
ORIGINAL RESEARCH
published: 08 August 2016

doi: 10.3389/fpls.2016.01150

Frontiers in Plant Science | www.frontiersin.org 1 August 2016 | Volume 7 | Article 1150

Edited by:

Ana Margarida Fortes,

University of Lisbon, Portugal

Reviewed by:

Claudio Moser,

Fondazione Edmund Mach, Italy

Pablo Carbonell-Bejerano,

Instituto de las Ciencias de la Vid y del

Vino, CSIC, Spain

*Correspondence:

Artur Conde

arturconde@bio.uminho.pt

†
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Plant Physiology,

a section of the journal

Frontiers in Plant Science

Received: 12 February 2016

Accepted: 18 July 2016

Published: 08 August 2016

Citation:

Conde A, Pimentel D, Neves A,

Dinis L-T, Bernardo S, Correia CM,

Gerós H and Moutinho-Pereira J

(2016) Kaolin Foliar Application Has a

Stimulatory Effect on Phenylpropanoid

and Flavonoid Pathways in Grape

Berries. Front. Plant Sci. 7:1150.

doi: 10.3389/fpls.2016.01150

Kaolin Foliar Application Has a
Stimulatory Effect on
Phenylpropanoid and Flavonoid
Pathways in Grape Berries
Artur Conde 1, 2*†, Diana Pimentel 1, 2 †, Andreia Neves 1, 2, Lia-Tânia Dinis 1, Sara Bernardo 1,

Carlos M. Correia 1, Hernâni Gerós 1, 2, 3 and José Moutinho-Pereira 1

1Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e

Alto Douro, Vila Real, Portugal, 2Grupo de Investigação em Biologia Vegetal Aplicada e Inovação Agroalimentar

(AgroBioPlant), Departamento de Biologia, Universidade do Minho, Braga, Portugal, 3Department of Biology, Centre of
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Drought, elevated air temperature, and high evaporative demand are increasingly

frequent during summer in grape growing areas like the Mediterranean basin, limiting

grapevine productivity and berry quality. The foliar exogenous application of kaolin, a

radiation-reflecting inert mineral, has proven effective in mitigating the negative impacts

of these abiotic stresses in grapevine and other fruit crops, however, little is known about

its influence on the composition of the grape berry and on key molecular mechanisms

and metabolic pathways notably important for grape berry quality parameters. Here,

we performed a thorough molecular and biochemical analysis to assess how foliar

application of kaolin influences major secondary metabolism pathways associated

with berry quality-traits, leading to biosynthesis of phenolics and anthocyanins, with a

focus on the phenylpropanoid, flavonoid (both flavonol- and anthocyanin-biosynthetic)

and stilbenoid pathways. In grape berries from different ripening stages, targeted

transcriptional analysis by qPCR revealed that several genes involved in these

pathways—VvPAL1, VvC4H1, VvSTSs, VvCHS1, VvFLS1, VvDFR, and VvUFGT—were

more expressed in response to the foliar kaolin treatment, particularly in the latter

maturation phases. In agreement, enzymatic activities of phenylalanine ammonia lyase

(PAL), flavonol synthase (FLS), and UDP-glucose:flavonoid 3-O-glucosyltransferase

(UFGT) were about two-fold higher in mature or fully mature berries from kaolin-treated

plants, suggesting regulation also at a transcriptional level. The expression of the

glutathione S-transferase VvGST4, and of the tonoplast anthocyanin transporters

VvMATE1 and VvABCC1 were also all significantly increased at véraison and in mature

berries, thus, when anthocyanins start to accumulate in the vacuole, in agreement with

previously observed higher total concentrations of phenolics and anthocyanins in berries

from kaolin-treated plants, especially at full maturity stage. Metabolomic analysis by

reverse phase LC-QTOF-MS confirmed several kaolin-induced modifications including a

significant increase in the quantities of several secondary metabolites including flavonoids

and anthocyanins in the latter ripening stages, probably resulting from the general

stimulation of the phenylpropanoid and flavonoid pathways.
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INTRODUCTION

Grapevine (Vitis vinifera L.) is a perennial woody plant with
a great impact in the global economy, abundantly cultivated
in areas with Mediterranean climates and spreading across
temperate to semi-dry areas. Abiotic conditions, such as soil
and atmospheric humidity, intense drought, and temperatures,
have high impact on grape yield and wine quality (Chaves et al.,
2010; Lovisolo et al., 2010). In Mediterranean areas, extended
summer droughts and higher temperatures are increasingly
expected (Fraga et al., 2012; Hannah et al., 2013) and climate
change is undoubtedly having a negative impact in viticulture,
including changes in grape-growing geographical area, therefore
the development and application of stress mitigation strategies
and of more sustainable agricultural practices is of utmost
importance for grape production and winemaking industry.

In this context, the application of exogenous compounds
that could maintain or even improve plant productivity or fruit
quality under such environmental stresses are beginning to be
experimented but, despite promising results yielded in some
crops (Hose et al., 2000; Li et al., 2004; Seckin et al., 2009; Du
et al., 2013; Zhou et al., 2014), in grapevine these strategies have
so far been less explored. Kaolin, Al2Si2O5(OH)4, is an inert clay
mineral that reflects potentially damaging ultraviolet and infrared
radiation and transmits photosynthetically active radiation,
resulting in leaf temperature decrease and photosynthetic
efficiency increase (Glenn and Puterka, 2005). Its exogenous
application in leaves resulted in positive responses to abiotic
stresses in apple, pomegranate and even olive tree (Glenn et al.,
2001; Melgarejo et al., 2004; Khaleghi et al., 2015). In grapevines
kaolin particle film induced cooler canopy temperatures, lower
rates of stomatal conductance under non-limiting soil moisture
conditions, protection of photosystem II structure and function
in leaves exposed to heat and high solar radiation, and altered
total soluble solids content and total anthocyanin amounts
(Shellie and Glenn, 2008; Glenn et al., 2010; Ou et al., 2010;
Song et al., 2012; Shellie, 2015; Dinis et al., 2016a,b). We recently
observed that lower ROS quantities, increased hydroxyl radical
scavenging and production of antioxidant compounds, including
phenolics, apparently contributing to the protective effect of
kaolin in grapevine (Dinis et al., 2016a), but little is known
regarding the molecular mechanisms underlying these changes.

Secondary metabolites are indeed extremely important for
fruit quality-traits and wine production, namely phenolics, since
they contribute to color, flavor, aroma, texture, astringency, and
stabilization of wine, and also exhibit antioxidant properties
(reviewed by Teixeira et al., 2013). Phenolic compounds are
divided in two major groups, nonflavonoid phenolics, and
flavonoids (reviewed by Teixeira et al., 2013). Non-flavonoid
phenolics comprise hydroxybenzoic acids, hydroxycinnamic
acids, volatile phenolics and stilbenes, while flavonoids are
C6-C3-C6 polyphenolic compounds and divided into flavonols,
flavan-3-ols (catechins/epicatechins, proanthocyanidins, or
condensed tannins) and anthocyanins (Kennedy et al., 2000;
Verries et al., 2008). Grapevine anthocyanins are anthocyanidins
glycosylated or acylglycosylated at the 3′ position of the B ring,
thus, flavonoid-3-O-monoglycosides, and are responsible for

the pigmentation of colored grape berries, from red through
blue, hence for wine color (Castellarin et al., 2012). Two
major secondary metabolic biochemical pathways underlie the
synthesis of a wide range of important phenolic and flavonoid
compounds, including anthocyanins: the phenylpropanoid
pathway, with the enzyme phenylalanine ammonia lyase (PAL)
playing a major role, and the flavonoid pathway, with several
important enzymes involved in the formation of the different
classes of flavonoids, discussed further ahead. Anthocyanins are
stored in the vacuole after being transported across the tonoplast
by primary or secondary transporters such as ATP-binding
cassette (ABC) transporters (Francisco et al., 2013), as is the
case of VvABCC1, dependent on the presence of reduced
glutathione (GSH); or multidrug and toxic extrusion (MATE, or
anthoMATE) transporters like MATE1 (or AM1) that use the
H+ gradient to transport mostly acylated anthocyanins (Gomez
et al., 2009, 2011), respectively. Glutathione S-transferases
(GSTs), with VvGST4 as a paradigmatic case, are very important
in anthocyanin stabilization and transport to the vacuole via
a non-covalent (ligandin) activity, and a correlation between
anthocyanin accumulation and VvGST expression profile during
berry ripening has already been established (Conn et al., 2008).

Environmental conditions have a strong influence on the
secondary metabolism of grape berry cells (Teixeira et al.,
2013), that is reflected in grape berry quality. High temperatures
decreases anthocyanin biosynthesis and content (Spayd et al.,
2002; Mori et al., 2007; Azuma et al., 2012; Carbonell-Bejerano
et al., 2013). Genes encoding enzymes involved in flavonoid
biosynthesis, as well as regulatory genes and UFGT enzymatic
activity are differently affected by heat stress depending on the
cultivar and whether these high temperatures are diurnal or
nocturnal (Mori et al., 2005, 2007). Exposure to light, however,
appears to promote a increase in phenolic, mostly flavonols, and,
in many cases but not all, anthocyanin synthesis and content
(Spayd et al., 2002; Fujita et al., 2006; Czemmel et al., 2009;
Matus et al., 2009; Azuma et al., 2012), but these responses
have recently been proposed to be more complex (reviewed by
Pillet et al., 2015). Mild water deficit can enhance anthocyanin
and stilbenoid synthesis (Mattivi et al., 2006; Castellarin et al.,
2007b; Deluc et al., 2011), however flavonol content is either
unaltered or decreased (Deluc et al., 2009; Zarrouk et al., 2012). In
fact, fruits from grapevines under severe water deficit stress can
have lower synthesis and accumulation of phenolics, including
anthocyanins, as often this stress is associated with superimposed
very high temperatures in the vineyard edaphoclimate.

This work consisted of a thorough molecular and biochemical
analysis with the objective of assessing the influence of a foliar
application of kaolin on grape berry secondary metabolism.
Transcriptional analyses by qPCR, as well as biochemical analyses
including enzyme activity measurements, were performed on
key metabolic pathways/molecular mechanisms involved in the
biosynthesis of phenolics and anthocyanins, with a focus on
phenylpropanoid, flavonoid (both flavonol- and anthocyanin-
biosynthetic) and stilbenoid pathways. Metabolomic analysis
by reverse phase LC-QTOF-MS was also performed to unveil
kaolin-induced modifications on several important secondary
metabolites in the latter ripening stages.
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MATERIALS AND METHODS

Grapevine Field Conditions and Sampling
Whole grape berry samples were collected from field-grown
“Touriga Nacional” cultivar grapevines (Vitis vinifera L.) grafted
onto 110-R from the commercial vineyard “Quinta do Vallado,”
in the Douro Demarcated Region (Denomination of Origin
Douro/Porto), located at Peso da Régua, Portugal (41◦09′44.5′′N
07◦45′58.2′′W). The climate is typically Mediterranean-like, with
a warm-temperate climate and dry and hot summers, with higher
precipitation during winter but very low during the summer
(Kottek et al., 2006). Vines were managed without irrigation and
grown using standard cultural practices as applied by commercial
farmers. Vineyard rows were located on a steep hill with an
N-S orientation. Monthly maximum temperature (Tmax) and
precipitation values (April to October) were reported in Dinis
et al. (2016a).

Three vineyard rows, with 20 plants each, were sprayed in
17th July 2014, at the late green-phase and right before véraison,
with 5% (w/v) Kaolin (Surround WP; Engelhard Corp., Iselin,
NJ), according to previous work done by our team (Dinis et al.,
2016a). A second application in the same day was done to
ensure Kaolin adhesion uniformity. Other three vineyard lines,
with 20 plants each, were maintained as control, i.e., without
Kaolin application. All rows are located side-by-side (ensuring
the same edaphoclimatic conditions) on a steep hill with an N-S
orientation. The vines were 7 years-old, were trained to unilateral
cordon and the spurs were pruned to two nodes each with 10–12
nodes per vine.

Grape berry samples treated with kaolin and without
treatment, i.e., control, were randomly collected from different
positions in the clusters of different plants from different rows
in the vine at four ripening stages: on 23th July (late green
phase), 21st August (véraison, ca. half of the berries per cluster
colored), 3rd September (mature), and on 12th September (full
mature); and immediately frozen in liquid nitrogen. In all
ripening stages, sampling was performed in sunny and relatively
hot days, so with relatively similar environmental conditions in
all sampling dates. In the sampling procedure, 50–60 berries
(about 5 per cluster) were collected always at the same time
of the day, at 6.30 p.m. Phenological parameters of control vs.
kaolin-treated fully-mature berries, respectively, were as follows:
average berry weight—1.89 vs. 1.88 g, pH—3.98 vs. 3.94; total
sugars—198.6 vs. 203.6 g/L. No apparent differences in skin
to pulp ratio were noticed between control and kaolin-treated
berries. The average water contents of control vs. kaolin-treated
berries were as follows: 93.1 vs. 94.1% at green stage, 80.9
vs. 80.7% at veraison, 77.0 vs. 75.9% at mature stage, 74.5 vs.
74.4% at full maturation. For véraison sampling, a representative
mix of colored and non-colored berries was obtained. This
precaution procedure was adopted both in the cluster and for
different clusters of the plant, with half of colored and half
of non-colored berries collected from each condition and used
for each experiment. The véraison rate was apparently similar
between conditions with no apparent phonological displacement.
No difference on véraison proportion between treatments was
observable.

All berries selected for sampling were totally clean
and without any trace or residue of kaolin. Berries were
deseeded and ground to a fine powder under liquid nitrogen
refrigeration and stored in −80◦C. For RNA extraction,
metabolite extraction and enzymatic activity assays, 6–8
randomly collected berries were used for grinding and sample
homogenization.

Metabolomic Analysis by Reverse Phase
LC-QTOF-MS
Reverse phase LC-QTOF-MS analysis was used to analyze
how foliar kaolin application influenced grape berry secondary
metabolome. Secondary metabolites were extracted from
lyophilized powdered grape berry samples with 50% ethanol.
After concentration in vacuum for ethanol removal, the
extract was re-suspended with water. The aqueous solution
was subsequently extracted with light petroleum and ethyl
acetate, respectively. Samples were then evaporated under
reduced pressure. Metabolite profiling analyses were performed
with a liquid chromatography coupled to quadrupole time
of flight-MS (LC-QTOF/MS) System (Agilent Technologies
1290 LC, 6540 MS, Agilent Technologies, Santa Clara, CA,
USA) using reverse phase (RP) combined with positive ion
ESI mode. A Zorbax Eclipse XDBC18 column (100 × 2.1 mm,
1.8 µm; Agilent Technologies) was used at 45◦C and flow rate
0.6 mL/min with solvent A—water with 0.1% formic acid, and
solvent B—acetonitrile with 0.1% formic acid. The gradient
initiated from 25 to 95% B in 35 min, and returned to starting
conditions in 1 min, with there-equilibration with 25% B for 9
min. For data acquisition, the TOF mass range was set from 50
to 1000 m/z. During the analysis two reference masses: 121.0509
m/z (C5H4N4) and 922.0098 m/z (C18H18O6N3P3F24) were
continuously measured for constant mass correction and thus
obtain the accurate mass. The capillary voltage was 3000 V with
a scan rate of 1.0 scan per second. The nebulizer gas flow rate
was 10.5 L/min.

Metabolite data were normalized using the dry (lyophilized)
weight (DW) of the samples. For all experimental conditions,
three independent and randomized runs were performed in all
metabolomic analysis.

RNA Extraction
A total of 200 mg of grape berry tissue (without seeds) previously
grounded in liquid nitrogen was used for total RNA extraction
following the protocol by Reid et al. (2006) in combination
with purification with RNeasy Plant Mini Kit (Qiagen). After
treatment with DNase I (Qiagen), cDNA was synthesized from
1 µg of total RNA using Omniscript Reverse Transcription Kit of
Qiagen.

Transcriptional Analysis by Real-Time
qPCR
The expression of several target genes (Supplementary Table 1) in
berries at different developmental stages from control and kaolin
treated vines was analyzed by real-time qPCR. For that purpose,
cDNA was synthesized from 1 µg of total RNA using Omniscript
Reverse Transcription Kit (Qiagen). Real-time PCR analysis was
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FIGURE 1 | Effect of kaolin application on the quantities of important secondary metabolites of grape berries. Relative amounts of (A) quercetin; (B) rutin;

(C) catechin/epichatechin; (D) procyanidin B2, and (E) peonidin 3-galactoside (log2 transformation of kaolin/control fold variation), obtained by reverse phase

LC-QTOF-MS, in grape berry tissues collected in four different maturation stages (green, véraison, mature, and full mature) from vines subjected to kaolin treatment

and without application (control).

performed with QuantiTect SYBR Green PCR Kit (Qiagen) using
1 µL cDNA (diluted 1:10 in ultra-pure distilled water) in a
final reaction volume of 10 µL per well. As reference genes,
VvACT1 (actin), and VvGAPDH (glyceraldehyde-3-phosphate
dehydrogenase) were selected, as these genes were proven to
be very stable and ideal for qPCR normalization purposes in
grapevine (Reid et al., 2006). Gene specific primer pairs used
for each target or reference gene are listed on Supplementary

Table 1 (Downey et al., 2003; Bogs et al., 2006; Conn et al.,
2008; Gomez et al., 2009; Boubakri et al., 2013; Conde et al.,
2015). Primers specifically designed for this work were obtained
with the aid of QuantPrime (Arvidsson et al., 2008). Melting
curve analysis was performed for specific gene amplification
confirmation. The expression values were normalized by the
average of the expression of the reference genes as described
by Pfaffl (2001). For all experimental conditions tested, two
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FIGURE 2 | Effect of kaolin application on L-phenylalanine quantities in

grape berries. Relative amounts of L-phenylalanine (log2 transformation of

kaolin/control fold variation) obtained by reverse phase LC-QTOF-MS, in grape

berry tissues collected in four different maturation stages (green, véraison,

mature, and full mature) from vines subjected to kaolin treatment and without

application (control).

independent biological runs with mathematical triplicates were
performed.

Protein Extraction
Total protein extraction from grape berry powder was
performed as described by Stoop and Pharr (1993) with
several modifications. Sample powder was thoroughly mixed
with extraction buffer in an approximately 1:1 (v/v) powder:
buffer ratio. Protein extraction buffer contained 50 mMTris-HCl
pH 8.9, 5 mMMgCl2, 1 mM EDTA, 1 mM phenylmethylsulfonyl
fluoride (PMSF), 5 mM dithiothreitol (DTT), and 0.1% (v/v)
Triton X-100. The homogenates were thoroughly mixed and
centrifuged at 18000xg for 20 min and the supernatants were
maintained on ice and used for all enzymatic assays. Total
protein concentrations of the extracts were determined by
the method of Bradford (Bradford, 1976) using bovine serum
albumin as a standard.

Phenylalanine Ammonia Lyase (PAL)
Enzymatic Assay
PAL biochemical activity was determined in crude enzymatic
extracts following the trans-cinnamic acid production at 41◦C,
in a total volume of 2 mL. The reaction mixture contained
0.2 mL of enzyme extract, 3.6 mM NaCl, and 25 mM L-
phenylalanine (a saturating concentration that ensured that the
reaction occurred at the Vmax) as substrate in 50 mM Tris-HCl
pH 8.9. The rate of conversion of L-phenylalanine to cinnamic
acid was monitored continuously in the spectrophotometer
at 290 nm. Reactions were initiated by the addition of
L-phenylalanine.

Flavonol Synthase (FLS) Enzymatic Assay
FLS biochemical activity determination was performed as
described by Li et al. (2012) with some modifications. Enzyme
extraction was performed as described above, but for FLS

activity measurements the extracts were additionally purified
with Amicon Ultra 4 Centrifugal Filters (Merck Millipore). FLS
activity was determined following quercetin production at 37◦C
during 1 h in a total volume of 1 mL. The reactions were
performed at pH 5.0 with 111 mM sodium acetate, 83 µM 2-
oxoglutaric acid, 42µM ferrous sulfate, 120µL of enzyme extract
and started with 400 µM dihydroquercetin, the substrate, at a
saturating concentration that ensured Vmax, and the production
of quercetin was followed at 365 nm (ε = 13.2 mM−1 cm−1).

UDP-Glucose:Flavonoid
3-O-Glucosyltransferase (UFGT) Enzymatic
Assay
The biochemical activity of UFGT was determined as described
by Mori et al. (2005), with some adaptations. The assay mixture
contained 100 mM sodium phosphate buffer pH 8.0, 1 mMUDP-
glucose and 100 µL enzyme extract, in a final volume of 500
µL. The reaction was initiated with 1 mM quercetin as substrate
(saturating concentration). The reaction mixture was incubated
under gentle shaking for 30 min and the production of quercetin
3-glucoside was followed at 350 nm during 30 min (ε = 21877
M−1 cm−1).

Quantification of Total Phenolics and
Anthocyanins
The concentration of total phenolics and anthocyanins was
performed as described in our previous work (Dinis et al., 2016a).
Briefly, the concentration of total phenolics was quantified by
the Folin-Ciocalteu colorimetric method in berries from all
experimental conditions. Total phenolics were extracted in 1.5
mL of pure methanol from 100mg of berry grounded tissue.
The homogenates were vigorously shaken for 15 min and
subsequently centrifuged at 18000xg for 20 min. Twenty µL of
each supernatant were added to 1.58 mL of deionized water and
100 µL of Folin reagent, vigorously shaken and incubated for 5
min in the dark before adding 300 µL of 2M sodium carbonate.
After 2 h of incubation in the dark, the absorbance of the samples
was measured at 765 nm. Total phenolic concentrations were
determined using a gallic acid calibration curve and represented
as gallic acid equivalents (GAE). Anthocyanins were extracted
from 150mg of grape berry grounded tissue with 1 mL of
100% acetone. The suspension was vigorously shaken for 30
min. The homogenates were centrifuged for 20 min at 18000xg
and the supernatants were collected. Anthocyanin extracts were
diluted 1:10 in 25 mM potassium chloride solution pH 1.0 and
absorbance was measured at 520 nm and 700 nm, using 25 mM
potassium chloride solution pH 1.0 as blank. Total anthocyanin
quantification was calculated in relation to cyanidin-3-glucoside
equivalents, calculated by equation 1, per DW:

[

Total anthocyanins
] (

mg/L
)

=

(A520−A700)×MW×DF×1000
ε×1 (1)

where MW is the molecular weight of cyanidin-3-glucoside
(449.2 g mol−1), DF is the dilution factor and ε is the
molar extinction coefficient of cyanidin-3-glucoside (26900 M−1

cm−1).
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FIGURE 3 | Stimulatory effect of kaolin on the phenylpropanoid pathway. (A) Transcript levels of grapevine phenylalanine ammonia lyase 1 (VvPAL1) and

cinnamate-4-hydroxylase 1 (VvC4H1) (C) in grape berries. (B) Phenylalanine ammonia lyase (PAL) total enzymatic activity, determined as Vmax in berries collected in

the full mature stage (12th September) from vines treated with kaolin and without application (control). The assay was performed in triplicate. Values are the mean ±

SEM of three independent experiments. Asterisks indicate statistical significance (Student’s t-test; *P < 0.05). Gene expression analyses were performed by real-time

qPCR in grape berry tissues collected in four different maturation stages (green, véraison, mature, and full mature) from vines subjected to kaolin treatment and

without application (control). VvPAL1 and VvC4H1 relative expression levels were obtained after normalization with the expression of the reference genes VvACT1 and

VvGAPDH. Two independent PCR runs with triplicates were performed for each tested mRNA. Values are the mean ± SEM. Asterisks indicate statistical significance

(Student’s t-test; *P < 0.05; ***P < 0.001).

Statistical Analysis
The results were statistically analyzed by Student’s t-test using
Prism vs. 5 (GraphPad Software, Inc.). For each condition,
statistical differences between mean values are marked with
asterisks (∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001).

RESULTS

Effect of Exogenous Kaolin Application on
Grape Berry Secondary Metabolites
In a very recent study (Dinis et al., 2016a) we observed that a
foliar treatment of cv. Touriga Nacional with kaolin significantly
increased the total amount of phenolic compounds in mature
and fully mature berries, and of anthocyanins in fully-mature
berries only. Results obtained in the present work confirmed
those observations, and demonstrated a significant increase of
total phenolics in roughly 30% in the late-green phase, and
unchanged concentrations in véraison (Supplementary Figure
1). In agreement, the quantities of quercetin (flavonol), rutin

(flavonol glucoside), catechin/epicatechin (monomeric flavan-
3-ol), procyanidin B2 (proanthocyanidin), and peonidin 3-
galactoside (anthocyanin), which were identified by reverse phase
LC-QTOF-MS, were all substantially increased in berries from
grapevines treated with kaolin (Figure 1).

Noticeably, LC-QTOF-MS analysis also showed that mature
and fully mature berries from vines treated with kaolin had
a significantly lower quantity of L-phenylalanine, the first
metabolite to be converted (into trans-cinnamic acid) in the
phenylpropanoid pathway, than berries from the control vines
(Figure 2).

Transcriptional and Biochemical Activity
Differences in the Phenylpropanoid
Pathway
In our previous report (Dinis et al., 2016a) we showed that
the transcript levels of a phenylalanine ammonia lyase gene
(VvPAL1), that encodes an enzyme catalyzing the first step in
the phenylpropanoid pathway in which trans-cinnamic acid
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is produced, increased in the final maturation stages by 33%
in berries from kaolin-treated plants. Here, we observed that
VvPAL1 transcripts also appeared to be slightly more abundant in
berries from kaolin treated plants at the late-green and véraison
stages (Figure 3A), in a trend that continued until the final
maturation phase.

As the highest VvPAL1 expression level occurred at the final
ripening stage, here we determined the total PAL biochemical
activity in crude extracts from fully mature berries. In agreement
with the increase in VvPAL1 transcript abundance, results
showed a two-fold higher PAL specific activity in berries
from vines subjected to kaolin treatment than in control
berries (Figure 3B). As shown in Figure 3C, the steady-state
transcript abundance of VvC4H1, which codes for a cinnamate-
4-hydroxylase (C4H) that catalyzes the second reaction in the
phenylpropanoid pathway, were also increased in berries from
kaolin-treated plants, by 100% and approximately 20% at the
mature and full mature stages, respectively.

Transcriptional Changes in Stilbene
Biosynthetic Pathway
To evaluate how the stilbenoid pathway was influenced by foliar
kaolin application, transcriptional analysis of stilbene synthase
1 (VvSTS1), that encodes the first enzyme of this pathway, was
performed. However, with the primer pair used for amplification,
we actually amplified several STS family genes, which can provide
a broader sense of the changes in this metabolic pathway.
Stilbene synthase (STS) is responsible for the condensation of
4-coumaroyl-CoA with 3 molecules of malonyl-CoA producing
resveratrol. The real-time qPCR analysis revealed that VvSTS
transcript levels increase up to 1000-fold from mature to full
mature stages, but kaolin application appeared to stimulate
VvSTS transcription only in the mature stage (Figure 4).

Transcriptional and Biochemical Activity
Changes in the Flavonoid
Pathway—Biosynthesis of Flavonols,
Flavanols, and Anthocyanins
Transcriptional changes in several important intermediates in
the flavonoid pathway were also analyzed. This pathway is
initiated by the action of chalcone synthase (CHS). As shown in
Figure 5A, the expression of a paradigmatic chalcone synthase
gene, VvCHS1, which is the better characterized chalcone
synthase isoform in grapevine, was not constant during the
season and was variably affected by kaolin. The highest steady-
state transcript abundance quantity of VvCHS1 was observed
at the late-green stage, when the stimulatory effect of kaolin
was more evident (five-fold increase over the control). However,
kaolin application also stimulated VvCHS1 transcription at the
mature and full mature stage in a very subtle way, as we had
reported before (Dinis et al., 2016a).

Flavonol Biosynthesis

Flavonol synthase (FLS) is the first enzyme of the flavonol
biosynthetic branch of the flavonoid pathway. Gene expression
analysis by qPCR revealed that VvFLS1 was mostly expressed at

FIGURE 4 | Effect of kaolin application in the transcript levels of

grapevine stilbene synthase 1 (VvSTS1) in mature and full mature

grape berries. Gene expression analysis was performed by real-time qPCR in

grape berry tissues collected from vines subjected to kaolin treatment and

without application (control). VvSTS1 relative expression levels were obtained

after normalization with the expression of the reference genes VvACT1 and

VvGAPDH. Two independent PCR runs with triplicates were performed for

each tested mRNA. Values are the mean ± SEM. Asterisks indicate statistical

significance (Student’s t-test; *P < 0.05.

the véraison and mature stages (Figure 5B), and then the steady-
state transcript levels decreased abruptly at full mature stage. The
stimulatory effect of kaolin application onVvFLS1 expression was
more evident in late green berries and at the mature stage, when a
three-fold increase over the control was observed. Concordantly,
in berries from kaolin-treated vines, the biochemical activity of
FLS was also three-fold higher than in berries from untreated
plants (Figure 5C)

Flavanol and Anthocyanin Biosynthesis

Dihydroflavonols are secondary metabolites that can enter in
either anthocyanin or flavan-3-ol biosynthetic pathways. By
catalyzing the reduction of dihydroflavonols to flavan-3,4-diols,
the enzyme dihydroflavonol reductase (DFR) is responsible
for the first committed step in the pathway leading to the
synthesis of flavan-3-ols (or flavanol) compounds, a group
that comprises catechin, epicatechin, epigallocatechin, other
tannins and proanthocyanidins; and also in the pathway that
culminates with the synthesis of anthocyanins. We observed that,
in all developmental stages, VvDFR1 expression was significantly
higher in berries from vines treated with kaolin (Figure 6A),
with increases by almost six-fold and two-fold, for instance,
in the mature and full mature stages. The enzyme UDP-
glucose:flavonol 3-O-glucosyl transferase (UFGT) catalyzes the
final step of anthocyanin biosynthesis. The transcript levels
of VvUFGT were noticeably higher in kaolin-treated than in
control berries, particularly in the green (two-fold) and the
mature (80%) stages, but also slightly, yet not statistically
significant, in fully mature berries (Figure 6B). In agreement
with the transcript abundance of the gene VvUFGT1, the
UFGT specific activity was significantly enhanced by little
more than two-fold, in mature berries from kaolin-treated
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FIGURE 5 | Stimulatory effect of kaolin on chalcone synthase and flavonol synthase. (A) Transcript levels of chalcone synthase 1 (VvCHS1) and flavonol

synthase 1 (VvFLS1) (B) in grape berries. Gene expression analyses were performed by real-time qPCR in grape berry tissues collected in four different maturation

stages (green, véraison, mature, and full mature) from vines subjected to kaolin treatment and without application (control). VvCHS1 and VvFLS1 relative expression

levels were obtained after normalization with the expression of the reference genes VvACT1 and VvGAPDH. Two independent PCR runs with triplicates were

performed for each tested mRNA. Values are the mean ± SEM. Asterisks indicate statistical significance (Student’s t-test; *P < 0.05; ***P < 0.001). (C) Flavonol

synthase (FLS) total biochemical activity, determined as Vmax in berries collected in the mature stage (3rd September) from vines treated with kaolin and without

application (control). The assay was performed in triplicate. Values are the mean ± SEM of three independent experiments. Asterisks indicate statistical significance

(Student’s t-test; **P < 0.01).

plants, while no differences were observed in full-mature berries
(Figure 6C).

The gene VvMYB5b encodes a protein belonging to the R2R3-
MYB family of transcription factors that has been unequivocally
characterized as a regulator of the flavonoid pathway and as
having a great role in anthocyanin- and proanthocyanidin-
derived compounds accumulation (Deluc et al., 2008). Moreover,
it is predominantly expressed during grape berry ripening,
making it an ideal candidate to evaluate MYB-related regulation
of anthocyanin biosynthetic pathway in the present work. As
denoted in Figure 7, VvMYB5b appeared to be slightly up-
regulated at the full mature stage, when kaolin application
seemed to increase its expression, however the differences were
not statistically significant between treatments.

Transcriptional Changes in Anthocyanin
S-conjugation and Vacuolar Transport
Transcriptional changes in genes involved in anthocyanin S-
conjugation and in vacuolar transport for intracellular storage

were also evaluated. The expression of the gene VvGST4, coding
for glutathione S-transferase 4, was higher in berries under
kaolin treatment in all development stages except in the full
mature, with the three-fold increase in mature berries being
most noticeable (Figure 8A). This enzyme is key in stabilizing
anthocyanins by conjugating them with the reduced form of
glutathione (GSH), a biochemical step that is required for the
majority of anthocyanin vacuolar transport (Conn et al., 2008).

Gene expression of the tonoplast anthocyanin transporter
VvMATE1 was also strongly enhanced (by three-fold) in mature
berries from kaolin-treated vines, and approximately two-fold
higher than the control in the green stage (Figure 8B). On the
other hand, the expression of another tonoplast anthocyanin
transporter, VvABCC1, this one shown to strictly transport S-
conjugated anthocyanins only, was very strongly upregulated
in kaolin-treated berries at véraison by approximately 26-fold
(Figure 8C). Interestingly, at themature stage, the ripening phase
when VvMATE1 expression was very strongly upregulated in
response to kaolin, VvABCC1 transcript levels were higher in
berries from untreated plants.
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FIGURE 6 | Stimulatory effect of kaolin on key intervenients of anthocyanin biosynthesis. (A) Transcript levels of dihydroflavonol reductase (VvDFR) and

UDP-glucose:flavonol 3-O-glucosyl transferase (VvUFGT ) (B) in grape berries. Gene expression analyses were performed by real-time qPCR in grape berry tissues

collected in four different maturation stages (green, véraison, mature, and full mature) from vines subjected to kaolin treatment and without application (control). VvDFR

and VvUFGT relative expression levels were obtained after normalization with the expression of the reference genes VvACT1 and VvGAPDH. Two independent PCR

runs with triplicates were performed for each tested mRNA. Values are the mean ± SEM. Asterisks indicate statistical significance (Student’s t-test; *P < 0.05;

**P < 0.01). (C) UDP-glucose:flavonol 3-O-glucosyl transferase (UFGT) total biochemical activity, determined as Vmax in berries collected in the mature (3rd

September) and full mature (12th September) stages from vines treated with kaolin and without application (control). The assay was performed in triplicate. Values are

the mean ± SEM of three independent experiments. Asterisks indicate statistical significance (Student’s t-test; *P < 0.05).

DISCUSSION

This work, as well as a previous one (Dinis et al., 2016a)
reinforce that the treatment of grapevine leaves with the inert
clay mineral kaolin increases, in the mature grape berry, the
quantities of phenolic compounds, including total phenolics and
anthocyanins. This fact should have major implications in fruit
and wine quality, while protecting plant against abiotic stress.
Here, an analysis focused on secondary metabolism by reverse
phase LC-QTOF-MS confirmed that the production in the grape
berry of different classes of phenolic compounds—including
flavonols, flavonol glucosides, flavan-3-ols, proanthocyanidins
and anthocyanins, was indeed generally stimulated by foliar
kaolin treatment of Touriga Nacional grapes. Furthermore,
we showed here that the higher phenolic/anthocyanin content
in response to kaolin is clearly due to a global stimulation
of phenylpropanoid, flavonoid—flavonol and anthocyanin—
pathways at the gene expression and/or protein activity (enzyme
activity) levels. Indeed, a concerted and general increased in

the expression of many genes involved in these pathways, along
with a significant increase in measured enzymatic activities were
observed in the latter ripening stages.

Both VvPAL1 and VvC4H1 had higher expression in mature
and fully mature berries from kaolin-treated vines, confirming
that kaolin enhances this particular pathway that is fundamental
for the following synthesis of stilbenes and flavonoids. The
observed higher PAL enzymatic activity in fully mature berries
from kaolin-treated vines also corroborates this assumption, and
suggests that in this case the increased transcription levels of one
PAL isoform (VvPAL1) do indeed provide strong evidence of a
final increased biochemical activity. This increased biochemical
activity of PAL, that is the result from the joint activity of
all isoenzymes, may account for the observed lower levels of
L-phenylalanine content in berries from kaolin-treated vines.
Dai et al. (2014) demonstrated that increased L-phenylalanine
amounts, the main precursor of phenolic biosynthesis, were not
correlated with anthocyanin improvement. Here, we were able
to observe the same, as lower L-phenylalanine contents were
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FIGURE 7 | Effect of kaolin application in the transcript levels of

grapevine R2R3-MYB transcription factor family member MybB5b

(VvMybB5b) in grape berries. Gene expression analysis was performed by

real-time qPCR in grape berry tissues collected in four different maturation

stages (green, véraison, mature, and full mature) from vines subjected to kaolin

treatment and without application (control). VvMybB5b relative expression

levels were obtained after normalization with the expression of the reference

genes VvACT1 and VvGAPDH. Two independent PCR runs with triplicates

were performed for each tested mRNA. Values are the mean ± SEM.

paralleled by an increase in total phenolics in kaolin-treated
berries, and in PAL activity, thus, L-phenylalanine consumption.

The flavonols quercetin and rutin (a glycosylated quercetin-
derivative) were successfully identified in the metabolomic
analysis by LC-QTOF-MS and both were more abundant
in berries from kaolin-treated vines especially at the latter
ripening stages. This is in agreement with the enhanced flavonol
biosynthetic pathway observed in berries from kaolin-treated
vines, in particular at the mature stage. At that point, VvFLS1
expression level was significantly higher in berries from kaolin-
treated vines, which correlated very well with a significantly
higher FLS activity, in the same proportion. Together with
the correlation of PAL activity and VvPAL1 transcripts, this
shows that, in the secondary metabolic pathways we assessed,
increased expression levels of a gene can be predictive/indicative
of increased final enzymatic activity resulting from all possible
isoforms, attesting our prospective qPCR analysis as a robust
approach to assess the influence of kaolin on molecular
mechanisms/biochemical pathways related with berry quality.

The four-fold increase in VvCHS1 expression in green berries
from kaolin-treated plants, the stage in which its expression was
the highest, also suggests that an enhancement of this metabolic
step that begins the flavonoids pathway could have played a role
in the higher phenolics concentration observed in this phase.

Anthocyanins are responsible for berry color being, thus, an
important quality trait of both fruit and red wine production. At
the mature stage, berries are actively synthesizing anthocyanins
in a process that stagnates in the very final ripening stage
when the berries are ready for harvest. Fully mature berries
from kaolin-treated vines had significantly more anthocyanins,
in a process that appeared to be initiated in the mature phase.
This difference could be explained by higher expression of

genes involved in anthocyanin biosynthesis and accumulation
in the latter ripening stages of berries from kaolin-treated
vines. VvUFGT, that glycosylates anthocyanidins/flavonols into
anthocyanins using UDP-glucose as co-substrate, was indeed
more expressed in mature berries from kaolin-treated vines,
with a very good correlation with increased total UFGT higher
enzymatic activity, just like the case of PAL and FLS, suggesting
the increase in the transcription and activity of UFGT was key
for increased anthocyanin concentrations. Like in the case of
PAL, the enzymatic activity of UFGT is the clear-cut result from
the joint action of all UFGT isoenzymes. Upstream, VvDFR
expression was also enhanced in berries from kaolin-treated
vines at the latter ripening stages, suggesting a whole stimulation
of the anthocyanin synthesis pathway. Catechins/epicatechins,
procyanidin B2, a proanthocyanidin, and the anthocyanin
peonidin-3-galactoside were all also present in higher amounts
in mature and fully mature berries from kaolin treated vines.
This is in perfect agreement with the overall stimulation
of phenylpropanoid and flavonoid pathways by foliar kaolin
application. Moreover, anthocyanin stabilization and transport
into the vacuole was also increased in berries during the major
color change phases (véraison and mature) from kaolin-treated
vines as demonstrated by increased VvGST4, VvMATE1, and
VvABCC1 transcripts.

Anthocyanin accumulation in the grape berry is known
to be impaired by high temperatures (Spayd et al., 2002;
Yamane et al., 2006; Mori et al., 2005, 2007), which suggests
that the fact that foliar kaolin application leads to lower
canopy temperatures might also contribute for the higher
anthocyanin concentration in berries from kaolin-treated plants.
Low anthocyanin accumulation at high temperatures has been
reported to result from down-regulation of genes involved in
anthocyanin biosynthesis (Mori et al., 2005, 2007; Carbonell-
Bejerano et al., 2013).

Mild water deficit has been observed to increase total
anthocyanins and stilbenoids (Deluc et al., 2009, 2011; Castellarin
et al., 2007a,b, 2012), and to up-regulate genes involved
in the phenylpropoanoid biosynthetic pathway (Deluc et al.,
2009; Castellarin et al., 2007a,b, 2012). However, severe water
deficit causes the opposite and results in lower anthocyanin
synthesis and contents. Our results suggest that foliar kaolin
application somehow had a stimulatory effect in phenolic and
anthocyanin synthesis capacity, and a possible reduction of a
severe water deficit stress to a milder form of stress induced
by foliar kaolin application should not be ruled out. The
recognized capacity of kaolin particle film in reducing part
of the radiation that reaches plant tissues, thereby reducing
canopy temperature and alleviating heat stress and sunburn,
while stimulating photosynthesis (Dinis et al., 2016b), might
also contribute for higher phenolic/anthocyanin concentrations
in berries from kaolin-treated plants observed in this study,
but a possible direct influence of silicon (Si) should not be
ruled out, despite the reported inert nature of kaolin, and
future studies to address this matter could provide valuable
new insights, following previous reports showing that plants
actively respond to Si supplementation, administrated in roots
in forms other than kaolin, including the accumulation of
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FIGURE 8 | Stimulatory effect of kaolin on the transcription of genes involved in anthocyanin S-conjugation and vacuolar transport capacity. (A)

Transcript levels of glutathione S-transferase 4 (VvGST4) and of anthocyanin tonoplast transporters MATE1 (VvMATE1) (B) and ABCC1 (C) in grape berries. Gene

expression analyses were performed by real-time qPCR in grape berry tissues collected in four different maturation stages (green, véraison, mature, and full mature)

from vines subjected to kaolin treatment and without application (control). VvGST4, VvMATE1, and VvABCC1 relative expression levels were obtained after

normalization with the expression of the reference genes VvACT1 and VvGAPDH. Two independent PCR runs with triplicates were performed for each tested mRNA.

Values are the mean ± SEM. Asterisks indicate statistical significance (Student’s t-test; *P < 0.05; **P < 0.01).

phenolics in rice (Zhang et al., 2013) and banana (Fortunato
et al., 2014). It is also important to note that kaolin is known for
increasing photosynthetic capacity in leaves, therefore increasing
the synthesis of photoassimilates like sucrose. Interestingly,
gene expression of several sugar transporters with a role in
phloem unloading and/or post-phloem loading was increased in
mature leaves and, most importantly, in mature and fully-mature
berries (not shown) which might indicate an increased sugar
transport capacity at the berry level as well as its accumulation
or availability for feeding other metabolic pathways. In fact,
several studies have shown a relationship between sugar and
anthocyanin content (Pirie and Mullins, 1977; Hunter et al.,
1991; Larronde et al., 1998; Dai et al., 2014), which suggests that
sugar is important for the synthesis of secondary metabolites.
Thus, is plausible that kaolin-induced higher sugar transport
and availability in the berry might also contribute to the
stimulation of these secondary pathways. A somewhat interesting
observation appears to be the very few changes generally
observed at véraison. Abscisic acid concentration increases to
reach its peak at this developmental phase of the berry and is
responsible for the beginning of berry coloring and ripening

phase initiation (Castellarin et al., 2016), events that are markedly
noticed by anthocyanin and other flavonoids accumulation. A
possible explanation for the the fact that kaolin had no apparent
effect at veraison might very well be the large concentrations
of ABA comparing to the other phases, so that the regulation
exerted by this hormone heavily controls the expression of
the molecular mechanisms behind flavonoid and anthocyanin
synthesis and superimposes any possiblemodification induced by
the foliar kaolin treatment.

It is also important to note that, despite the absence of a factual
skin:pulp ratio measurement in this study, no apparent changes
in that regard were observed when collecting and processing
the berry samples. So, despite not possible to completely rule
out the influence of a slightly modified skin:pulp ratio by foliar
application of kaolin, it appears not to be a contributor to the
observed stimulated phenylpropanoid- and flavonoid-associated
molecular mechanisms. In addition, no apparent changes were
observed in berry softening, and alterations of brix, berry
size and weight, and total acidity were negligible. However,
a small contribution of possible indirect kaolin-induced skin
thickening and/or phenology displacement, even though not
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FIGURE 9 | Foliar kaolin application induced a general stimulation of phenylpropanoid and flavonoid pathways in grape berry cells. Molecular

mechanisms studied in the present work are identified by the upper pointing green arrows that highlight increases of transcripts, biochemical activity or both we

observed at any given point during berry ripening in response to kaolin application. CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase;

DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; LDOX, leucoanthocyanin dioxygenase; LAR, leucoanthocyanidin reductase; ANR, anthocyanidin

reductase; UFGT, UDPglucose:flavonoid 3-O-glucosyltransferase; FLS, flavonol synthase; GST4, glutathione S-transferase 4; MATE, anthocyanin multidrug and toxic

extrusion transporters; ABCC1, ATP-binding cassette transporter; v, vacuole; cw, cell wall.

apparent in the current work, should not be completely ruled
out, and should be carefully evaluated in future studies to confirm
whether or not they are partially responsible for our observations
on phenylpropanoid and flavonoid pathways. Additionally,
thoroughly determined ripening indicators throughout berry
development such as pH value or titratable acidity and total
sugar content in a statistically significant manner is equally
important to confirm that no phenology displacement occurs as
consequence of foliar kaolin application.

In the present work, we showed that grape berries from
kaolin-treated vines demonstrated generally enhanced
phenolic-biosynthetic molecular mechanisms (Figure 9)
that ultimately resulted in higher concentration of phenolics,
including anthocyanins. These metabolic pathways are tightly
associated with berry quality, and better grape berry quality
translates into better wine quality, so, into added value to the
winemaking industry, as these compounds are responsible for
wine organoleptic properties, like color, flavor, astringency,
and bitterness. The conjugation of kaolin application with
other mitigation strategies based on viticultural practices or
the application of other protective compounds with similar
characteristics could also be potentially explored in the future.

In sum, exogenous kaolin application in grapevine leaves
shows great potential as summer stress mitigation strategy
because it positively impacts berry quality as a result of many
molecular and biochemical changes in key secondary metabolic
pathways such as phenylpropanoid and flavonoid pathways.
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