services section are those implemented
by the component, while the ones inherent to the references section are depen-
dencies from a given component that implements that interface. Services and
references must always be connected through binding operations.

• Free: In this section, assignments can be made to properties where subcompo-
nent interfaces are binded and/or promoted. This is done (either for services
or for references) by using the keyword promote. It states that a subcompo-
nent interface is going to be available in the top-level component, and it must
be resolved later with a bind operation with the top-level component. Other
important keyword is the compile, which states the top-level component on
the hierarchy, from where the compilation process is started (in a top-down
approach). This also defines the order of the classes invocation in the Elabo-
rator program.

6.3 Modeling the IoT Stack

Modeling the Contiki-OS network stack (µIP stack) is not straightforward. Due to
its complexity, it requires a high level of expertise on IoT-enabled network stacks for
low-end devices, as well as knowledge on the OS itself. The µIP stack is composed by
tightly coupled components, which must be priorly identified by performing source
code analysis aided by the respective simulation. The identification of component
interfaces and their interactions (through function invocation) requires a deep under-
standing of the stack implementation and its behavior. The first steps encompass
the creation of a reference architecture of the network stack, followed by a com-
prehensive description of abstraction, lowering from the model to source code, and
extending as well the Contiki-OS stack documentation.

Figure 6.2 depicts the top-level view of the resulting model, comprising the top-level
components in a composite model, where each block refers to a component with
well-known denomination: (1) MAC, (2) 6LoWPAN, (3) IPv6, (4) Transport Layer
and (5) UDP/TCP Sockets for the application layer. Such view is expected since
the network stack its being modeled, prior further development. The purple and
green polygons define references and services, respectively, in a SOA approach. Se-
mantically, the connectors between references and services denote the establishment
of a function call dependency between components, where green polygons provide

125

Transport
Layer6LoWPANMAC IPv6

Timer

TCP Socket

UDP Socket

Send Packet

Tcpip Input

Input

Output

Send Packet

Input

UIP Process

Conversion
Functions

Application
Functions

Config.
Functions

ICMPv6 API

Tcpip
output

Tcpip uipcall

Uip process

Timer API

Timer API

UIP/UDP
Send API

Simple
UDP

Contiki
UDP API

Tcpip

icmp6 call

Tcpip uipcall

Tcpip

icmp6 call

Contiki
TCP API

Contiki

TCP API

Application
Functions

TCP
Socket API

Contiki

 UDP API

UIP/UDP
Send API

UDP
Socket API

Application
Functions

Conversion
Functions

Conversion
Functions

Timer API

Tcpip input

Figure 6.2: High-level composite model of the Contiki-OS network implementation.

the services required by references. The proposed model follows a layered approach,
where top components are formed by other components as well. This approach
inherently provides a changeable level of abstraction, depending on the embedded
designer needs.

Transport Layer

UDP

TCP

Simple UDP

Message Sender

Contiki
UDP API

Tcpip
output

Output

Simple
UDP

UIP/UDP
Send API

Output

Simple UDP

Contiki
UDP api

Enable TCP

Contiki
TCP API

Tcpip uipcall

Uip process

UIP/UDP
Send API

Timer API

UIP/UDP
Send API

Simple
UDP

Contiki
UDP API

Tcpip

icmp6 call

Contiki
TCP API

Process
Process

Tcpip input

Enable UDP

UIP/UDP
Send API

Max. UDP
Connect.

Enable UDP
Chksums

Enable
TCP Split

Max
 Segment

Size

Max. TCP

Connec.

Max. Listen.

TCP Ports

Figure 6.3: Internals of the Transport Layer component.

126

For the sake of simplicity and explanation purposes, only the Transport Layer and
its internals are depicted in Figure 6.3. This component is composed by a UDP
and TCP subcomponents, with their respective interfaces and properties, where the
dashed lines depict the promoted relationships. In this example, it is only provided
visibility to the internal services and references from outside the Transport Layer
component. Logically, it uses all the modeled OS services available (to applications)
and, therefore, encompasses all its available references. Properties are application-
specific and cannot be represented in the reference model.

6.4 Implementation

After conceiving the model, it is translated to the EL DSL. Its code representation
allows the generation of the supporting software, which consists on a framework that
accesses model properties and interfaces during the final stage of code generation.
This framework aims to promote design automation with code generation, leaving
only the components selection and properties configuration, e.g., PAN address and
TCP/UDP parameters, to user’s choices.

Elaboration Properties

The EL seamless code generation process allows a transparent system configuration.
The modeled system properties are defined in a configuration XML file, according
to the user and application requirements. While EL avoids the traditional need
for developers to write code, the generation of the final OS source files according
to the model definition and configuration must be automatic and user-friendly. As
aforementioned, EL uses software annotations, embedded in the OS source files
through a marker defined by the meta-character @@.

Listing 6.2: UIP_CONF_TCP and UIP_CONF_UDP annotations.

1 //======================== Transport ========================
2 //----------- TCP
3 #define UIP_CONF_MAX_LISTENPORTS @@UIP_CONF_MAX_LISTENPORTS@@
4
5 //----------- TransportLayer
6 #define UIP_CONF_TCP @@UIP_CONF_TCP@@
7 #define UIP_CONF_UDP @@UIP_CONF_UDP@@

127

This pattern is used to help in finding code where the annotation is later replaced
by its corresponding value during the code generation process. Listing 6.2 depicts
a code snippet with UIP_CONF_TCP and UIP_CONF_UDP annotations, which are used
to enable TCP and UDP protocols, associated with the Enable TCP and Enable
UDP model properties, respectively. The UIP_CONF_MAX_LISTENPORTS is defined by
the TCP component inside its parent component (Transport Layer), as depicted
in Figure 6.3, leveraging the ability of internal components to define their own
properties.

The elaboration of components incorporates the logic of their respective code gen-
eration process (i.e., annotation substitutions) in the form of JAVA code. The
component Transport Layer only contains the original Contiki-OS implementation,
embedded in an elaboration. Further elaborations for this and other components of
the stack are still under development. Listing 6.3 denotes the logic associated with
the Transport Layer component elaboration.

Listing 6.3: Elaboration method of the Transport Layer component in Java.

1 openAnnotatedSharedSource("contiki-conf-gen.h");

2

3 if(target.get_Enable_TCP())

4 replaceAnotation("UIP_CONF_TCP", 1);

5 else

6 replaceAnotation("UIP_CONF_TCP", 0);

7

8 if(target.get_Enable_UDP())

9 replaceAnotation("UIP_CONF_UDP", 1);

10 else

11 replaceAnotation("UIP_CONF_UDP", 0);

12

13 openAnnotatedSource("tcpip.c", "./contiki-3.0/core/net/ip");

14 openAnnotatedSource("tcpip.h", "./contiki-3.0/core/net/ip");

Briefly, a header file, that shared between several components, is opened and the
UIP_CONF_TCP and UIP_CONF_UDP annotations are replaced by the values defined
in the model, retrieved from the configuration XML file. Next, the source code of
the implementation is generated in the final directory by calling the "openAnno-
tatedSource" method. The new generated file will be create after the annotations’
replacement. All these functionalities are provided by an API, which eases the

128

elaborator’s implementation. The generate method is automatically invoked by the
framework, while a fully configured and ready-to-compile Contiki-OS stack is be-
ing generated. For the example given by Listing 6.2, the resulting annotated file
(generated by the Elaborator) is depicted by Listing 6.4.

Listing 6.4: Annotated file with UIP_CONF_TCP and UIP_CONF_UDP configuration
directives.

1 //======================== Transport ========================

2 //----------- TCP

3 #define UIP_CONF_MAX_LISTENPORTS 8

4

5 //----------- TransportLayer

6 #define UIP_CONF_TCP 0

7 #define UIP_CONF_UDP 1

The TCP protocol is set to be disabled (UIP_CONF_TCP = 0) while the UDP protocol
is configured to be enabled (UIP_CONF_UDP = 1), with a maximum number of eight
UDP listening ports (UIP_CONF_MAX_LISTENPORTS = 8).

Elaboration Interfaces

Contrary to the "Properties" of the code generation (which is entirely a model-based
process), interfaces use components’ elaborations to provide services (as function
calls) to connected references. That is to say, different components’ elaborations for
the same component might provide distinct implementations for the same service,
represented by several functions calls. The implementation of Interfaces, including
argument’s meta-data passing, is still under development.

6.5 Evaluation Tool

The Contiki-OS network stack model is used to demonstrate the flexibility provided
by the modeling tool to automatically generate a full configured system ready to be
compiled. While the reference model provides properties’ abstraction from imple-
mentations by using components, easing the system configuration to users, it requires
the specification of a real implementation by the system designer. Listing 6.5 denotes
the XML configuration file for the Transport Layer component. The implementa-

129

tion of this component is provided by the MySpecificTransportLayerElaborator.
Each Transport Layer sub-component has its own implementation. For instance, by
disabling the TCP protocol, the final generated Contiki-OS code will not contain
TCP related code.

Listing 6.5: XML configuration file for the Transport Layer component.

1 <component type="TransportLayer">
2 <elaboration default="SpecificTransportLayerElaboratorTemplate">
3 MySpecificTransportLayerElaborator
4 </elaboration>
5 <properties>
6 <property type="bool" name="Enable_UDP" default="true">
7 <value>
8 <element></element>
9 </value>

10 </property>
11 <property type="bool" name="Enable_TCP" default="true">
12 <value>
13 <element>false</element>
14 </value>
15 </property>
16 </properties>
17 </component>

Figure 6.4 illustrates the XML component editor window that allows the end-user
to easily edit the configuration XML files. In this example, two options are available
for changing the UIP_CONF_TCP and UIP_CONF_UDP parameters, whose values will
later replace the respective annotations during the code generation process. For
each property, the application restricts such inputs, according to their type (defined
by the EL keyword type) or possible range (set in the field Value), avoiding wrong
user inputs, while keeping the stack functional when the values are not set.

The same procedure is used to specify the implementation of the Application com-
ponent to be a UDP Server. This implementation provides its own configuration
XML file, allowing the designer to specify implementation-related properties as well.
In both XML files, every property requires a default value to seamlessly generate
the final (compilable) Contiki-OS source code. The UDP server application is con-
figured to create a connection with any UDP client, listening on the UDP port 4101
(instead of the default port 3001). The default response given by the server to any
client was not changed by the tool.

130

Figure 6.4: XML component editor with the Transport Layer component.

While in this example, Listing 6.6, the server is configured to be listening on UDP
port 4101 (TCP related code was disabled from compilation), several distinct con-
figurations can be achieved by using other model properties (not depicted in this
test). After its generation, the source code for the UDP server was compiled and the
resulting firmware was deployed on a CC2538EM board from Texas Instruments.

Listing 6.6: UDP Server application specific XML configuration file.

1 <component type="Application">

2 <properties>

3 <property type="int" name="LocalPort" default="3001">

4 <restriction type="range">

5 <botValue>1</botValue>

6 <topValue>5000</topValue>

7 </restriction>

8 <value> <element>4101</element> </value>

9 <property type="string" name="Message" default="Automatically

configured server">

10 <value> <element></element> </value>

11 </property>

12 <property type="string" name="Hostname" default="contiki-udp-server">

13 <value> <element></element> </value>

14 </property>

15 </properties>

16 </component>

131

Figure 6.5: A simple UDP client connecting and exchanging messages with the
automatically generated UDP Server.

This Evaluation Module (EM) was used in a simple client-server setup in order to
test the developed tools. The server, using the same EM, is running a UDP client
application that periodically exchanges messages with the automatically generated
and configured, by the tool, UDP server. As it can be seen from Figure 6.5, which
depicts the UDP server application output, received by the UDP client application.
The client connects the specified UDP server ports and receives the default message,
which is printed to the EM output.

6.6 Conclusions

This chapter presented the EL4IoT, a modeling DSL for embedded OSes that targets
the low-end devices in the IoT. The Contiki-OS network stack was modeled and a
DSL was developed, in order to allow the whole OS description (mainly its com-
panion network stack) with a variable abstraction level supported by the composite
pattern. The developed framework aims to promote design automation, mitigating
the configuration task of the Contiki-OS when deploying an IoT-compliant network
through automatic code generation. For the proof of concept, the Contiki-OS net-
work stack was modeled into the DSL and, using the framework, generated a UDP
server application, easily (re)configured without manually changing the source code.
The performed evaluation show that, despite being hard to create a DSL for a specific
domain, the modeling efforts tend to pay-off. With the increasing level of complexity
and variability of IoT systems, these tools result in higher productivity and lower
development time.

132

The benefits from such approaches in developing embedded software are endless.
Hereafter, the EL4IoT framework should get some improvements, namely the code
generation tool, with a more user-friendly interface that allows code generation and
system configuration with reduced number of inputs from the user. Other features
can be added to this tool, such as the automatic creation of the final firmware from
the generated code. Currently under the development, the DSL is being improved
with the usage of semantic technology to describe the domain knowledge, leveraging
its development towards a model validation approach and reducing the elaboration
development efforts. This will also contribute in improving the system scalability,
as semantic technology can upgrade code generation and verification when used to
guide the development environment.

133

134

Chapter 7
Conclusions and Future Work

In a world where everything is getting connected, device security and device in-
teroperability are a paramount. This triggers several technological issues towards
connectivity, interoperability and security requirements of IoT devices, from the sen-
sor to the cloud. Regarding endpoint devices for IoT, this thesis proposed to tackle
several aspects that aimed to contribute for an accelerated, secure and energy-aware
end-device communication.

This chapter presents and discusses the conclusions that could be drawn from the
results obtained by this thesis. The remaining of this chapter is organized as follows:
Section 7.1 concludes the work developed throughout this thesis, while Section 7.2
discusses the identified limitations. Section 7.3 points some directions for future work
and proposes a research roadmap to achieve it. Finally, Section 7.4 summarizes the
list of publications that have directly or indirectly contributed for the realization of
this thesis.

135

7.1 Conclusions

Pervasive computing and communication technologies of IoT have brought many
challenges when developing wirelessly connected devices, especially at the network
edge. Challenges on the embedded devices are due not only to the ever-growing
amount of data to be handled, but are also due to the increasing importance of
security and privacy requirements. Thus, tackling them is not straightforward. The
need for energy-efficient wireless devices to connect the Internet seamlessly, while
preserving their performance and security capabilities, demands for new architec-
tural solutions at the hardware level. While the connectivity exposes the device
to the Internet, which raises several security issues, deploying a standardized com-
munication stack on endpoint devices highly increases the data exchanged over the
network. Due to the inherent complexity of developing IoT systems, even at the net-
work edge, this work was motivated by the broad question posed at the beginning
of this thesis,

How to leverage an accelerated, secure and energy-aware
IoT end-device communication?

to which several subquestions were addressed and a proper methodology proposed.

First and second questions concerned with the traditional low capabilities of endpoint
devices, which could be enhanced by deploying acceleration blocks in heterogeneous
hardware solutions. This was performed after identifying the best candidates to
be offloaded from software and deployed under hardware accelerators. To tackle
these questions, and following the proposed methodology, Chapter 3 contributed
with a heterogeneous architecture for endpoint devices in the IoT network. The
architecture, integrating a secure hardware solution with a low-power MCU and an
RCU beside an IEEE 802.15.4-compliant radio transceiver, resulted in the CUTE
mote, which is described as a customizable and trustable IoT end-device. Following
a hardware/software co-design, the solution has proven to be a great choice for
deploying not only application-specific hardware blocks, but also an accelerated
network stack in a secure hardware platform, provided by the SmartFusion2 SoC.

The third question related to the endpoint communication improvements in low-end
devices, for which a hardware/software co-design methodology was identified as the
best approach to identify, from the OS network stack, the best offloading candidates.
This resulted in the contributions on Chapter 4 and Chapter 5, which presented,

136

respectively, hardware-accelerated solutions for the MAC sub-layer and the Network
layer on the communication stack. Such improvements aimed to contribute with
accelerators directly coupled to the MCU as standard memory mapped soft-hardware
peripherals, which could be easily accessed through standard communication buses.
The benefits of such accelerators revealed to be highly important, as they are able to
contribute to an increased OS performance and opportunity to handle other tasks,
even in high network traffic situations. The MAC sub-layer accelerator presented
in Chapter 4, was built as the foundation for the 6LoWPAN accelerator, which
is presented in Chapter 5, providing a performance increase of nearly 17% for the
processing and filtering tasks, while the 6LoWPAN accelerator contributed with a
performance increase of nearly 13% for the handling of the IPv6 packets extracted
from the IEEE 802.15.4 Data frames.

Since device and data security play a key role when connecting low-end devices to
the Internet, the fourth question could be answered with the contributions described
on Chapter 3 and Chapter 5, where not only the network performance is tackled, but
also the device and data security mechanisms are addressed. By employing IPsec
security to the device communication through the usage of Compressed IPsec in
Contiki-OS, the device can highly benefit from hardware acceleration for increasing
the performance of such heavily computational algorithms. Moreover, with the
increasing concern on the device security through communication’s vulnerabilities,
traditional IDS systems are being approached to endpoint devices as well. Such
systems can take great benefit from the contributions from Chapter 5, where the
accelerated and customized filtering features can be set available to any rule applied
in the IDS. Device security starts from the silicon manufacturing phase, and that
could be achieved by selecting a proper SoC, which is provided by the SmartFusion2,
as discussed in Chapter 3.

Finally, for the fifth question, which raised concerns about the engineering efforts
for creating secure, green and fast endpoint devices at the network edge, Chapter
6 contributes with a DSL that helps promoting and facilitating design automation
tools. Such tools can contribute for a fast and reliable development of different
accelerated solutions to individuals without expertise in the field. The benefits
of developing DSL for embedded systems are endless. Well combined with code
validation, simulation and firmware generation tools, they contribute for a more
efficient and rapid development of endpoint devices for IoT.

137

7.2 Limitations

Despite the contributions provided by this thesis to the state-of-the-art, this work
presents some limitations, which are expected to be overcome in the near future.
Such limitations are identified as:

• Power consumption issues are still evident as, when in the normal operation
mode, the CUTE mote consumes more power for the accepted IPv6 packets.
The solution only takes benefit of the accelerated processing, in terms of power,
when the IPv6 packets are rejected. Despite supporting the Flash Freeze
low-power mode, the CUTE mote does not yet integrate a complete DPM
system. A full power characterization is still pending and dependent of a real
application scenario;

• As RT support is seen as a major requirement in most IoT applications, the
CUTE mote can be considered limited in this sense. However, RIOT and
Contiki-OS with RT support are scheduled to be soon integrated and supported
by the CUTEmote. Still regarding the OSes, since they mainly target resource-
constrained devices, their network stack support is sometimes tightly coupled
(in a cross-layer approach) with services and OS internals, thus it is hard to
remove the full dependency of some network tasks and functionalities from the
OS. In Contiki-OS, this hampers the task of software offloading, resulting in
some processing tasks being still repeated by the OS.

• Regarding the network accelerators, both for the IEEE 802.15.4 sub-layer and
the 6LoWPAN adaptation layer, several improvements are still needed. With
the recent features provided by the IEEE 802.15.4e standard, some energy and
security-related issues are being addressed and could also be integrated into
the CUTE mote. Concerning the 6LoWPAN, and since this layer comprises
several protocols and services (rather than just the header compression mech-
anisms), several functionalities could benefit also from the hardware accelera-
tor. As thoroughly stated during previous chapters, the 6LoWPAN accelerator
could include the following functionalities: (1) full hardware support for the
Compressed IPsec (cryptographic algorithms and the protocol) to control and
handle the security when protected IPv6 packets are received; (2) support for
other services and protocols that rely on the 6LoWPAN, such as the Neigh-
bor Discovery protocol, a CID management algorithm and the RPL routing
capabilities.

138

• For other layers, such as the Application layer, all the tasks and protocols, e.g.,
CoAP, are still performed in software. This solution lacks in the support of
other standards and protocols that could benefit from acceleration modules.
Other OS services, at the application level, could also take advantage from
the developed accelerators, such as the Suricata IDS application. Although a
smooth integration could be achieved, this is not yet integrated in the CUTE
mote.

• Concerning with the developed framework used for configuring and generat-
ing source-code ready for compiling, code verification and automatic firmware
generation are still not integrated with the developed framework, thus some
hand-work is still needed by the system developer.

7.3 Future Work

Despite all the contributions developed and provided throughout the realization in
this thesis, future work is still addressed and proposed by the forthcoming research
roadmap:

• Provide full RT support: With the increasing requirements for RT support
on the endpoint devices, the efforts of including other embedded OS rather
than Contiki-OS, e.g., RIOT, will contribute for a heterogeneous endpoint
device with RT capabilities;

• Remove full dependency between stack-related tasks and the OS
internals and processes: Due to optimization purposes, some Network tasks
are tightly coupled with Contiki-OS internals. Therefore, when developing
hardware/software co-designed solutions, this difficult the task of offloading
software components to hardware. Despite being a complex task, future work
could comprise the refactoring of Contiki-OS source code in order to provide
a hybrid solution, both with hardware and software support, which could be
utilized accordingly. Concerning the network stack and the work developed in
this thesis, this would result in removing the redundant processing in Contiki-
OS of some tasks, which are already performed by hardware accelerators.

• Support other 6LoWPAN protocols and services through hardware-
acceleration engines: Since the 6LoWPAN is the de facto standard for
supporting the IPv6 protocol in WPAN and LLN, other features must be ana-

139

lyzed and offloaded to hardware, contributing for even more green, efficient and
accelerated endpoint device communication. Such features comprise the full
hardware support to Compressed IPsec security, a dynamic CID management
algorithm, and RPL routing capabilities.

• Integrate into the CUTE mote an IDS system: Suricata, which was
already tested with Contiki-OS and 6LoWPAN, could resort hardware ac-
celerators and activate, on-the-fly, different and customized filtering features
according to the dynamically established rules. This could contribute for a
better DoS attack prevention from many and different attack sources/types,
such as UDP flooding and port scanning probes.

• Expand the usage of the proposed solutions to middle- and high-
end devices: Even devices with more performance and high processing capa-
bilities, such as border-routers and gateways, where routing capabilities and
technology translation are the most performed task, could benefit from the
proposed solution. Accelerating such tasks would enhance the performance,
security and interoperability of all devices in the 6LoWPAN network.

• Expand the functionalities and applicability of the EL4IoT frame-
work: Despite being used mainly for code generation of the Contiki-OS, the
developed DSL, which followed the MDD approach, can also easily be tar-
geted toward test automation. Simulation-oriented artifacts can be extracted
and/or implemented based on behaviors of known simulation tools, such as
Cooja offered by Contiki-OS. In doing so, it contributed to a better endpoint
system development. Although the Cooja simulator does not provide API for
interfacing with external tools, the source-code is set available in open-source,
therefore, its integration with the EL4IoT framework is still possible.

7.4 List of Publications

The work developed throughout this thesis has contributed to the following publi-
cations (both journal and conference proceedings):

• T. Gomes, J. Brito, H. Abreu, H. Gomes and J. Cabral, "GreenMon: An
efficient wireless sensor network monitoring solution for greenhouses," 2015
IEEE International Conference on Industrial Technology (ICIT), Seville, 2015,
pp. 2192-2197.

140

• T. Gomes, D. Fernandes, M. Ekpanyapong and J. Cabral, "An IoT-based sys-
tem for collision detection on guardrails," 2016 IEEE International Conference
on Industrial Technology (ICIT), Taipei, 2016, pp. 1926-1931.

• T. Gomes, S. Pinto, T. Gomes, A. Tavares and J. Cabral, "Towards an FPGA-
based edge device for the Internet of Things," 2015 IEEE 20th Conference on
Emerging Technologies & Factory Automation (ETFA), Luxembourg, 2015,
pp. 1-4.

• S. Pinto; J. Pereira; T. Gomes; M. Ekpanyapong; A. Tavares, "Towards a
TrustZone-assisted Hypervisor for Real Time Embedded Systems," in IEEE
Computer Architecture Letters , vol.PP, no.99, pp.1-1

• T. Gomes, F. Salgado, S. Pinto, J. Cabral and A. Tavares, "Towards an
FPGA-based network layer filter for the Internet of Things edge devices," 2016
IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA), Berlin, 2016, pp. 1-4.

• S. Pinto, T. Gomes, J. Pereira, J. Cabral and A. Tavares, "IIoTEED: An
Enhanced, Trusted Execution Environment for Industrial IoT Edge Devices,"
in IEEE Internet Computing, vol. 21, no. 1, pp. 40-47, Jan.-Feb. 2017.

• S. Pinto, J. Cabral and T. Gomes, "We-care: An IoT-based health care system
for elderly people," 2017 IEEE International Conference on Industrial Technol-
ogy (ICIT), Toronto, ON, 2017, pp. 1378-1383.

• D. Fernandes, T. Gomes, et al., "On-body signal propagation in WBANs for
firefighters personal protective equipment: Statistical characterization and per-
formance assessment," 2017 IEEE International Conference on Industrial Tech-
nology (ICIT), Toronto, ON, 2017, pp. 1360-1365.

• T. Gomes, S. Pinto, F. Salgado, A. Tavares and J. Cabral, "Building IEEE
802.15.4 Accelerators for Heterogeneous Wireless Sensor Nodes," in IEEE
Sensors Letters, vol. 1, no. 1, pp. 1-4, Feb. 2017.

• F. Salgado; T. Gomes; S. Pinto; J. Cabral; A. Tavares, "Condition Codes
Evaluation on Dynamic Binary Translation for Embedded Platforms," in IEEE
Embedded Systems Letters,vol. 9, no. 3, pp. 89-92, Sept. 2017.

141

• T. Gomes, P. Lopes, J. Alves, P. Mestre, J. Cabral, J. L. Monteiro, and Adri-
ano Tavares, "A Modeling Domain-Specific Language for IoT-enabled Operat-
ing Systems," IECON 2017 - 43rd Annual Conference of the IEEE Industrial
Electronics Society, Beijing, 2017.

• F. Salgado, A. Martins, D. Almeida, T. Gomes, J. L. Monteiro, and Adri-
ano Tavares, "MODELA DBT: Model-Driven Elaboration Language Applied to
Dynamic Binary Translation," IECON 2017 - 43rd Annual Conference of the
IEEE Industrial Electronics Society, Beijing, 2017.

• T. Gomes, F. Salgado, A. Tavares and J. Cabral, "CUTE Mote, A CUstomiz-
able and Trustable End-device for the Internet of Things," in IEEE Sensors
Journal, vol.PP, no.99, pp.1-1.

• T. Gomes, F. Salgado, S. Pinto, J. Cabral and A. Tavares, "A Hardware
6LoWPAN Packet Filter for IoT Edge Devices," in IEEE Internet of Things
Journal (Under Review).

142

About the Author

Tiago Gomes is a researcher at the Embedded
Systems Research Group at Centro ALGORITMI,
University of Minho, Portugal. He holds an MSc
in Telecommunications engineering from the same
University. His research interests include embed-
ded systems, hardware/software co-design for re-
source constrained wireless devices, wireless pro-
tocols for low-rate wireless personal area networks
and network protocols for the Internet of Things
low-end devices. For the last 5 years, as part of his academic pursuit, Gomes
has visited several Universities, e.g., Aalto University (Finland), Würzburg Uni-
versity (Germany), Jilin University (China) and Asian Institute of Technology
(Thailand), under PhD Exchange and ERASMUS Programmes. Gomes has more
than 20 publications, both including articles on international journals and con-
ference papers.

143

144

Bibliography

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393 – 422, 2002.

[2] V. C. Gungor and G. P. Hancke, “Industrial Wireless Sensor Networks: Chal-
lenges, Design Principles, and Technical Approaches,” IEEE Transactions on
Industrial Electronics, vol. 56, pp. 4258–4265, October 2009.

[3] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wire-
less Sensor Networks for Habitat Monitoring,” in Proceedings of the 1st
ACM International Workshop on Wireless Sensor Networks and Applications,
WSNA ’02, pp. 88–97, ACM, 2002.

[4] F.-J. Wu, Y.-F. Kao, and Y.-C. Tseng, “Review: From wireless sensor networks
towards cyber physical systems,” Pervasive and Mobile Computing, vol. 7,
pp. 397–413, August 2011.

[5] L. Mainetti, L. Patrono, and A. Vilei, “Evolution of wireless sensor networks
towards the Internet of Things: A survey,” in SoftCOM 2011, 19th Interna-
tional Conference on Software, Telecommunications and Computer Networks,
pp. 1–6, September 2011.

[6] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”
Computer Networks, vol. 54, pp. 2787–2805, October 2010.

[7] National Intelligence Council (NIC), “Disruptive Civil Technologies - Six Tech-
nologies with Potential Impacts on US Interests Out to 2025 - Conference Re-
port CR 2008-07,” tech. rep., National Intelligence Council (NIC), July 2008.

[8] Gartner, Inc., “Gartner’s 2015 Hype Cycle for Emerging Technologies,” tech.
rep., Gartner, Inc., August 2015.

145

[9] L. Tan and N. Wang, “Future internet: The Internet of Things,” in 2010
3rd International Conference on Advanced Computer Theory and Engineer-
ing(ICACTE), vol. 5, pp. V5–376–V5–380, August 2010.

[10] D. Evans, “The Internet of Things How the Next Evolution of the Internet Is
Changing Everything,” tech. rep., Cisco Systems, Inc, 2011.

[11] Intel Corporation, “A Guide to the Internet of Things.” [Online]. Avail-
able: https://www.intel.com/content/www/us/en/internet-of-things/
infographics/guide-to-iot.html, Date accessed June, 8 2017.

[12] J. Bradley, J. Barbier, and D. Handler, “Embracing the Internet of Everything
To Capture Your Share of $14.4 Trillion,” tech. rep., Cisco Systems, Inc, 2013.

[13] J. Macaulay, L. Buckalew, and G. Chung, “Internet of Things in Logistics,”
tech. rep., DHL Trend Research & Cisco Consulting Services, 2015.

[14] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and
D. Aharon, “The Internet of Things: Mapping the Value Beyond the Hype,”
tech. rep., McKinsey Global Institute, 2015.

[15] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of
Things for Smart Cities,” IEEE Internet of Things Journal, vol. 1, pp. 22–32,
February 2014.

[16] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An Information Framework
for Creating a Smart City Through Internet of Things,” IEEE Internet of
Things Journal, vol. 1, pp. 112–121, April 2014.

[17] D. Minoli, K. Sohraby, and B. Occhiogrosso, “IoT Considerations, Require-
ments, and Architectures for Smart Buildings - Energy Optimization and
Next-Generation Building Management Systems,” IEEE Internet of Things
Journal, vol. 4, pp. 269–283, February 2017.

[18] S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay, “Towards the
Implementation of IoT for Environmental Condition Monitoring in Homes,”
IEEE Sensors Journal, vol. 13, pp. 3846–3853, October 2013.

[19] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Transactions on Industrial Informatics, vol. 10, pp. 2233–2243, Novem-
ber 2014.

146

https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html

[20] L. Catarinucci, D. de Donno, L. Mainetti, L. Palano, L. Patrono, M. L. Ste-
fanizzi, and L. Tarricone, “An IoT-Aware Architecture for Smart Healthcare
Systems,” IEEE Internet of Things Journal, vol. 2, pp. 515–526, December
2015.

[21] M. A. Al-Taee, W. Al-Nuaimy, Z. J. Muhsin, and A. Al-Ataby, “Robot Assis-
tant in Management of Diabetes in Children Based on the Internet of Things,”
IEEE Internet of Things Journal, vol. 4, pp. 437–445, April 2017.

[22] T. C. Chiu, Y. Y. Shih, A. C. Pang, and C. W. Pai, “Optimized Day-Ahead
Pricing With Renewable Energy Demand-Side Management for Smart Grids,”
IEEE Internet of Things Journal, vol. 4, pp. 374–383, April 2017.

[23] X. Huang and N. Ansari, “Content Caching and Distribution in Smart Grid
Enabled Wireless Networks,” IEEE Internet of Things Journal, vol. 4, pp. 513–
520, April 2017.

[24] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark, “Connected Vehicles:
Solutions and Challenges,” IEEE Internet of Things Journal, vol. 1, pp. 289–
299, Aug 2014.

[25] Micrium, “IoT for Embedded Systems: The New Industrial Revolution.” [On-
line]. Available: https://www.micrium.com/iot/devices/, Date accessed
June, 8 2017.

[26] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. van Kranenburg, S. Lange, and
S. Meissner, Enabling Things to Talk. Springer New York, 2013.

[27] Intel Corporation, “The Intel IoT Platform - Architecture Specification.”
White Paper, April 2015.

[28] oneM2M, “one M2M: The interoperability enabler for the entire M2M and IoT
ecosystem.” White Paper, January 2015.

[29] Cisco Systems, Inc, “The Internet of Things Reference Model.” White Paper,
January 2014.

[30] Oracle, “Wireless Communication Standards for the Internet of Things.” White
Paper in Enterprise Architecture, October 2009.

[31] Paul Fremantle, “A Reference Architecture for the Internet of Things.” White
Paper, Version 0.9.0, October 2015.

147

https://www.micrium.com/iot/devices/

[32] Martin Bauer et all, “Deliverable D1.5 - Final architectural reference model
for the IoT v3.0,” tech. rep., Internet of Things - Architecture, January 2015.

[33] Cees Links, GreenPeak Technologies CEO, “Wireless Communication Stan-
dards for the Internet of Things.” White Paper, January 2015.

[34] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart objects as
building blocks for the Internet of things,” IEEE Internet Computing, vol. 14,
pp. 44–51, January 2010.

[35] Silicon Laboratories Inc., “Overcoming Challenges of Connecting Intelligent
Nodes to the Internet of Things.” White Paper, January 2012.

[36] Andre Foster, PrismTech, “Messaging Technologies for the Industrial Internet
and the Internet of Things.” White Paper, January 2015.

[37] Cisco Systems, Inc, “Integrating an Industrial Wireless Sensor Network with
Your Plant’s Switched Ethernet and IP Network.” White Paper, January 2009.

[38] Texas Instruments, “Understanding Wireless Connectivity in the Industrial
IoT.” White Paper, January 2015.

[39] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco,
G. Boggia, and M. Dohler, “Standardized Protocol Stack for the Internet
of (Important) Things,” IEEE Communications Surveys Tutorials, vol. 15,
pp. 1389–1406, March 2013.

[40] GSM Association, “IoT Security Guidelines: Overview Document.” White Pa-
per, Version 1.1, November 2016.

[41] GSM Association, “IoT Security Guidelines for Endpoint Ecosystems.” White
Paper, Version 1.1, November 2016.

[42] Symantec, “An Internet of Things Reference Architecture.” White Paper, 2016.

[43] M. Vai, D. J. Whelihan, B. R. Nahill, D. M. Utin, S. R. O’Melia, and R. I.
Khazan, “Secure Embedded Systems,” LINCOLN LABORATORY JOUR-
NAL, vol. 22, no. 1, pp. 110–122, 2016.

[44] Jorge Granjal and Edmundo Monteiro and Jorge Sá Silva, “Security in the in-
tegration of low-power Wireless Sensor Networks with the Internet: A survey,”
Ad Hoc Networks, vol. 24, no. Part A, pp. 264 – 287, 2015.

148

[45] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the Internet of Things:
A Survey of Existing Protocols and Open Research Issues,” IEEE Communi-
cations Surveys Tutorials, vol. 17, pp. 1294–1312, thirdquarter 2015.

[46] Intel Corporation, “New Microarchitecture for 4th GenIntel Core Processor
Platforms.” Product Brief, 2013.

[47] Synopsys, Inc., “DesignWare tRoot Secure Hardware Root of Trust.”
Datasheet, 2015.

[48] ARM, “ARM Security Technology: Building a Secure System using TrustZone
Technology.” White Paper, 2009.

[49] S. Pinto, T. Gomes, J. Pereira, J. Cabral, and A. Tavares, “IIoTEED: An
Enhanced, Trusted Execution Environment for Industrial IoT Edge Devices,”
IEEE Internet Computing, vol. 21, pp. 40–47, January 2017.

[50] Jonas Olsson, Texas Instruments, “6LoWPAN Demystified.” White Paper, Oc-
tober 2014.

[51] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6
Packets over IEEE 802.15.4 Networks,” RFC 4944, RFC Editor, September
2007. http://www.rfc-editor.org/rfc/rfc4944.txt.

[52] A. Aijaz and A. H. Aghvami, “Cognitive Machine-to-Machine Communica-
tions for Internet-of-Things: A Protocol Stack Perspective,” IEEE Internet of
Things Journal, vol. 2, pp. 103–112, April 2015.

[53] Gregory Guez, Maxim Integrated, “Why Hardware-Based Design Security is
Essential for Every Application.” White Paper, 2017.

[54] A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks,” Com-
puter, vol. 35, pp. 54–62, October 2002.

[55] S. L. Keoh, S. S. Kumar, and H. Tschofenig, “Securing the Internet of Things:
A Standardization Perspective,” IEEE Internet of Things Journal, vol. 1,
pp. 265–275, June 2014.

[56] C. Hennebert and J. D. Santos, “Security Protocols and Privacy Issues into
6LoWPAN Stack: A Synthesis,” IEEE Internet of Things Journal, vol. 1,
pp. 384–398, Oct 2014.

149

http://www.rfc-editor.org/rfc/rfc4944.txt

[57] N. Maruyama, T. Ishihara, and H. Yasuura, “An RTOS in hardware for energy
efficient software-based TCP/IP processing,” in Application Specific Processors
(SASP), 2010 IEEE 8th Symposium on, pp. 58–63, June 2010.

[58] F. Hijaz, B. Kahne, P. Wilson, and O. Khan, “Efficient parallel packet pro-
cessing using a shared memory many-core processor with hardware support to
accelerate communication,” in Networking, Architecture and Storage (NAS),
2015 IEEE International Conference on, pp. 122–129, August 2015.

[59] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend.
Packt Publishing, 2013.

[60] M. Mernik, J. Heering, and A. M. Sloane, “When and How to Develop Domain-
specific Languages,” ACM Comput. Surv., vol. 37, pp. 316–344, December
2005.

[61] M. Fowler, Domain Specific Languages. Addison-Wesley Professional, 1st ed.,
2010.

[62] M. Payer, B. Bluntschli, and T. R. Gross, “LLDSAL: A Low-level Domain-
specific Aspect Language for Dynamic Code-generation and Program Modi-
fication,” in Proceedings of the Seventh Workshop on Domain-Specific Aspect
Languages, DSAL ’12, pp. 15–20, ACM, 2012.

[63] N. Kapre and S. Bayliss, “Survey of domain-specific languages for FPGA com-
puting,” in 2016 26th International Conference on Field Programmable Logic
and Applications (FPL), pp. 1–12, August 2016.

[64] A. Garnier, J. M. Menaud, and R. Pottier, “SensorScript: A Business-Oriented
Domain-Specific Language for Sensor Networks,” in 2015 3rd International
Conference on Future Internet of Things and Cloud, pp. 44–49, August 2015.

[65] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic, “Design of a domain
specific language and IDE for Internet of things applications,” in 2015 38th In-
ternational Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO), pp. 996–1001, May 2015.

[66] Zolertia, “RE-MOTE.” [Online]. Available: http://zolertia.io/product/
re-mote/, Date accessed June, 8 2017.

[67] Arago Systems, “WiSMote.” [Online]. Available: http://www.aragosystems.
com/produits/wisnet/wismote/, Date accessed June, 8 2017.

150

http://zolertia.io/product/re-mote/
http://zolertia.io/product/re-mote/
http://www.aragosystems.com/produits/wisnet/wismote/
http://www.aragosystems.com/produits/wisnet/wismote/

[68] Eistec, “Mulle.” [Online]. Available: http://www.eistec.se/mulle/, Date
accessed June, 8 2017.

[69] Advantic Systems, “Tmote Sky.” [Online]. Available: https://
telosbsensors.wordpress.com/, Date accessed June, 8 2017.

[70] OpenMote Technologies, “OpenMote.” [Online]. Available: http://www.
openmote.com/, Date accessed June, 8 2017.

[71] SECO SRL, “UDOO.” [Online]. Available: https://www.udoo.org/, Date
accessed June, 8 2017.

[72] Micro:bit Educational Foundation, “micro:bit.” [Online]. Available:
http://microbit.org/, Date accessed June, 8 2017.

[73] P. Samundiswary, P. Priyadarshini, and P. Dananjayan, “Performance Eval-
uation of Heterogeneous Sensor Networks,” in 2009 International Conference
on Future Computer and Communication, pp. 264–267, April 2009.

[74] J. Valverde, A. Otero, M. Lopez, J. Portilla, E. de la Torre, and T. Riesgo,
“Using sram based fpgas for power-aware high performance wireless sensor
networks,” Sensors, vol. 12, no. 3, pp. 2667–2692, 2012.

[75] P. Hämäläinen, M. Hännikäinen, and T. D. Hämäläinen, “Review of Hard-
ware Architectures for Advanced Encryption Standard Implementations Con-
sidering Wireless Sensor Networks,” in Proceedings of the 7th International
Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation, SAMOS’07, pp. 443–453, 2007.

[76] S. Peter, O. Stecklina, J. Portilla, E. de la Torre, P. Langendoerfer, and
T. Riesgo, “Reconfiguring Crypto Hardware Accelerators on Wireless Sen-
sor Nodes,” in 2009 6th IEEE Annual Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks Workshops, pp. 1–3,
June 2009.

[77] T. F. Al-Somani and H. Houssain, “Implementation of GF(2m) Elliptic Curve
cryptoprocessor on a Nano FPGA,” in 2011 International Conference for In-
ternet Technology and Secured Transactions, pp. 7–12, December 2011.

151

http://www.eistec.se/mulle/
https://telosbsensors.wordpress.com/
https://telosbsensors.wordpress.com/
http://www.openmote.com/
http://www.openmote.com/
https://www.udoo.org/

[78] E. Eryümaz, I. Erturk, and S. Atmaca, “Implementation of Skipjack cryptol-
ogy algorithm for WSNs using FPGA,” in 2009 International Conference on
Application of Information and Communication Technologies, pp. 1–5, Octo-
ber 2009.

[79] H. Houssain, M. Badra, and T. F. Al-Somani, “Hardware implementations of
Elliptic Curve Cryptography in Wireless Sensor Networks,” in 2011 Interna-
tional Conference for Internet Technology and Secured Transactions, pp. 1–6,
Dec 2011.

[80] X. Zhang, H. M. Heys, and C. Li, “FPGA implementation of two involu-
tional block ciphers targeted to wireless sensor networks,” in 2011 6th In-
ternational ICST Conference on Communications and Networking in China
(CHINACOM), pp. 232–236, August 2011.

[81] Y. Wang, S. Lu, and L. Cui, “Design and implementation of a SoC-based
security coprocessor and program protection mechanism for WSN,” in IET
International Conference on Wireless Sensor Network 2010 (IET-WSN 2010),
pp. 148–153, November 2010.

[82] J. g. Tong, Z. x. Zhang, Q. l. Sun, and Z. q. Chen, “Design of Wireless Sensor
Network Node with Hyperchaos Encryption Based on FPGA,” in 2009 Inter-
national Workshop on Chaos-Fractals Theories and Applications, pp. 190–194,
November 2009.

[83] N. Kimura and S. Latifi, “A survey on data compression in wireless sensor
networks,” in International Conference on Information Technology: Coding
and Computing (ITCC’05) - Volume II, vol. 2, pp. 8–13 Vol. 2, April 2005.

[84] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressive wireless sens-
ing,” in 2006 5th International Conference on Information Processing in Sen-
sor Networks, pp. 134–142, April 2006.

[85] Y. Wang, A. Bermak, and F. Boussaid, “FPGA implementation of compressive
sampling for sensor network applications,” in 2nd Asia Symposium on Quality
Electronic Design (ASQED), pp. 5–8, August 2010.

[86] C. J. Debono and N. P. Borg, “The Implementation of an Adaptive Data Re-
duction Technique for Wireless Sensor Networks,” in 2008 IEEE International
Symposium on Signal Processing and Information Technology, pp. 402–406,
December 2008.

152

[87] T. T.-O. Kwok and Y.-K. Kwok, “Computation and energy efficient im-
age processing in wireless sensor networks based on reconfigurable comput-
ing,” in 2006 International Conference on Parallel Processing Workshops
(ICPPW’06), pp. 8 pp.–50, 2006.

[88] Y. Sun, L. Li, and H. Luo, “Design of FPGA-Based Multimedia Node for
WSN,” in 2011 7th International Conference on Wireless Communications,
Networking and Mobile Computing, pp. 1–5, September 2011.

[89] J. Thoné, J. Verlinden, and R. Puers, “An efficient hardware-optimized com-
pression algorithm for wireless capsule endoscopy image transmission,” Proce-
dia Engineering, vol. 5, pp. 208 – 211, 2010. Eurosensor XXIV Conference.

[90] A. Chefi, A. Soudani, and G. Sicard, “Hardware compression solution based
on HWT for low power image transmission in WSN,” in ICM 2011 Proceeding,
pp. 1–5, December 2011.

[91] M. L. Kaddachi, A. Soudani, I. Nouira, V. Lecuire, and K. Torki, “Efficient
hardware solution for low power and adaptive image-compression in WSN,”
in 2010 17th IEEE International Conference on Electronics, Circuits and Sys-
tems, pp. 583–586, December 2010.

[92] Y. E. Krasteva, J. Portilla, E. de la Torre, and T. Riesgo, “Embedded Run-
time Reconfigurable Nodes for Wireless Sensor Networks Applications,” IEEE
Sensors Journal, vol. 11, pp. 1800–1810, September 2011.

[93] P. Latha and M. A. Bhagyaveni, “Reconfigurable FPGA based architecture for
surveillance systems in WSN,” in 2010 International Conference on Wireless
Communication and Sensor Computing (ICWCSC), pp. 1–6, January 2010.

[94] P. Muralidhar and C. B. R. Rao, “Reconfigurable wireless sensor network node
based on Nios core,” in 2008 Fourth International Conference on Wireless
Communication and Sensor Networks, pp. 67–72, December 2008.

[95] S. Tanaka, N. Fujita, Y. Yanagisawa, T. Terada, and M. Tsukamoto, “Re-
configurable hardware architecture for saving power consumption on a sensor
node,” in 2008 International Conference on Intelligent Sensors, Sensor Net-
works and Information Processing, pp. 405–410, December 2008.

153

[96] H. Hinkelmann, P. Zipf, and M. Glesner, “A Domain-Specific Dynamically
Reconfigurable Hardware Platform for Wireless Sensor Networks,” in 2007 In-
ternational Conference on Field-Programmable Technology, pp. 313–316, De-
cember 2007.

[97] G. Chalivendra, R. Srinivasan, and N. S. Murthy, “FPGA based re-
configurable wireless sensor network protocol,” in 2008 International Con-
ference on Electronic Design, pp. 1–4, December 2008.

[98] G. G. Mplemenos, P. Christou, and I. Papaefstathiou, “Using reconfigurable
hardware devices in WSNs for accelerating and reducing the power consump-
tion of header processing tasks,” in 2009 IEEE 3rd International Symposium
on Advanced Networks and Telecommunication Systems (ANTS), pp. 1–3, De-
cember 2009.

[99] Y. E. Krasteva, J. Portilla, J. M. Carnicer, E. de la Torre, and T. Riesgo,
“Remote HW-SW reconfigurable Wireless Sensor nodes,” in 2008 34th Annual
Conference of IEEE Industrial Electronics, pp. 2483–2488, November 2008.

[100] V. Jeličić, T. Ražov, D. Oletić, M. Kuri, and V. Bilas, “Maslinet: A wireless
sensor network based environmental monitoring system,” in 2011 Proceedings
of the 34th International Convention MIPRO, pp. 150–155, May 2011.

[101] J. Koskinen, P. Kilpeläinen, J. Rehu, P. Tukeva, and M. Sallinen, “Wireless
Sensor Networks for infrastructure and industrial monitoring applications,” in
2010 International Conference on Information and Communication Technol-
ogy Convergence (ICTC), pp. 250–255, November 2010.

[102] P. Turcza and M. Duplaga, “Low power FPGA-based image processing core
for wireless capsule endoscopy,” Sensors and Actuators A: Physical, vol. 172,
no. 2, pp. 552 – 560, 2011.

[103] A. de la Piedra, A. Braeken, and A. Touhafi, “Sensor Systems Based on FPGAs
and Their Applications: A Survey,” Sensors, vol. 12, no. 9, p. 12235, 2012.

[104] A. Engel and A. Koch, “Heterogeneous Wireless Sensor Nodes that Target the
Internet of Things,” IEEE Micro, vol. 36, pp. 8–15, November 2016.

154

[105] V. Rosello, J. Portilla, and T. Riesgo, “Ultra low power FPGA-based architec-
ture for Wake-up Radio in Wireless Sensor Networks,” in IECON 2011 - 37th
Annual Conference of the IEEE Industrial Electronics Society, pp. 3826–3831,
November 2011.

[106] O. Berder and O. Sentieys, “PowWow : Power Optimized Hardware/Software
Framework for Wireless Motes,” in 23th International Conference on Archi-
tecture of Computing Systems 2010, pp. 1–5, February 2010.

[107] L. A. Vera-Salas, S. V. Moreno-Tapia, R. A. Osornio-Rios, and R. d. J., “Re-
configurable Node Processing Unit for a Low-Power Wireless Sensor Network,”
in 2010 International Conference on Reconfigurable Computing and FPGAs,
pp. 173–178, December 2010.

[108] T. Nyländen, J. Boutellier, K. Nikunen, J. Hannuksela, and O. Silvén, “Re-
configurable miniature sensor nodes for condition monitoring,” in 2012 Inter-
national Conference on Embedded Computer Systems (SAMOS), pp. 113–119,
July 2012.

[109] B. Stelte, “Toward Development of High Secure Sensor Network Nodes Using
an FPGA-based Architecture,” in Proceedings of the 6th International Wireless
Communications and Mobile Computing Conference, IWCMC ’10, pp. 539–
543, ACM, 2010.

[110] A. Engel and A. Koch, Hardware-Accelerated Data Compression in Low-Power
Wireless Sensor Networks, pp. 167–178. Cham: Springer International Pub-
lishing, 2014.

[111] A. Engel, A. Koch, and T. Siebel, “A heterogeneous system architecture
for low-power wireless sensor nodes in compute-intensive distributed appli-
cations,” in 2015 IEEE 40th Local Computer Networks Conference Workshops
(LCN Workshops), pp. 636–644, October 2015.

[112] J. Portilla, A. Otero, E. de la Torre, T. Riesgo, O. Stecklina, S. Peter, and
P. Langendörfer, “Adaptable Security in Wireless Sensor Networks by Using
Reconfigurable ECC Hardware Coprocessors,” International Journal of Dis-
tributed Sensor Networks, vol. 6, no. 1, p. 740823, 2010.

155

[113] J. Valverde, V. Rosello, G. Mujica, J. Portilla, A. Uriarte, and T. Riesgo,
“Wireless Sensor Network for Environmental Monitoring: Application in a
Coffee Factory,” International Journal of Distributed Sensor Networks, vol. 8,
no. 1, p. 638067, 2012.

[114] J. Valverde, A. Otero, M. Lopez, J. Portilla, E. de la Torre, and T. Riesgo,
“Using SRAM Based FPGAs for Power-Aware High Performance Wireless
Sensor Networks,” Sensors, vol. 12, no. 3, pp. 2667–2692, 2012.

[115] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov, “The
first collision for full SHA-1,” tech. rep., CWI Amsterdam & Google Research,
2017.

[116] J. d. J. Rangel-Magdaleno, R. d. J. Romero-Troncoso, R. A. Osornio-Rios,
E. Cabal-Yepez, and A. Dominguez-Gonzalez, “FPGA-Based Vibration An-
alyzer for Continuous CNC Machinery Monitoring With Fused FFT-DWT
Signal Processing,” IEEE Transactions on Instrumentation and Measurement,
vol. 59, pp. 3184–3194, December 2010.

[117] A. Ordaz-Moreno, R. J. Romero-Troncoso, and J. A. Vite-Frias, “Hardware
signal processing unit for one-dimensional variable-length discrete wavelet
transform,” in 2005 International Conference on Reconfigurable Computing
and FPGAs (ReConFig’05), pp. 5 pp.–5, September 2005.

[118] S. Ishihara, Z. Xia, M. Hariyama, and M. Kameyama, “Architecture of a low-
power FPGA based on self-adaptive voltage control,” in 2009 International
SoC Design Conference (ISOCC), pp. 274–277, November 2009.

[119] C. T. Chow, L. S. M. Tsui, P. H. W. Leong, W. Luk, and S. J. E. Wilton,
“Dynamic voltage scaling for commercial FPGAs,” in Proceedings. 2005 IEEE
International Conference on Field-Programmable Technology, 2005., pp. 173–
180, December 2005.

[120] Levis, P. and Madden, S. and Polastre, J. and Szewczyk, R. and Whitehouse,
K. and Woo, A. and Gay, D. and Hill, J. and Welsh, M. and Brewer, E. and
Culler, D., TinyOS: An Operating System for Sensor Networks, pp. 115–148.
Springer Berlin Heidelberg, 2005.

156

[121] A. Eswaran, A. Rowe, and R. Rajkumar, “Nano-rk: An energy-aware resource-
centric rtos for sensor networks,” in Proceedings of the 26th IEEE International
Real-Time Systems Symposium, RTSS ’05, pp. 256–265, IEEE Computer So-
ciety, 2005.

[122] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet. John
Wiley & Sons, Ltd, 2009.

[123] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” RFC
4301, RFC Editor, December 2005. http://www.rfc-editor.org/rfc/
rfc4301.txt.

[124] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating Systems for
Low-End Devices in the Internet of Things: A Survey,” IEEE Internet of
Things Journal, vol. 3, pp. 720–734, October 2016.

[125] Contiki-OS, “Contiki: The Open Source OS for the Internet of Things.” [On-
line]. Available: http://www.contiki-os.org/, Date accessed January, 24
2017.

[126] RIOT-OS, “RIOT: The friendly Operating System for the Internet of Things.”
[Online]. Available: http://www.riot-os.org/, Date accessed January, 24
2017.

[127] freeRTOS, “FreeRTOS, a free open source RTOS for small embedded real
time systems.” [Online]. Available: http://www.freertos.org/, Date ac-
cessed January, 24 2017.

[128] OpenWSN, “Berkeley’s OpenWSN project.” [Online]. Available: http://
openwsn.berkeley.edu/, Date accessed January, 24 2017.

[129] NuttX, “NuttX Real-Time Operating System.” [Online]. Available: http:
//nuttx.org/, Date accessed January, 24 2017.

[130] eCos, “The Embedded Configurable Operating System.” [Online]. Available:
http://ecos.sourceware.org/, Date accessed January, 24 2017.

[131] uClinux, “Embedded Linux/microcontoller project.” [Online]. Available:
http://www.uclinux.org, Date accessed January, 24 2017.

[132] ChibiOS/RT, “ChibiOS/RT.” [Online]. Available: http://www.chibios.org,
Date accessed January, 24 2017.

157

http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.rfc-editor.org/rfc/rfc4301.txt
http://www.contiki-os.org/
http://www.riot-os.org/
http://www.freertos.org/
http://openwsn.berkeley.edu/
http://openwsn.berkeley.edu/
http://nuttx.org/
http://nuttx.org/
http://ecos.sourceware.org/
http:// www.uclinux.org
http://www.chibios.org

[133] CooCox, “CoOS.” [Online]. Available: http://www.coocox.org/, Date ac-
cessed January, 24 2017.

[134] Nut/OS, “Nut/OS.” [Online]. Available: http://www.ethernut.de/en/
software/, Date accessed January, 24 2017.

[135] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and flexible
operating system for tiny networked sensors,” in Local Computer Networks,
2004. 29th Annual IEEE International Conference on, pp. 455–462, November
2004.

[136] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simplifying
Event-driven Programming of Memory-constrained Embedded Systems,” in
Proceedings of the 4th International Conference on Embedded Networked Sen-
sor Systems, SenSys ’06, pp. 29–42, ACM, 2006.

[137] Dunkels, Adam, “The ContikiMAC Radio Duty Cycling Protocol,” tech. rep.,
SICS, Sweden, 2011.

[138] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac: A short preamble
mac protocol for duty-cycled wireless sensor networks,” in Proceedings of the
4th International Conference on Embedded Networked Sensor Systems, SenSys
’06, (New York, NY, USA), pp. 307–320, ACM, 2006.

[139] Contiki-OS, “Contiki Hardware.” [Online]. Available: http://www.contiki-
os.org/hardware.html, Date accessed January, 24 2017.

[140] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt, “Riot os:
Towards an os for the internet of things,” in 2013 IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), pp. 79–80, April
2013.

[141] E. Baccelli, O. Hahm, H. Petersen, and K. Schleiser, “RIOT and the Evolution
of IoT Operating Systems and Applications,” ERCIM News, April 2015.

[142] H. Will, K. Schleiser, and J. Schiller, “A real-time kernel for wireless sensor
networks employed in rescue scenarios,” in 2009 IEEE 34th Conference on
Local Computer Networks, pp. 834–841, October 2009.

[143] RIOT-OS, “RIOT Hardware.” [Online]. Available: https://github.com/
RIOT-OS/RIOT/wiki/RIOT-Platforms, Date accessed January, 24 2017.

158

http://www.coocox.org/
http://www.ethernut.de/en/software/
http://www.ethernut.de/en/software/
http://www.contiki-os.org/hardware.html
http://www.contiki-os.org/hardware.html
https://github.com/RIOT-OS/RIOT/wiki/RIOT-Platforms
https://github.com/RIOT-OS/RIOT/wiki/RIOT-Platforms

[144] Texas Instruments, Inc., “Wireless Connectivity Portfolio.” [Online]. Avail-
able:http://www.ti.com/lsds/ti/wireless-connectivity/simplelink-
solutions/overview.page, Date accessed January, 24 2017.

[145] Microsemi Corporation, “PolarFire FPGA Family.” [Online]. Avail-
able: https://www.microsemi.com/products/fpga-soc/fpga/polarfire-
fpga, Date accessed June, 24 2017.

[146] Microsemi Corporation, “IGLOO2 FPGA Family.” [Online]. Available: https:
//www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga, Date ac-
cessed June, 24 2017.

[147] Xilinx Inc., “Zynq-7000 All Programmable SoC.” [Online]. Avail-
able: https://www.xilinx.com/products/silicon-devices/soc/zynq-
7000.html, Date accessed June, 24 2017.

[148] Intel Corporation, “Cyclone V SoCs.” [Online]. Available: https://www.
altera.com/products/soc/portfolio/cyclone-v-soc/overview.html,
Date accessed June, 24 2017.

[149] Lattice Semiconducto, “LatticeXP2.” [Online]. Available: http://www.
latticesemi.com/Products/FPGAandCPLD/LatticeXP2.aspx, Date accessed
June, 24 2017.

[150] Cypress Semiconductor Corporation, “PSoC 5LP family.” [Online]. Available:
http://www.cypress.com/products/psoc-5, Date accessed June, 24 2017.

[151] Microsemi Corporation, “SmartFusion2 Security Evaluation Kit.” [On-
line]. Available: http://www.microsemi.com/products/fpga-soc/design-
resources/dev-kits/smartfusion2/sf2-evaluation-kit, Date accessed
January, 24 2017.

[152] W. Lamie and J. Carbone, “Measure your RTOS’s real-time performance,”
Embedded Systems Design, vol. 20, no. 5, p. 44, 2007.

[153] Mentor Graphics, “ModelSim ME.” [Online]. Available: https://www.
mentor.com/products/fv/modelsim/, Date accessed January, 24 2017.

[154] N. A. Pantazis and D. D. Vergados, “A survey on power control issues in
wireless sensor networks,” IEEE Communications Surveys Tutorials, vol. 9,
pp. 86–107, Fourth 2007.

159

http://www.ti.com/lsds/ti/wireless-connectivity/simplelink-solutions/overview.page
http://www.ti.com/lsds/ti/wireless-connectivity/simplelink-solutions/overview.page
https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
https://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga
https://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html
https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html
http://www.latticesemi.com/Products/FPGAandCPLD/LatticeXP2.aspx
http://www.latticesemi.com/Products/FPGAandCPLD/LatticeXP2.aspx
http://www.cypress.com/products/psoc-5
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/modelsim/

[155] Dunkels, Adam, “uIP - A Free Small TCP/IP Stack,” January 2012.

[156] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “OpenWSN: a standards-based low-power wireless
development environment,” Transactions on Emerging Telecommunications
Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[157] J. Granjal, R. Silva, E. Monteiro, J. S. Silva, and F. Boavida, “Why is IPSec
a viable option for wireless sensor networks,” in 2008 5th IEEE International
Conference on Mobile Ad Hoc and Sensor Systems, pp. 802–807, Sept 2008.

[158] S. Raza, T. Chung, S. Duquennoy, D. Yazar, and U. Roedig, “Securing Internet
of Things with Lightweight IPsec,” Tech. Rep. 3, SICS, 2010.

[159] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, and U. Roedig, “Se-
curing communication in 6LoWPAN with compressed IPsec,” in 2011 Interna-
tional Conference on Distributed Computing in Sensor Systems and Workshops
(DCOSS), pp. 1–8, June 2011.

[160] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis, “Koala: Ultra-low power data
retrieval in wireless sensor networks,” in Proceedings of the 7th International
Conference on Information Processing in Sensor Networks, IPSN ’08, (Wash-
ington, DC, USA), pp. 421–432, IEEE Computer Society, 2008.

[161] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wire-
less sensor networks,” in Proceedings of the 2Nd International Conference on
Embedded Networked Sensor Systems, SenSys ’04, (New York, NY, USA),
pp. 95–107, ACM, 2004.

[162] IEEE, “IEEE 802.15 Working Group for Wireless Specialty Networks (WSN),”
2003. http://www.ieee802.org/15/.

[163] ZigBee Alliance, “ZigBee Document 053474r06 Version 1.0,” standard specifi-
cation, ZigBee Alliance, 2004.

[164] ZigBee Alliance, “ZigBee-2006 specification, ZigBee Document 064112,” stan-
dard specification, ZigBee Alliance, 2006.

160

http://www.ieee802.org/15/

[165] “IEEE Standard for Information Technology - Telecommunications and Infor-
mation Exchange Between Systems - Local and Metropolitan Area Networks
Specific Requirements Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs),” IEEE Std 802.15.4-2003, pp. 0_1–670, 2003.

[166] A. Rajandekar and B. Sikdar, “A Survey of MAC Layer Issues and Protocols
for Machine-to-Machine Communications,” IEEE Internet of Things Journal,
vol. 2, pp. 175–186, April 2015.

[167] “IEEE Standard for Low-Rate Wireless Networks,” IEEE Std 802.15.4-2015
(Revision of IEEE Std 802.15.4-2011), pp. 1–709, April 2016.

[168] Linear Technology, “Dust Networks,” 2007. [Online]. Available: http://www.
linear.com/dust_networks/, Date accessed June, 8 2017.

[169] K. S. J. Pister and L. Doherty, “TSMP: Time Synchronized Mesh Protocol,” in
In Proceedings of the IASTED International Symposium on Distributed Sensor
Networks (DSN08), 2008.

[170] T. Watteyne, M. Palattella, and L. Grieco, “Using IEEE 802.15.4e Time-
Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem
Statement,” RFC 7554, RFC Editor, May 2015. http://www.rfc-editor.
org/rfc/rfc7554.txt.

[171] Texas Instruments, Inc., “CC2520 - 2.4 GHZ IEEE 802.15.4/ZIGBEE
RF TRANSCEIVER.” [Online]. Available: http://www.ti.com/product/
CC2520, Date accessed June, 13 2016.

[172] “IEEE Standard for Information technology– Local and metropolitan area
networks– Specific requirements– Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Per-
sonal Area Networks (WPANs),” IEEE Std 802.15.4-2006 (Revision of IEEE
Std 802.15.4-2003), pp. 1–320, September 2006.

[173] Atmel Corporation, “Low Power 2.4 GHz Transceiver for IEEE 802.15.4, Zig-
Bee, 6LoWPAN, RF4CE, SP100, WirelessHART and ISM Applications..”

161

http://www.linear.com/dust_networks/
http://www.linear.com/dust_networks/
http://www.rfc-editor.org/rfc/rfc7554.txt
http://www.rfc-editor.org/rfc/rfc7554.txt
http://www.ti.com/product/CC2520
http://www.ti.com/product/CC2520

[174] Silicon Laboratories, “EM35x System-on-Chip (SoC) / Network Co-Processor
(NCP) for ZigBee.” [Online]. Available: https://www.silabs.com/products/
wireless/mesh-networking/em3xx/Pages/em3xx-zigbee.aspx, Date ac-
cessed June, 13 2016.

[175] Texas Instruments, Inc., “CC2538 - System-On-Chip for 2.4-GHz IEEE
802.15.4-2006 6LoWPAN and ZigBee Applications.” [Online]. Available: http:
//www.ti.com/product/CC2538, Date accessed January, 18 2017.

[176] O. Song and J. Kim, “An Efficient Design of Security Accelerator for IEEE
802.15.4 Wireless Sensor Networks,” in 2010 7th IEEE Consumer Communi-
cations and Networking Conference, pp. 1–5, January 2010.

[177] P. Hamalainen, M. Hannikainen, and T. D. Hamalainen, “Efficient hardware
implementation of security processing for IEEE 802.15.4 wireless networks,”
in 48th Midwest Symposium on Circuits and Systems, 2005., pp. 484–487 Vol.
1, August 2005.

[178] A. D. Stefano, G. Fiscelli, and C. G. Giaconia, “An FPGA-Based Software
Defined Radio Platform for the 2.4GHz ISM Band,” in 2006 Ph.D. Research
in Microelectronics and Electronics, pp. 73–76, 2006.

[179] A. Massouri and T. Risset, “FPGA-based Implementation of Multiple PHY
Layers of IEEE 802.15.4 Targeting SDR Platform,” in SDR-WInnComm,
(Schaumburg, Illinois, United States), Wireless Innovation Forum, April 2014.

[180] N. Kimura and S. Latifi, “A survey on data compression in wireless sensor
networks,” in International Conference on Information Technology: Coding
and Computing (ITCC’05) - Volume II, vol. 2, pp. 8–13 Vol. 2, April 2005.

[181] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks,” RFC 6282, RFC Editor, September 2011. http:
//www.rfc-editor.org/rfc/rfc6282.txt.

[182] I. Hosni and N. Hamdi, “Neighbor Discovery Schedule for 6LoWPAN Smart
Grid Applications,” in 2016 30th International Conference on Advanced In-
formation Networking and Applications Workshops (WAINA), pp. 388–393,
March 2016.

162

https://www.silabs.com/products/wireless/mesh-networking/em3xx/Pages/em3xx-zigbee.aspx
https://www.silabs.com/products/wireless/mesh-networking/em3xx/Pages/em3xx-zigbee.aspx
http://www.ti.com/product/CC2538
http://www.ti.com/product/CC2538
http://www.rfc-editor.org/rfc/rfc6282.txt
http://www.rfc-editor.org/rfc/rfc6282.txt

[183] M. Ha, S. H. Kim, and D. Kim, “Intra-MARIO: A Fast Mobility Management
Protocol for 6LoWPAN,” IEEE Transactions on Mobile Computing, vol. 16,
pp. 172–184, January 2017.

[184] H. Shah, R. Shrimali, and V. Parikh, “Header Compression and Neighbor Dis-
covery in 6LoWPAN based IoT - a survey,” in 2016 International Conference
on Wireless Communications, Signal Processing and Networking (WiSPNET),
pp. 306–311, March 2016.

[185] L. Cui, G. Hua, and N. Lu, “A Dynamic 6LoWPAN Context Table Maintaining
algorithm,” in 2013 9th International Wireless Communications and Mobile
Computing Conference (IWCMC), pp. 1458–1463, July 2013.

[186] N. Li and X. Huang, “A context system for 6LoWPAN network,” in 2011
4th IEEE International Conference on Broadband Network and Multimedia
Technology, pp. 522–525, October 2011.

[187] M. A. M. Seliem, K. M. F. Elsayed, and A. Khattab, “Performance evaluation
and optimization of neighbor discovery implementation over Contiki OS,” in
2014 IEEE World Forum on Internet of Things (WF-IoT), pp. 119–123, March
2014.

[188] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits, “Denial-of-
Service detection in 6LoWPAN based Internet of Things,” in 2013 IEEE 9th
International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pp. 600–607, October 2013.

[189] Czarnecki, Krzysztof, “Overview of Generative Software Development,” in
Proceedings of the 2004 International Conference on Unconventional Program-
ming Paradigms, UPP’04, pp. 326–341, 2005.

[190] Uwe Zdun, “Concepts for Model-Driven Design and Evolution of Domain-
Specific Languages,” 2005.

[191] J.-P. Tolvanen and M. Rossi, “MetaEdit+: Defining and Using Domain-
specific Modeling Languages and Code Generators,” in Companion of the 18th
Annual ACM SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA ’03, pp. 92–93, ACM, 2003.

[192] J. Marino and M. Rowley, Understanding SCA (Service Component Architec-
ture). Addison-Wesley Professional, 1st ed., 2009.

163

	2 Capa_Esc_Engenharia
	Tese_Tiago Manuel Ribeiro Gomes_2017
	dec
	int

