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Abstract

Software application acceleration, using parallelization techniques and dedicated
hardware components, is often an optimization compromise in a cost-benefit re-
lationship during the migration of software processes to hardware Intellectual
Property (IP) dedicated cores or accelerators. In real-time applications extra care
is needed when dealing with these issues, so that the real-time requirements of
the application are not compromised. An isolated validation, as far as application
domains are concerned, does not guarantee integral system functionality. Using an
integrated co-simulation environment, chances of early system problem detection
before moving to the physical implementation phase are improved. By adopting a
design flow aided by co-simulation, not only is the development process sped up,
but also resource independent, since the system can be developed in its entirety in
a host platform without being bound to a physical target platform.

This dissertation aims to adopt a methodology of hardware-software co-design
aided by co-simulation and extend embedded system simulation techniques to
hardware IP co-simulation and integral validation, improving the design process
of hardware accelerated embedded systems in their various development phases.
Using Quick EMUlator (QEMU) as a tool for emulating embedded software plat-
forms in a Linux-based environment, modifications were idealized and developed
to enable QEMU to extend its embedded software platform emulating capabilities
for custom hardware co-processor development purposes. Two QEMU extensions
were developed, enabling easy integration of behavioral devices and co-simulation
with external Register-Transfer Level (RTL) models in QEMU’s target platforms.
A Verilog PLI library was also developed to allow Verilog simulators that support
PLI to perform co-simulation with QEMU. To demonstrate the capabilities of fol-
lowing a hardware-software embedded co-design using the developed simulation
environment, a demonstration application scenario was developed following a de-
sign flow that takes advantage of said simulation environment possibilities.
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Resumo

A aceleração de aplicações de software, utilizando técnicas de paralelização e com-
ponentes de hardware dedicados, é frequentemente um compromisso de optimiza-
ção numa relação de custo-benefício durante a migração de processos de software
para aceleradores ou cores hardware IP dedicados. Em aplicações real-time, cui-
dados extra são necessários ao lidar com estas problemáticas, de forma a que os
requisitos real-time da aplicação não sejam comprometidos. Uma validação isolada,
no que respeitam os vários domínios de aplicação, não garante uma funcionalidade
integral do sistema. Utilizando um ambiente de co-simulação integrado, falhas no
sistema podem ser detectadas numa fase inicial do projecto, antes de ser atingida
uma fase de implementação física. Ao adoptar um design flow auxiliado por co-
simulação, não só é o processo de desenvolvimento agilizado, mas também isento de
dependências a nível da plataforma target, uma vez que o sistema pode ser desen-
volvido inteiramente na plataforma host sem estar dependente dos recursos físicos
associados uma plataforma target. Esta dissertação surge no âmbito da validação
de uma metodologia de hardware-software co-design auxiliada por co-simulação,
no extender de técnicas de simulação de sistemas embebidos, com ou sem ace-
leração de processos em hardware RTL, e na validação integral, aperfeiçoando o
processo de design dos mesmos ao longo das várias fases de desenvolvimento. Utili-
zando o QEMU como ferramenta para emulação de ambientes baseados em Linux
para plataformas de CPU+FPGA, alterações foram idealizadas e desenvolvidas
para permitir extender as capacidades de emulação das mesmas no QEMU, para
propósitos de desenvolvimento de aceleradores em hardware customizados, possi-
bilitando a integração de devices comportamentais e co-simulação com modelos
RTL externos nas plataformas target do QEMU. Para demonstrar as capacidades
de seguir um co-design de hardware-software embebido utilizando o ambiente de
simulação desenvolvido, um cenário de aplicação demonstrador foi desenvolvido
seguindo um design flow que toma partido das possibilidades do referido ambiente
de simulação.
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Chapter 1

Introduction

This chapter has an introductory purpose, presenting a brief contextualization of
this dissertation’s scope, as well as defining its motivation and main objectives.
The main contributions of this project to the scientific community are also pre-
sented, with a clarification of the document’s structure closing the chapter.

1.1 Contextualization

We live in a world with technology growing and evolving day by day, with a high
tendency for digital systems to take over everyday common tasks. With the rapid
growth and intrusion of technology in human life, there is a also a growing need
for better digital system solutions. Most digital systems in our every day lives are
embedded systems.

An embedded system is a computational system that was designed for a specific
purpose, being tailored for a particular set of tasks. Embedded systems are usually
integrant part of a larger system, performing lower-level tasks, often interfacing
with the physical world through control or monitoring systems, performing ana-
logue data acquisition and driving circuitry that acts on the physical world, such
as switches or motors. Embedded systems are everywhere, and can be thought
of every digital system that’s expected to hide a computational system inside,
from MP3 players to printers to most domestic electric appliances. In fact, almost
everything that is not a desktop computational system may be thought of as an
embedded system.
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Embedded development is usually made on available embedded development boards,
that are frequently shipped with a development toolchain, comprising such tools
as compilers, linkers, debuggers and even other tools that enable software de-
velopment for the embedded platforms. Embedded software is most commonly
developed in a host desktop platform, and later debugged and deployed in the tar-
get embedded platform. Figure 1.1 represents a traditional embedded development
setup.

Figure 1.1: Embedded development setup

Unfortunately, many of the performance enhancing features in personal computer
architecture, such as instruction pipelining and the use of caches in the memory
system, which make them so fast also make it difficult to predict their performance
at all times accurately. This is a problem in real-time embedded systems, which
require applications with deterministic behavior.

Real-time embedded systems are systems with critical tasks that must meet dead-
lines, as far as execution is concerned. Some systems, such as anti-lock brakes in
a car, have such real-time requirements that when not met may fail utterly and
completely, and even be harmful to the user or its environment. For this reason,
embedded software development is radically different from desktop software devel-
opment, requiring different designs and a completely different set of skills from the
developer. A modern technique to enhance real-time requirements satisfaction is
the computational offload through dedicated hardware co-processors. This tech-
nique makes use of the inherent parallel nature of hardware, with custom hardware
co-processor integration and the use of System-on-Chip (SoC)-based architectures
made possible with recent advances in Field Programmable Gate Array (FPGA)
technology.

Software application acceleration, using parallelization techniques and dedicated
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hardware components, is often an optimization compromise in a cost-benefit re-
lationship, during the migration of software processes to hardware IP dedicated
cores or accelerators. In real-time applications extra care is needed in dealing
with these issues, so that the real-time requirements of the application are not
compromised. Through linear programming mathematical tools, it is possible to
establish a good compromise, minimizing the desired system metric, like power
consumption, temporal latency or silicon area.

In order to characterize the temporal evolution on a system level, an integrated
co-simulation environment where all metric costs are contemplated would be ideal.
Such an environment would not only be useful by providing measurements of the
system metrics, so the linear mathematical tools can aid in design optimizations,
but also in system modeling. Figure 1.2 presents a diagram of a co-simulation
environment overview.

Embedded 
Software Domain

Simulator

Hardware 
Acceleration Domain 

Simulator

Domain-specific 
Simulator

Mixed-Simulation

Figure 1.2: Co-simulation overview

Usually, hardware-software co-design is a long process of iterative nature. If the
system is modeled and simulated on separate application domains and later imple-
mented and debugged physically, the development time can grow exponentially. An
isolated validation, as far as application domains are concerned, does not guarantee
integral system functionality, and with an integrated co-simulation environment,
system problems can be detected early before moving to the physical implemen-
tation phase.
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By adopting a design flow aided by co-simulation, the the development process
is sped up, and also resource independent, since the system can be developed in
its entirety in a host platform without being bound to a physical target platform.
This kind of development has some obvious benefits, as the system can be modeled
first, profiled and analyzed later according to certain metrics, and only afterwards
is a target platform selected. Also, design teams with limited available prototypes
are not slowed down by limited platform resources.

1.2 Motivation and Objectives

Power electronic devices often need fast-responding and deterministic controllers,
requiring systems with hard to meet real-time constraints. A modern technique
to mitigate latencies and non-determinism intrinsic to operating systems in the
context of real-time embedded systems is to use hardware acceleration for com-
putational offloading. Hardware accelerated embedded systems development is
usually a long iterative process with conventional design flows being slow and with
difficult system integration on the various application domains. Local caches are
commonly used to stimulate and validate each application domain in controllers
of this nature, which implies lengthy development cycles in most cases.

Currently, there is no tool available on the market that allows to simulate domain
crossing interactions, and support a design flow based on co-simulation. As such,
one of the main objectives of this project is to develop a simulation environment
that supports domain crossing validation. With the concept of co-simulation being
tackled in the Embedded Systems Research Group (ESRG) of Universidade do
Minho, an idealization on how a simulation framework for hardware accelerated
embedded systems could greatly improve future project development processes
began to surface. This dissertation is a product of that vision, aiming to be the
first pragmatic step towards such a framework.

1.3 Contributions

This focus of this dissertation is placed on embedded platform development with
the help QEMU. QEMU, as an open-source project, is subject to any kind of mod-
ifications and changes by anyone, with development being made by a large com-
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munity, including such contributions as Xilinx itself, a major company of FPGA
chips and SoC-based solutions. As such, this document tries to emphasize what
advances could be made in this regard, and tries to introduce new concepts that
hopefully improve development of hardware accelerated embedded applications in
the long run.

As such, a scientific article is also planned for publication to complement this
dissertation and reach the scientific community.

1.4 Dissertation Structure

This document presents the development of simulation tools extensions and li-
braries that allow QEMU to be used as a full-system emulator in a real-time
hardware accelerated application context. Its content was divided in six chapters
that are going to be briefly presented.

The second chapter introduces the reader in the most common tools and method-
ologies of hardware accelerated application development for embedded systems. It
presents what technologies and tools are available for this kind of development,
as well as the commonly followed design flows, focusing on what choices can be
made to adopt a simulation based environment, backing up eventual development
choices made in this project. Special attention is given to QEMU, exposing its
features and possibilities, namely in embedded platform emulation. Verilog sim-
ulation interface standards are also approached, specifically Verilog PLI. Finally,
co-simulation extension standards are mentioned, bringing up their relevance in
the context of this dissertation.

The third chapter presents development work that was done in terms of extending
simulation environments capabilities, presenting the developed extensions. Devel-
oped content presentation is functionality oriented, providing an insight on how
development was made, as well as on how to make use of these mechanisms. Ex-
amples are given whenever possible, being mentioned as work is presented to help
the reader in understanding how to use the provided interfaces as a developer.

The fourth chapter presents a case of study, providing a practical example on
how the extended simulation environment’s features work, highlighting what ad-
vantages does this kind of development bring in embedded hardware accelerated
application development. The chosen case of study was in the power electronics
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domain, being an instantaneous power monitor based on the pq theory.

The document’s closing chapter discusses results and conclusions concerning de-
veloped work. Future work is also mentioned, clarifying what can be further done
in terms of giving this work continuity and further improve it to provide a full
hardware accelerated embedded system validation framework.
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Chapter 2

State of the Art

In this chapter, background is provided regarding the technologies and method-
ologies within the scope of this dissertation. Embedded systems are briefly con-
textualized, with a strong focus on topics like embedded systems with Operating
Systems (OSs) and real-time embedded constraints. Hardware acceleration and
its common design flows and simulation approaches to embedded design are also
discussed, with deep details of two important domains in the developed work, the
QEMU and the Verilog Programming Language Interface. Finally, the Functional
Mock-up Interface is an important standard for co-simulation and model inter-
change widely adopted in the industry’s most commonly used simulators, and as
an important reference for this project’s system design, it is also covered.

2.1 Embedded Systems

Currently, embedded systems can be found everywhere in our every day lives,
ranging from consumer electronics and electrical appliances to office automation,
industrial automation, military defense systems, transportation systems, aerospace
systems, medical systems and so forth. Out of more than six billion microproces-
sors produced in 2002, more than 98% were microprocessors for embedded pur-
poses, rather than personal computer purposes (Turley, 2002). These numbers may
very well have even increased with the smartphone and tablet business boom of
recent years, and subsequent rise of popularity of the ARM architecture, resulting
in ever greater demand in the embedded market.
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2.1.1 Definition

An embedded system is an applied computer system, as distinguished from other
types of computer systems such as personal computers or supercomputers. How-
ever, the definition of ”embedded system” is fluid and difficult to pin down, as it
constantly evolves with advances in technology and dramatic decreases in the cost
of implementing various hardware and software components. In recent years, the
field has outgrown many of its traditional descriptions (Noergaard, 2013). Some
of its traditional descriptions may include:

• Embedded systems are computational systems with limited hardware re-
sources, such as memory or processing performance;

• Embedded systems are simpler computational systems, with less software
abstraction, with no operative system, or a limited one;

• Embedded systems are computational systems where software and hardware
are designed designed for a specific task, often running applications with
limited or no user interface at all.

• Embedded systems are computational systems that are embedded as part of
a complete device often including hardware and mechanical parts;

• Embedded systems are systems which hide computational systems inside,
but are not thought of as computers;

While most of these rather outdated definitions are not necessarily false, some of
them do not cover all of the modern embedded systems. For instance, a modern
smartphone, generally classified as an embedded system, does have a complex
OS, fairly acceptable hardware resources and is not designed for a single specific
task. Summarily, a good way of defining an embedded system is considering as an
embedded system any system that includes a computer, but is not designed to be
a general purpose desktop personal computer.

Generally, modern day embedded systems can be thought of as low-end, middle-
end and high-end embedded systems regarding their complexity, with processing
units ranging from simple 4-bit processors to complex multi-core 32 and 64 bit
architectures, and software ranging from bare-metal applications to complex OSs
running multiple applications. Some examples of embedded systems are:

• Low-end:
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Digital thermostats, automatic vending machines, electrical toothbrushes,
traffic lights, generic remote controls, washing machines.

• Middle-end:

MP3 players, DVD players, TVs, cellphones, routers, printers, digital cam-
eras.

• High-end:

Smartphones, smart TVs, tablets, cars, trains, airplanes.

2.1.2 Embedded Processors

The main component of an embedded system is the computational processing unit.
Without it, it wouldn’t even qualify as an embedded system, since an embedded
system must be a computational system. This does not mean, however that this
processing unit must me a programmable processor. There are several types of
processors, and unlike desktop computers, a processor with lots of instructions and
capabilities does not mean that it is best suited for an embedded purpose. Figure
2.1 presents the different kinds of processors, in relation to their flexibility and
performance and consumption efficiency.

Figure 2.1: Processor types
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At the top, general purpose processors, also known as microprocessors, are the
most flexible type of all processing units. These are the Central Proccessing
Unit (CPU) used in personal computers, and are the least efficient of them all,
as far as energy consumption-computation performance ratio is concerned. The
flexibility they provide instruction-wise is greatly suited for personal computers,
but unnecessary in most embedded scenarios. For this reason, and due to their
high power consumption they are not a very well suited to embedded systems,
being often overlooked and quite rightly so.

At the other end of the spectrum are Application-Specific Integrated Circuit
(ASIC). These processors are the least flexible of all, and are hardwired to carry
out a specific task, not being programmable in any way. With very high time-to-
market and development costs, it is only used if maximum efficiency and perfor-
mance is necessary and a large number of system copies can be sold, relying on an
economy of scale.

FPGA provide a low-cost solution to ASIC, albeit a more power hungry one. These
processors are more flexible than ASIC, as their internal hardware connections may
be reprogrammed. As a low-cost alternative, these are frequently used to prototype
and debug ASIC designs during the development process, as the manufacturing
costs of creating a new ASIC mask design are what make the technology expensive.

Lastly, Application-Specific Instruction set Processor (ASIP) are flexible proces-
sors which are capable of running software instructions, but are not as generic
as microprocessors, being a compromise between single-purpose processors such
as FPGA or ASIC and microprocessors. These processors are particularly opti-
mized for a particular class of applications and often have hardwired components
additional to the actual processing unit, such as memory blocks or other peripher-
als. For these reasons, they are often the ideal choice for embedded systems, and
comprise the most frequent choice in embedded system design. Some examples of
ASIP are:

• Microcontrollers;

Microcontrollers are chips that integrate microprocessors, usually 8 to 16 bits
or 32 bits, and memory blocks in the same package. They are generally aimed
towards low-end control-oriented embedded systems, being packed with little
memory and sometimes even additional peripherals, to provide a complete
single chip control solution.
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• Digital Signal Processors (DSPs);

Digital Signal Processors (DSP);

DSP are a particular set of ASIP which are optimized for data stream-
oriented applications, often including dedicated instructions and peripherals
that are suited for digital signal processing, such as floating-point units.

• SoC;

An SoC integrates all components of a computer system in a single chip,
and is best suited for middle-end/high-end embedded purposes, being one of
the most popular choices in embedded system design nowadays. SoC may
be comprised of one or more microprocessors, usually 32 or 64 bits, DSPs,
microcontrollers, memory blocks, peripherals such as timers and external
interfaces, such as USB or Ethernet, also found in some microcontrollers.

Figure 2.2 presents a block diagram of a possible SoC chip.
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SCK
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Figure 2.2: System on chip block diagram (Oliveira, 2013)

2.1.3 Embedded Development

Embedded system physical hardware and respective boards are often designed
and developed along with software, being tailored and designed specifically for the
target scenario. However, it is not practical to wait until the hardware prototype
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is finished to develop software, and not a very good idea to mix software with
board development, as it may be hard to trace system faults and identify them as
a software bug or a board malfunction.

To develop and debug software more easily, development platforms are used as
a more practical way of prototyping embedded systems. Embedded development
platforms are boards that are designed often by the processing chip’s own manu-
facturers, containing a general set of components and interfaces that complement
the chip’s functionality, such as memories, Ethernet connectors, MultiMediaCard
(MMC) card connectors and General Purpose Input/Output (GPIO) expansion
connectors, which combined will produce a platform that can be used to easily
prototype embedded systems. Figure 2.3 presents a block diagram of a possible
development board designed around an SoC.

Figure 2.3: Embedded development platform block diagram (Oliveira, 2013)
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Software development for these platforms is usually done on a host desktop system,
where software is coded and later transferred to the target embedded platform. To
be able to do all of this, a toolchain is usually provided for the target architecture.
A toolchain comprises programming tools needed to effectively use the target plat-
form, such as compilers, linkers, debuggers, loaders and other utilities. The act of
compiling software for an architecture that is different from the one where compi-
lation is being done is called cross-compiling, with embedded toolchains generally
comprising cross-compilers and other such utilities.

After a prototype is developed and ready for production, the system may be inte-
grated in a final board or boards which are tailored for the application’s purpose,
and possibly leaving out elements present in the development platform that are
not used. Consider, for instance a router. If the development board included an
LCD, it should be left out of the final product board, as it is not used by the
router.

2.1.4 Real-Time Embedded Systems

Real-time embedded systems are a special kind of systems which are designed to
perform certain critical tasks and satisfy specific time constraints, being referred
to as deadlines. This means that these constraints drive the design, and if system
responsiveness is limited, the whole system could be compromised.

Sometimes, real-time requirements are mistaken with high performance, which is
not true. For instance, consider two chess software application scenarios are con-
sidered, one for a tournament with timed moves and one for personal recreational
purposes with indefinite time to compute a move. In both applications, high per-
formance is desired. However, in the tournament application, if a decision is not
made in the given time and the deadline is not met, the computer loses the game.
Thus, the correctness of a real-time embedded system depends not only on the
results produced, but also when they are produced.

Real-time embedded systems may be classified in three categories: hard real-time,
firm real-time and soft real-time systems.

Hard real-time systems, are systems in which missing a deadline results in total
system failure. Examples of hard-real time systems are a nuclear reactor control
system, or anti-lock brakes on a vehicle. In both these cases, if the system does
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not meet its required deadlines, total system failure occurs with very harmful
consequences. Other examples of hard real-time systems include pacemakers and
avionic applications.

Firm and soft real-time systems, are systems that do not fail if a deadline is
not met, but their services degrade considerably with missing deadlines. Further
distinction is made between firm and soft real-time systems, regarding a result’s
validity after the given deadline. If a system’s computed result is completely in-
validated by not being produced in its given time window, it is considered firm
real-time. If the a system’s computed result is still valid, although with reduced
value after failing to meet a deadline, it is considered soft real-time. An example
of a firm real-time system could be a weather forecast system. If a deadline is
missed, no system failure will occur and the system may continue making predic-
tions. However, if the system makes a late prediction, like predicting a storm that
has already happened, it is totally invalidated and has absolutely no use. An ex-
ample of a soft real-time system can be a nuclear reactor user interface. Although
the nuclear reactor control system itself is a hard real-time system, providing an
interactive man-machine interface is not as critical, and delayed results, although
degrading the system’s value, are still valid.

A real-time embedded system should be dependable, and although not exclusive
to real-time embedded systems, some of these characteristics are particularly de-
sirable when designing such a system:

• Reliability;

Continuity of service delivery while in use, that is, the probability of the
system working properly since it started working after start-up. If a system
is reliable, it won’t need to be checked often, that is, if it it’s down and needs
a reset.

• Maintainability;

Probability of the system working properly a few moments after an error
occurrence, that is the impact a system error has on the system, and how
quickly it can be properly running again.

• Availability;

Readiness for use when needed, that is, probability of the system working at
a given time instant.
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• Safety;

Does not cause catastrophic effects on the environment or user as a conse-
quence of failure.

• Security.

Provides communication confidentiality and authentication.

Real-time embedded system development is an especially difficult area, requiring
varied skill sets from engineers, from knowledge on compiler technology and debug-
ging techniques to hardware devices and knowledge on programming techniques
that enhance system responsiveness, all the while keeping in mind timings and
not compromising its real-time requirements. Real-time system design often deals
with concurrency, with multiple tasks being executed with different priority levels.

2.2 Operating Systems

Operating systems are software that manage machine resources, and provide sev-
eral abstractions and commonly shared application services that create execution
environments that aim to facilitate application development. As embedded tech-
nology grew to meet ever growing system demands, the adoption of OS for system
development became very common, being an integral part for several embedded
systems.

2.2.1 Concurrency

Responsiveness and concurrency are often important aspects of an embedded sys-
tem. This may prove to be a paradox, since responsiveness means that the system
should respond quickly to external events, and concurrency means that several
tasks must be carried out simultaneously. Microprocessors are capable of execut-
ing only one instruction at a time, and if an external event triggers a processing
task, it should mean that the processor would be unavailable for any other ex-
ternal events. However, there are techniques to overcome this limitation. Virtual
parallelization is a concurrent programming technique that shares multiple task
execution code to achieve an illusion of concurrent execution. Figure 2.4 presents
an example diagram of two tasks being executed concurrently.
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Figure 2.4: Virtual parallelization of two tasks

Two tasks are executed by the processor once at a time, with CPU execution
jumping from one task to the other, with each task being executed in little bits.
By not being confined to executing a task all the way to the end exclusively, the
system is not held until the task finishes and its responsiveness is not compromised.
Task switches can be implemented using timer interrupts, with scheduling code
being ran in the interrupt to decide which task code should the interrupt return
to. If the task switches are frequent enough, it may seem as though the system
is running two tasks in parallel. This is the basis of the multi-tasking paradigm
used in most computational systems nowadays, and it is one of the most important
aspects of an operating system.

At its absolute most basic form, an OS can be a software program that allows for
task code implementation, running a scheduler that decides which task should be
in execution. There is a plethora of scheduling algorithms and techniques, with
the two main groups being cooperative scheduling and preemptive scheduling.

In cooperative scheduling, it is up to the tasks to make system calls that give
up execution to other tasks. In this scheduling model, there is no need for timer
interrupts and OS intervention, as it is up to the tasks to yield execution and
cooperate among them to maintain a balanced system execution. The downside
of this model is that a badly implemented task may compromise the system and
hold up the processor. Although now rarely used in large OS it was once a widely
popular scheduling scheme.

In contrast, preemptive scheduling is a scheduling scheme that implements OS in-
tervention, usually through a timer interrupt that runs scheduling algorithms and
decides which task should run next. This strategy provides some abstraction to the
user, as tasks can be implemented without having in mind system management,
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also ensuring better guaranties that a task will not hold up the processor. Nowa-
days most large OS have scheduling algorithms and techniques that fall under the
preemptive category, from Windows and Mac-OS to Linux.

2.2.2 Kernel and User Spaces

An OS is a software program that allows for concurrent task execution, through
scheduling algorithms that implement virtual parallelization. However, most OS
are much more complex, managing software and hardware resources and providing
a set of services that are common to most applications. In modern OS, the kernel
is the core of the OS and has privileged access to the hardware resources, managing
memory access, scheduling application execution in the CPU, and other hardware
related responsibilities. Most modern large OS implement at least two execution
spaces in them: kernel space and user space. Figure 2.5 presents a diagram of the
common software layers of an OS.

Hardware

Kernel

User 
Services

User 
Applications

Figure 2.5: Operating system layers diagram

Kernel space runs code that accesses hardware like memory and I/O, providing
an interface through system calls to upper layers. User space runs OS services
that do not require direct hardware access, like network services and user interface
services likeGraphical User Interfaces and command line shells. User applications
are also ran in user space, often being thought of as another layer, given that these
applications frequently run on top of user space OS services.
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This architecture of kernel and user space is not set in stone though, with existing
several approaches and architectures that run some services in user space, and
others that run the same services in kernel space. The two main type of kernels
are microkernels and monolithic kernels.

Microkernels contain the minimum amount of services running in kernel space,
with most services being ran in user space, whereas monolithic kernels run most
of their services in kernel space. Regardless of being implemented in user space or
kernel space, most OS provide a set of basic services, using a set of concepts that
make possible the modern computing systems that we see today.

• Processes and multi-tasking

Perhaps the most important feature of an OS as was previously covered,
is the implementation of schedulers and multi-tasking, which is essential
to system responsiveness and concurrent application execution. Besides of
what was previously covered, most modern OS also implement the concept
of processes and threads. A process is a program in execution, often with
its own memory space. Threads are also a common concept, with a process
being composed of one or more threads. Figure 2.6 presents a diagram of a
common architectural approach of processes and threads in an OS, with two
processes being represented, one single-threaded and one multi-threaded.

Figure 2.6: Processes and threads block diagram

Processes are programs in execution, with separate memory spaces and and
execution contexts. Execution context is illustrated with a combination of
registers and stack, representing the CPU state for each task. OS processes
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often implement a hierarchy within the multi-tasking model, implementing
internal sub-tasks, called threads. Threads are tasks within processes which
share the same memory belonging to their respective process, but have their
own execution context, enabling for concurrent execution and virtual paral-
lelism within a single process.

• Virtual Memory and Memory Management

Virtual memory is a technique that greatly improves system performance,
usually tightly coupled with the concept of processes, although it is also used
in single address space OS. With this technique a process assumes that the
whole system’s memory is free, liberating processes from the responsibility of
managing memory addresses. Processes’ memory addresses are interpreted
by the OS as virtual addresses and then translated to actual physical ad-
dresses. Figure 2.7 presents a diagram of two processes with their respective
memory addresses being mapped into physical memory.
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Figure 2.7: Virtual memory diagram

Usually, memory is divided into unitary blocks commonly referred to as page
frames. In OS that employ separate memory address spaces for each process,
such as the one illustrated, page tables must be associated with processes.
This is done so, because page tables must supply different virtual memory
mappings for different processes, as they may use identical virtual addresses.

Virtual memory may be augmented with secondary storage such as hard
disks, MMC and Secure Digital (SD) cards, with the two latter being the
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most common choices in embedded systems. Memory page frames can be
swapped between the system’s main memory and secondary storage, being
moved in and out of the main memory according to the needs of the process
that is in execution.

In this case, the page tables must keep additional information for each page,
often in the form of bits like the present bit and the dirty bit, that repre-
sent their states in the secondary storage memory space. The present bit
indicates what pages are currently present in physical memory or secondary
storage devices, allowing the OS to know how to treat these different pages,
like whether to load a page frame from secondary storage devices and page
another page frame in physical memory out. The dirty bit allows for perfor-
mance optimization, and is used to signal if a page frame that’s loaded onto
the main memory has been changed since loaded from the secondary storage
device. If not, when the page frame is paged out, there is no need to update
the page frame on the secondary storage device.

• File system

A file system is an abstraction that is provided to manipulate data in storage
devices. It provides a way of organizing data, usually in a hierarchy of
directories or folders arranged in a directory tree. Each group of data is called
a file, and follows a given structure and logic rules so data can be recognized
and organized. Often, file systems are complemented with a Virtual File
System (VFS), that allows applications to access concrete file systems in a
uniform way.

• Device Drivers

Device drivers are software entities that contain implementation of software
that is related to the specificness of the underlying hardware. System calls are
usually provided, so applications can invoke device drivers to interact with
devices, releasing the user applications from specific hardware implementa-
tion responsibilities. Some kernel architectures, usually monolithic kernel
ones, implement device drivers in kernel space to prevent user applications
from crashing the whole system with ease.
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2.2.3 Real-time Operating Systems

Although OS have greatly improved computing systems as a whole, not everything
is an upside about them. In fact, in the embedded systems field, namely real-
time systems, common OS overhead and uncertainty is not acceptable. A general
purpose OS has lots of overhead sources, from boundary crossing memory copies
to task switching. Boundary crossing memory copies occur when user space and
kernel space transfer data, usually in device drivers. Frequent buffer copies are a
heavy toll on the system, providing a great deal of unnecessary overhead for some
embedded systems. Also, task switching introduces latency, as one task’s context
must be saved, and another restored.

Finally, most general purpose scheduling algorithms are not greatly suited for real-
time scenarios as task’s deadlines are not taken into account, and uncertainty on
when a context switch is going to occur,and thus when a task gets processor time
and executes is a dooming factor.

For all of the above reasons, real-time embedded systems often deploy Real-Time
Operating Systems (RTOS). Real-Time Operating System (RTOS) are operat-
ing systems that are specifically designed for real-time application purposes, im-
plemented to schedule real-time tasks with deadlines, usually under a system of
priorities, with high priority tasks guaranteed to run under a certain amount of
time. Often RTOS do not implement many common general purpose OS services,
with common microkernel architectures, for instance implementing device drivers
in user-space to avoid boundary crossing overhead. Examples of real time operat-
ing systems include FreeRTOS, MontaVista Linux and RTEMS.

2.2.4 Linux

Linux is an open-source OS, initially developed by Linus Torvalds as a hobby.
Its kernel, which is monolithic, was first released on the 5th of October, 1991.
Since its first inception, Linux has evolved rapidly, being widely adapted to most
modern systems and becoming one of the most successful OS, on par with famous
commercial OS such as Windows and MacOS.

The Linux kernel is licensed underGeneral Public License (GPL) which is a license
that grants free access to the original software code, as well as the possibility to
change it and redistribute at will. Several OS make use of the Linux kernel, being
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referred to as Linux distributions. Although there are not that many desktop
Linux users compared to other popular OSs, it is the preferred OS of choice in
supercomputers, servers and most embedded devices, such as MP3 players, DVD
players and HD TVs.

Although Linux was initially developed for Intel x86 compatible machines, no
other OS has been more ported to other architectures (Silva, 2011). With a large
selection of device drivers for several common hardware devices, it is obviously a
hugely popular platform for embedded development, as rapid deployment of an OS
with wide hardware support for a multitude of architectures and devices reduces
time-to-market significantly. Some of the following characteristics may explain
Linux’s popularity, namely in the embedded system field:

• Available on a big selection of architectures;

• Supports a large selection of hardware devices;

• Product distribution free of royalties;

• Support from the world’s major suppliers, from hardware platforms to semi-
conductors and software applications. Some of these include: IBM; Texas
Instruments; Atmel; Samsung (Silva, 2011);

• Open source and widely documented, allowing for easy portability to new
architectures and expansion to new hardware devices.

Linux, being originally developed for desktop systems, was not designed with real-
time requirements in mind. It is based on time sharing policies, which aim to
improve user experience by sharing CPU execution as equally as possible. However,
this is contradictory with real-time requirements, as a real-time process must have
absolute priority on the CPU to meet the required deadlines (Silva, 2011).

To help solve some of these limitations, there is a Linux kernel patch for hard
real-time systems, formally known as, RT Preempt, that changes several kernel
source files to implement real-time policies on the kernel. However, this patch is
insufficient for some scenarios, and other techniques should be used to meet hard
to meet deadlines, like user space memory mapping to inhibit boundary crossing
memory copying latencies, using Direct Memory Access (DMA) peripherals or
accelerate applications through programmable hardware. Appendix A.1.2 details
the steps to apply the RT Preempt patch and compile the kernel.
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2.2.5 Device Tree

Traditionally in the Linux kernel, all boards were described through source files,
implementing static descriptions of all the hardware. If a new board should be
supported, that meant adding source files to implement support and recompile
the kernel, even if differences between the new board and an already supported
board were minimal. From Linux 2.6 onwards, a solution to this problem was
implemented, which separates hardware descriptions features from the kernel im-
plementation through the dynamic use of a data structure that describes the hard-
ware.

Inspired on Open Firmware, the Flat Device Tree (FDT) is a description of the
machine hardware configuration, describing most board aspects such as the num-
ber and type of CPUs, base addresses, size of Random Access Memory (RAM),
buses, bridges, peripheral device connections, interrupt controllers and Interrupt
ReQuest (IRQ) line connections (Petazzoni). This information is described in
Device Tree Sources (DTS) which are human-readable files, later compiled into
their binary forms, Device Tree Blobs (DTB), through the Device Tree Compiler
(DTC). Appendix A.2 contains an example of a .dts file.

Linux currently supports the device tree in the ARM, x86, MicroBlaze, PowerPC,
and SPARC architectures, with mandatory use becoming the rule for new ARM
SoCs. The device tree is useful in these cases, specially if the SoCs contain pro-
grammable logic, allowing for quick kernel expansion for custom hardware devices.
Although included in the Linux kernel sources, the main goal is to migrate the de-
vice tree out of the kernel, since the description is platform independent and aims
to be an adopted standard for several OSs, with the hope of solving perpetual
Board Support Package (BSP) development, which is a problem amongst many
embedded platforms. Device Tree Blob (DTB) may be linked into the Linux ker-
nel image, as well as dynamically parsed at kernel runtime during its initialization
process.

2.2.6 Buildroot

Buildroot is a an open-source free tool developed by Free Electrons, consisting of
several makefiles and patches which aim to help automate the process of cross-
building an embedded Linux system (Free Electrons). This tool automatically
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downloads, extracts and builds packages, enabling the generation a complete
toolchain for the target platform, target root filesystem as well as respective Linux
kernel image and necessary bootloader. It is easily configurable through a set of
graphical interfaces being triggered as makefile rules, which allow target package
selection, as well kernel fine-tuning, overall enabling an easy configuration of the
provided services. Figure 2.8 presents menuconfig, one of the possible graphical
interfaces for configuration.

Figure 2.8: Buildroot make menuconfig prompt

Being actively maintained and frequently updated as well as thoroughly docu-
mented, it is a very popular tool with some notorious adopters such as Google,
Atmel and Analog Devices. Recent hobbyist trends in development boards such as
Raspberry Pi or BeagleBone Black have prompted Buildroot popularity also, due
to the offered simplicity in getting Linux to run on these boards. Appendix A.1
contains several information on how to use Buildroot, namely installing it, compil-
ing Linux with real-time kernel support, as well as cross-compiling an application.

2.3 Hardware Acceleration

Some real-time controllers require tight deadlines, proving to be very difficult sce-
narios where the software resources are not enough to meet the overall system con-
straints. As mentioned in subsection 2.2.3, the use of an OS introduces uncertainty
and overhead to the system, sometimes impossible to mitigate to an acceptable
degree even enforcing real-time scheduling policies, and zero-copy boundary cross-
ing techniques. In these scenarios, it is a modern practice to incorporate hardware
acceleration, making use of the hardware true parallel nature and offload critical
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application kernels to the custom hardware co-processors, thus freeing up CPU
resources.

2.3.1 Hardware Description Languages

HardwareDescripton Languages (HDL) are programming languages that are used
to describe electronic circuits, more specifically digital electronic circuits. These
languages allow for circuits to be accurately described, and can be used to simulate
these circuits or even synthesize them for physical deployment. Several abstraction
levels can be used in hardware implementation:

• System Level;

• Register Transfer Level;

• Gate Level;

• Transistor Level.

The abstraction level defines how much implementation detail is contained in the
design, being very useful for big projects, in which a high abstraction level can
be used to start the overall design and validation process, with subsequent de-
velopment iterations consisting in implementation detail refinement. Due to the
circuit’s concurrent nature, Hardware Description Language (HDL) programming
paradigms are radically different from control-flow programming paradigms used
on languages such as C/C++.

HDL designs are systems that continuously act on a set of inputs and outputs being
composed by a set of modules, each with its own set of inputs and outputs which
can be thought of blackbox subsystems being interconnected to form the overall
device. Figure 2.9 presents a diagram of an HDL design example, to illustrate its
hierarchical organization.
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Figure 2.9: HDL design diagram

Synthesis tools compile the HDL code, and generate the physical implementation of
the design based on parsed code. However, before the design is properly deployed,
it should be validated through the use of HDL simulation tools. As shown previ-
ously the designed device requires input stimuli and produce outputs accordingly,
so to properly simulate HDL designs, the concept of testbench is generally used.
Under this concept, non-synthesizable constructs are separated from synthesizable
construct, mimicking a traditional electronic testbench with signal generation to
provide stimuli for the devices under test, subsequently monitor their behavior.
Figure 2.10 presents a block diagram of an HDL testbench.

Testbench

Signal Generation and 
Monitoring

Device Under Test

Figure 2.10: HDL testbench diagram

There are currently two main HDLs in use: VHDL and Verilog. VHDL’s syntax is
similar to the ADA programming language, being a rich and strongly typed lan-
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guage, deterministic and more verbose than Verilog. As a result, designs written
in VHDL are generally extensive, and thus considered self-documenting. VHDL
emphasizes unambiguous semantics making it well suited for implementing de-
signs under system level abstractions. Verilog’s syntax is very C-like, which is
a common language used by engineers in the field thus providing a good entry
level learn-curve. It is weakly typed and doesn’t emphasize semantics as rigidly
as VHDL, which may cause design problems that are only later found when being
used by inexperienced developers. On the upside, it is best suited for lower level
abstractions and structural implementations for the same reasons. VHDL is more
commonly used in academic contexts and the scientific community, while corpo-
rations usually employ Verilog. There are also regional preferences, with Europe
showing a predominant use of VHDL and Verilog being more adopted in America.
The two languages are not mutually exclusive, with most modern synthesis and
simulation tools allowing for designs that mix VHDL and Verilog.

2.3.2 FPGA

FPGA, briefly mentioned in subsection 2.1.2, are integrated circuits which contain
reprogrammable hardware. The two main FPGA suppliers, Xilinx and Altera,
share a market duopoly, with Altera being recently acquired by Intel. The FPGA
technology’s uniqueness derives from the fact that unlike other processor tech-
nologies, the hardware fabric may be reprogrammed, enabling them to implement
other devices that are usually implemented in chips using ASIC technology, like
microprocessors or any other chip that contains its implementation hardwired in
silicon. The two basic elements that are present on an FPGA chip are flip-flops
and LookUp Tables (LUT). These elements are organized in an array with in-
terconnections amongst them that may be activated or not, thus implementing
several behaviors and consequently more complex circuits. Figure 2.11 presents a
diagram the internal architecture of an FPGA.
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Figure 2.11: FPGA internal architecture (Maxfield, 2009)

LookUpTabless (LUTs) implement behavior of digital gates, by containing a table
of gate outputs that are to be used according to gate inputs. By combining digital
gates implemented in LUT and flip-flops, any kind of combinatorial or sequential
circuit may be implemented. Figure 2.12 presents a diagram a simplified view of
a 2-input LUT implementing an AND gate.

Most modern FPGA introduce larger elements in the interconnected array, with
vendors often adopting their own nomenclature for these elements. Xilinx calls
them Configurable Logic Blocks (CLB), while Altera calls them Logic Array
Blocks, for instance. These larger blocks contain LUT, flip-flops, multiplexers
in a single block, allowing for faster designs with better resource utilization. How-
ever implementing all circuits using only LUT-based logic blocks may be rather
inefficient and costly when compared their silicon hardwired counterparts, being
slower, occupying large silicon areas and consequently dissipating more power.
For this reason modern FPGA chips include hardwired elements that implement
commonly used functions such as multipliers, memories and generic DSP blocks.
FPGA commonly store their configuration in volatile memories, needing to be
programmed when turned on. The configuration file of an FPGA chip is called
bitstream. Most modern FPGA development boards include non-volatile memory
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Figure 2.12: FPGA LUT (Huffmire et al., 2010)

chips to store bitstreams, and circuitry that may program the FPGA chip upon
power-on.

2.3.3 FPGA SoC

Traditionally, FPGAs were used to prototype chips that would be implemented
using ASIC fabric. ASICs have extremely high manufacturing costs for the chip’s
mask, which makes a mistake very costly, but implementing product designs in
FPGA chips was not an option, due to significant power dissipation and latency
when compared to hardwired silicon chip designs. These circumstances led to a
clear flow where FPGA would be used as prototyping platforms for designs to be
eventually implemented in ASIC chips. However, recent advances in FPGA tech-
nology have been making it more and more an available option for field deployment,
specially in cases where there a large number of ASIC chips are not going to be
manufactured, thus not covering the chip’s mask costs. For instance, a lot of mod-
ern HD TV set models feature FPGA chips. This is due to the fact that several
models are not being designed in way that favors a common processing architecture
amongst them, and creating ASIC chips for every processing architecture is not
profitable due to insufficient produced chips to cover these costs. There are also
other advantages to this approach, like allowing hardware architecture updates
and reconfigurations on manufactured products, thus adding flexibility to designs
and eventual hardware bug fixes. Typically, when FPGA are employed this way,
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softcore processors are used, with possible architectural changes according to the
desired purpose. Softcore processors, are general purpose microprocessors being
implemented in FPGA fabric, often being implemented along with other peripher-
als constituting SoC architectures. Another field where modern SoC architectures
are being highly employed is real-time embedded systems, where the FPGA fabric
is being used for hardware acceleration purposes, offloading critical algorithms to
dedicated hardware co-processors that execute in parallel with the CPU. In these
cases, flexibility on the CPU architecture itself is not very desirable, with the main
focus being on custom hardware for critical algorithm processing. Also softcore
processors, like any design implemented in programmable logic, are more efficient
when implemented hardwired in silicon. Thus, modern FPGA chips often con-
stitute SoC architectures where whole CPUs are hardwired in silicon along with
other commonly used SoC peripherals, and only a portion of the silicon in the chip
is dedicated for FPGA fabric, to be used as programmable hardware for custom
hardware peripherals and co-processors that may be connected to the chip’s hard-
wired resources. Figure 2.13 presents the architecture on the latest Xilinx SoC
architecture, the Zynq R© UltraScale+TM MPSoC. This heterogeneous processing
platform contains 4 ARM 64-bit cores, 2 ARM 32-bit real-time cores, an ARM
GPU core and other elements such as DDR controllers, DMAs and many other
peripherals hardwired in silicon, as well as a programmable logic silicon area all
integrated into a single chip.

2.4 Hardware-Software Co-Design

Formally, the design of hardware accelerated embedded software systems follows
a pattern. First and foremost, an application in a software language that models
the behavior of the system is developed, without metrical concerns. This way,
the algorithms that are going to be used in the system are developed and de-
bugged. The application initially is deployed on the host platform, given that
cross-compilation for the target platform is not relevant, due to the main concern
being the general system behavior modeling. The next phase is the identification
of the hot-processing kernels within the application, and their subsequent software
parallelization with the help of multi-thread programming models. At this phase,
the profiling tools are then used to characterize the application so that critical
kernels can be selected as candidates to computational offloading to FPGA fab-
ric. The next phase consists in the use of HDL to develop RTL models for the
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Figure 2.13: Zynq R© UltraScale+TM MPSoC architecture diagram (Xilinx)

identified processing kernels and the overall system then recompiled to the target
platform and validated, with the design being completed at implementation phase,
ensuring the system desired metrics are satisfied. This is an iterative process, so
if the desired metrics are not met, the development may return to the hardware
IP development phase, or even the profiling phase.

2.4.1 System Modeling

To model the system, an application is typically developed in more flexible and
functional software programming languages, like C/C++, which are programming
languages of choice for embedded software. In this way the code is as generic and
portable as possible, as it is to be compiled either to host or target platforms,
the later through cross-compilation. The application is first tested at the host
platform abstracting away the target platform implementation details.
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2.4.2 Software Parallelization

Software parallelization is usually achieved be means of multi-thread program-
ming models such as the Portable Operating System Interface (POSIX) API,
widely used in Unix-based systems. After the tasks are identified, the multiple
task algorithms are assigned to different threads. Since threads tend to share
data, synchronization mechanisms are mandatory to avoid race conditions, and
are usually provided by the multi-threading API. This technique is not a true na-
ture parallelization, as only one thread is executing at one CPU core in a certain
time, hence being a virtual parallelization.

2.4.3 Profiling

Profiling a software application, is the act of using several profiling tools to char-
acterize the application. In this phase, the application by now developed in the
host is profiled. Normally, the differences in the host and target platform are not
relevant enough to justify a profiling in the target platform, so profiling the host
application is acceptable enough. However it is highly recommended that the OS
in the host platform runs a real-time scheduler, so that the application being pro-
filed can enforce a deterministic behaviour. This is a specially important aspect
in profiling, since profiling tools must be used several times to gather data, being
that statistics of the gathered data are the deliverables for this phase.

2.4.4 Hardware Design

Hardware IP are developed with the aid of HDL languages, namely Verilog or
VHDL. The development is done on a register transfer level, and is then validated
through debug on RTL simulation tools. Example of these tools are Isim from
Xilinx and Modelsim from MentorGraphics.

Synthesis tools will afterward synthesize the IP and routing tools map the foorplan,
so that the design may be implement in an ASIC or FPGA. These tools are nor-
mally integrated in a toolchain, and made available in an integrated development
environment, like Xilinx ISE or Altera Quartus II

Currently, microcontrollers and custom IP devices are developed in similar design
flow, and such design is then validated and debugged in FPGA-based platforms.
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At completion the overall design is then shifted to ASIC development. The devel-
opment process may be a long and complex one, and very time consuming even
with current tools available, specially in this approach, as validation is performed
at the target platform. Besides, HDL coding paradigms are inherently different
than software programming paradigms. Due to these reasons, there are tools that
attempt to translate software programming coded algorithms to HDL code. In
such tools one can follow the Vivado High Level Synthesis (HLS) design flow.

2.4.5 Validation

In this phase the developed system must be validated integrally. Following a co-
simulation methodology, the development process can be accelerated in a substan-
tial way, anticipating design decisions before committing to the hardware platform,
and enabling the test and debugging of the entire system. In this design methodol-
ogy, the target platform deployment is achieved when full-system integration and
validation is concluded.

2.4.6 Metrics Confirmation/Implementation

Ideally this phase must consist of the implementation of the system in the target
platform, with the meeting of the designed metrics and system functionality being
confirmed afterward. Through tools like Chipscope, that create a silicon wrapper in
the developed system, it is possible to analyze the temporal signals of the physical
system, in order to confirm that the temporal requirements are really met.

The concept of integrated co-simulation environment may be expanded so that a
multitude of metrics are validated after qualitative validation, so that a quantita-
tive validation is done, expanding the its utility.

2.5 Hardware Accelerated Embedded System Sim-
ulation

The use of simulation is frequent in several engineering fields, allowing engineers
to test designs and simulate systems, proving to be an almost indispensable ap-
proach in the development process. In hardware accelerated embedded systems,
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development is usually done on multiple application domains, with system com-
plexity often standing in the way of accurate simulations. Contemporary electronic
systems are built usually as tightly coupled: user designed specialized hardware,
the embedded system used to control that hardware and to process and retransmit
the acquired data, and software running on that embedded computer. Testing of
all listed parts separately is difficult, or even impossible. Without possibility to
perform the joint simulation of both - hardware and software components, the de-
velopment becomes expensive and time consuming. In typical development cycle
we have to design the hardware prototype, basing on some assumptions regarding
possible software solution. The work on software part may be started when the
hardware specifications are ready, but thorough testing of the interactions between
the hardware and software parts must be delayed, until the hardware prototype
is ready. If the results of tests show the need for significant changes in hardware
design, it is necessary to prepare next prototype and subject it to tests. Sometimes
the above step must be repeated a few times, depending on the design complexity,
and on skills of the development team (Zabołotny, 2012).

In this context, focus will be made on two different kinds of simulations: instruction-
accurate simulation (often referred to as software simulation) and cycle-accurate
simulation (often referred to as hardware RTL simulation). Software simulators
like QEMU can emulate the target platform providing instruction-accurate simu-
lation of the software running on it (Zabołotny, 2012). The machine’s hardware
is emulated functionally, and the instruction set for the target machine is emu-
lated, allowing for full software stack simulation for the target platform. With
this kind of simulation, user application software may be validated, as well as OS
components themselves. Hardware RTL simulators like Isim or ModelSim simu-
late hardware specified by HDL sources, and offer cycle-accurate simulations that
accurately simulate hardware behavior. This kind of simulation is generally used
to validate hardware components themselves.

2.5.1 Full System RTL Simulation

One approach to simulate the whole system is to use RTL simulation to simulate
the whole machine running software on it. Figure 2.14 presents a diagram of
full-system RTL simulation on a development host.

This approach is adequate for system that are centered around simple embedded
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Figure 2.14: Full system RTL simulation diagram (Zabołotny, 2012)

processors, but as RTL simulation analyzes the state of all logic gates and registers
in every integration step, it is highly innefective to simulate embedded systems that
contain embedded processors that implement software layers, specially if software
is complex like OS environments. An example of the inadequacy of this simulation
for software is that a simulation of an OpenRisc CPU running a simple C pro-
gram, takes 40 seconds of simulation time for a simple welcoming message display
Balducci (2009), so simulation of any serious OS running on such platform would
be too slow to be useful (Zabołotny, 2012). The solution to this problem is to
avoid software simulation in RTL simulators altogether, running software parts
externally of RTL simulation.

2.5.2 RTL Simulation with Host Software

In this approach, hardware designs that need validation are simulated in RTL
simulation, while software is ran directly on the host development machine. Figure
2.15 presents a diagram of an RTL simulation being provided with stimuli from
software being executed on the host development machine.

Hardware Simulator

User defined
Hardware

described in HDL

Interface emulator

HDL part SW part

User Software

Development machine

Figure 2.15: RTL simulation with host software diagram(Zabołotny, 2012)
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The embedded software application must be compiled for the host development
machine, replacing device driver system calls with Application Program Interface
(API) calls for an interface to the RTL simulation that must be implemented to
emulate system bus transactions. Similar work must also be done on the HDL
design, implementing an interface that emulates software accesses to the design.
This approach is significantly better than full system RTL simulation, as native
performances are achieved for software with RTL simulation only simulating the
hardware that’s relevant to be simulated this way. Also, the embedded application
behavior may be debugged and validated, being an effective validation method for
simple software. However, more complex software often needs further validation,
as OS components are not validated, like device drivers, performance of data trans-
fers, and so forth. To emulate these elements of an embedded system, software
simulation must be combined with RTL simulation

2.5.3 RTL-Software Co-Simulation

Using this approach, an instruction-accurate simulator is used in conjunction with
a cycle-accurate simulator. Figure 2.16 presents a diagram of an RTL-software
co-simulation.

fi

Figure 2.16: RTL-Software co-simulation diagram(Zabołotny, 2012)

This approach is very useful, as the entire software stack is properly simulated for
the target platform with good performance, and HDL models that are being devel-
oped are properly simulated in an RTL simulation. Provided that the simulators
are open-source, or provide interfaces to extend the simulator through the usage of
dynamic libraries, interfaces may be implemented that allow the simulation tools
to exchange information, such as hardware access information to emulate system
bus transactions or simulation time to synchronize simulations. This simulation
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approach obviously favors validation of OS elements, allowing also for custom hard-
ware designs to be validated along with their respective device drivers. As such,
this approach is tackled in this dissertation, with development being done to sup-
port its usage. The downside to this approach is that due to different simulation
granularity in both simulations, synchronization may be difficult. If approaches
are used which involve synchronization with other simulation tools that simulate
other domains, such as physical systems or analog electronics, synchronization
may be even impossible, as the RTL simulator will be always delayed in relation
to the software simulator. Absolute simulation times are not as relevant when
using only RTL and software and simulation, as the modeling can be done with
only the relative transaction times of the RTL simulator being taken into account
by the software simulator. However, if RTL simulation contains hardware designs
that react to other simulator’s stimuli, it will almost always be behind the software
simulator’s simulation time.

2.5.4 Full System Software Simulation

In this approach, hardware is only emulated functionally by the software emulator,
with the full system being emulated in the software simulator. Figure 2.17 presents
a diagram of full system software simulation.

fi

Figure 2.17: Full system software simulation diagram(Zabołotny, 2012)

In this approach, hardware models are implemented functionally and integrated
into software simulation. This can only be done for open-source simulators by im-
plementing models using the simulator’s internal framework and adding them to
the list of supported models, or for simulators that allow to load external models
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as plugins. It may seem undesirable to maintain separate hardware model descrip-
tions, an HDL for hardware synthesis and a functional one to be integrated in
software simulation, but it is in fact a very useful feature for design space explo-
ration early in the project. By using this approach, device driver development and
validation may start before there is any commitment to an HDL implementation,
allowing not only for a flexibility that suits design space exploration very well, but
also concurrent development given that software design teams may start device
driver development concurrently with hardware design teams. For these reasons,
this approach is also tackled in this dissertation with development being done to
facilitate its usage.

2.6 QEMU

QEMU (which stands for Quick EMUlator) is a powerful open source machine
emulator and virtualizer. It dynamically translates the guest binary code to host
binary code, supporting not only emulation of different guests but also virtual-
ization of the same guests running code natively on the host machine. Given the
scope of this dissertation, the focus will be on QEMU being used as an emula-
tor, with its virtualization capabilities being ignored for the most part. QEMU is
capable of full-system emulation, emulating functionally system components like
interrupt controllers, memories and other peripheral devices. It is a very useful
tool in the context of embedded system development, enabling development and
debug of a target platform system without a physical target machine. The en-
tire software stack may be developed entirely in QEMU, and then deployed to
the target machine once validated and debugged. Other operating features are:
Linux Userspace Emulation, that allows for quick validation of simple applica-
tions, cross-compiled for architectures other than the host development machine;
and Virtualizion, through KVM and XEN hosting, commonly used in functional
hardware emulation, where the guest code is executed on KVM and Xen virtual-
izers.

When QEMU was first developed by Fabrice Bellard it was a major breakthrough
due to its dynamic binary translation algorithms. It was widely adopted as an em-
ulator by companies for development purposes, although each company maintained
their internal private versions of QEMU, implementing modifications as suited and
implementing support for their machines and platforms. Nokia for instance, used
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it to develop all of their cellphone products, incorporating graphical interfaces that
mimicked their screens. Nowadays, QEMU continues to be very popular, for in-
stance being integrated as part of the Android Software Development Kit (SDK)
and as part of Xilinx’s PetaLinux solution as an emulator. Popular virtualization
products also draw heavy inspiration on QEMU, such as VirtualBox which uses
some of QEMU’s virtual hardware devices and bases its dynamic recompiler on
QEMU, or Xen-HVM which runs a QEMU device model daemon as a backend to
provide Input/Output (I/O) virtualization.

Due to its open source nature, tremendous possibilities are opened up extension-
wise. For these reasons, one of the main focus of this dissertation is QEMU as
an embedded system validation tool, with development efforts to extend QEMU’s
features to perform simulations in hardware accelerated embedded systems using
full-system software simulation and RTL-software co-simulation approaches.

QEMU is poorly documented program as far as development goes, making source
code analysis mandatory. Documentation is sparse and almost non-existent, and
source code comments are frequently outdated. The main communication vehicle
between QEMU developers is QEMU’s development mailing list, which makes
searching for old e-mails and reading the conversations the best solution to get a
quick insight on the internals of QEMU (QEMU Development Documentation).
Given the low amount of available QEMU literature and information, it is relevant
to provide an insight into its internal architecture, with special focus on functional
hardware emulation, in order to understand the work developed in this dissertation.

2.6.1 Dynamic Binary Translation

QEMU translates target binary code to guest code dynamically as code is discov-
ered, resulting in very fast emulations when compared to other emulation tech-
niques. Instead of emulating each target instruction independently, QEMU trans-
lates larger chunks of code, emulating them in a functional fashion. Guest code
blocks are translated dynamically into a single sequence of host instructions that
constitute translated blocks and are then cached into a translation cache that is
used to speed up similar code blocks found. A block length is established when
translating guest code, up to the nearest jump or an instruction that changes
the static CPU state in a way that cannot be deduced at translation time. If the
change of control flow, for instance a conditional jump, results in a virtual Program
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Counter (PC) address of an already translated block that is stored in cache, that
code gets executed directly without the need of guest code translation overhead.
For this reason, cached blocks are indexed using their guest virtual addresses, so
they can be found easily using the virtual PC value, and are purged every time
they fill up (Liaw, 2014). Figure 2.18 presents a diagram of the translation and
caching process.

Interpeter Translator

Emulation Manager Host Code

Source PC to 
Target PC 

table

Miss

Hit

Target Code

Control Flow

Data Flow

Figure 2.18: Dynamic translation and caching diagram

This simulation technique allows for very fast emulations when compared to tech-
niques that employ simulation interpreters that translate and execute one instruc-
tion at a time. Further optimizations to this technique are used that allow block
chaining. When executing translated blocks, a prologue and epilogue are used to
switch contexts between the main QEMU loop and the translated execution envi-
ronment. When a translated block returns to the main loop and the next block
is known and already translated, QEMU can patch the original block to jump
directly into the next block instead of jumping to the epilogue (Marazakis). When
this is done on several consecutive blocks, the blocks will form chains and loops,
allowing for QEMU to emulate tight loops without running any extra code in be-
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tween. Figure 2.19 presents a diagram of QEMU’s block chaining of translated
blocks in cache.

Prologue

Epilogue

Pre-generated code Translation Cache

cpu_exec()

TB

TB

TB

TB

Figure 2.19: Block chaining diagram

Up to version 0.9.1, binary translation was carried out by an entity called Dyn-
Gen. Target code blocks were converted to C code by QEMU’s DynGen and subse-
quently compiled to the host architecture usingGNU Compiler Collection (GCC).
The issue with this procedure was that QEMU was highly dependent on GCC,
which brought some issues as new GCC versions started to come out. To remove
the tight coupling of the translator to GCC a new approach was tackled: the Tiny
Code Generator (TCG) Wen-Ren (2011). The TCG aims to remove the short-
comings of relying on a particular version of GCC or any compiler for that matter,
instead incorporating the TCG compiler into other tasks performed by QEMU at
run time. The whole translation task thus consists of two parts: blocks of target
code being rewritten in TCG operations - a machine-independent intermediate
representation, and subsequently this notation compiled for the host architecture.
TCG requires not only frontends and backends to be written when supporting new
architectures, but also that the target instruction translation be rewritten to take
advantage of TCG ops. Beyond QEMU version 0.10.0, TCG is integrant part of
the stable releases.

2.6.2 QEMU Monitor

When QEMU is running, it provides a monitor console for interaction with simu-
lation. Through various commands, the monitor allows you to inspect the running
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guest OS, change removable media and USB devices, take screenshots and audio
grabs, and control various aspects of the virtual machine. The monitor is accessed
from within QEMU by holding down the ’Ctrl’ and ’A’ keys, and pressing ’C’. Once
in the monitor, the same procedure switches back to the guest OS. Typing help or
’?’ in the monitor brings up a list of all commands. Alternatively the monitor can
be redirected to using the ’-monitor <dev>’ command line option. Passing the
’-monitor stdio’ parameter, at boot initialization, will redirect the monitor to the
standard output. QEMU monitor provides a useful command, ’info’, which lists
several parameters useful to inspect the hardware environment that was instanti-
ated, along with its properties, such as device addresses or interrupt lines. This
information proved to be very useful throughout the development of the function-
alities ans extensions proposed by this dissertation. The following is an example of
the that command along with its respective output for the QEMU ARM Versatile
Express for Cortex -A9 machine, trimmed to the last three listed devices:

$(qemu) info qtree
bus: main -system -bus

type System
dev: arm.cortex -a9 -global -timer , id ""

gpio -out "sysbus -irq" 1
num -cpu = 1 (0x1)
mmio ffffffffffffffff /0000000000000020

dev: arm_gic , id ""
gpio -in "" 96
num -cpu = 1 (0x1)
num -irq = 96 (0 x60)
revision = 1 (0x1)
mmio ffffffffffffffff /0000000000001000

dev: a9 -scu , id ""
num -cpu = 1 (0x1)
mmio ffffffffffffffff /0000000000000100

2.6.3 QEMU Platforms

In QEMU, platforms are instantiated statically. That is, there must be source
code for each of the supported platforms with hardware construction and mapping
API invocation. The following command is an example of the options used to
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print a list of supported platforms (that is left column for option argument and
right column with its corresponding description) for the Advanced RISC Machine
(ARM) architecture QEMU binary:

$ qemu -system -arm -machine ?
Supported machines are:
akita Akita PDA (PXA270)
borzoi Borzoi PDA (PXA270)
canon -a1100 Canon PowerShot A1100 IS
cheetah Palm Tungsten |E aka. Cheetah PDA (

OMAP310 )
collie Collie PDA (SA -1110)
connex Gumstix Connex (PXA255)
cubieboard cubietech cubieboard
highbank Calxeda Highbank (ECX -1000)
integratorcp ARM Integrator /CP (ARM926EJ -S)
kzm ARM KZM Emulation Baseboard ( ARM1136 )
lm3s6965evb Stellaris LM3S6965EVB
lm3s811evb Stellaris LM3S811EVB
mainstone Mainstone II (PXA27x)
midway Calxeda Midway (ECX -2000)
musicpal Marvell 88 w8618 / MusicPal (ARM926EJ -S)
n800 Nokia N800 tablet aka. RX -34 ( OMAP2420 )
n810 Nokia N810 tablet aka. RX -44 ( OMAP2420 )
none empty machine
nuri Samsung NURI board ( Exynos4210 )
realview -eb ARM RealView Emulation Baseboard (

ARM926EJ -S)
realview -eb -mpcore ARM RealView Emulation Baseboard (

ARM11MPCore )
realview -pb -a8 ARM RealView Platform Baseboard for

Cortex -A8
realview -pbx -a9 ARM RealView Platform Baseboard for

Cortex -A9
smdkc210 Samsung SMDKC210 board ( Exynos4210 )
spitz Spitz PDA (PXA270)
sx1 Siemens SX1 ( OMAP310 ) V2
sx1 -v1 Siemens SX1 ( OMAP310 ) V1
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terrier Terrier PDA (PXA270)
tosa Tosa PDA (PXA255)
verdex Gumstix Verdex (PXA270)
versatileab ARM Versatile /AB (ARM926EJ -S)
versatilepb ARM Versatile /PB (ARM926EJ -S)
vexpress -a15 ARM Versatile Express for Cortex -A15
vexpress -a9 ARM Versatile Express for Cortex -A9
virt ARM Virtual Machine
xilinx -zynq -a9 Xilinx Zynq Platform Baseboard for

Cortex -A9
z2 Zipit Z2 (PXA27x)

Appendix B, section B.1 contains similar QEMU generated outputs for all QEMU
architectures. It is not uncommon that developers add their own machines’ sup-
port, provided that the platform’s CPU is supported in QEMU’s binary trans-
lation, as it is relatively simple to use the construction and mapping API to in-
stantiate and map the hardware respectively. Section B.2 shows an example of a
machine source code file.

One cannot ignore that given the necessary hardware models’ support, machine in-
stantiation procedure can be improved by dynamically parsing a platform descrip-
tion, and then instantiating and mapping the hardware accordingly. An example
of this dynamic procedure can be found in Petalogix QEMU support, regarding
Xilinx’s Microblaze soft-core architecture with the FDT generated machine. In-
stead of running static machine initialization code, QEMU parses a target device
tree and instantiates hardware accordingly, thus enabling new support to target
boards to be generated on-the-fly by means of DTB file. However, there may be
some issues to be solved, as it’s not pushed to upstream QEMU yet.

Due to the open-source nature of QEMU, its behavior is inconsistent throughout
its multiple binaries (among different architectures), so some tweaking on the
arguments may be needed so it can run without breaking. As of version 2.4,
there were over 149 options, with 14 being deprecated, and 2 being used internally
(Armbruster, 2015).

Buildroot currently provides a feature to aid a quick QEMU bring-up, by sup-
porting default configuration for QEMU machines, and respective QEMU boot
commands in a text file. Appendix A.1.4 details this feature.
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2.6.4 QEMU Device Model

QEMU emulates the machine’s hardware functionally, allowing full-system simu-
lation. Figure 2.20 presents a simplified system stack where an embedded appli-
cation, running Linux on an embedded platform is being emulated by QEMU. In
the same Figure, system devices are also represented as QEMU devices attached
to System Bus.

uClibC

Embedded
Application

Linux Kernel

QEMU System bus 

QEMUopen source processor emulator

Emulated
UART

Emulated
 CPU

Emulated
Timer

Emulated
DMA

Figure 2.20: QEMU emulation overview Diagram

QEMU translates and runs the whole software stack, including the Linux kernel,
the C-library and the embedded application that’s running on top of the operating
system. Each time hardware is accessed, QEMU will call a set of functions and
routines that will emulate hardware inherent behavior. Device modeling code is
called as response to the kernel’s device drivers access through the system bus.

System bus transaction latencies and bus-specific behaviors are not modeled. In-
stead, QEMU keeps a list of the devices associated with a bus and their respective
addresses. Whenever an operation associated with a system bus write or read is
detected, functions that emulate the respective device’s read or write transactions
will be called.

Currently, QEMU’s device model follows an object oriented paradigm. Each de-
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vice is an object, with each kind of device being a class. For instance a ma-
chine may have multiple instances of the same Universal Asynchronous Receiver
Transmitter (UART) device model mapped into different addresses, which is
achieved by instantiating multiple objects of a class that implements that UART
model. Device models may be instantiated statically, that is, their instantiations
are contained in machine initialization code, or instantiated at runtime, by using
command line arguments when launching QEMU.

To instantiate a given device model, it is necessary that the correspondent class
for that device be present in QEMU’s source files at compile time. This proves to
be a major drawback for QEMU integration on custom hardware design flows, as
it is necessary to be aware of the QEMU internals and also, a new recompilation
iteration is needed every time a device model is added or changed.

A SysBusDevice is a class in the QEMU source code that presents a device mapped
to the machine system bus. Specific devices like UART or timers, when mapped
to the system bus, are implemented as a child class of SysBusDevice. Figure 2.21
presents the SysBusDevice class in QEMU. For the sake of an understandable
diagram, some of the more low level implementation features are omitted. Also,
due to incoherent semantics (for instance DeviceClass and SysBusClass are used
for static data structures, DeviceState and SysBusDevice are used for object data
structures; sysbus_ suffix for SysBusDevice member fuctions, qdev_ suffix for
DeviceState member functions) alternate semantics were used for some classes or
their respective members.

The MemoryRegion class is used to provide an API to register the device in a spe-
cific memory region. MemoryRegion has several constructors, with the two most
important ones being represented in the Unified Modeling Language (UML), the
first for a memory block, and the second for an I/O-mapped device. Each device
is responsible for transaction behavior implementation, and as such, each Sys-
BusDevice is associated with a function that implements read transactions, and
a function that implements write transactions. These functions are registered as
callbacks in MemoryRegionOps structure present in a MemoryRegion. Alterna-
tively devices can be accessed as port-mapped I/O. As memory-mapped I/O is
the tendency nowadays, and suits well the requirements of this dissertation, the
port-mapping technique was discarded.

Concerning the IRQ API, input IRQs are used for devices that handle interrupt
lines as inputs, for instance interrupt controllers or CPUs, whereas output IRQs
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MemoryRegion
-name: const char *
-ops: const MemoryRegionOps *
-opaque: Device *
-size: Int128
-addr: hwaddr
-ram_addr: ram_addr_t
-align: uint64_t
-subpage: bool
-romd_mode: bool
-ram: bool
-skip_dump: bool
-readonly: bool
-enabled: bool
-rom_device: bool
-priority: int32_t
-may_overlap: bool
-subregions: MemoryRegionList

+MemoryRegion(Object *owner, const char 
*name, uint64_t size)
+MemoryRegion(Object *owner, const 
MemoryRegionOps *, char *name, uint64_t size)
+owner(): Object *
+memory_region_size(): uint64_t
+is_ram(): bool
+is_skip_dump(): bool
+set_skip_dump(): bool
+is_romd(): bool
+name(): const char*
+is_rom(): bool
+get_ram_ptr(): void *
+add_subregion_overlap(hwaddr offset, 
+MemoryRegion *subregion, int priority): void
+get_ram_addr(): ram_addr_t
+get_alignment(): uint64_t
+del_region(Memory *subregion): void
+set_enabled(bool enabled): void
+set_address(hwaddr addr): void
+present(hw_addr): bool
+is_mapped(): bool

MemoryRegionOps
+read: uint64_t(*)(void *opaque, 
hwaddr addr, unsigned size)
+write: uint64_t(*)(void *opaque, 
hwaddr addr, unsigned size)
+endianness: enum device_endian

Device
+desc: const char *
+props: Property *
+hotpluggable: bool
+bus_type: const char *
-id: const char *
-hotplugged: int
-parent_bus: Bus*
-gpios: NamedGPIOList
-child_bus: Bus
-num_child_bus: int

+Device(Bus *bus, const char *name)
+~Device()
+init_gpio_in(qemu_irq_handler handler, int n): 
void
+init_gpio_out(qemu_irq *pins, int n): void
+init_gpio_in_named(qemu_irq_handler 
handler, const char *name, int n): void
+pass_gpios(qemu_irq *ins, const char *name, 
int n): void
+get_parent_bus(): Bus *

Bus
-parent: Device*
-name: const char *
-hotplug_handler: HotPlugHandler*
-max_index: int
-sibling: Bus *

+Bus(const char *typename, 
Device*parent, const char*name)
+find_recursive(const char*id): 
Device *

SysBusDevice
-num_mmio: int
-num_pio: int
-mmio: MemoryRegion[32]
-pio: pio_addr_t[32]

+SysBusDevice(Bus *bus, const char* name)
+~SysBusDevice()
+init_mmio(MemoryRegion *memory): void
+mmio_get_region(int n): MemoryRegion*
+init_irq(qemu_irq *p): void
+pass_irq(SysBusDevice *target): void
+init_ioports(pio_addr_t ioport, pio_addr_t size)
+has_irq(int n): bool
+has_mmio(unsigned int n): bool
+connect_irq(int n, qemu_irq irq): void
+is_irq_connected(int n): bool
+get_connected_irq(int n, qemu_irq irq): qemu_irq
+mmio_map(int n, hwaddr addr): void
+mmio_map_overlap(int n, hwaddr addr, int priority): 
void
+add_io(hwaddr addr, MemoryRegion *mem): void
+address_space(): MemoryRegion *mem

Figure 2.21: QEMU SysBusDevice UML
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are used to model devices that generate interrupt lines. IRQ objects are contained
in a list of input and output IRQ objects in the Device class. Typically, at machine
initialization, an IRQ object array is used to connect device IRQ objects to CPU
objects, connecting output IRQ objects to input IRQ objects respectively.

A device can also have a list printable attributes, that are commonly used for
QEMU Monitor debugging purposes. A set of macros to manipulate these prop-
erties is provided as an API in QEMU.

Appendix B.3 provides an LED device example, to resume the API usage in a
simplistic model of a memory-mapped device.

2.6.5 Time in QEMU

QEMU timers provide a way of calling a routine after a predetermined time in-
terval. It is an important feature, useful in hardware behavior modeling, as some
devices must be time-aware. Three types of clock sources for QEMU timers are
available: Virtual, Host and Real-time. Most devices use the Virtual Clock as
source for their timers while modeling time-aware behavior, since the Virtual Clock
only runs when the machine is being emulated. The Host Clock, runs even when
the virtual machine is stopped and provides a resolution of 1000 Hz. Similarly,
Realtime Clock, runs when the virtual machine is stopped, but is sensitive to time
changes to the host’s system clock.

Despite the fact that Virtual clock only ticks during the machine execution, the
amount of time elapsed is not accurate, even when the same code block is being
emulated, as result of virtual machine non-deterministic implementation.

Machine behavior is implemented following the usual multi-thread programing
models that use contention mechanisms to avoid concurrency, thus undermining
the host machine determinism and consequently Virtual clock count. This also
raises similar problems on device implementation, for instance, if a device trans-
action is expected to be be quick, but the device behavior code was translated to
long and non-deterministic implementation, the result will be a longer execution
time due to emulation block and Virtual clock still counting.

To implement deterministic machine emulation, a patch was submitted that imple-
ments an ’icount’ option, which changes how Virtual Clock increments its value.
With each virtual CPU instruction, Virtual Timer increments based on a scale fac-
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tor that presents the machine’s theoretical frequency. With this feature, machine
emulation code may be non-deterministic, as the way behavior is implemented
does not directly affect simulation time steps. This provides greater freedom while
modeling hardware devices, as the implementation will not affect the Virtual Clock
directly. The following command is an example of its usage:

$ qemu -system -[ arch] [flags] -icount [N]

The ’N’ parameter is used for configuring the instruction counter. It will config-
ure how many clock cycles does a single instruction take, with clock cycles per
instruction = 2N .

2.7 Verilog Programming Language Interface

Most FPGA design flows are heavily conditioned by the FPGA vendors’ Integrated
Development Environments (IDE) and imposed workflows. Although it is possi-
ble to use open-source tools to a certain extent, it is relevant to adopt standard
HDL interfacing mechanisms when implementing HDL simulation interfaces, as
not only to be independent of simulation tools, but also be able to use commercial
simulation tools that are supported by the the main vendors IDE.

Given that Verilog is the HDL of choice in this dissertation, focus will be placed on
standard Verilog simulation interfaces. One of the major strengths of the Verilog
language is the Programming Language Interface (PLI), which allows users and
Verilog application developers to infinitely extend the capabilities of the Verilog
language and the Verilog simulator. In fact, the overwhelming success of the
Verilog language can be partly attributed to the existence of its PLI (Sutherland,
2002). Given that the Verilog Procedural Interface (VPI) set of routines (often
referred to as PLI 2.0) cover what was provided by Task/Function (TF) and
ACCess (ACC) routines(PLI 1.0), VPI routines render TF and ACC routines
obsolete. As such, all PLI mentions in this document will refer to the VPI set of
routines.

Due to Verilog being a weakly typed language and not having many constructs
that support validation, system verification is not so easy to do, unlike for in-
stance VHDL. To suppress these limitations that are intrinsic to the language,
SystemVerilog was developed. SystemVerilog is an extension to the Verilog lan-
guage that favors system level abstraction, introducing new data types and overall
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features that improve system level design, and system validation.

The learning curve related to the Verilog PLI is somewhat steep, as it includes un-
derstanding the PLI API and workflow, and knowing how to compile and link a PLI
application to a specific simulator. To enable HDL designers C-function invoca-
tion from HDL validation code, SystemVerilog introduces theDirect Programming
Interface (DPI). DPI allows for C code invocation without complex system task
definitions, with different kinds of routines for each system task, and other PLI
associated implementation. The downsides to the DPI are that it doesn’t provide
a way to interact with simulation data structures, or any other complex inter-
actions like synchronization with time or value changes. For these reasons, it
doesn’t cover all the features provided by PLI to replace it, but is nevertheless is a
quick alternative for validation code integration. Consequently, PLI was adopted
in this dissertation to develop simulation extensions that support co-simulation
approaches with QEMU making use of the possibilities of PLI.

2.7.1 PLI Overview

A PLI application is a user-defined C language application which can be executed
by a Verilog simulator (Sutherland, 2002). The PLI application can interact with
the simulation in a myriad of ways, from reading and modifying simulation logic
values, to performing certain actions in a specific simulation moment, such as
beginning or end of simulation.

One way to start interaction with the simulation is using user-defined system
tasks/functions. In the Verilog language, a system task or a system function is a
command which is executed by a Verilog simulator. The name of a system task
or a system function begins with a dollar sign ($) (Sutherland, 2002). They are
invoked as Verilog statements, with the main difference between a system task and
a system function being that a system function provides a return value, whereas
a system task does not.

The following is an example of a system task that prints a decimal value in the
simulator’s command line output at each positive edge of a clock, not unlike a
printf interface:

always @(posedge clock)
$ display ("value = %d", value);
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The following is an example of a system function that generates a random value
at each positive edge of a clock:

always @(posedge clock)
vector <= $random ();

There are 3 kinds of system tasks/functions:

• Standard built-in system tasks/system functions;

These are defined as part of the IEEE standard, such as $display, $random,
and $finish. All IEEE compliant Verilog simulators will have these standard
system tasks and system functions (Sutherland, 2002).

• Simulator specific built-in system tasks/functions;

These are proprietary, which are defined as part of a simulator and may not
exist in other simulators (Sutherland, 2002).

• User-defined system tasks/functions.

These are created through PLI. Using PLI, the name and functionality of
the system tasks/functions are specified (Sutherland, 2002).

User-defined system tasks/functions are associated with a PLI application. When
a Verilog simulator encounters a system task/function name, it will execute the
PLI application code associated with the name (Sutherland, 2002).

User-defined PLI routine

Figure 2.22: User-defined system function

Another other way is to register callback routines, which are to be ran at specific
moments during simulation, such as when a simulation value changes.
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2.7.2 PLI Routines

The VPI portion of PLI standard defines several types of PLI routines. The type of
the routine determines when the simulator will execute the routine. Some types of
routines are runtime routines, which are called during simulation, and some types
are elaboration or linking time routines, which are called prior to simulation. The
types of PLI routines are:

• Calltf routines;

• Compiletf routines;

• Sizetf routines;

• Simulation callback routines.

Calltf, compiletf and sizetf routines are directly associated with system tasks/-
functions, with calltf routines being called at runtime and compiletf and sizetf
being called at compile time. Simulation callback routines are routines which are
registered for a kind of event, and are called each time that the event occurs.

2.7.3 Calltf Routines

Calltf is a routine that is called at runtime, every time that a system task/function
is called during simulation. Its purpose is to implement system task/function
behavior only, with verification responsibilities belonging to compiletf routines.

Figure 2.23 presents a calltf routine of a system function that calculates the power
of ’x’ by ’y’:

Appendix C.1.1 contains C code for the power calltf routine.
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calltf routine

Figure 2.23: Power calltf routine

2.7.4 Compiletf Routines

Compiletf is a routine that is called at compile time, to check if a system task/-
function is being used correctly(that is, if it was called with the correct number of
arguments, argument types...). It is called only once for each system task/func-
tion call, by the simulator’s compiler when the simulator loads and prepares its
simulation data structure, being ran before simulation time 0. For instance, if one
system task/function is called three times in the Verilog source code, compiletf
will be called three times. That is, it will be called only once for each source code
invocation.

Given that at runtime calltf may be called very frequently, performing validation
on this routine may severely affect simulation performance. Compiletf routine’s
main purpose, as it should be clear by now, is to offload computation from the
calltf routine, thus improving simulation performance.

Figure 2.24 presents a compiletf routine of a system function that calculates the
power of ’x’ by ’y’:

Appendix C.1.2 contains C code for the power compiletf routine.
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Figure 2.24: Power compiletf routine
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2.7.5 Sizetf Routines

Sizetf routines are also called at compile time, before simulation time 0. These
routines are used to determine the return size, in bits, of a system function. Unlike
compiletf, even if the system function is called multiple times in Verilog source
code, it is only called once. The return value of the first call is used to determine
the return size of all instances of the system function.

Figure 2.25 presents a sizetf routine of a system function that calculates the power
of ’x’ by ’y’:

sizetf routine

Figure 2.25: Power sizetf routine

Appendix C.1.3 contains C code for the power sizetf routine.

2.7.6 Simulation Callback Routines

The VPI provides means for PLI applications to be called for specific simulation
events. The VPI portion of the PLI standard refers to these types of routines
as simulation callback routines (Sutherland, 2002). Some examples of simulation
callbacks are:

• Start of simulation(just before simulation time 0);

• End of Simulation;

• Change of value of a given net or register;

• Execution of a Verilog procedural statement.

A common usage of simulation callback routines is to perform tasks at the very
beginning and the very end of a simulation (Sutherland, 2002).
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Figure 2.26 presents a routine for start of simulation callback, that prints a start
of simulation message on the simulator’s console. The routine is called before
simulation time 0.

simulation callback routine

Figure 2.26: Simulation callback routine

Appendix C.2.1 contains C code for this routine.

2.8 Functional Mock-up Interface

Functional Mock-up Interface (FMI) is a tool independent standard to support
both model exchange and co-simulation of dynamic models using a combination of
.xml files and C-code (either compiled in DLL/shared objects or in source code).
The first version, FMI 1.0, was published in 2010. The FMI development was
initiated by Daimler AG with the goal to improve the exchange of simulation
models between suppliers and Original Equipment Manufacturers (OEM). As
of today, development of the standard continues through the participation of 16
companies and research institutes. FMI 1.0 is supported by over 45 tools and is
used by automotive and non-automotive organizations throughout Europe, Asia
and North America (Otter et al., 2013).

The FMI defines a component which implements simulation interfaces, called
Functional Mock-up Unit (FMU). An FMU contains an eXtensible Markup
Languague (XML) file with description of the interface, and source code or dy-
namic library which implements the interface. Source code is used if target plat-
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form independence is desired, however the latter solution is used whenever the
suppliers want to hide the source code to secure model or tool know-how. The
FMI standard provides two main interfaces: Model Exchange, and Co-simulation.
Figures 2.27a and 2.27b represent the two interface scenarios.

(a) FMI model exchange diagram (Otter
et al., 2013)

(b) FMI co-simulation diagram (Otter et al.,
2013)

Figure 2.27: FMI simulation standards

2.8.1 FMI for Model Exchange

The FMI for Model Exchange interface defines an interface to the model of a
dynamic system described by differential, algebraic and discrete-time equations
and to provide an interface to evaluate these equations as needed in different
simulation environments, as well as in embedded control systems, with explicit or
implicit integrators and fixed or variable step-size. The interface is designed to
allow the description of large models (Otter et al., 2013).

In this interface, an FMU’s source code or compiled code only contains implementa-
tion specific to the model, with its respective interpretation and solving implemen-
tation responsibilities belonging to the simulation tool. Model Exchange FMUs
may be connected together to form larger model subsystems. Figure 2.28 presents
Model Exchange FMUs connected together, with outputs and inputs being con-
nected between them to form a larger model subsystem. Figure 2.29 presents the
model signals of an FMU.

The arrows represent inputs provided to the FMU, and outputs provided by the
FMU. Exposed variables could be used for plotting purposes, and internal model
state monitoring, whereas inputs and outputs are used for model integration in
the overall simulation. The following excerpt represents an example of using the
FMI provided API to interact with an FMU.

// Set input arguments
fmiSetTime (m, time);
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Figure 2.28: Model exchange FMU interconnection (Otter et al., 2013)

Figure 2.29: Model exchange FMU interface signals (Otter et al., 2013)
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fmiSetReal (m, id_u1 , u1 , nu1);
fmiSetContinuousStates (m, x, nx);
// Get results
fmiGetContinuousStates (m, derx , nx);
fmiGetEventIndicators (m, z, nz);

2.8.2 FMI for Co-simulation

The FMI for Co-Simulation interface is designed both for the coupling of sim-
ulation tools (simulator coupling, tool coupling), and coupling with subsystem
models, which have been exported by their simulators together with their solvers
as runnable code. Figures 2.30a and 2.30b represent both scenarios, co-simulation
stand alone and co-simulation with tool coupling respectively.

(a) Stand alone co-simulation (Otter et al.,
2013)

(b) Tool coupling co-simulation (Otter et al.,
2013)

Figure 2.30: FMI co-simulation

In co-simulation stand alone, an FMU contains not only a model, but also solver
code exported by another simulation tool to solve the model during simulation.
Figure 2.31 represents a co-simulation slave FMU, which contains both model and
solver.

In the tool coupling case, the FMU implementation wraps the FMI function calls
to API calls provided by the simulation tool, which contains both model and solver.
In its most general form, a tool coupling based co-simulation is implemented on
distributed hardware with subsystems being handled by different computers, pos-
sibly even with different OSs (cluster computer, computer farm, computers at dif-
ferent locations). The data exchange and communication between the subsystems
is typically done using one of the network communication technologies (for exam-
ple Message Passing Interface (MPI), Transmission Control Protocol/Internet
Protocol (TCP/IP)). The definition of this communication layer is not part of the
FMI standard. However distributed co-simulation scenarios can be implemented
using FMI. Figure 2.32 presents this particular scenario.
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Figure 2.31: Co-Simulation FMU with slave interface signals (Otter et al., 2013)

Figure 2.32: FMI distributed co-simulation (Otter et al., 2013)

The master simulation tool has to implement the communication layer. Additional
parameters for establishing the network communication (for example identification
of the remote computer, port numbers, user account) are to be set via user interface
by the master. This data is not transferred via the FMI API. Master algorithms
control the data exchange between subsystems and the synchronization of all sim-
ulation solvers (slaves). Both, rather simple master algorithms, as well as more
sophisticated ones are supported. Note, that the master algorithm itself is not
part of the FMI standard (Otter et al., 2013).

2.8.3 FMI in the Industry

The FMI is a fast growing standard, with a wide appeal to the industry. Below are
listed some of the principles and property ideas that guided the low-level design
of the FMI to make it appealing for industry-wide adaptation. The listed charac-
teristics are sorted, starting from high-level properties to low-level implementation
issues.

• Expressivity: The FMI provides the necessary features that Modelica R©,
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Simulink R© and SIMPACK R© models can be transformed to an FMU (Otter
et al., 2013).

• Stability: FMI is expected to be supported by many simulation tools world
wide. Implementing such support is a major investment for tool vendors.
Stability and backwards compatibility of the FMI has therefore high prior-
ity. To support this, the FMI defines ’capability flags’ that will be used by
future versions of the FMI to extend and improve the FMI in a backwards
compatible way, whenever feasible (Otter et al., 2013).

• Implementation: FMUs can be written manually or can be generated auto-
matically from a modeling environment. Existing manually coded models
can be transformed manually to a model according to the FMI standard
(Otter et al., 2013).

• Processor independence: It is possible to distribute an FMU without knowing
the target processor. This allows to run an FMU on a PC, a Hardware-in-
the-Loop simulation platform or as part of the controller software of an ECU,
e. g. as part of an AUTOSAR SWC. Keeping the FMU independent of the
target processor increases the usability of the FMU and is even required by
the AUTOSAR software component model. Implementation: using a textual
FMU (distribute the C source of the FMU) (Otter et al., 2013).

• Simulator independence: It is possible to compile, link and distribute an
FMU without knowing the target simulator. Reason: The standard would
be much less attractive otherwise, unnecessarily restricting the later use of
an FMU at compile time and forcing users to maintain simulator specific
variants of an FMU. Implementation: using a binary FMU. When generating
a binary FMU, e. g. a Windows dynamic link library (.dll) or a Linux shared
object library (.so), the target operating system and eventually the target
processor must be known. However, no run-time libraries, source files or
header files of the target simulator are needed to generate the binary FMU.
As a result, the binary FMU can be executed by any simulator running on
the target platform (provided the necessary licenses are available, if required
from the model or from the used run-time libraries) (Otter et al., 2013).7

• Small run-time overhead: Communication between an FMU and a target
simulator through the FMI does not introduce significant run time overhead.
This is achieved by a new caching technique (to avoid computing the same
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variables several times) and by exchanging vectors instead of scalar quantities
(Otter et al., 2013).

• Small footprint: A compiled FMU (the executable) is small. Reason: An
FMU may run on an ECU (Electronic Control Unit, for example a micro
processor), and ECUs have strong memory limitations. This is achieved by
storing signal attributes (names, units, etc.) and all other static information
not needed for model evaluation in a separate text file (= Model Description
File) that is not needed on the micro processor where the executable might
run (Otter et al., 2013).

• Hide data structure: The FMI for Model Exchange does not prescribe a data
structure (a C struct) to represent a model. Reason: the FMI standard shall
not unnecessarily restrict or prescribe a certain implementation of FMUs
or simulators (whoever holds the model data), to ease implementation by
different tool vendors (Otter et al., 2013).

• Support many and nested FMUs: A simulator may run many FMUs in a
single simulation run and/or multiple instances of one FMU. The inputs and
outputs of these FMUs can be connected with direct feed through. Moreover,
an FMU may contain nested FMUs (Otter et al., 2013).

• Numerical Robustness: The FMI standard allows that problems which are
numerically critical (for example time and state events, multiple sample
rates, stiff problems) can be treated in a robust way (Otter et al., 2013).

• Hide cache: A typical FMU will cache computed results for later reuse. To
simplify usage and to reduce error possibilities by a simulator, the caching
mechanism is hidden from the usage of the FMU. Reason: First, the FMI
should not force an FMU to implement a certain caching policy. Second,
this helps to keep the FMI simple. Implementation: The FMI provides
explicit methods (called by the FMU environment) for setting properties
that invalidate cached data. An FMU that chooses to implement a cache
may maintain a set of ’dirty’ flags, hidden from the simulator. A get method,
e. g. to a state, will then either trigger a computation, or return cached data,
depending on the value of these flags (Otter et al., 2013).

• Support numerical solvers: A typical target simulator will use numerical
solvers. These solvers require vectors for states, derivatives and zero-crossing
functions. The FMU directly fills the values of such vectors provided by the
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solvers. Reason: minimize execution time. The exposure of these vectors
conflicts somewhat with the ’hide data structure’ requirement, but the effi-
ciency gain justifies this (Otter et al., 2013).

• Explicit signature: The intended operations, argument types and return
values are made explicit in the signature. For example an operator (such
as ’compute_derivatives’) is not passed as an int argument but a special
function is called for this. The ’const’ prefix is used for any pointer that
should not be changed, including ’const char*’ instead of ’char*’. Reason:
the correct use of the FMI can be checked at compile time and allows calling
of the C code in a C++ environment (which is much stricter on ‘const’ as C
is). This will help to develop FMUs that use the FMI in the intended way
(Otter et al., 2013).

• Few functions: The FMI consists of a few, ’orthogonal’ functions, avoiding
redundant functions that could be defined in terms of others. Reason: This
leads to a compact, easy to use, and hence attractive API with a compact
documentation (Otter et al., 2013).

• Error handling: All FMI methods use a common set of methods to commu-
nicate errors (Otter et al., 2013).

• Allocator must free: All memory (and other resources) allocated by the FMU
are freed (released) by the FMU. Likewise, resources allocated by the simula-
tor are released by the simulator. Reason: this helps to prevent memory leaks
and runtime errors due to incompatible runtime environments for different
components (Otter et al., 2013).

• Immutable strings: All strings passed as arguments or returned are read-only
and must not be modified by the receiver. Reason: This eases the reuse of
strings (Otter et al., 2013).

• Named list elements: All lists defined in the fmiModelDescription.xsd XML
schema file have a String attribute name to a list element. This attribute
must be unique with respect to all other name attributes of the same list
(Otter et al., 2013).

• Use C: The FMI is encoded using C, not C++. Reason: Avoid problems
with compiler and linker dependent behavior. Run FMU on embedded target
(Otter et al., 2013).
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The following properties are desirable properties to further improve the FMI stan-
dard in future versions:

• The FMI for Model Exchange is for ordinary differential equations in state
space form (ODE). It is not for a general differential-algebraic equation sys-
tem. However, algebraic equation systems inside the FMU are supported (for
example the FMU can report to the environment to re-run the current step
with a smaller step size since a solution could not be found for an algebraic
equation system) (Otter et al., 2013).

• Special features as might be useful for multi-body system programs, like
SIMPACK, are not included (Otter et al., 2013).

• The interface is for simulation and for embedded systems. Properties that
might be additionally needed for trajectory optimization, for example deriva-
tives of the model with respect to parameters during continuous integration,
are not included (Otter et al., 2013).

• No explicit definition of the variable hierarchy in the XML file (Otter et al.,
2013).

• The number of states and number of event indicators are fixed for an FMU
and cannot be changed (Otter et al., 2013).

Several tools already support the FMI standard. Appendix D contains a table of
all the tools that currently support the FMI standard.
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Chapter 3

System Design

This chapter describes simulation extensions and libraries that assist hardware
accelerated embedded system design and were developed in the scope of this dis-
sertation. The main goal is to improve system design, debug, assist to computa-
tional offload and validate the final design, still being able to support simulation
approaches that aim to reduce time and thus speed-up overall design flow. A hard-
ware accelerated embedded Linux case study was used as stimulus for simulation
extension solutions based on QEMU. Figure 3.1 presents an overview diagram of
the case study.

uClibC

SW Thread

Linux Kernel

HW Delegate Thread HW Delegate Thread

Figure 3.1: Case of study overview

In this scenario, an embedded Linux application is composed by a collection of
threads, consisting of software threads and hardware delegate threads. Software
threads, tasks that contain data processing, are synchronized with hardware del-
egate threads, which are threads that delegate data processing responsibilities to
hardware accelerators instead of implementing them. These threads act as soft-
ware representations of hardware accelerators, and provide an interface to custom
hardware IP.
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To support a hardware software co-design, two kinds of simulation approaches
were defined in section 2.5 and adopted, with development being done to expand
QEMU’s functionality to support these approaches and integrate them into tar-
geted the design flow. Figure 3.2 presents a diagram of the validation phases to
the proposed design flow.
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System 
Validation
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uClibC
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QEMUopen source processor emulator

HDL
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HDL
HW Model

HDL
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ModelSim®

Figure 3.2: Hardware-software validation phases

The first stage of validation occurs during system modeling, and consists in vali-
dation of the software application to the desired system. During this phase, the
application is running directly on the host OS. The second stage of validation oc-
curs during the hardware design phase, when possible solutions are being explored

66



as far as hardware acceleration is concerned. The system model software applica-
tion is modified, with delegate threads replacing software threads that are to be
migrated to hardware. Validation of the target system is done using QEMU, with
behavioral C/C++ models for the migrated hardware IP being integrated into the
emulated machine. After a hardware accelerated system design has been chosen
and validated, the behavioral C/C++ models are implemented using HDL, with
subsequent replacement on the emulated machine. This is achieved by coupling
QEMU with ModelSim, with the latter simulating the RTL designs of migrated
IP.

As such, two QEMU extensions were developed, as well as a VPI dynamic library
for Verilog simulators, to support this validation approach. Although modeled
with this system design in mind, QEMU extensions were developed in a modular
and layered way, allowing for uses other than the ones proposed in the previously
mentioned scenarios.

This chapter is further divided into three sections, describing these extensions
with focus being placed on how to use them, and providing examples whenever
suitable. Firstly, QEMU plugin extension is an extension that allows QEMU to
load behavioral hardware models as dynamic libraries, which is useful for device
driver development during a design space exploration phase, early in the project.
Secondly, QEMU external model extension is an extension that allows QEMU to
use hardware device models modeled in another simulation tool, which is useful
for system-wide validation with device models that require validation in other
application domains, not being confined to the hardware acceleration domain.
Lastly, QEMU Co-simulation PLI library is a PLI dynamic library that allows
Verilog simulators that support VPI to simulate hardware IPs integrated into
QEMU’s emulated machines, making use of the QEMU external model extension.

3.1 QEMU Plugin Extension

As mentioned in section 2.6, to model hardware devices in QEMU it is necessary
to understand its source code and API in order to write device hardware code, as
well as to integrate it in the sources and recompile the whole program. This may
prove to be a hindering for developers wanting to use QEMU to speed-up device
driver development, given that QEMU is admittedly a non-documented program
from the developers’ point of view. To tackle the whole program is heavy duty
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for a developer whose main purpose is not expanding QEMU itself, as there is a
big bulk of source code to understand. Also, frequent recompilation of the whole
program is not practical at all, not to mention the possibility of breaking the
program unexpectedly.

As such, this extension tries to solve some of these issues, firstly by abstracting
some of the intricacies of QEMU’s internal API, thus making it easier to extend
QEMU with a hardware device ex nihilo via a simplified API, and secondly by
reducing compilation effort by allowing the use of plugins containing device models.
This is specially useful when the project is in an early stage and hardware IPs are
being designed, enabling the designer to try out behavioral hardware models and
their respective device drivers.

3.1.1 Extension Overview

Figure 3.3 presents an overview of a hardware accelerated embedded Linux case
of study running on a QEMU emulation that makes use of the extended plugin
capabilities.

Other 
Emulated 
Devices

uClibC

SW Thread

Linux Kernel

QEMU System bus 

Emulated
 CPU

HW Delegate Thread HW Delegate Thread

QEMUopen source processor emulator

Emulated
HW IP

.so plugin

Emulated
HW IP

.so plugin

Figure 3.3: Plugin extension overview

A hardware accelerated embedded application is usually composed by a collection
of threads. Hardware delegate threads are threads that interact with other threads
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on a software level, representing critical processing that was migrated to hardware.
Their terminology is derived from the fact that these threads delegate processing
algorithms to hardware accelerators instead of implementing them, through device
drivers system calls.

Hardware accelerators are accessed whenever device drivers perform hardware
transactions, and are modeled in the emulated machine through device models con-
tained in .so files. For each shared object that contains a plugin device model, there
is a corresponding plugin interface device object that is instantiated in QEMU.

A plugin interface device is a system bus device that was developed in the context of
this extension and included in QEMU’s static device models. Its purpose is loading
information and calling device modeling functions from a shared object, acting as
an interface to a model contained in the former. Appendix E.1 contains a QEMU
Monitor device property output for a plugin interface device that corresponds to
a plugin LED model.

Figure 3.4 presents a class diagram of a plugin interface device.

SysBusDevice

...

...

PluginInterfaceDevice

name: char *
file: char *
timers: QEMUTimer **
timer_nr: uint32_t
user_data: void *
dl_handler: void *
iomem: MemoryRegion
memory_mapped_address: uint64_t
mapped_area_size: uint32_t
irqs: qemu_irqs *
irq_nr: uint32_t
write: void (*)(hwaddr, unsigned, uint64_t, void *)
read: uint64_t(*)(hwaddr, unsigned, void *)
exit: void(*)(void*)

PluginInterfaceDevice(char *so_file)
~PluginInterfaceDevice(): int
read(void *opaque, hwaddr offset, unsigned size): 
uint64_t
write(void *opaque, hwaddr offset, uint64_t value, 
unsigned): void

Figure 3.4: Plugin interface device UML

Figure 3.5 presents a sequence diagram of a plugin device load process, and sub-
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sequent hardware transaction in QEMU.

QEMU
Plugin Interface 

Device
Plugin 
Device

Load plugin device information

Instatiate with plugin device information

Allocate according to 
plugin information

Finish

Start emulation

Return

Continue emulation

Call Hw transaction routine

Return

Call Hw transaction routine

Figure 3.5: Plugin device loading sequence diagram

Plugin interface devices are instantiated per existing plugin device. They are in-
stantiated according to information loaded from the plugin device, such as base
address and hardware transaction behavior. The plugin interface device is mapped
in the emulated machine address space upon instantiation using memory region
information that is loaded from the corresponding plugin device. Hardware trans-
action functions are also registered upon plugin interface device instantiation, and
are executed whenever a plugin interface hardware transaction function gets called.
This is done so that hardware modeling functions implemented in plugin devices
are visible within QEMU’s device modeling environment.

QEMU plugin extension uses a specific directory for plugin devices, scanning it
and loading all found shared objects. An environment variable is set with the
directory that contains plugin devices that are to be instantiated, loading plugins
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after machine initialization, but before any emulation starts. For each .so file
found, hardware-related information is loaded and a plugin interface device is
instantiated with its respective plugin information. Figure 3.6 presents a flowchart
of how the process of loading plugin devices is done.
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Figure 3.6: Plugin extension initialization flowchart
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3.1.2 Device API

To develop a plugin device, an API is provided. This API comprises plugin device
registering mechanisms, as well as functions and variables to model hardware be-
havior. A structure to be filled with device related information is used to represent
a plugin device. When the shared object is loaded, a plugin interface device will
be instantiated with that information. The following information is loaded from
the plugin device:

• Name;

This is a string with the device name. Its main purpose is debugging through
QEMU monitor property printing.

• Base address;

This is the device’s memory-mapped address. The plugin interface device
will be mapped in this address, and whenever QEMU catches a hardware
access within its memory region, that is, within the base address and its
corresponding block size, the plugin interface device hardware transaction
function will be called.

• Block size;

This is the size of the memory-mapped block in bytes. It will be used in
conjunction with the base address to determine the device’s memory-mapped
area.

• Interrupt requests;

This is an array with the requested interrupt numbers to be registered by
the plugin interface device.

• Number of interrupt requests;

This is the size of the interrupt requests array.

• Timer requests;

To model time-aware hardware behavior, a timer API is provided to schedule
functions. This is an array with timer requests to be allocated by the plugin
interface device.
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• Number of timers;

This is the size of the timer requests array.

• Write transaction function;

This is a function to be called by the plugin interface device at hardware
write transactions.

• Read transaction function;

This is a function to be called by the plugin interface device at hardware
read transactions.

• Device initialization function;

This is a function to be called by the plugin interface device when it’s in-
stantiated. It is useful to perform memory allocation by the plugin device.

• Device exit function;

This is a function to be called by the plugin interface device when it’s in-
stantiated. It is useful to free memory allocated by the plugin device.

All this information is filled in a structure provided by the API. Appendix E.2
contains an example of this structure.

To model certain hardware behavior, a set of functions and variables are part of
the API. Since QEMU symbols are not available at runtime to shared objects,
and to prevent them to have to be linked to several QEMU object files and thus
be bound to a specific QEMU version, function pointers are used. These function
pointers are declared in the API header file, and initialized at QEMU runtime by
the plugin extension when loading shared objects, allowing these pointers to be
used by plugin devices as an API. A macro identifying the device module should
be used, to avoid API variables and pointers re-declaration on other code modules
of the plugin device .so file. Table 3.1 presents an overview of the provided API.

To compile a plugin device, a Makefile is provided. Install and uninstall rules are
used to copy or remove the plugin from the directory that contains plugins to be
loaded by QEMU. Appendix E.3 contains an example Makefile for a plugin device.
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Table 3.1: Plugin device API

Name Description API category
Provided array

interrupts according to Interrupts
requests

irq_raise Trigger a Interrupts
requested interrupt

irq_lower Clear a Interrupts
requested interrupt
Provided array

timers according to Timing
requests

start_timer Schedule a Timing
requested timer

stop_timer Cancel a Timing
running timer

get_time Get a Timing
clock’s value

Trigger
write_to_bus master write Bus Master

transaction
Trigger a

read_from_bus master read Bus Master
transaction

3.1.3 I/O Mapping

Device modeling in QEMU functionally emulates transactions, with each hardware
device object being responsible for the respective transaction behavior implemen-
tation. As such, whenever there is a hardware access on the emulated application,
the write or read transaction behavior functions for the corresponding hardware
device object get executed. Port-mapped operations are not supported in the de-
veloped extension as an option, given that the majority of modern architectures
use memory-mapped I/O. Figure 3.7 presents how a write transaction is handled
for a plugin device.

Whenever there is a hardware read or write, QEMU identifies the device object
via registered memory region, and calls its respective transaction function, passing
the memory offset of the hardware transaction as an argument. It is up to the
transaction function to implement behavior for the different address offsets, not
unlike an ioctl operation maps commands in a Linux device driver.
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Figure 3.7: Plugin transactions task graph

When a plugin device model is loaded into QEMU, the respective plugin interface
device is mapped according to plugin supplied information, namely base address
and block size. To handle plugin transactions, the plugin interface device trans-
action functions simply call the respective plugin transaction functions that were
registered at plugin information loading, and forward the received arguments ab-
stracting some arguments to simplify the API.

To model register storing behavior, dynamic memory used with the initialization
and exiting functions is recommended, although plugin device register mapping
and memory management implementation details are up to the developer. Ap-
pendix E.4 contains a LED plugin device example, making use of the initialize
and exit functions to implement dynamic memory, and read and write functions
to implement transaction behavior.

3.1.4 Interrupt API

By using the provided interrupt API, the plugin device is able to model interrupt
behavior by triggering and clearing interrupts. Figure 3.8 presents a sequence
diagram of a plugin device making use of the interrupt API.
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QEMU
Plugin Interface 

Device
Plugin 
Device

Emulated Linux 
Interrupt Handler

Call Hw Transaction

Launch interrupt

Call Hw Transaction

Call Hw Transaction

irq_raise call

irq_lower call

Figure 3.8: Interrupt API sequence diagram

When using the API to trigger an interrupt, the plugin device will indirectly use
the internal QEMU IRQ API. The interrupt should remain active until handled,
meaning that the plugin device must map a hardware read or write transaction
to issue an irq_lower call. This is necessary to enable the emulated software
interrupt handler to clear the interrupt upon handling it. To use the interrupt
API functions, an IRQ array is provided to be used as an argument, according
to what was requested. Interrupts are requested when registering plugin device
information, as was previously mentioned. Figure 3.9 presents a sequence diagram
for an IRQ allocation by the plugin extension:

As mentioned in section 2.6.4, at target machine initialization there is an array
of IRQ objects used to connect IRQs between CPU and peripheral devices. The
plugin extension registers this array and copies it internally, to be able to connect
allocated IRQ objects to it, as it is destroyed after machine initialization. IRQs ob-
jects are allocated by plugin interface devices, and connected to the copied target
machine’s IRQ array according to requests. Requests are made by registering an
array of interrupt numbers on a plugin device, which are to be used when matching
IRQ objects to their corresponding machine IRQ array indexes. This obviously
means that the plugin device developer must have knowledge of the QEMU ma-
chine being used, as to know the the correct IRQ numbers when implementing
requests.
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QEMU
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to target machine IRQs

Destroy target machine IRQs copy

Figure 3.9: Plugin extension IRQ allocation sequence diagram

After IRQs are allocated and connected, an array is provided to the plugin device
with the allocated interrupts, allowing the plugin device to model interrupt be-
havior by using it with the provided interrupt API. Once all plugin devices have
been loaded, the machine IRQ copy is destroyed.

If IRQs are not supported in the target machine, the interrupt API function point-
ers will be initialized with a dummy function, having no effect whatsoever when
called. A warning for this effect will be issued upon plugin loading so that the user
is aware of this, but emulation is not stopped since it may not be an impairment
for certain device models. Table 3.2 presents the provided interrupt API.

Table 3.2: Interrupt API

API Description
qemu_irq interrupts[] Allocated interrupt array

void irq_raise(qemu_irq desired_irq) Triggers interrupt
void irq_lower(qemu_irq desired_irq) Clears interrupt

The provided interrupt array size is the same as the number of requested interrupts.
Each index will correlate with the requested interrupts order. For instance if
interrupt requests are 8 and 10, by this order, to use interrupt 8 as an argument
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on the API index 0 should be used, and to use interrupt 10 index 1 should be used.
Appendix E.5 contains a LED plugin device example, making use of the interrupt
API by raising an interrupt every time it’s turned on.

To add IRQ support for plugin devices on a given QEMU machine, it is necessary
change the machine’s source file and register the machine IRQ array, so that the
plugin extension may copy it internally. Appendix E.6 contains an example of how
to add IRQ support for the plugin extension on an unsupported machine.

3.1.5 Timing API

By using the timing API, a plugin device is able to model time-aware hardware
behavior by accessing simulation time or register functions to be executed after a
pre-determined time interval has elapsed. Figure 3.10 provides a sequence diagram
of a plugin device making use of the timing API.

Plugin 
Device

QEMU

start_timer call

Start timer count

stop_timer call

alt

Successful timer expiration

Timer cancelation

Stop timer

Call handler routine registered with start_timer call

Figure 3.10: Timing API sequence diagram

QEMU provides an internal API to register functions to be called after a specific
simulation time has passed. The plugin timing API indirectly uses QEMU’s own
API, providing QEMU timers that schedule timer handling functions to plugins.
Timers should be requested using the API provided structure that contains plugin
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device information. To register timer requests, an array of timer requests is used,
with the following information:

• Handler function;

This is the function to be called when the timer reaches its expiration date.

• Clock source;

This is the clock to be used as clock source for the timer. Available clock
sources are the same as QEMU clock sources, mentioned in 2.6.5.

• Time scale.

This is the timing scale for the timer. Available scales are nanoseconds,
microseconds and milliseconds.

Timers are allocated by plugin interface devices according to the requests, and
provided to the plugin by the extension. Figure 3.11 presents a sequence diagram
for timer allocation by the plugin extension:

Plugin Interface 
Device

Plugin 
Device

Load plugin timer requests

QEMU

Provide plugin interface device timers as part of the timing API

Instantiate with timer requests

Timer array
Allocate timers

Figure 3.11: Plugin extension timer allocation sequence diagram

Timer requests are loaded along with the plugin device information, and passed
to its respective plugin interface device upon instantiation. After being allocated
by the plugin interface device, they are provided to the plugin device as part of
the timing API. Table 3.3 presents the timing API.
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Table 3.3: Timing API

API Description
QEMUtimer timers[] Allocated timer array

void start_timer(QEMUtimer desired_timer, Starts running a
int64_t expiration_time) requested timer

void stop_timer(QEMUtimer desired_timer) Cancels a running timer
int64_t get_time(QEMUClocktype clock, int scale) Returns a clock’s value

To start running a registered timer, ’start_timer’ is used. When the timer reaches
expiration time, its associated handler is called. QEMU timers are one-shot, mean-
ing that timers must be started again in the handler if continuous behavior is de-
sired. They may also be canceled before timeout is reached and their respective
handlers called. There is also a function to check the current time of a clock,
using the same macros for clock types and time scales used on timer registering.
Appendix E.7 contains a blinking LED plugin device example, making use of the
provided timing API to model blinking behavior.

3.1.6 Bus Master API

Sometimes, when modeling hardware behavior, there are devices (such as DMA or
Joint Test Action Group (JTAG) peripherals) that need to model master system
bus access behavior. To provide means of modeling such behavior, a bus master
API is provided. Figure 3.12 provides a sequence diagram of a plugin device
making use of the bus master API to access another QEMU device.

To make use of the API, the plugin device simply calls the master transaction
functions, and QEMU issues a system bus transaction not unlike when an instruc-
tion that accesses the system bus is detected. Table 3.4 presents the bus master
API.

Table 3.4: Bus master API

API Description
void write_to_bus(hwaddr address, char *buffer, int buffer_size) Master write
void read_from_bus(hwaddr address, char *buffer, int buffer_size) Master read

Appendix E.8 contains a master plugin device example, that acts on any of the
previously presented plugin examples.
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QEMU
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Device

Call HW transaction routine

Call Master HW transaction routine

Return

Return

Figure 3.12: Bus master API sequence diagram

3.2 QEMU External Model Extension

In embedded systems with development in several application domains, one of the
main challenges is full-system integration. When following an isolated validation
design flow, most of the domain-crossing system faults are not detected in sim-
ulation, being later detected when the system is physically implemented. This
design methodology is highly ineffective, with a high risk of lengthy development
cycles, exponentially growing with the system’s complexity. The more domains
and interactions the system has, the higher chance of system integration failures
to occur upon system deployment and respective validation.

As such, this extension intends to allow QEMU to be used in a co-simulation
context, enabling hardware devices to be modeled externally in other simulation
tools. This is useful in several application domains, namely in hardware accelera-
tion. During later stages of hardware accelerator development, hardware models
and respective drivers are already developed but not integrally validated, making
co-simulation a desirable validation technique.
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3.2.1 Extension Overview

Figure 3.13 presents an overview of a hardware accelerated embedded Linux case of
study running on a QEMU emulation that makes use of the extended co-simulation
capabilities.

Proxy

Tool-specific
Interface

Simulation Models

Simulation 

Tool

uClibC

SW Thread

Linux Kernel

QEMU System bus 

Emulated
 CPU

HW Delegate Thread HW Delegate Thread

QEMUopen source processor emulator

Emulated
HW IP

Emulated
HW IP Proxy

Figure 3.13: External model extension overview

A hardware accelerated embedded application is usually composed by a collec-
tion of threads, including hardware delegate threads. Hardware delegate threads
delegate processing algorithms to hardware accelerators by interacting with them
through device driver system calls. This extension enables hardware accelerators
to be modeled externally of QEMU, by incorporating models contained in other
simulation tools in QEMU emulation. For every external model that is to be
integrated into QEMU there is a corresponding proxy interface device that ex-
changes information between QEMU and the respective external simulation tool
via a proxy entity.

A proxy interface device is a type of system bus device that was developed in
the context of this extension and included in QEMU’s static device models. Its
purpose is loading information from an external model and represent it in QEMU
simulation. When a hardware transaction is issued, the proxy interface device for-
wards transaction information to the respective external model through the proxy
channel. The external tool must also have a proxy to establish interactions with its
simulation models and QEMU, usually through tool-specific interface frameworks
or libraries. Figure 3.14 presents a class diagram of a proxy interface device.
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ProxyInterface

-name: char *
-tool_ip: char *
-tool_port: uint16_t
-domain: char *
-iomem: MemoryRegion
-memory_mapped_address: uint64_t
-mapped_area_size: uint32_t
-irqs: qemu_irq *
-server_info: master_irq_server_info_t *

+ProxyInterfaceDevice(char *name, char 
*tool, char *tool_ip, uint16_t tool_port, 
char *domain, uint64_t 
memory_mapped_address, uint32_t 
mapped_area_size, uint32_t *interrupts, 
uint32_t interrupts_size)
+~ProxyInterfaceDevice()
+read(void *opaque, hwaddr offset, 
unsigned size): uint64_t
+write(void *opaque, hwaddr offset, 
uint64_t value, unsigned size): void

SysBusDevice

...

...

Figure 3.14: Proxy interface device UML
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Appendix F.1 contains a QEMU Monitor device property output of a proxy in-
terface device that represents a LED device modeled in ModelSim. Figure 3.15
presents a sequence diagram of an external model loading process, and subsequent
hardware transaction.

QEMU
Proxy Interface 

device
Simulation 

Tool

Send hw transaction message

start server

Instatiate with registered  information
Allocate according to 

registered information

Register device model information

Finish

start emulation

Continue emulation

Return
Acknowledge

Call Hw transaction routine

Figure 3.15: External model loading and use sequence diagram

A server is used at QEMU start-up to synchronize with external tools. External
tools will establish a connection with this server, and register the models that are
to be integrated into QEMU’s emulation. This registration triggers a proxy entity
instantiation for each tool and respective proxy interface devices instantiations
for each of the registered device models. As previously mentioned, transactions
on proxy interface devices are forwarded to their respective external simulation
models. To make QEMU use these features, an ’-ext-tools’ argument must be
provided on the QEMU launch command. The following is a template of a QEMU
launch command with external tools co-simulation active:

$ qemu -system -[ arch] [flags] -ext -tools [number of tools
],[ server port( optional )]

Multiple external tools are supported in the extension, with the number of simu-
lation tools being passed as a parameter. This parameter informs QEMU of how
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many external tools will try to connect to the start-up synchronization server, with
the server port being an optional parameter. By default the server port is 10 000.

3.2.2 External Tool Synchronization

Figure 3.16 presents an overview diagram of two simulation tools, ’A’ and ’B’,
connected to QEMU during the start-up synchronization process.
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Figure 3.16: External model extension start-up synchronization overview

At start-up, a TCP/IP server is started to synchronize with external tools. This
server is temporary, used only to initialize proxy interface devices and proxies
themselves, blocking QEMU until the requested number of external tools do con-
nect. After all tools have finished the registration process, the connection is closed
and the start-up synchronization server is terminated.

Simulation tools use a client TCP/IP connection to connect with the start-up
synchronization server launched by QEMU, instantiating their proxies during this
process and closing the synchronization connection after registering their device
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models. Figure 3.17 presents an overview diagram of the same scenario presented
in figure 3.16 after the registering process is done, and emulation is started.
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Figure 3.17: External model extension runtime overview

The proxy entities are composed of client and server pair connections per tool in
QEMU, with a corresponding pair in each simulation tool. In simulation tools,
transaction servers receive proxy device transaction messages, triggering hardware
transactions in their native device models. Since there is only one transaction
being ran at a time, only one client connection is used per tool in QEMU, with
the communication channel being shared between proxy interface devices with no
risk of race conditions. A server is also started on the QEMU proxy for each
simulation tool, to receive messages that trigger system bus master accesses or
interrupts. Obviously, there is also a client channel in each simulation tool to send
bus master access or interrupt messages.

All proxy servers allocate their ports dynamically, with this information being
exchanged during the start-up synchronization process. Figure 3.18 presents a
flowchart of the registration process at the external model extension start-up. For
each tool that connects to the start-up synchronization server, a thread is launched
to deal with the tool’s registration process. Figure 3.19 presents a flowchart of the
registration process when a thread is launched upon tool connection.
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Upon tool registration, connection to its transaction server is attempted by QEMU.
The server port is attributed dynamically, and is received along with tool informa-
tion. A proxy interface device hash table is created for proxy interface devices of
external models with interrupt requests. This is done so because the Master IRQ
server needs to access a proxy interface device to raise or lower their IRQ objects.

The next step is registering all tool models, and instantiating proxy interface
devices for each model. If interrupts for an external model are requested, IRQs
are allocated upon proxy interface device instantiation, and the proxy interface
device is inserted in the hash table.

The last step of the tool registration process is The Master IRQ server launching,
which is only done if needed. This server’s port attribution is also dynamic. After
all tool registration is done, the start-up sync connection with the tool is closed,
and the thread is terminated.

Each tool provides information upon tool, used to register models and instantiate
proxy interface devices, consisting in:

• Name;

This is a string the simulation tool’s name, such as ModelSim, PSIM or other
simulators. Its main purpose is debugging through QEMU monitor property
printing.

• Domain

This is string with the simulation tool application domain, for instance, hard-
ware acceleration. Its main purpose is debugging through QEMU monitor
property printing.

• Number of models;

This is the number of models that the tool wishes to register for co-simulation
usage. It will be used in the communication protocol, indicating the number
of expected models.

• Transaction server port;

This is the server port that was attributed to the tool’s transaction server,
and will be used to create a client connection to the latter.

• Bus master interface.
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This is a flag that is used to enable or disable bus master capabilities from
the extension. If only slave models are used, the tool should set this flag to
0.

After tool information is registered, models are registered individually to instanti-
ate proxy interface devices. Individual model specific information comprises:

• Name;

This is a string with the device name. Its main purpose is debugging, through
QEMU monitor property printing.

• Base address

This is the device’s memory-mapped address. The proxy interface device
will be mapped in this address, and whenever QEMU catches a hardware
access within its memory region, that is, within the base address and its
corresponding block size, the proxy interface device’s hardware transaction
function will be called.

• Block size;

This is the size of the memory-mapped block in bytes. It will be used in
conjunction with the base address to determine the device’s memory-mapped
area.

• Interrupt requests;

This is an array with the requested interrupt numbers to be registered by
the proxy interface device.

• Number of interrupt requests.

This is the size of the interrupt requests array.

Appendix F.5 contains a sequence diagram that details the registration communi-
cation protocol.

3.2.3 I/O mapping

Similarly to plugin devices, port-mapped I/O operations are not supported in
external models, with memory mapping being the only available I/O mapping
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mechanism. Proxy interface devices are accessed whenever a hardware transaction
for an external model is performed, and handle external model transactions by
sending TCP/IP messages to the external simulation tools. External tools map
their hardware as desired, with no imposition from the extension whatsoever.
Transactions are carried out by the external tool upon message reception on the
tool’s transaction server. The following information is comprised in a transaction
message:

• Base address;

This field is used to identify the device. Offset and base address were sepa-
rated to help to identify the message destination node.

• Offset;

This is the offset that added with the base address determines the transac-
tion’s target address.

• Size;

This is a field used to identify the size of the transaction in bytes. Use-
ful to implement single byte transactions for machines that support such
instructions.

• Value;

This field is sent in write transactions, and received in read transactions.

• Time;

This field is used to inform the external simulation tool of QEMU’s current
virtual time, and to return to QEMU how much time the transaction took.
Time scale is implemented in nanoseconds.

Appendix F.5 contains a sequence diagram that details transaction communication
protocol.

3.2.4 Timing

The external model extension supports cycle-accurate device emulation. This is
done so, because unlike behavioral modeling validation, co-simulation is best used
for system integration debugging with structural models that are simulated in
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cycle-accurate fashion, such as when developing in a hardware acceleration domain.
To correctly use the extension’s device time modeling, QEMU emulation should
be ran deterministically, with the instruction counter as virtual clock.

QEMU’s instruction counter virtual clock was modified, to enable time warping
at each transaction. By default, the virtual clock is ran as long as the virtual
machine is running, running also when device behavior code is being ran. With
the instruction counter enabled, the virtual clock only increments with each new
instruction, being frozen when in a device modeling context. This is ideal for a
co-simulation scenario, allowing for external model’s simulation time to be taken
into account by warping the instruction counter virtual clock at each transaction.

Figure 3.20 presents a sequence diagram for time warping in a hardware transac-
tion.
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Figure 3.20: External model transaction timing sequence diagram

Simulation timesteps are kept independently between external tools and QEMU.
When a transaction message is sent, current QEMU time is included in the trans-
action message sent to the external simulation tool. The tool will then evaluate its
own simulation time, and if it is behind QEMU, the simulation will advance un-
til its simulation time matches QEMU’s. This implementation was chosen, given
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that most domain-specific simulators have much longer integration timesteps than
QEMU, which is known for very fast emulations due to its dynamic binary trans-
lation techniques.

After the transaction is completed, transaction time is sent along with the ac-
knowledgment message. QEMU will then warp the time to match the time spent
in the simulation tool, and both tools will return to independent simulation times.
If an external tool does not wish to implement this behavior, it may simply ig-
nore QEMU’s simulation time, and send 0 as warp time on the acknowledgment
message. This is useful for domains that do not implement cycle-accurate device
models.

3.2.5 Interrupts and Bus Master Transactions

To enable interrupts and bus master interactions between QEMU and external
tools, there is a TCP/IP server for each tool to receive bus master transaction
messages, and interrupt raise or lower messages. This server is only started if the
tool requires bus master accesses or if any of the external models uses interrupts.

The following information is comprised in a bus master message:

• Memory address;

The hardware memory-mapped address on which the read or write transac-
tions should be performed.

• Value;

This is a field used in bus master messages on write transactions, and used
on server acknowledge messages on read transactions.

• Size.

The number of bytes of the transaction. Useful for machines with single-byte
memory access instructions to differentiate hardware accesses.

The following information is comprised in an interrupt message:

• Base address

This is the base address where the external model that requests the interrupt
is mapped. It is a way of identifying the external model that requests the
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interrupt, so the corresponding proxy interface device may be accessed and
the respective IRQ object used.

• Interrupt number

This is the index of the requested interrupts array. Similar to the plugin
interrupt API, if requested interrupts were 8 and 10, in this order, to trigger
interrupt 8 an interrupt message with index 0 should be sent, and to trigger
interrupt 10 an interrupt message with index 1 should be sent.

When an interrupt message is received, the Master IRQ server will look for the
corresponding proxy interface device in its hash table, and will raise or lower the
IRQ in the proxy interface device IRQ array object according to the received index.

Figure 3.21 presents a flowchart for a Master IRQ server.
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Figure 3.21: Master IRQ server thread
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3.2.6 QEMU External Tool Library

By analyzing the external model overview diagram, it is clear that despite varying
tools and their respective specific interfaces, the network proxy services that are
going to be implemented are the same. Figure 3.22 presents an overview of an
external tool that supports QEMU co-simulation.

Proxy

Tool-specific
Interface

Simulation Models

Simulation 

Tool

Figure 3.22: External tool Interface

For this reason, a library that implements the proxy entity was developed, ab-
stracting those details for the tool-specific interface layer. This library implements
the network protocols, implementing tool and respective models registering, as
well as instantiation and management of network communication channels. Table
3.5 presents the API of this library.

Function qemu_connect_tool is used to connect to QEMU’s start-up synchroniza-
tion server, register the tool and its models, and start the transaction server and
Master IRQ client connections that comprise the proxy. Tool information, which
includes an array of model information. must be provided to this function. Op-
tionally, start-up synchronization server IP address or port may be provided, with
default values being localhost and 10 000 respectively.

Whenever the transaction server receives a transaction message, functions regis-
tered using qemu_register_slave_write/read will be called, delegating behavior
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Table 3.5: QEMU external tool library API

API Description
Establish a connection to QEMU,

qemu_connect_tool register tool and models
and start network services

qemu_close_connection Close connection
and terminate all services
Register function to be

qemu_register_slave_write called when a write
message is received

Register function to be
qemu_register_slave_read called when a read

message is received
qemu_master_write Send a bus master

write message to QEMU
qemu_master_read Send a bus master

read message to QEMU
qemu_raise_interrupt Send a raise interrupt

message to QEMU
qemu_raise_interrupt Send a lower interrupt

message to QEMU

implementation responsibilities to the tool-specific interface.

Master and interrupt message sending functions share the Master IRQ client chan-
nel, and as such, client channel access is mutually exclusive. Any of the four func-
tions related to interrupt or bus master messages may cause the caller to sleep,
which should be taken into account when implementing the simulation interface.
Also, if a master read or write function is called for a local device model, those
functions will call the slave registered functions instead of sending transaction
messages to QEMU.

3.3 QEMU Co-simulation PLI Library

Some embedded system scenarios present difficult to meet real-time requirements,
with tight task deadlines, impossible to meet without relying on hardware accel-
erated applications.

Typically, hardware co-processors and peripherals are developed using hardware
description languages, and validated by HDL simulators. HDL designs are vali-
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dated with stimuli being simulated by testbenches that use non-synthesizable con-
structs of the development language. However, this development approach does
not account for software domain interactions, as the IP that is being developed
must be wrapped in a system bus interface wrapper so it can be integrated in the
target machine.

To validate integration and debug system interactions, validating both device
drivers and hardware acceleration domain components, a PLI library was devel-
oped, in the context of this dissertation, that implements an interface with QEMU
using the QEMU external tool library. This library allows for HDL simulators
that support PLI to simulate hardware IPs integrated in QEMU machines.

3.3.1 Library Overview

Figure 3.23 presents an overview of a hardware accelerated embedded Linux case
of study running on a QEMU emulation that interfaces hardware IPs simulated in
ModelSim.

Proxy

QEMU Co-simulation PLI Library

ModelSim®

HW IP HW IP

Virtual QEMU System Bus

QEMU External tool library

uClibC

SW Thread

Linux Kernel

QEMU System bus 

Emulated
 CPU

HW Delegate Thread HW Delegate Thread

QEMUopen source processor emulator

Emulated
HW IP

Emulated
HW IP Proxy

Figure 3.23: QEMU co-simulation PLI library overview

A hardware accelerated embedded application is usually composed by a collec-
tion of threads, including hardware delegate threads. Hardware delegate threads
delegate processing algorithms to hardware accelerators by interacting with them
through device driver system calls.

The developed library enables hardware accelerators modeled in ModelSim to be
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integrated into QEMU simulation, through a PLI API that supports a virtual
QEMU system bus model in Verilog. Slave wrappers are used to ensure a con-
nection from HDL models to the virtual bus, implementing logic that interfaces
the virtual bus. A set of PLI system tasks and callbacks extend Verilog non-
synthesizable constructs capabilities to support virtual system bus interactions
with QEMU. QEMU interactions are implemented using the external tool library,
benefiting from its provided abstractions.

Figure 3.24 presents a sequence diagram of a hardware IP in ModelSim being
registered in QEMU and subsequently accessed in a transaction.

QEMU External 
tool library

QEMU Co-simulation 
PLI library

Register transaction routines

QEMU
Top-level 
Module

Register HW IP module

Return

Start QEMU connection

Return

Connect to QEMU with
array of registered models

start network services

Acknowledge

Return

Start clock
 issue reset on IP module

HW transaction message

HW transaction routine

Write transaction
information on 

virtual bus signals

Return

Read transaction
information on 

virtual bus signals

Register tool and models

start server

start emulation

continue emulation

Acknowledge

Return

Figure 3.24: PLI library initialization and transaction sequence diagram

The top-level module must first register the HW-IP models that are going to be
integrated into QEMU through system tasks provided by the PLI library, starting
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the connection after all models are registered. The PLI library will consequently
register the slave transaction functions in the external tool library, with the latter
starting connection with QEMU. Tool information is provided, along with infor-
mation from all the models that were registered with the IP model registration
system task.

When a hardware transaction message gets sent in QEMU emulation context, the
QEMU external tool library calls the corresponding PLI library registered slave
transaction function, which accesses Verilog virtual system bus signals, and ma-
nipulates them to emulate the transaction. The top-level module of the Verilog
simulation contains those virtual bus signals, such as address or value of the trans-
action.

3.3.2 Virtual QEMU System Bus Model

To integrate QEMU system bus interactions in HDL simulation, a virtual QEMU
system bus model was designed. This model is comprised of a top-level module,
where the bus signals are instantiated and later manipulated by the PLI library,
and IP modules that contain virtual QEMU system bus slave HW-IP models. A
minimal bus interface was designed, with shared inputs and tristate buses for data
output and transaction acknowledgment.

To interface the bus, a slave IP wrapper module that connects to the the bus was
developed, with generative constructs being used to allow for easy wrapper adap-
tation when mapping a custom HW-IP. Parametrization was also used whenever
possible to provide flexibility for different scenarios, such as systems with archi-
tectures that employ different word sizes. Verilog parameter names are going to
be capitalized whenever mentioned.

Figure 3.25 presents an overview of the virtual bus model.
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Figure 3.25: Virtual QEMU system bus overview diagram

The IP wrapper contains local RAM registers that are connected to the hardware
IP’s input and output ports. Consequently, transactions are performed on the
local RAM registers, via bus slave interface logic. Figure 3.26 presents the bus
slave interface logic of the IP wrapper.

Control 
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output dataclock reset input data address
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bus write enable
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BASE ADDRESS

ready
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write

RAM 
output 0x00

RAM 
output 0xN

...

Local RAM and HW IP

offset

Figure 3.26: Virtual QEMU system bus slave logic diagram
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The control unit interprets the bus signals, and drives the local RAM and hard-
ware IP’s datapaths. Whenever the address signal contains an address within the
mapped region, the control unit will activate the bus write enable or output enable
signals according to the write signal.

There is a bus write enable signal for each of the local RAM’s registers, with
BLOCK SIZE being the size of the RAM in bytes, and WORD the word length
of each address in bits. When this signal is driven high, the corresponding local
RAM register gets written with the value in input data, which is the case for write
transactions. If the transaction happens to be a read transaction, the output
enable signal is driven high, which activates data writing in the tri-state bus for
output data.

The offset in relation to the IP’s base address drives a multiplexer that selects the
RAM output that is going to be written in the output.

Finally, the ready signal is triggered when the hardware transaction is completed.
Figure 3.27 presents a state chart of the control unit’s state machine.

reset

WAIT
ready enable = 0
output enable = 0
bus write enable[offset] = 0

address >= BASE ADDRESS
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address <  BASE ADDRESS + BLOCK SIZE
&& 

write = 1
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ready enable = 0
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bus write enable[offset] = 0
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 && 
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write = 0

READY WRITE
ready enable = 1
output enable = 0
bus write enable[offset] = 0

READY READ
ready enable = 1
output enable = 1
bus write enable[offset] = 0

WRITE
ready enable = 0
output enable = 0
bus write enable[offset] = 1

Figure 3.27: Slave control unit state chart

Since the address is 0 for a non-active bus, detection of an address within the
mapped region is sufficient for transaction triggering.

All memory registers have independent inputs, allowing for IP ports to be mapped
as register inputs, outputs, or both. Figure 3.28 presents a diagram of an example
hardware IP with one input mapped to local RAM in address 0x00 , and an output
mapped to local RAM in address 0x01.

Every register has inputs either from the data received from the bus,or from the IP,
and a correspondent write enable. When there is a write transaction with incoming
data, the bus write enable signal gets active for the target register, acting both as
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data input selector and write enable for the register. When there is no write data
transaction in course, every local RAM’s register input is connected to the IP’s
input signal, with a write enable allowing for an IP signal to write in the RAM.

IP output signals and respective write enables are generated according to the
memory block size using generative Verilog constructs. If a register is to be used
only for IP input mapping, such as the one in address 0x00, the corresponding IP
output signal write enables should be inactive. Contrarily, the register in address
0x1 is mapped to an IP output, and as such, its IP output and respective write
enable are connected to IP ports.

To better illustrate how to instantiate hardware IPs and map them using the
provided wrapper, Appendix F contains a Verilog module with the wrapper and IP
instantiation of the example mentioned above in section F.3. Section F.2 contains
a full diagram representation of the virtual bus model, fusing all of the diagrams
shown above.

3.3.3 PLI API

To allow for co-simulation between QEMU and Verilog simulation, the PLI library
provides a set of system tasks. These system tasks must be called in the virtual bus
model context, that is, called in an IP wrapper module or top-level bus module.
Table 3.6 lists all the provided system tasks, along with the module where they’re
supposed to be used.

The context of where these system calls are called is important for two reasons.
Firstly the top-level module must contain the virtual bus signals, which are going
to be accessed by the PLI library to perform transactions. Secondly, IP wrappers
must contain a set of parameters that will be used to register the model in QEMU.

Virtual bus signals are accessed through their names, therefore, the top-level mod-
ule must contain the following signals that comprise the virtual bus:

• clk

This is the system’s clock. This signal will be registered in a PLI callback,
and every time there’s a value change in the clock, the PLI library will handle
any pending transactions, accessing the other bus signals for that purpose.

• addr
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Table 3.6: QEMU co-simulation PLI library API

API Description Caller Module
Register a wrapper Verilog module

$qemu_register_model that contains an Top-level
IP to be used as external model

$qemu_connect Connect to QEMU Top-level
and start co-simulation

$qemu_write_bus Perform a write transaction IP Wrapper
on QEMU’s system bus

$qemu_read_bus Perform a read transaction IP Wrapper
on QEMU’s system bus

$qemu_raise_interrupt Raise an interrupt IP Wrapper
in QEMU

$qemu_lower_interrupt Lower an interrupt IP Wrapper
in QEMU

This is the address bus, with a maximum width 64 bits. When handling
transactions, the target address is written by the PLI library on this bus.

• din

This is the input data bus, and is only used in write transactions. Its width
is parametrized, to match machine word bit length.

• write

This signal simply indicates that the transaction in course is a write or read
transaction. Value of 1 for write, 0 for read.

• dout

This is a tristate bus so it can be shared between IPs, and is pulled down by
default. It is used by IPs to output their values in a read transaction.

• ready

This is an acknowledgement tristate signal, pulled down by default. It is
used by IPs to acknowledge a finished transaction

These signals will be registered by the PLI library when $qemu_connect is called,
and further manipulated when transactions are performed.

Concerning the IP wrapper, the following parameters must be set, to fully represent
a model so that a call $qemu_register_model may register it:
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• MEMORY_MAPPED_ADDRESS;

This is the base address of the IP, with a maximum length of 64 bits.

• MAPPED_AREA_SIZE;

This is the block size of the local RAM in bytes, with a maximum width of
32 bits.

• MASTER;

This is a flag that is used to signal if the model accesses the bus as master.
It is a single bit parameter, 0 for false, 1 for true.

• NAME;

This is a string that is going to be used in QEMU as a device property.

• INTERRUPTS_SIZE;

This is the number of interrupts that will be used by the model, and is used
to request IRQ allocation inQEMU.

• INTERRUPT_N;

This is the interrupt number that is used by the requested corresponding
IRQ object in QEMU. There must be an interrupt parameter for each of the
interrupts that are going to be requested, with N being the index of the inter-
rupt. (Ex: For an INTERRUPT_SIZE of 3, there must be INTERRUPT_0,
INTERRUPT_1 and INTERRUPT_2 parameters).

• WORD.

This is the size of the target architecture’s word in bits, and is going to be
used as transaction word. It is configurable at instantiation with a default
size of 32 bit.

To start the co-simulation, all modules that contain IPs that are going to be
used as external models should be first registered through $qemu_register_model
system task. Afterwards, IP’s should be initialized by issuing a reset, and lastly,
$qemu_connect should be called to establish connection with QEMU. This call
may be optionally provided with QEMU’s IP address or port.

All of the system tasks’ compiletf and calltf routine flowcharts may be found in
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Appendix F.6.

3.3.4 Transaction Handling

QEMU co-simulation PLI library uses the external tool library as well as the
top-level bus signals to implement transactions. The slave functions that PLI
implements register transaction messages received from QEMU, and synchronize
transaction information by issuing requests to a simulation callback. This simula-
tion callback is called at each positive edge of the simulation clock, and is able to
change internal simulation values. If there are any pending transaction requests,
the virtual bus’ signals will be manipulated in the callback, effectively carrying
out the transactions.

A condition variable synchronizes the slave function and the simulation callback,
being associated with a state that presents the virtual bus state. Figure presents
flowcharts of the slave function and simulation callback behavior in each positive
clock transition regarding transactions, respectively.

The simulation time that the transaction took is retrieved along with the transac-
tion information, and a broadcast is sent to wake-up all slave functions that should
be awaiting data. This is necessary, because despite multiple slave transactions
from QEMU not being possible, there could be multiple slave functions waiting on
the condition variable given that the QEMU external tool library implements bus
master accesses on local models by calling the slave registered function.

3.3.5 Bus Master API

Bus master operations in QEMU’s system bus are supported, through a system
task API. Table 3.7 presents the available bus master API.

Table 3.7: Bus master API

API Description
$qemu_write_bus(address, offset, value, WORD) Master write

$qemu_read_bus(address, offset, return value reg/wire, WORD) Master read

These system tasks implement calls to their analogous counterparts of the exter-
nal tool library. Since the client channel for the interrupt and master operation

106



start
lock transaction 

mutex

transaction state = 
idle?

wait for transaction 
condition variable

no

yes

prepare transaction 
request information

change transaction 
state to request 

state

end

transaction state = 
ready?

wait for transaction 
condition variable

no

retrieve transaction 
information

unlock transaction 
mutex

(a) Slave transaction function flowchart

start
lock transaction 

mutex

transaction state = 
request?

transaction state = 
wait?

no no

load virtual bus signals 
with transaction 

information

change state to WAIT

bus ready signal = 1?

retrieve transaction 
information

change state to READY

send transaction 
condition variable 

broadcast 

unlock transaction mutex

end

yes

current simulation 
time < QEMU  time?

yes

no yes

yes no

(b) Clock change simulation callback trans-
action handling flowchart

Figure 3.29: PLI library transaction flowcharts

requests is shared and atomically protected, the system tasks launch a thread that
will call the co-simulation library functions, enabling the simulation to continue
running if the thread is put to sleep. Another possible scenario where the thread
is put to sleep is when the target device for the transaction is a local model, which
causes slave registered routine execution, and further suspension until the trans-
action is handled by the clock edge simulation callback. Appendix F.6 contains
flowcharts for the system tasks’ calltf and compiletf routines.

Read bus master accesses must return a value to be written in a target register
or wire. However, since a thread that maybe put to sleep is launched, the target
register or wire is passed as an argument to the system task so a value change
can be scheduled on the return value wire or register when the read transaction is
complete. This change is also made in the clock change simulation callback. The
request mechanism is not unlike a slave transaction, with a condition variable being
associated with a state variable to request changes on a register/wire simulation
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object. Figure 3.30a presents a flowchart of the master thread requesting a value
change upon a concluded read transaction, and figure 3.30b presents a flowchart
of the clock change simulation callback answering requests process.
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Figure 3.30: PLI library bus master flowcharts

3.3.6 Interrupt API

Triggering interrupts in QEMU’s machine is supported, through a system task
API. Table 3.8 presents the available interrupt API.

Table 3.8: Interrupt API

API Description
$qemu_raise_interrupt(interrupt index) Trigger an interrupt
$qemu_lower_interrupt(interrupt index) Clear an interrupt

Like bus master operations, these system tasks call their external tool library
counterparts, launching a thread for some of the same reasons. The system tasks’
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argument should be the interrupt index that was registered in the parameters (0
for INTERRUPT_0, 1 for INTERRUPT_1, etc...).

To better use this API generative constructs are used to generate signals that
call these system tasks on the provided slave IP wrapper. For each requested
interrupt, there is a signal to enable and a signal to disable interrupts. Positive
edges on the interrupt enable signal will cause the $qemu_raise_interrupt system
task to be called, and negative edges on the interrupt disables signal will cause the
$qemu_lower_interrupt system task to be called. This is done so that interrupt
activation and clearing are not intrinsically connected, allowing them to be mapped
to different signals or registers. An example of its use is provided in appendix F
in section F.4, where an IP output signal is mapped to an interrupt enable signal,
and the corresponding interrupt disable signal is mapped to local RAM, allowing
software to clear the interrupt flag upon interrupt handling. Compiletf and calltf
routines for the interrupt API system tasks are available in appendix in section
F.6.
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Chapter 4

Case of Study

This chapter describes the case of study that was chosen to provide stimuli for
system design and demonstrate the developed work in a practical context. The
case of study is integrated in the power electronics field, consisting in an application
that acquires data from voltage and current sensors and monitors the instantaneous
active and reactive powers, as defined by the pq theory(Akagi et al., 2007).

This system will be modeled using a multi-threading paradigm, profiled in the
host and subsequently hardware accelerated using a design flow aided by the de-
veloped simulation extensions, as proposed in chapter 3. As such HW IPs selected
for acceleration will be validated firstly using QEMU plugins and lastly as HDL
models.

4.1 Instantaneous Active and Reactive Powers
Monitoring Application

To provide a practical case of study, an instantaneous active and reactive power
monitoring system was selected. Active and reactive power monitoring of an elec-
trical installation is used to determine what part of the power that is being con-
sumed actively contributes to energy consumption in the load. Reactive power is
an undesired component of power that does not contribute to energy consumption,
but is nevertheless provided by the electrical grid, and therefore taxed if signifi-
cant. The pq theory(Akagi et al., 2007) defines instantaneous active and reactive
powers through the use of the Clarke transform, which the monitoring application
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will use to monitor instantaneous active and reactive powers. Appendix G con-
tains the mathematical fundamentals of the pq theory. Figure 4.1 represents an
overview diagram of the monitoring system.

Power Grid

Electrical 

Installation

Phase

Neutral

V

I

Monitor System

Figure 4.1: Monitoring system overview diagram

To monitor power in the installation, two channels are necessary, to acquire current
and voltage signals. These signals will be then processed and used to calculated
active and reactive powers for each instant, monitoring power consumption by the
electrical installation. Given that the pq theory is defined for a 3-phase electrical
system and the system being modeled is a single phase system, a 3-phase bal-
anced voltage and current system must be virtualized using 120 degree angular
displacement on the grid’s original phase, generating phases B and C from the
same samples. Figure 4.2 represents a virtual 3-phase voltage system generated
from a single phase voltage system.
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Figure 4.2: 3-phase virtualization

Phase B is 120o degrees late, or 240o early, meaning samples being used as phase
B should be offset two thirds in the sample buffer. Conversely, phase C is 120
early, or 240o late, meaning samples being used as phase C should be offset one
third in the sample buffer. The control blocks for the monitoring application are
represented in figure 4.3.

Current and voltage inputs are virtualized in the virtual 3-phase mirror block. The
Clarke Transform is applied afterwards, with voltages and currents being changed
into an α-β-0 reference system, allowing for instantaneous powers to be calculated
according to the pq theory. This block however contains an extra operation which
is the division of both powers by 3. Due to the system’s 3-phase virtualization,
powers are supposedly consumed by three identical loads that are mirrored after
the actual load, resulting in power values that are an exact triple of the actual
powers.
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Figure 4.3: Single-phase pq theory instantaneous powers blocks

4.2 System Modeling

To model the system, a C++ application was developed. Tasks identified in the
system’s blocks were separated into different threads. Similar blocks were grouped
in the same thread, such as current and voltage acquisiton, or clarke transforms
for current and voltage values. Queues were used to store data and allow threads
to process data independently, breaking the sequentiality between them. Figure
4.4 presents a task graph of the modeled system.
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Clarke Thread
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Powers Thread
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3-phase mirror 
Sample FIFO

Clarke 
transforms FIFO

Figure 4.4: Monitoring application task graph

To implement tasks in software, POSIX threads were used, as well as POSIX
synchronization mechanisms, namely mutexes and condition variables. Mesa se-
mantics are used to implement producer-consumer synchronization. Figure 4.5
presents a class diagram of the developed application.
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CADC

-miWriteIndex: int
-miReadIndex: int
-miSize: int
-mpdSamples: double *
-mfpFile: FILE *
-msFilename: std::string

+CAdc(std::string filename, int n_samples = 
N_SAMPLES)
+~CAdc()
+connect(): bool
+disconnect(): bool
+isReady(): bool
+acquire(): void
+getSample(): double

CMirror

-mpdBuffer: double *
-mpdA: double *
-mpdB: double *
-mpdC: double *
-mpdEnd: double *

+CMirror(int size = SIZE)
+~CMirror()
+phaseA(): double
+phaseB(): double
+phaseC(): double
+insert(double newSample): void
+dataContent(): int
+full(): bool
+empty(): bool

CClarkeTransform

-mdA: double
-mdB: double
-mdC: double
-mdAlpha: double
-mdBeta: double
-mdZero: double

+CClarkeTransform()
+~CClarkeTransform()
+insert(double A, double B, double C): void
+calculateTransform(): void
+alpha(): double
+beta(): double
+zero(): double

CInstantPowers

-mdIAlpha: double
-mdIBeta: double
-mdIZero: double
-mdVAlpha: double
-mdVBeta: double
-mdVZero: double
-mdP: double
-mdQ: double

+CInstantPowers()
+~CInstantPowers()
+insertCurrent(double alpha, double beta, double 
zero): void
+insertVoltage(double alpha, double beta, double 
zero): void
+calculatePowers(): void
+P(): double
+Q(): double

CThread

-mId: pthread_t
-mThread: void *(*)(void *)
-miPriority: int
-mpsData: SThread_data_t *

+CThread(void *(*thread_func)(void *), int priority, 
Sthread_data_t *thread_data)
+~CThread()
+init(): void
+join(): void

SThread_data_t

SThread_clarke_data_t

+mcMirrorVoltage: CMirror *
+mcMirrorCurrent: CMirror *
+mcClarkeCurrent: CClarkeTransform *
+mcClarkeVoltage: CClarkeTransform *
+mcClarkeCurrentFifo: CFifo *
+mcClarkeVoltageFifo: CFifo *
+mMirrorFifoMutex: pthread_mutex_t *
+mMirrorFifoCond: pthread_cond_t *
+-mTranformedFifoMutex: pthread_mutex_t *
+mTransformedFifoCond: phread_cond_t *

CSystem

- instance : CSystem *
-mcGridVoltage: CADC
-mcGridCurrent: CAC
-mcMirrorVoltage: CMirror
-mcMirrorCurrent: CMirror
-mcClarkeCurrent: CClarkeTransform
-mcClarkeVoltage: CClarkeTransform
-mcClarkeCurrentFifo: CFifo
-mcClarkeVoltageFifo: CFifo
-mcPowers: CInstantPowers
-mMirrorFifoMutex: pthread_mutex_t
-mMirrorFifoCond: pthread_cond_t
-mTranformedFifoMutex: pthread_mutex_t
-mTransformedFifoCond: phread_cond_t
-mThreadAcquisition: CThread
-mThreadClarke: CThread
-mThreadPowers: CThread

-CSystem()
+~CSystem()
+init_system(): void
+ get_instance : CSystem *

CFifo

-mpdBuffer: double *

+CMirror(int size = SIZE)
+~CMirror()
+push(double newSample): double
+pop(): double
+full(): bool
+empty(): bool

SThread_acquisition_data_t

+mcGridVoltage: CADC *
+mcGridCurrent: CAC *
+mcMirrorVoltage: CMirror *
+mcMirrorCurrent: CMirror *
+mMirrorFifoMutex: pthread_mutex_t *
+mMirrorFifoCond: pthread_cond_t *

SThread_powers_data_t

+mcClarkeCurrentFifo: CFifo *
+mcClarkeVoltageFifo: CFifo *
+mcPowers: CInstantPowers *
+mTranformedFifoMutex: pthread_mutex_t *
+mTransformedFifoCond: phread_cond_t *

Figure 4.5: Monitoring application UML
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4.3 Results

A simple resistive load of 4 Ω was used to validate the monitoring application. The
simulated electrical system is identical to the Portuguese electrical system, 325 V
peak value with a frequency of 50 Hz. Figure 4.6 presents the schematic of the
PSIM circuit used to generate the grid samples used in the monitoring application.

Figure 4.6: PSIM single-phase grid with 4 Ohm resistive load

4.3.1 Profiling

The software-only application was profiled using a non-intrusive profiling tool,
Oprofile. Figure 4.7 presents the profiling statistics of the application threads for
five executions of 10 minutes. Profiling identified the Clarke transform thread
as the most critical thread in terms of processing. As such, it was selected as
candidate for hardware migration.
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Figure 4.7: Monitoring application profile

4.3.2 Software-only and Hardware-Software

Results of the instantaneous powers, that is, outputs for the monitoring application
when stimulated with the previously shown grid sampling scenario, were collected
for the software-only implementation of the application as well as the hardware-
software implementation with the Clarke transform thread migrated to hardware.
Results for the hardware accelerated incarnation of the application were collected
via QEMU-ModelSim co-simulation using the corresponding developed extensions.

Figures 4.8 and 4.9 present the results for both software-only and hardware-
software applications respectively.

Figure 4.8: p and q values outputs of the software-only application
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Figure 4.9: p and q values outputs of the hardware-software application

Roughly four grid cycles are represented, with a cycle consisting of 720 samples.
During the first third of the first cycle, the values are not valid, as the mirror
buffer is not filled enough to correctly virtualize the 3-phase system.

The q value is obviously 0, given that there is no energy storing elements in the
load. With a resistive load of 4 Ω, p should be 13225 as p = (325/

√
2)2

4 . The results
collected for both applications plot similar looking graphics, with the hardware-
software application producing the same outputs as the software-only application,
thus validating the functionality of the developed extensions.
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Chapter 5

Conclusion

This chapter concludes the dissertation, tying up what was previously shown by
reviewing the developed work, and bringing up what interesting work could be
done in the future.

This project required a varied set of skills, given the ambitiousness and broad
spectrum of the project, encompassing overlapping necessary knowledge areas.
Knowledge areas included embedded system design and platform bringup, Linux
device driver development, HDL dedicated co-processor design, dynamic library
integration and network sub-systems, and HDL simulation interface frameworks.
QEMU, being an undocumented and rather large open-source program, clouded
the project with a lot of uncertainty at its beginning stages, not being clear if the
initial vision and planning was realistic or compatible with the author’s unfamil-
iarity with QEMU itself.

For the reasons mentioned above and due to the project’s obtained results, it is
concluded that the objectives of this project were accomplished.

5.1 Developed Work

Concerning developed work, the simulation extensions allow for initial software
application trials using rapid deployment of behavioral hardware IPs as plugins.
Applications and respective device drivers may be developed and debugged with
experimentation on possible acceleration scenarios without committing to their
HDL implementations. After, or during this phase, HDL implementation can be
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carried out with further validation and integration using co-simulation between
software and hardware acceleration domains. However the HDL simulation model
that was used doesn’t model any system bus interactions accurately, as the bus
that connects all peripherals is a virtual bus that doesn’t emulate any concrete
system bus behavior. Real system buses will most surely be slower, taking more
clock cycles in hardware transactions.

5.2 Future Work

Concerning future work, this project opens up interesting possibilities in carry-
ing out further improvements, resulting in better design flows that aim to help
minimize development cycles.

Firstly, commonly used SoC-based platforms could be added to QEMU, adding
base design machines for boards such as Digilent ZYBO or ZedBoard with minimal
hardware device instantiation, leaving most address space free for plugin devices or
external models. Dynamic device address and interrupt mapping support could be
also added for plugins and external models, enabling the developer to implement
plugins and external models without concerning itself with target architectures.
This would mean of course, using hotplugging mechanisms in device drivers for
these devices.

Secondly, FDT generated machines could be explored, improving their utility by
including plugin devices or external models. It would be interesting if FDT ma-
chines, while parsing the device tree and instantiating devices would look for plu-
gins or external models instead of ignoring unrecognized devices, which is the
current behavior. With this feature, it would be possible to use the same DTBs
generated for platform deployment by platform generation tools, such as Vivado
Design Suite or Xilinx Platform Studio, in QEMU simulation, with devices being
loaded from plugins or external models.

Thirdly, other simulation domains could be integrated in this co-simulation model,
allowing for data exchange between domain-specific simulators such as PSIM or
SPICE simulators and QEMU devices or HDL models. Full system validation
would be a very appealing feature while developing power electronics scenarios, as
power stage and analog hardware must be also debugged and validated, and as it
is this process is usually not done integrating embedded software and hardware
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acceleration domains. Also virtual the bus model could be modified to implement
cycle-accurate emulation for system buses commonly used in target architectures,
such as Advanced eXtensible Interface (AXI), Processor Local Bus (PLB) or
Peripheral Component Interconnect express (PCIe). Before platform deployment,
hardware IPs are usually wrapped in a slave wrapper for the specific architecture’s
system bus. As it is, the currently supported design flow partially helps system
wide validation, but mistakes made when mapping the hardware IP in the target
system bus may go by unnoticed.

Fourthly, QEMU co-simulation PLI could be ported to DPI, or at least adapted
according to DPI’s possibilities. Xilinx’s standard Verilog simulators do not sup-
port PLI, and integrating QEMU connection in Vivado Simulator or Isim would
be a nice feature.

Finally, the existing extensions’ implementations could be enhanced, adding sup-
port for port-mapped I/O on plugins and external models, allowing to simulate
port-mapped accelerators with low latency dedicated interfaces such as Device
Control Register (DCR) or Fast Simplex Link (FSL) buses. Also, adapting these
extensions to follow FMI standards would allow for a more portable interface, link-
ing up with other simulators of various domains, since there are many simulation
tools in other domains that support this standard.
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Appendix A

Linux Support Material

A.1 Real-time Linux Patching, Compilation and
QEMU Boot with Buildroot

In this section, detailed steps will be shown on how to compile a real-time Linux
kernel using Buildroot, presenting the available real-time solutions. It will also
be shown how to generate a kernel image and root filesystem with an example
cross-compiled C++ hello world application, as well as how to use QEMU to boot
the kernel and execute the application.

A.1.1 Buildroot Installation

The latest stable buildroot version can be downloaded from:

http://buildroot.uclibc.org/downloads/

This location also maintains also stable versions of Buildroot, as well as Release
Candidate (RC) versions, although their use is not encouraged. As of this docu-
ment’s elaboration, the latest stable release is 2015.11 and it will be the one used
throughout this appendix.

To download Buildroot:

$ wget http :// buildroot .uclibc.org/ downloads /buildroot
-2015.11. tar.gz
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Afterwards, extract it to a desired directory:

$ tar -xvf buildroot -2015.11. tar.gz -C "target folder"

The result of the extraction is a folder called "buildroot-2015.11" with the set of
makefiles and scripts that comprise Buildroot. However, only the essential core
is there, with all toolchain, Linux sources and other services related to target
system generation being downloaded as needed. As such, all output produced
is maintained in "buildroot-2015.11/output". However, Buildroot supports and
encourages keeping directories for output generation outside of Buildroot’s main
folder, as several output directories may be maintained for separate architectures
and target systems. An example of the directory organization may as follows:

working directory

Buildroot 2015.11

Buildroot outputs

Zedboard output

Atmel SAMA5D3 Xplained output

BeagleBone Black output

The following command generates an output on an external directory:

Buildroot 2015.11 $ make O=" external output directory "

Afterwards, make commands may be ran directly from the output directory.

A.1.2 Real-time Linux Compilation

Buildroot provides a set of default configurations for a wide number of supported
boards. To list the supported defconfigs run:

$ make list - defconfigs

For this example, the following defconfig will be used:

$ make qemu_arm_vexpress_defconfig

To access kernel-specific configuration, a graphical menu can be prompted using:

$ make linux - menuconfig
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By accessing the kernel features, it is possible to observe that no real-time pre-
emption is available

Figure A.1: Linux menuconfig kernel configuration

Figure A.2: Linux menuconfig kernel features
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Figure A.3: Linux menuconfig preemption

To enable real-time preemption, a patch is maintained in kernel.org, formally
known as the RT-Preempt Patch. The latest stable version of the RT-Preempt
patch can be found in:

https://www.kernel.org/pub/linux/kernel/projects/rt

Buildroot provides support to patch the kernel. To launch Buildroot configuration
menu:

$ make menuconfig

Fill the Custom Kernel patch field with the the .gz patch file URL, matching it
with the Kernel version.

Afterwards, if the kernel configuration menu is accessed again, real-time preemp-
tion will be available.

As an alternative, Buildroot supports Xenomai and RTAI extensions to the kernel.
To enable them :

$ make menuconfig
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Figure A.4: Menuconfig Kernel

Figure A.5: Menuconfig kernel patch
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Figure A.6: Linux menuconfig real-time preemption

Figure A.7: Menuconfig kernel
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Figure A.8: Menuconfig kernel extensions

Figure A.9: Menuconfig Xenomai/RTAI
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Specific to Xenomai:

$ make menuconfig

Figure A.10: Menuconfig target packages

Figure A.11: Menuconfig real-time

Finally, to compile the kernel simple run:

$ make
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Figure A.12: Menuconfig Xenomai Userspace

A.1.3 Cross-compiling a Hello World Application with Buil-
droot

Buildroot will download and install cross-compilation tools in a corresponding
output directory. The cross-compiling toolchain can be found in:

( buildroot output directory )/host/usr/bin

For example, for an ARM architecture with uClibc, an hello world C++ applica-
tion can be compiled with

$ ( buildroot output directory )/host/usr/bin/arm -
buildroot -linux -uclibcgnueabi -g++ hello world.c -o
hello world

To enable C++ support, and thus install cross-compile g++:

$ make menuconfig
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Figure A.13: Menuconfig toolchain

Figure A.14: Menuconfig enable C++ support
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A.1.4 Booting a Cross-compiled Application with Linux in
QEMU

Buildroot provides a set of defconfigs for QEMU machines. The following are
supported as of Buildroot 2015.11

qemu_aarch64_virt_defconfig
qemu_arm_nuri_defconfig
qemu_arm_versatile_defconfig
qemu_arm_vexpress_defconfig
qemu_microblazebe_mmu_defconfig
qemu_microblazeel_mmu_defconfig
qemu_mips64_malta_defconfig
qemu_mips64el_malta_defconfig
qemu_mips_malta_defconfig
qemu_mipsel_malta_defconfig
qemu_ppc64_pseries_defconfig
qemu_ppc_g3beige_defconfig
qemu_ppc_mpc8544ds_defconfig
qemu_ppc_virtex_ml507_defconfig
qemu_sh4_r2d_defconfig
qemu_sh4eb_r2d_defconfig
qemu_sparc64_sun4u_defconfig
qemu_sparc_ss10_defconfig
qemu_x86_64_defconfig
qemu_x86_defconfig

For each QEMU board, there is a corresponding readme.txt containing a QEMU
command that can be used to boot the generated image in:

Buildroot2015 .11/ board/qemu /( machine )

For the arm-vexpress machine:

$ cat Buildroot2015 .11/ board/qemu/arm - vexpress /readme.
txt

Run the emulation with:

qemu -system -arm -M vexpress -a9 -m 256 -kernel output/
images/zImage -dtb output/images/vexpress -v2p -ca9.
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dtb -drive file=output/images/rootfs.ext2 ,if=sd -
append " console =ttyAMA0 ,115200 root =/ dev/ mmcblk0 " -
serial stdio -net nic ,model= lan9118 -net user

The login prompt will appear in the terminal that
started Qemu. The

graphical window is the framebuffer .

Tested with QEMU 2.3.0

By modifying the command and redirecting the host 2222 port to port 22 of the
target machine, it is possible to send the application from host to emulated target
if the emulated target platform supports network. To redirect TCP/IP ports:

$ (QEMU command ) -redir tcp :2222::22

After emulation is running in QEMU, the hello world application can be sent using
scp from the host:

$ scp -P 2222 ’hello world ’ ( username ) @localhost :( target
directory )

To add support to ssh and enable dhcp in the generated kernel image:

$ make menuconfig

Enable DHCP daemon, dropbear and openSSH:
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Figure A.15: Menuconfig target packages

Figure A.16: Menuconfig networking applications
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Figure A.17: Menuconfig DHCP daemon

Figure A.18: Menuconfig dropbear
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Figure A.19: Menuconfig openSSH

Make sure eth0 is assigned to be configured through DHCP:

$ make menuconfig

Figure A.20: Menuconfig system configuration
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Figure A.21: Menuconfig DHCP for eth0

Alternatively, if there is no network support on the machine, the cross-compiled
application can be copied to a directory to be included in the generated root
filesystem before running make:

$ cp -f ’hello world ’ ( Buildroot output)/target /( root
filesystem directory )

A.2 Device Tree Versatile Express A-9 .dts File
Example

/*
* ARM Ltd. Versatile Express
*
* CoreTile Express A9x4
* Cortex -A9 MPCore (V2P -CA9)
*
* HBI -0191B
*/
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/dts -v1/;

/ {
model = "V2P -CA9";
arm ,hbi = <0x191 >;
arm ,vexpress ,site = <0xf >;
compatible = "arm ,vexpress ,v2p -ca9", "arm ,

vexpress ";
interrupt -parent = <&gic >;
#address -cells = <1>;
#size -cells = <1>;

chosen { };

aliases {
serial0 = & v2m_serial0 ;
serial1 = & v2m_serial1 ;
serial2 = & v2m_serial2 ;
serial3 = & v2m_serial3 ;
i2c0 = & v2m_i2c_dvi ;
i2c1 = & v2m_i2c_pcie ;

};

cpus {
#address -cells = <1>;
#size -cells = <0>;

cpu@0 {
device_type = "cpu";
compatible = "arm ,cortex -a9";
reg = <0>;
next -level -cache = <&L2 >;

};

cpu@1 {
device_type = "cpu";
compatible = "arm ,cortex -a9";
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reg = <1>;
next -level -cache = <&L2 >;

};

cpu@2 {
device_type = "cpu";
compatible = "arm ,cortex -a9";
reg = <2>;
next -level -cache = <&L2 >;

};

cpu@3 {
device_type = "cpu";
compatible = "arm ,cortex -a9";
reg = <3>;
next -level -cache = <&L2 >;

};
};

memory@60000000 {
device_type = "memory";
reg = <0 x60000000 0x40000000 >;

};

clcd@10020000 {
compatible = "arm ,pl111", "arm , primecell

";
reg = <0 x10020000 0x1000 >;
interrupts = <0 44 4>;
clocks = <&oscclk1 >, <&oscclk2 >;
clock -names = " clcdclk ", " apb_pclk ";

};

memory - controller@100e0000 {
compatible = "arm ,pl341", "arm , primecell

";
reg = <0 x100e0000 0x1000 >;

142



clocks = <&oscclk2 >;
clock -names = " apb_pclk ";

};

memory - controller@100e1000 {
compatible = "arm ,pl354", "arm , primecell

";
reg = <0 x100e1000 0x1000 >;
interrupts = <0 45 4>,

<0 46 4>;
clocks = <&oscclk2 >;
clock -names = " apb_pclk ";

};

timer@100e4000 {
compatible = "arm ,sp804", "arm , primecell

";
reg = <0 x100e4000 0x1000 >;
interrupts = <0 48 4>,

<0 49 4>;
clocks = <&oscclk2 >, <&oscclk2 >;
clock -names = "timclk", " apb_pclk ";
status = " disabled ";

};

watchdog@100e5000 {
compatible = "arm ,sp805", "arm , primecell

";
reg = <0 x100e5000 0x1000 >;
interrupts = <0 51 4>;
clocks = <&oscclk2 >, <&oscclk2 >;
clock -names = " wdogclk ", " apb_pclk ";

};

scu@1e000000 {
compatible = "arm ,cortex -a9 -scu";
reg = <0 x1e000000 0x58 >;
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};

timer@1e000600 {
compatible = "arm ,cortex -a9 -twd -timer";
reg = <0 x1e000600 0x20 >;
interrupts = <1 13 0xf04 >;

};

watchdog@1e000620 {
compatible = "arm ,cortex -a9 -twd -wdt";
reg = <0 x1e000620 0x20 >;
interrupts = <1 14 0xf04 >;

};

gic: interrupt - controller@1e001000 {
compatible = "arm ,cortex -a9 -gic";
#interrupt -cells = <3>;
#address -cells = <0>;
interrupt - controller ;
reg = <0 x1e001000 0x1000 >,

<0 x1e000100 0x100 >;
};

L2: cache - controller@1e00a000 {
compatible = "arm ,pl310 -cache";
reg = <0 x1e00a000 0x1000 >;
interrupts = <0 43 4>;
cache -level = <2>;
arm ,data - latency = <1 1 1>;
arm ,tag - latency = <1 1 1>;

};

pmu {
compatible = "arm ,cortex -a9 -pmu";
interrupts = <0 60 4>,

<0 61 4>,
<0 62 4>,

144



<0 63 4>;
};

dcc {
compatible = "arm ,vexpress ,config -bus";
arm ,vexpress ,config -bridge = <&

v2m_sysreg >;

osc@0 {
/* ACLK clock to the AXI master

port on the test chip */
compatible = "arm ,vexpress -osc";
arm ,vexpress -sysreg ,func = <1

0>;
freq -range = <30000000

50000000 >;
#clock -cells = <0>;
clock -output -names = " extsaxiclk

";
};

oscclk1 : osc@1 {
/* Reference clock for the CLCD

*/
compatible = "arm ,vexpress -osc";
arm ,vexpress -sysreg ,func = <1

1>;
freq -range = <10000000

80000000 >;
#clock -cells = <0>;
clock -output -names = " clcdclk ";

};

smbclk: oscclk2 : osc@2 {
/* Reference clock for the test

chip internal PLLs */
compatible = "arm ,vexpress -osc";

145



arm ,vexpress -sysreg ,func = <1
2>;

freq -range = <33000000
100000000 >;

#clock -cells = <0>;
clock -output -names = " tcrefclk ";

};

volt@0 {
/* Test Chip internal logic

voltage */
compatible = "arm ,vexpress -volt"

;
arm ,vexpress -sysreg ,func = <2

0>;
regulator -name = "VD10";
regulator -always -on;
label = "VD10";

};

volt@1 {
/* PL310 , L2 cache , RAM cell

supply (not PL310 logic) */
compatible = "arm ,vexpress -volt"

;
arm ,vexpress -sysreg ,func = <2

1>;
regulator -name = " VD10_S2 ";
regulator -always -on;
label = " VD10_S2 ";

};

volt@2 {
/* Cortex -A9 system supply ,

Cores , MPEs , SCU and PL310
logic */
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compatible = "arm ,vexpress -volt"
;

arm ,vexpress -sysreg ,func = <2
2>;

regulator -name = " VD10_S3 ";
regulator -always -on;
label = " VD10_S3 ";

};

volt@3 {
/* DDR2 SDRAM and Test Chip DDR2

I/O supply */
compatible = "arm ,vexpress -volt"

;
arm ,vexpress -sysreg ,func = <2

3>;
regulator -name = "VCC1V8";
regulator -always -on;
label = "VCC1V8";

};

volt@4 {
/* DDR2 SDRAM VTT termination

voltage */
compatible = "arm ,vexpress -volt"

;
arm ,vexpress -sysreg ,func = <2

4>;
regulator -name = " DDR2VTT ";
regulator -always -on;
label = " DDR2VTT ";

};

volt@5 {
/* Local board supply for

miscellaneous logic external
to the Test Chip */
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arm ,vexpress -sysreg ,func = <2
5>;

compatible = "arm ,vexpress -volt"
;

regulator -name = "VCC3V3";
regulator -always -on;
label = "VCC3V3";

};

amp@0 {
/* PL310 , L2 cache , RAM cell

supply (not PL310 logic) */
compatible = "arm ,vexpress -amp";
arm ,vexpress -sysreg ,func = <3

0>;
label = " VD10_S2 ";

};

amp@1 {
/* Cortex -A9 system supply ,

Cores , MPEs , SCU and PL310
logic */

compatible = "arm ,vexpress -amp";
arm ,vexpress -sysreg ,func = <3

1>;
label = " VD10_S3 ";

};

power@0 {
/* PL310 , L2 cache , RAM cell

supply (not PL310 logic) */
compatible = "arm ,vexpress -power

";
arm ,vexpress -sysreg ,func = <12

0>;
label = " PVD10_S2 ";

};
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power@1 {
/* Cortex -A9 system supply ,

Cores , MPEs , SCU and PL310
logic */

compatible = "arm ,vexpress -power
";

arm ,vexpress -sysreg ,func = <12
1>;

label = " PVD10_S3 ";
};

};

smb {
compatible = "simple -bus";

#address -cells = <2>;
#size -cells = <1>;
ranges = <0 0 0 x40000000 0x04000000 >,

<1 0 0 x44000000 0x04000000 >,
<2 0 0 x48000000 0x04000000 >,
<3 0 0 x4c000000 0x04000000 >,
<7 0 0 x10000000 0x00020000 >;

#interrupt -cells = <1>;
interrupt -map -mask = <0 0 63>;
interrupt -map = <0 0 0 &gic 0 0 4>,

<0 0 1 &gic 0 1 4>,
<0 0 2 &gic 0 2 4>,
<0 0 3 &gic 0 3 4>,
<0 0 4 &gic 0 4 4>,
<0 0 5 &gic 0 5 4>,
<0 0 6 &gic 0 6 4>,
<0 0 7 &gic 0 7 4>,
<0 0 8 &gic 0 8 4>,
<0 0 9 &gic 0 9 4>,
<0 0 10 &gic 0 10 4>,
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<0 0 11 &gic 0 11 4>,
<0 0 12 &gic 0 12 4>,
<0 0 13 &gic 0 13 4>,
<0 0 14 &gic 0 14 4>,
<0 0 15 &gic 0 15 4>,
<0 0 16 &gic 0 16 4>,
<0 0 17 &gic 0 17 4>,
<0 0 18 &gic 0 18 4>,
<0 0 19 &gic 0 19 4>,
<0 0 20 &gic 0 20 4>,
<0 0 21 &gic 0 21 4>,
<0 0 22 &gic 0 22 4>,
<0 0 23 &gic 0 23 4>,
<0 0 24 &gic 0 24 4>,
<0 0 25 &gic 0 25 4>,
<0 0 26 &gic 0 26 4>,
<0 0 27 &gic 0 27 4>,
<0 0 28 &gic 0 28 4>,
<0 0 29 &gic 0 29 4>,
<0 0 30 &gic 0 30 4>,
<0 0 31 &gic 0 31 4>,
<0 0 32 &gic 0 32 4>,
<0 0 33 &gic 0 33 4>,
<0 0 34 &gic 0 34 4>,
<0 0 35 &gic 0 35 4>,
<0 0 36 &gic 0 36 4>,
<0 0 37 &gic 0 37 4>,
<0 0 38 &gic 0 38 4>,
<0 0 39 &gic 0 39 4>,
<0 0 40 &gic 0 40 4>,
<0 0 41 &gic 0 41 4>,
<0 0 42 &gic 0 42 4>;

/ include / "vexpress -v2m.dtsi"
};

};
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Appendix B

QEMU Support Material

B.1 QEMU Machines

B.1.1 Aarch64 Architecture

$ qemu -system - aarch64 -machine ?
Supported machines are:
akita Akita PDA (PXA270)
borzoi Borzoi PDA (PXA270)
canon -a1100 Canon PowerShot A1100 IS
cheetah Palm Tungsten |E aka. Cheetah PDA (

OMAP310 )
collie Collie PDA (SA -1110)
connex Gumstix Connex (PXA255)
cubieboard cubietech cubieboard
highbank Calxeda Highbank (ECX -1000)
integratorcp ARM Integrator /CP (ARM926EJ -S)
kzm ARM KZM Emulation Baseboard (

ARM1136 )
lm3s6965evb Stellaris LM3S6965EVB
lm3s811evb Stellaris LM3S811EVB
mainstone Mainstone II (PXA27x)
midway Calxeda Midway (ECX -2000)
musicpal Marvell 88 w8618 / MusicPal (

ARM926EJ -S)
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n800 Nokia N800 tablet aka. RX -34 (
OMAP2420 )

n810 Nokia N810 tablet aka. RX -44 (
OMAP2420 )

none empty machine
nuri Samsung NURI board ( Exynos4210 )
realview -eb ARM RealView Emulation Baseboard (

ARM926EJ -S)
realview -eb -mpcore ARM RealView Emulation Baseboard (

ARM11MPCore )
realview -pb -a8 ARM RealView Platform Baseboard for

Cortex -A8
realview -pbx -a9 ARM RealView Platform Baseboard

Explore for Cortex -A9
smdkc210 Samsung SMDKC210 board ( Exynos4210 )
spitz Spitz PDA (PXA270)
sx1 Siemens SX1 ( OMAP310 ) V2
sx1 -v1 Siemens SX1 ( OMAP310 ) V1
terrier Terrier PDA (PXA270)
tosa Tosa PDA (PXA255)
verdex Gumstix Verdex (PXA270)
versatileab ARM Versatile /AB (ARM926EJ -S)
versatilepb ARM Versatile /PB (ARM926EJ -S)
vexpress -a15 ARM Versatile Express for Cortex -

A15
vexpress -a9 ARM Versatile Express for Cortex -A9
virt ARM Virtual Machine
xilinx -zynq -a9 Xilinx Zynq Platform Baseboard for

Cortex -A9
z2 Zipit Z2 (PXA27x)

B.1.2 Alpha Architecture

$ qemu -system -alpha -machine ?
Supported machines are:
clipper Alpha DP264/ CLIPPER ( default )
none empty machine
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B.1.3 ARM Architecture

$ qemu -system -arm -machine ?
Supported machines are:
akita Akita PDA (PXA270)
borzoi Borzoi PDA (PXA270)
canon -a1100 Canon PowerShot A1100 IS
cheetah Palm Tungsten |E aka. Cheetah PDA (

OMAP310 )
collie Collie PDA (SA -1110)
connex Gumstix Connex (PXA255)
cubieboard cubietech cubieboard
highbank Calxeda Highbank (ECX -1000)
integratorcp ARM Integrator /CP (ARM926EJ -S)
kzm ARM KZM Emulation Baseboard (

ARM1136 )
lm3s6965evb Stellaris LM3S6965EVB
lm3s811evb Stellaris LM3S811EVB
mainstone Mainstone II (PXA27x)
midway Calxeda Midway (ECX -2000)
musicpal Marvell 88 w8618 / MusicPal (

ARM926EJ -S)
n800 Nokia N800 tablet aka. RX -34 (

OMAP2420 )
n810 Nokia N810 tablet aka. RX -44 (

OMAP2420 )
none empty machine
nuri Samsung NURI board ( Exynos4210 )
realview -eb ARM RealView Emulation Baseboard (

ARM926EJ -S)
realview -eb -mpcore ARM RealView Emulation Baseboard (

ARM11MPCore )
realview -pb -a8 ARM RealView Platform Baseboard for

Cortex -A8
realview -pbx -a9 ARM RealView Platform Baseboard

Explore for Cortex -A9
smdkc210 Samsung SMDKC210 board ( Exynos4210 )
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spitz Spitz PDA (PXA270)
sx1 Siemens SX1 ( OMAP310 ) V2
sx1 -v1 Siemens SX1 ( OMAP310 ) V1
terrier Terrier PDA (PXA270)
tosa Tosa PDA (PXA255)
verdex Gumstix Verdex (PXA270)
versatileab ARM Versatile /AB (ARM926EJ -S)
versatilepb ARM Versatile /PB (ARM926EJ -S)
vexpress -a15 ARM Versatile Express for Cortex -

A15
vexpress -a9 ARM Versatile Express for Cortex -A9
virt ARM Virtual Machine
xilinx -zynq -a9 Xilinx Zynq Platform Baseboard for

Cortex -A9
z2 Zipit Z2 (PXA27x)

B.1.4 CRIS Architecture

$ qemu -system -cris -machine ?
Supported machines are:
axis -dev88 AXIS devboard 88 ( default )
none empty machine

B.1.5 i386 Architecture

$ qemu -system -i386 -machine ?
Supported machines are:
pc Standard PC (i440FX + PIIX , 1996) (

alias of pc -i440fx -2.2)
pc -i440fx -2.2 Standard PC (i440FX + PIIX , 1996) (

default )
pc -i440fx -2.1 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -2.0 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -1.7 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -1.6 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -1.5 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -1.4 Standard PC (i440FX + PIIX , 1996)
pc -1.3 Standard PC (i440FX + PIIX , 1996)

154



pc -1.2 Standard PC (i440FX + PIIX , 1996)
pc -1.1 Standard PC (i440FX + PIIX , 1996)
pc -1.0 Standard PC (i440FX + PIIX , 1996)
pc -0.15 Standard PC (i440FX + PIIX , 1996)
pc -0.14 Standard PC (i440FX + PIIX , 1996)
pc -0.13 Standard PC (i440FX + PIIX , 1996)
pc -0.12 Standard PC (i440FX + PIIX , 1996)
pc -0.11 Standard PC (i440FX + PIIX , 1996)
pc -0.10 Standard PC (i440FX + PIIX , 1996)
q35 Standard PC (Q35 + ICH9 , 2009) (

alias of pc -q35 -2.2)
pc -q35 -2.2 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -2.1 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -2.0 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -1.7 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -1.6 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -1.5 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -1.4 Standard PC (Q35 + ICH9 , 2009)
isapc ISA -only PC
none empty machine

B.1.6 LatticeMicro32 Architecture

$ qemu -system -lm32 -machine ?
Supported machines are:
lm32 -evr LatticeMico32 EVR32 eval system (

default )
lm32 - uclinux lm32 platform for uClinux and u-

boot by Theobroma Systems
milkymist Milkymist One
none empty machine

B.1.7 Motorolla 68000 Architecture

$ qemu -system -m68k -machine ?
Supported machines are:
an5206 Arnewsh 5206
dummy Dummy board
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mcf5208evb MCF5206EVB ( default )
none empty machine

B.1.8 Microblaze Softcore Architecture

$ qemu -system - microblaze -machine ?
Supported machines are:
none empty machine
petalogix -ml605 PetaLogix linux refdesign for

xilinx ml605 little endian
petalogix - s3adsp1800 PetaLogix linux refdesign for

xilinx Spartan 3 ADSP1800 ( default )

B.1.9 Microblaze Softcore Little Endian Architecture

$ qemu -system - microblazeel -machine ?
Supported machines are:
none empty machine
petalogix -ml605 PetaLogix linux refdesign for

xilinx ml605 little endian
petalogix - s3adsp1800 PetaLogix linux refdesign for

xilinx Spartan 3 ADSP1800 ( default )

B.1.10 MIPS Architecture

$ qemu -system -mips -machine ?
Supported machines are:
magnum MIPS Magnum
malta MIPS Malta Core LV ( default )
mips mips r4k platform
mipssim MIPS MIPSsim platform
none empty machine
pica61 Acer Pica 61

B.1.11 MIPS Little Endian Architecture

$ qemu -system -mipsel -machine ?
Supported machines are:
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magnum MIPS Magnum
malta MIPS Malta Core LV ( default )
mips mips r4k platform
mipssim MIPS MIPSsim platform
none empty machine
pica61 Acer Pica 61

B.1.12 MIPS64 Architecture

$ qemu -system -mips64 -machine ?
Supported machines are:
magnum MIPS Magnum
malta MIPS Malta Core LV ( default )
mips mips r4k platform
mipssim MIPS MIPSsim platform
none empty machine
pica61 Acer Pica 61

B.1.13 MIPS64 Little Endian Architecture

$ qemu -system - mips64el -machine ?
Supported machines are:
fulong2e Fulong 2e mini pc
magnum MIPS Magnum
malta MIPS Malta Core LV ( default )
mips mips r4k platform
mipssim MIPS MIPSsim platform
none empty machine
pica61 Acer Pica 61

B.1.14 Moxie Softcore Architecture

$ qemu -system -moxie -machine ?
Supported machines are:
moxiesim Moxie simulator platform ( default )
none empty machine

157



B.1.15 OpenRisc32 Architecture

$ qemu -system -or32 -machine ?
Supported machines are:
none empty machine
or32 -sim or32 simulation ( default )

B.1.16 PowerPC Architecture

$ qemu -system -ppc -machine ?
Supported machines are:
bamboo bamboo
g3beige Heathrow based PowerMAC ( default )
mac99 Mac99 based PowerMAC
mpc8544ds mpc8544ds
none empty machine
ppce500 generic paravirt e500 platform
prep PowerPC PREP platform
ref405ep ref405ep
taihu taihu
virtex -ml507 Xilinx Virtex ML507 reference

design

B.1.17 PowerPC64 Architecture

$ qemu -system -ppc64 -machine ?
Supported machines are:
bamboo bamboo
g3beige Heathrow based PowerMAC
mac99 Mac99 based PowerMAC
mpc8544ds mpc8544ds
none empty machine
ppce500 generic paravirt e500 platform
prep PowerPC PREP platform
ref405ep ref405ep
pseries -2.1 pSeries Logical Partition (PAPR

compliant ) v2.1
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pseries pSeries Logical Partition (PAPR
compliant ) v2.2 (alias of pseries -2.2)

pseries -2.2 pSeries Logical Partition (PAPR
compliant ) v2.2 ( default )

taihu taihu
virtex -ml507 Xilinx Virtex ML507 reference

design

B.1.18 PowerPC Embedded Architecture

$ qemu -system -ppcemb -machine ?
Supported machines are:
bamboo bamboo
none empty machine
ref405ep ref405ep
taihu taihu
virtex -ml507 Xilinx Virtex ML507 reference

design

B.1.19 ESA/390 Architecture

$ qemu -system -s390x -machine ?
Supported machines are:
none empty machine
s390 -ccw VirtIO -ccw based S390 machine (

alias of s390 -ccw -virtio)
s390 -ccw -virtio VirtIO -ccw based S390 machine
s390 VirtIO based S390 machine (alias of

s390 -virtio)
s390 -virtio VirtIO based S390 machine ( default )

B.1.20 SuperH4 Architecture

$ qemu -system -sh4 -machine ?
Supported machines are:
none empty machine
r2d r2d -plus board
shix shix card ( default )
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B.1.21 SuperH4 Big Endian Architecture

$ qemu -system -sh4eb -machine ?
Supported machines are:
none empty machine
r2d r2d -plus board
shix shix card ( default )

B.1.22 SPARC Architecture

$ qemu -system -sparc -machine ?
Supported machines are:
LX Sun4m platform , SPARCstation LX
SPARCClassic Sun4m platform , SPARCClassic
SPARCbook Sun4m platform , SPARCbook
SS -10 Sun4m platform , SPARCstation 10
SS -20 Sun4m platform , SPARCstation 20
SS -4 Sun4m platform , SPARCstation 4
SS -5 Sun4m platform , SPARCstation 5 (

default )
SS -600 MP Sun4m platform , SPARCserver 600 MP
Voyager Sun4m platform , SPARCstation

Voyager
leon3_generic Leon -3 generic
none empty machine

B.1.23 SPARC64 Architecture

$ qemu -system - sparc64 -machine ?
Supported machines are:
Niagara Sun4v platform , Niagara
none empty machine
sun4u Sun4u platform ( default )
sun4v Sun4v platform

B.1.24 Tricore Architecture

$ qemu -system - tricore -machine ?
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Supported machines are:
none empty machine
tricore_testboard a minimal TriCore board

B.1.25 Unicore32 Architecture

$ qemu -system - unicore32 -machine ?
Supported machines are:
none empty machine
puv3 PKUnity Version -3 based on

UniCore32 ( default )

B.1.26 x86_64 Architecture

$ qemu -system -x86_64 -machine ?
Supported machines are:
pc Standard PC (i440FX + PIIX , 1996) (

alias of pc -i440fx -2.2)
pc -i440fx -2.2 Standard PC (i440FX + PIIX , 1996) (

default )
pc -i440fx -2.1 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -2.0 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -1.7 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -1.6 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -1.5 Standard PC (i440FX + PIIX , 1996)
pc -i440fx -1.4 Standard PC (i440FX + PIIX , 1996)
pc -1.3 Standard PC (i440FX + PIIX , 1996)
pc -1.2 Standard PC (i440FX + PIIX , 1996)
pc -1.1 Standard PC (i440FX + PIIX , 1996)
pc -1.0 Standard PC (i440FX + PIIX , 1996)
pc -0.15 Standard PC (i440FX + PIIX , 1996)
pc -0.14 Standard PC (i440FX + PIIX , 1996)
pc -0.13 Standard PC (i440FX + PIIX , 1996)
pc -0.12 Standard PC (i440FX + PIIX , 1996)
pc -0.11 Standard PC (i440FX + PIIX , 1996)
pc -0.10 Standard PC (i440FX + PIIX , 1996)
q35 Standard PC (Q35 + ICH9 , 2009) (

alias of pc -q35 -2.2)
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pc -q35 -2.2 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -2.1 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -2.0 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -1.7 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -1.6 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -1.5 Standard PC (Q35 + ICH9 , 2009)
pc -q35 -1.4 Standard PC (Q35 + ICH9 , 2009)
isapc ISA -only PC
none empty machine

B.1.27 Xtensa Architecture

$ qemu -system -xtensa -machine ?
Supported machines are:
kc705 kc705 EVB (dc232b)
lx200 lx200 EVB (dc232b)
lx60 lx60 EVB (dc232b)
ml605 ml605 EVB (dc232b)
none empty machine
sim sim machine (dc232b) ( default )

B.1.28 Xtensa Big Endian Architecture

$ qemu -system - xtensaeb -machine ?
Supported machines are:
kc705 kc705 EVB (fsf)
lx200 lx200 EVB (fsf)
lx60 lx60 EVB (fsf)
ml605 ml605 EVB (fsf)
none empty machine
sim sim machine (fsf) ( default )

B.2 QEMU Tricore Testboard Machine Example

1 # include "hw/hw.h"
2 # include "hw/ devices .h"
3 # include "net/net.h"
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4 # include "sysemu/sysemu.h"
5 # include "hw/boards.h"
6 # include "hw/loader.h"
7 # include "sysemu/block - backend .h"
8 # include "exec/address -spaces.h"
9 # include "hw/block/flash.h"
10 # include "elf.h"
11 # include "hw/ tricore / tricore .h"
12 # include "qemu/error -report.h"
13
14
15 /* Board init. */
16
17 static struct tricore_boot_info tricoretb_binfo ;
18
19 static void tricore_load_kernel ( CPUTriCoreState *env)
20 {
21 uint64_t entry;
22 long kernel_size ;
23
24 kernel_size = load_elf ( tricoretb_binfo .

kernel_filename , NULL ,
25 NULL , ( uint64_t *)&entry ,

NULL ,
26 NULL , 0,
27 ELF_MACHINE , 1);
28 if ( kernel_size <= 0) {
29 error_report ("qemu: no kernel file ’%s’",
30 tricoretb_binfo . kernel_filename );
31 exit (1);
32 }
33 env ->PC = entry;
34
35 }
36
37 static void tricore_testboard_init ( MachineState *machine

, int board_id )
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38 {
39 TriCoreCPU *cpu;
40 CPUTriCoreState *env;
41
42 MemoryRegion *sysmem = get_system_memory ();
43 MemoryRegion * ext_cram = g_new(MemoryRegion , 1);
44 MemoryRegion * ext_dram = g_new(MemoryRegion , 1);
45 MemoryRegion * int_cram = g_new(MemoryRegion , 1);
46 MemoryRegion * int_dram = g_new(MemoryRegion , 1);
47 MemoryRegion * pcp_data = g_new(MemoryRegion , 1);
48 MemoryRegion * pcp_text = g_new(MemoryRegion , 1);
49
50 if (! machine -> cpu_model ) {
51 machine -> cpu_model = "tc1796";
52 }
53 cpu = cpu_tricore_init (machine -> cpu_model );
54 if (! cpu) {
55 error_report ("Unable to find CPU definition ");
56 exit (1);
57 }
58 env = &cpu ->env;
59 memory_region_init_ram (ext_cram , NULL , "

powerlink_ext_c .ram", 2*1024*1024 , & error_abort );
60 vmstate_register_ram_global ( ext_cram );
61 memory_region_init_ram (ext_dram , NULL , "

powerlink_ext_d .ram", 4*1024*1024 , & error_abort );
62 vmstate_register_ram_global ( ext_dram );
63 memory_region_init_ram (int_cram , NULL , "

powerlink_int_c .ram", 48*1024 , & error_abort );
64 vmstate_register_ram_global ( int_cram );
65 memory_region_init_ram (int_dram , NULL , "

powerlink_int_d .ram", 48*1024 , & error_abort );
66 vmstate_register_ram_global ( int_dram );
67 memory_region_init_ram (pcp_data , NULL , "

powerlink_pcp_data .ram", 16*1024 , & error_abort );
68 vmstate_register_ram_global ( pcp_data );
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69 memory_region_init_ram (pcp_text , NULL , "
powerlink_pcp_text .ram", 32*1024 , & error_abort );

70 vmstate_register_ram_global ( pcp_text );
71
72 memory_region_add_subregion (sysmem , 0x80000000 ,

ext_cram );
73 memory_region_add_subregion (sysmem , 0xa1000000 ,

ext_dram );
74 memory_region_add_subregion (sysmem , 0xd4000000 ,

int_cram );
75 memory_region_add_subregion (sysmem , 0xd0000000 ,

int_dram );
76 memory_region_add_subregion (sysmem , 0xf0050000 ,

pcp_data );
77 memory_region_add_subregion (sysmem , 0xf0060000 ,

pcp_text );
78
79 tricoretb_binfo . ram_size = machine -> ram_size ;
80 tricoretb_binfo . kernel_filename = machine ->

kernel_filename ;
81
82 if (machine -> kernel_filename ) {
83 tricore_load_kernel (env);
84 }
85 }
86
87 static void tricoreboard_init ( MachineState * machine )
88 {
89 tricore_testboard_init (machine , 0x183);
90 }
91
92 static QEMUMachine ttb_machine = {
93 .name = " tricore_testboard ",
94 .desc = "a minimal TriCore board",
95 .init = tricoreboard_init ,
96 . is_default = 0,
97 };
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98
99 static void tricore_testboard_machine_init (void)
100 {
101 qemu_register_machine (& ttb_machine );
102 }
103
104 machine_init ( tricore_testboard_machine_init );

B.3 QEMU Memory-Mapped I/O LED Device
Example

1 # include "hw/sysbus.h"
2
3 /* For casting and type - checking */
4 #define TYPE_MMIO_LED "mmio -led"
5 #define MMIO_LED (obj) OBJECT_CHECK (MMIOLEDState , (obj),

TYPE_MMIO_LED )
6 #define BASE_ADDRESS 0 x1340455
7
8 /* Convention for object related data structures is

ObjectState */
9 typedef struct MMIOLEDState {
10 SysBusDevice parent;
11 MemoryRegion iomem;
12 uint32_t led_on_state ;
13 } MMIOLEDState ;
14
15 /* Hardware transactions behaviour , to be registered in

MemoryRegionOps */
16 static uint64_t mmio_led_read (void *opaque , hwaddr

offset ,
17 unsigned size)
18 {
19 MMIOLEDState *s = MMIO_LED (opaque);
20 if(s-> led_on_state )
21 printf("DEBUG: LED IS ON\n");
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22 else
23 printf("DEBUG: LED IS OFF\n");
24 return s-> led_on_state ;
25 }
26 static void mmio_led_write (void *opaque , hwaddr offset ,
27 uint64_t value , unsigned size)
28 {
29 MMIOLEDState *s = MMIO_LED (opaque);
30 if(value)
31 {
32 s-> led_on_state = 0x1;
33 printf("DEBUG: LED TURNED ON\n");
34 }
35 else
36 {
37 s-> led_on_state = 0x0;
38 printf("DEBUG: LED TURNED OFF\n");
39 }
40 return;
41 }
42
43 /*To be associated with a MemoryRegion */
44 static const MemoryRegionOps mmio_led_ops = {
45 .read = mmio_led_read ,
46 .write = mmio_led_write ,
47 . endianness = DEVICE_NATIVE_ENDIAN ,
48 };
49
50 /* Memory -mapped LED device constructor */
51 static int mmio_led_init ( SysBusDevice *dev)
52 {
53 MMIOLEDState *s = MMIO_LED (dev);
54 /* Memory region constructor for io -mapped devices */
55 memory_region_init_io (&s->iomem , OBJECT(s), &

nn_led_ops , s, TYPE_MMIO_LED , 4);//4 bytes as
block size

56 /* Initiate parent mmio with constructed object */
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57 sysbus_init_mmio (dev , &s->iomem);
58 /* Map the MemoryRegion in index 0 of the internal

SysBusDevice MemoryRegion array to BASE_ADDRESS */
59 sysbus_mmio_map (sysbus_dev , 0, BASE_ADDRESS );
60 /* LED is initally turned off */
61 s-> led_on_state = 0x0;
62 printf("DEBUG: initializing LED device\n");
63 return 0;
64 }
65
66 /* Class related initiation and static construction */
67 static void mmio_led_class_init ( ObjectClass *obj_class ,

void *data)
68 {
69 SysBusDeviceClass *c = SYS_BUS_DEVICE_CLASS (

obj_class );
70 /* register Memory -mapped LED device constructor */
71 c->init = mmio_led_init ;
72 printf("DEBUG: registering MMIO_LED type ...\n");
73 }
74 /* Memory -Mapped LED device type data register */
75 static const TypeInfo mmio_led_info = {
76 .name = TYPE_MMIO_LED ,
77 .parent = TYPE_SYS_BUS_DEVICE ,
78 . instance_size = sizeof( MMIOLEDState ),
79 . class_init = mmio_led_class_init ,
80 };
81 static void mmio_led_register_types (void)
82 {
83 type_register_static (& mmio_led_info );
84 }
85 type_init ( mmio_led_register_types )
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Appendix C

VPI Example Routines

C.1 Pow System Function

# include <stdlib.h> /* ANSI C standard library */
# include <stdio.h> /* ANSI C standard input/output

library */
# include <stdarg.h> /* ANSI C standard arguments library

*/
# include " vpi_user .h" /* IEEE 1364 PLI VPI routine

library */
# include <math.h> /* Mathematical operations library */

C.1.1 Calltf Routine

PLI_INT32 PLIbook_PowCalltf ( PLI_BYTE8 * user_data )
{

s_vpi_value value_s ;
vpiHandle systf_handle , arg_itr , arg_handle ;
PLI_INT32 base , exp;
double result;
systf_handle = vpi_handle (vpiSysTfCall , NULL);
arg_itr = vpi_iterate (vpiArgument , systf_handle )

;
if ( arg_itr == NULL)
{
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vpi_printf ("ERROR: $pow failed to obtain
systf arg handles \n");

return (0);
}
/* read base from systf arg 1 ( compiletf has

already verified ) */
arg_handle = vpi_scan ( arg_itr );
value_s .format = vpiIntVal ;
vpi_get_value (arg_handle , & value_s );
base = value_s .value. integer ;
/* read exponent from systf arg 2 ( compiletf has

already verified ) */
arg_handle = vpi_scan ( arg_itr );
vpi_free_object ( arg_itr ); /* not calling scan

until returns null */
vpi_get_value (arg_handle , & value_s );
exp = value_s .value. integer ;
/* calculate result of base to power of exponent

*/
result = pow( (double)base , (double)exp );
/* write result to simulation as return value $

pow */
value_s .value. integer = ( PLI_INT32 )result;
vpi_put_value (systf_handle , &value_s , NULL ,

vpiNoDelay );
return (0);

}

C.1.2 Compiletf Routine

PLI_INT32 PLIbook_PowCompiletf ( PLI_BYTE8 * user_data )
{

vpiHandle systf_handle , arg_itr , arg_handle ;
PLI_INT32 tfarg_type ;
int err_flag = 0;
do

170



{ /* group all tests , so can break out of group
on error */

systf_handle = vpi_handle (vpiSysTfCall ,
NULL);

arg_itr = vpi_iterate (vpiArgument ,
systf_handle );

if ( arg_itr == NULL)
{

vpi_printf ("ERROR: $pow requires
2 arguments ; has none\n");

err_flag = 1;
break;

}
arg_handle = vpi_scan ( arg_itr );
tfarg_type = vpi_get (vpiType , arg_handle

);
if( ( tfarg_type != vpiReg) && (

tfarg_type != vpiIntegerVar ) && (
tfarg_type != vpiConstant ) )

{
vpi_printf ("ERROR: $pow arg1

must be number , variable or
net\n");

err_flag = 1;
break;

}
arg_handle = vpi_scan ( arg_itr );
if ( arg_handle == NULL)
{

vpi_printf ("ERROR: $pow requires
2nd argument \n");

err_flag = 1;
break;

}
tfarg_type = vpi_get (vpiType , arg_handle

);
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if ( ( tfarg_type != vpiReg) && (
tfarg_type != vpiIntegerVar ) && (
tfarg_type != vpiConstant ) )

{
vpi_printf ("ERROR: $pow arg2

must be number , variable or
net\n");

err_flag = 1;
break;

}
if ( vpi_scan ( arg_itr ) != NULL)
{

vpi_printf ("ERROR: $pow requires
2 arguments ; has too many\n"

);
vpi_free_object ( arg_itr );
err_flag = 1;
break;

}
} while (0 == 1); /* end of test group; only

executed once */
if ( err_flag )
{

vpi_control (vpiFinish , 1); /* abort
simulation */

}
return (0);

}

C.1.3 Sizetf Routine

PLI_INT32 PLI_PowSizetf ( PLI_BYTE8 * user_data )
{

return (32); /* $pow returns 32-bit values */
}

C.1.4 System Function Register
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void PLI_pow_register ()
{

s_vpi_systf_data tf_data ;
tf_data .type = vpiSysFunc ;
tf_data . sysfunctype = vpiSizedFunc ;
tf_data .tfname = "$pow";
tf_data .calltf = PLI_PowCalltf ;
tf_data . compiletf = PLI_PowCompiletf ;
tf_data .sizetf = PLI_PowSizetf ;
tf_data . user_data = NULL;
vpi_register_systf (& tf_data );

}
void (* vlog_startup_routines []) () =
{

/*** add user entries here ***/
PLI_pow_register ,
0 /*** final entry must be 0 ***/

};

C.2 Start of Simulation Callback

# include <stdlib.h> /* ANSI C standard library */
# include " vpi_user .h" /* IEEE 1364 PLI VPI routine

library */

C.2.1 Callback Routine

PLI_INT32 PLI_callback ( s_cb_data * callback_data )
{

vpi_printf (" Message : Start of simulation ");
}

C.2.2 Callback Register

void PLI_callback_register ()
{

s_cb_data cb_start_data ;
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cb_start_data .reason = cbStartOfSimulation ;
cb_start_data .cb_rtn = PLI_callback ;
cb_start_data .obj = NULL;
cb_start_data . user_data = NULL;
cb_start_data .time = NULL;
cb_start_data .value = NULL;
cb_finish_handle = vpi_register_cb (&

cb_start_data );
vpi_free_object ( cb_finish_handle );

}
void (* vlog_startup_routines []) () =
{

/*** add user entries here ***/
PLI_callback_register ,
0 /*** final entry must be 0 ***/

};
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Appendix D

FMI Simulators

Table D.1: Simulators with FMI support

Tool FMI Version Model Exchange Co-Simulation

20-sim 2.0 No Export Planned Slave
No Import No Master

1.0 No Export Planned Slave
No Import Planned Master

20-sim 2.0 No Export No Slave
Planned Import Planned Master

1.0 No Export No Slave
Planned Import Planned Master

Adams 2.0 Planned Export Available Slave
Planned Import Available Master

1.0 No Export Available Slave
No Import Available Master

Amesim 2.0 No Export Planned Slave
No Import Available Master

1.0 Available Export Available Slave
Available Import Available Master

ANSYS 2.0 No Export No Slave
SCADE No Import No Master
Display 1.0 Available Export Available Slave

No Import No Master
ANSYS 2.0 No Export No Slave
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Tool FMI Version Model Exchange Co-Simulation

SCADE No Import No Master
Suite 1.0 Available Export Available Slave

No Import No Master
ANSYS 2.0 No Export No Slave

No Import No Master
Simplorer 1.0 No Export Planned Slave

Available Import No Master
ASim 2.0 No Export No Slave

No Import No Master
AUTOSAR 1.0 Available Export Available Slave
Simulation No Import No Master
@Source 2.0 No Export No Slave

No Import No Master
1.0 Available Export Available Slave

No Import No Master
AVL 2.0 No Export No Slave

No Import No Master
Cruise 1.0 Planned Export Available Slave

No Import Available Master
Building 2.0 No Export No Slave
Controls No Import No Master
Virtual 1.0 No Export No Slave
Test bed No Import Available Master
CANoe 2.0 Planned Export Planned Slave

No Import Available Master
1.0 Planned Export Planned Slave

No Import Available Master
CarMaker 2.0 No Export No Slave

No Import No Master
1.0 No Export No Slave

No Import Available Master
CATIA 2.0 No Export No Slave

No Import No Master
1.0 Available Export Available Slave
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Tool FMI Version Model Exchange Co-Simulation

Available Import Available Master
ControlBuild 2.0 No Export Available Slave

No Import Available Master
1.0 Available Export Available Slave

Available Import Available Master
CosilMate 2.0 No Export Available Master

No Import Available Slave
1.0 No Export Available Slave

Available Import Available Master
Cybernetica 2.0 No Export No Slave

No Import No Master
CENIT 1.0 No Export No Slave

Available Import Planned Master
Cybernetica 2.0 No Export No Slave

No Import No Master
ModelFit 1.0 No Export No Slave

Available Import Available Master
DACCOSIM 2.0 No Export No Slave

No Import Available Master
1.0 No Export No Slave

No Import No Master
DS - FMU 2.0 Available Export Available Slave
Export No Import No Master
from 1.0 Available Export Available Slave

Simulink No Import No Master
DS - FMU 2.0 No Export No Slave
Import Planned Import Planned Master
into 1.0 No Export No Slave

Simulink Planned Import Planned Master
DSHplus 2.0 No Export No Slave

No Import No Master
1.0 Planned Export Available Slave

No Import No Master
dSPACE 2.0 No Export No Slave
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Tool FMI Version Model Exchange Co-Simulation

No Import Available Master
SCALEXIO 1.0 No Export No Slave

No Import Available Master
dSPACE 2.0 No Export Planned Slave

No Import No Master
TargetLink 1.0 No Export No Slave

No Import No Master
dSPACE 2.0 Available Export Available Slave

Available Import Available Master
VEOS 1.0 Available Export Available Slave

Available Import Available Master
DYNA4 2.0 No Export Available Master

Available Import Available Master
1.0 No Export No Slave

Available Import Available Master
Easy5 2.0 Planned Export Available Slave

Planned Import Available Master
1.0 Planned Export Available Slave

Planned Import Available Master
EnergyPlus 2.0 No Export No Slave

No Import No Master
1.0 No Export Available Slave

No Import Available Master
ETAS 2.0 No Export Available Slave

No Import No Master
- ASCMO 1.0 No Export Available Slave

No Import No Master
ETAS - 2.0 No Export No Slave

FMI-based No Import No Master
Integration

and 1.0 No Export No Slave
Simulation Planned Import Planned Master
Platform
ETAS - 2.0 No Export No Slave
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Tool FMI Version Model Exchange Co-Simulation

FMU No Import No Master
Generator 1.0 Planned Export No Slave
for ASCET Planned Import No Master
ETAS - 2.0 No Export No Master
FMU No Import No Slave

Generator
for 1.0 Planned Export No Slaves

Simulink R© No Import No Master
ETAS - 2.0 No Import No Slave

No Export No Master
INCA-FLOW 1.0 No Export No Slave

(MiL/SiL Connector) Planned Import Available Master
ETAS - 2.0 No Export No Slave

ISOLAR-EVE No Import No Slave
(ETAS 1.0 No Export Available Slave

Virtual ECU) No Import No Master
ETAS - 2.0 No Export No Slave
LABCAR No Import No Master

-OPERATOR 1.0 No Export Available Slave
No Import Available Master

Flowmaster 2.0 No Export No Slave
No Import No Master

1.0 Available Export No Slave
No Import No Master

FMI Add-in 2.0 No Export No Slave
No Import No Master

for Excel 1.0 No Export No Slave
No Import Available Master

FMI add-on 2.0 No Export No Slave
for NI No Import No Master

VeriStand 1.0 No Export No Slave
Available Import Available Master

FMI 2.0 No Export No Slave
Blockset Available Import Available Master
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Tool FMI Version Model Exchange Co-Simulation
for 1.0 No Export No Slave

Simulink No Import Available Master
FMI L 2.0 Planned Export Planned Slave

Available Import Available Master
Library 1.0 Planned Export Planned Slave

Available Import Available Master
FMI Target 2.0 No Export No Slave

for No Import No Master
Simulink 1.0 No Export Available Slave
Coder No Import No Master
FMI 2.0 Planned Export Available Slave

Toolbox Available Import Available Master
for MATLAB/ 1.0 Available Export Available Slave

Simulink Available Import Available Master
FMUSDK 2.0 Available Export Available Slave

No Import No Slave
1.0 Available Export Available Slave

Available Import Available Master
GES 2.0 Planned Export Planned Slave

Planned Import Planned Master
1.0 Available Export Planned Slave

Available Import Planned Master
GT-SUITE 2.0 Planned Import Planned Slave

No Export Planned Master
1.0 No Export Available Slave

Available Import Available Master
Hopsan 2.0 No Export No Slave

No Export No Master
1.0 Available Export No Slave

Available Import No Master
IBM 2.0 No Export No Slave

Rational No Import No Master
Rhapsody 1.0 Available Export Planned Slave

Planned Import Planned Master
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Tool FMI Version Model Exchange Co-Simulation

ICOS 2.0 No Export No Slave
No Import No Master

1.0 No Export Available Slave
Available Import Available Master

IGNITE 2.0 No Import Planned Slave
No Export Planned Master

1.0 No Import Planned Slave
No Export Available Master

JavaFMI 2.0 No Export No Slave
No Import Available Master

1.0 No Export No Slave
No Import Available Master

JFMI 2.0 No Export No Slave
No Import No Master

1.0 No Export Available Slave
No Import Available Master

JModelica.org 2.0 Available Export Available Slave
No Import Available Master

1.0 Available Export Available Slave
Available Import Available Master

LMS 2.0 No Export No Slave
Virtual.Lab No Import No Master
Motion 1.0 No Export Available Slave

Available Import Available Master
MapleSim 2.0 Available Export Available Slave

Planned Import Planned Master
1.0 Available Export Available Slave

No Import No Master
Mechanical 2.0 No Export Planned Slave
Simulation: No Import Planned Master
CarSim, 1.0 No Export Planned Slave
TruckSim, No Import Planned Master
BikeSim
MESSINA 2.0 No Export No Slave
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Tool FMI Version Model Exchange Co-Simulation

No Import No Master
1.0 No Export No Slave

Available Import Available Master
MWorks 2.0 No Export No Slave

No Import No Master
1.0 Available Export Planned Slave

Planned Import Planned Master
NI LabVIEW 2.0 No Export No Slave

No Import No Master
1.0 No Export No Slave

Planned Import No Master
OpenModelica 2.0 Available Export Planned Slave

Available Import Planned Master
1.0 Available Export Planned Slave

Available Import Available Master
Ptolemy II 2.0 No Export No Slave

No Import No Master
1.0 No Export No Slave

No Import Planned Master
PyFMI 2.0 No Export No Slave

Available Import Available Master
1.0 No Export No Slave

Available Import Available Master
RecurDyn 2.0 No Export No Slave

No Import No Master
1.0 Planned Export Planned Slave

Planned Import Available Master
Reference 2.0 No Export No Slave

No Import No Master
FMUs 1.0 Planned Export Planned Slave

No Import No Master
Scilab/ 2.0 No Export No Slave
Xcos No Import No Master
FMU 1.0 Planned Export Planned Slave
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Tool FMI Version Model Exchange Co-Simulation

wrapper Planned Import Planned Master
Silver 2.0 No Export Available Slave

Available Import Available Master
1.0 Available Export Available Slave

Available Import Available Master
SIMPACK 2.0 Planned Export Available Slave

Available Import Available Master
1.0 Available Export Available Slave

Available Import Available Master
SimulationX 2.0 Planned Export Planned Slave

Planned Import Planned Master
1.0 Available Export Available Slave

Available Import Available Master
SystemModeler 2.0 No Export No Slave

No Import No Master
1.0 Available Export Planned Slave

Available Import Planned Master
TLK 2.0 No Export No Slave
FMI No Import No Master
Suite 1.0 No Export No Slave

Available Import Available Master
TLK 2.0 No Export No Slave
TISC No Import No Master
Suite 1.0 No Export No Slave

Available Import Available Master
TWT 2.0 No Export No Slave

Co-Simulation No Import No Master
Framework 1.0 Available Import Available Master

No Export Available Slave
TWT 2.0 No Export No Slave
FMU No Import No Master
Trust 1.0 No Export Available Slave
Centre No Import No Master

VALDYN 2.0 No Export Planned Slave
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Tool FMI Version Model Exchange Co-Simulation

No Import No Master
1.0 No Export Available Slave

No Import No Master
WAVE-RT 2.0 No Export Planned Slave

No Import No Master
1.0 No Export Available Slave

No Import No Master
XFlow 2.0 No Export No Slave

No Import No Master
1.0 No Export Available Slave

No Import No Master
xMOD 2.0 No Export No Slave

Available Import Available Master
1.0 No Import No Slave

Available Export Available Master
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Appendix E

Plugin Extension Additional
Material

E.1 QEMU Monitor LED Plugin Device Prop-
erty Output

dev: plugin -device , id ""
name = "plugin -led"
dynamic library = "/opt/qemu/ plugin_devices /

plugin_led .so"
memory mapped address = 268513280 (0 x10013000 )
mapped area size = 4 (0x4)
number of interrupts = 0 (0x0)
number of timers = 0 (0x0)
mmio 0000000010013000/0000000000000004

E.2 Plugin Device Structure

PluginDev device = {
.name = " example_device ",
. memory_mapped_address = 0x340000 ,
. mapped_area_size = 1,
.write = write_func ,
.read = read_func ,
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.init = init_func ,

.exit = exit_func ,

. interrupt_requests_size = 0,

. timer_requests_size = 0
};

E.3 Plugin Device Makefile

NAME = example_device
INC =/ usr/ include /glib -2.0 /usr/lib/x86_64 -linux -gnu/glib -2.0/ include $( QEMU_SOURCE

) $( QEMU_SOURCE )/ include

CC= gcc
CFLAGS = -c -fPIC
LDFLAGS = -shared
INC_PARAMS = $(INC :%= -I%)
SRC = $( wildcard *.c)
OBJ = $(SRC :.c=.o)

$(NAME).so: $(OBJ)
$(CC) $( LDFLAGS ) $(OBJ) -o $@

%.o: %.c
$(CC) $( CFLAGS ) $( INC_PARAMS ) $< -o $@

. PHONY : clean

clean :
rm -f *.o *~ $( NAME ).so

install :
cp -f $( NAME ).so $( QEMU_PLUGINS )

uninstall :
rm $( QEMU_PLUGINS )/$( NAME ).so

E.4 LED Plugin Device

1 #define DEVICE_MODULE /* Every device module should
contain this macro */

2
3 # include "hw/ plugin_dev_user .h" /* plugin device API */
4 # include <stdlib.h> /* malloc , free */
5
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6 void write_func (hwaddr offset , unsigned size , uint64_t
value , void * user_data )

7 {
8 int *state = (int *) user_data ;
9 if(value == ’1’)
10 *state = 0x1;
11 else if (value == ’0’)
12 *state = 0x0;
13 }
14 uint64_t read_func (hwaddr offset , unsigned size , void *

user_data )
15 {
16 int *state = (int *) user_data ;
17 if(* state)
18 return ’1’;
19 else
20 return ’0’;
21 }
22 void init_func (void ** user_data )
23 {
24 * user_data = malloc(sizeof(int));
25 }
26 void exit_func (void * user_data )
27 {
28 free( user_data );
29 }
30 PluginDev device = {
31 .name = "plugin -led",
32 . memory_mapped_address = 0x10013000 ,
33 . mapped_area_size = sizeof( uint32_t ),
34 .write = write_func ,
35 .read = read_func ,
36 .init = init_func ,
37 .exit = exit_func ,
38 . interrupt_requests_size = 0,
39 . timer_requests_size = 0
40 };
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E.5 LED Plugin Device with IRQ

1 #define DEVICE_MODULE /* Every device module should
contain this macro */

2
3 # include "hw/ plugin_dev_user .h" /* plugin device API */
4 # include <stdlib.h> /* malloc , free */
5
6 void write_func (hwaddr offset , unsigned size , uint64_t

value , void * user_data )
7 {
8 switch(offset)
9 {
10 case 0x00:
11 {
12 int *state = (int *) user_data ;
13 if(value == ’1’)
14 {
15 *state = 0x1;
16 /* index 0 to use the

first requested
interrupt */

17 irq_raise ( interrupts [0])
;

18 }
19 else if (value == ’0’)
20 {
21 *state = 0x0;
22 }
23 }
24 break;
25 case 0x04:
26 /* index 0 to use the first

requested interrupt */
27 irq_lower ( interrupts [0]);
28 break;
29 }
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30 }
31 uint64_t read_func (hwaddr offset , unsigned size , void *

user_data )
32 {
33 int *state = (int *) user_data ;
34 switch(offset)
35 {
36 case 0x00:
37 {
38 int *state = (int *) user_data ;
39 if(* state)
40 return ’1’;
41 else
42 return ’0’;
43 }
44 break;
45 case 0x4: // not mapped to anything
46 return 0;
47 break;
48 }
49 }
50 void init_func (void ** user_data )
51 {
52 * user_data = malloc(sizeof(int));
53 }
54 void exit_func (void * user_data )
55 {
56 free( user_data );
57 }
58 /* Request interrupt on index 8 of the target machine ’s

IRQ array */
59 unsigned interrupt_numbers [] = {
60 8
61 };
62 PluginDev device = {
63 .name = "plugin -led -irq",
64 . memory_mapped_address = 0x10013000 ,
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65 . mapped_area_size = sizeof( uint32_t ) * 2,
66 .write = write_func ,
67 .read = read_func ,
68 .init = init_func ,
69 .exit = exit_func ,
70 . interrupt_requests = interrupt_numbers ,
71 . interrupt_requests_size = sizeof(

interrupt_numbers )/sizeof( unsigned ),
72 . timer_requests_size = 0
73
74 };

E.6 Adding IRQ Support in a Target QEMU
Machine

If a target machine has interrupts, an IRQ array is present on its initiation code.
According to QEMU machine source file convention, object functions registering
should be at the bottom of the file.

Firstly, one should find the initialization function. Secondly, identify the qemu_irq
array that is being used on device instantiation. Sometimes it is declared in the
beginning of the machine initialization function, sometimes it’s not, there’s no
convention.

Lastly, after all devices have been instantiated in the initialization function, call
plugin_devs_set_irqs function provided in hw/plugin_dev_internals.h file, to
register the qemu_irq array, just before a load kernel function is called, if it exists.
If the irq array is declared statically, sizeof operand may be used to register its
size. If not, irq array size must be figured out and registered explicitly.

The following is an example to add IRQ support in the Microblaze architecture’s
PetaLogix refdesign for Xilinx ml605 little endian machine, with the added line
highlited in red:

199 ...
200 sysbus_connect_irq (busdev , i+1, cs_line );
201 }
202 }
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203
204 plugin_devs_set_irqs(irq, sizeof(irq));
205 microblaze_load_kernel (cpu , MEMORY_BASEADDR ,

ram_size ,
206 machine -> initrd_filename ,
207 BINARY_DEVICE_TREE_FILE ,
208 machine_cpu_reset );
209
210 }
211 ...

E.7 Blinking LED Plugin Device

1 #define DEVICE_MODULE /* Every device module should
contain this macro */

2
3 # include "hw/ plugin_dev_user .h" /* plugin device API */
4 # include <stdlib.h> /* malloc , free */
5
6 void write_func (hwaddr offset , unsigned size , uint64_t

value , void * user_data )
7 {
8 int *state = (int *) user_data ;
9 if(value == ’1’)
10 start_timer (timers [0], 500); // 500 ms

blinking period
11 else if (value == ’0’)
12 stop_timer (timers [0]);
13 }
14 uint64_t read_func (hwaddr offset , unsigned size , void *

user_data )
15 {
16 int *state = (int *) user_data ;
17 if(* state)
18 return ’1’;
19 else
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20 return ’0’;
21 }
22 void init_func (void ** user_data )
23 {
24 * user_data = malloc(sizeof(int));
25 }
26 void exit_func (void * user_data )
27 {
28 free( user_data );
29 }
30 void timer_handler (void * user_data )
31 {
32 int *state = (int *) user_data ;
33 *state = !(* state);
34 start_timer (timers [0], 500);// 500 ms blinking

period
35 }
36 timer_request_t t_request [] = {
37 { QEMU_CLOCK_VIRTUAL , timer_handler , SCALE_MS }
38 }
39 PluginDev device = {
40 .name = "blinking -plugin -led",
41 . memory_mapped_address = 0x10013000 ,
42 . mapped_area_size = sizeof( uint32_t ),
43 .write = write_func ,
44 .read = read_func ,
45 .init = init_func ,
46 .exit = exit_func ,
47 . interrupt_requests_size = 0,
48 . timers_request = t_request ,
49 . timers_request_size = sizeof( t_request )/sizeof(

t_request )
50 };

E.8 Master LED Proxy Plugin Device

1 #define DEVICE_MODULE /* Every device module should
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contain this macro */
2
3 # include "hw/ plugin_dev_user .h" /* plugin device API */
4 # include <stdlib.h> /* malloc , free */
5
6 void write_func (hwaddr offset , unsigned size , uint64_t

value , void * user_data )
7 {
8
9 write_to_bus (0 x10013000 , (char *) value , sizeof(

uint64_t ));
10 }
11 uint64_t read_func (hwaddr offset , unsigned size , void *

user_data )
12 {
13 read_from_bus (0 x10013000 , (char *) value , sizeof(

uint64_t ));
14 return 0;
15 }
16 void init_func (void ** user_data )
17 {
18 }
19
20 void exit_func (void * user_data )
21 {
22 }
23
24 PluginDev device = {
25 .name = "master -to -led",
26 . memory_mapped_address = 0x10013018 ,
27 . mapped_area_size = sizeof( uint32_t ),
28 .write = write_func ,
29 .read = read_func ,
30 .init = NULL ,
31 .exit = NULL ,
32 . interrupt_requests_size = 0,
33 . timers_request_size = 0
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34 };
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Appendix F

Co-simulation Additional
Material

F.1 QEMU Monitor LED HW IP Proxy Inter-
face Device Property Output

dev: external -model , id ""
model name = "LED HW IP"
simulation domain = " Hardware Acceleration "
simulation tool = " Modelsim "
tool ip = " 127.0.0.1 "
tool port = 53497 (0 xd0f9)
memory mapped address = 268513280 (0 x10013000 )
mapped area size = 38 (0 x26)
number of interrupts = 0 (0x0)
mmio 0000000010013000/0000000000000026

F.2 Virtual QEMU System Bus Slave Logic Ex-
ample
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Figure F.1: Virtual QEMU system bus slave logic example diagram
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F.3 Verilog QEMU Virtual System Bus Slave IP
Wrapper Example

1 module wrapper #( parameter WORD = 32)
2 (
3 input clk ,
4 input rst ,
5 input [63 : 0]addr ,
6 input [WORD - 1 : 0]din ,
7 input write ,
8 output [WORD - 1 : 0]dout ,
9 output ready
10 );
11 localparam MAPPED_AREA_SIZE = (WORD * 2);
12 localparam INTERRUPTS_SIZE = 32’d0;
13 localparam MASTER = 1’d0;
14 parameter MEMORY_MAPPED_ADDRESS = 64’ h10013000 ;
15 parameter NAME = " Example HW IP";
16
17 localparam MAPPED_REG_SIZE = MAPPED_AREA_SIZE /( WORD

/8);
18 wire [63 : 0] offset = (addr - MEMORY_MAPPED_ADDRESS

) / (WORD /8);
19 wire [ WORD - 1 : 0 ] mapped_registers_input [

MAPPED_REG_SIZE - 1 : 0];
20 wire [ WORD - 1 : 0 ] mapped_registers_next_value [

MAPPED_REG_SIZE - 1 : 0];
21 wire [ WORD - 1 : 0 ] write_enable [ MAPPED_REG_SIZE -

1 : 0];
22 wire bus_write_enable [ MAPPED_REG_SIZE - 1 : 0];
23 wire [ WORD - 1 : 0 ] ip_write_enable [ MAPPED_REG_SIZE

- 1 : 0];
24 wire [ INTERRUPTS_SIZE - 1 : 0] interrupt_enable ;
25 wire [ INTERRUPTS_SIZE - 1 : 0] interrupt_disable ;
26
27 reg [ WORD - 1 : 0 ] mapped_registers [ MAPPED_REG_SIZE
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- 1 : 0];
28
29 // Write access state machine
30 // states
31 localparam WAIT = 3’d0;
32 localparam READ = 3’d1;
33 localparam WRITE = 3’d2;
34 localparam READY_READ = 3’d3;
35 localparam READY_WRITE = 3’d4;
36 reg [2 : 0] state;
37 reg [2 : 0] next_state ;
38
39 // Sequential state logic
40 always@ ( posedge clk)
41 begin
42 if(rst)
43 state <= WAIT;
44 else
45 state <= next_state ;
46 end
47
48 // Next state logic
49 always@ (*)
50 begin
51 case (state)
52 WAIT:
53 begin
54 if(( addr >= MEMORY_MAPPED_ADDRESS )

&& (addr < ( MEMORY_MAPPED_ADDRESS
+ MAPPED_AREA_SIZE )))

55 next_state = write ? WRITE :
READ;

56 else
57 next_state = WAIT;
58 end
59 READ:
60 next_state = READY_READ ;
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61 WRITE:
62 next_state = READY_WRITE ;
63 READY_READ :
64 next_state =MEM WAIT;
65 READY_WRITE :
66 next_state = WAIT;
67 endcase
68 end
69
70 assign dout = (state == READ || state == READY_READ )

? mapped_registers [offset] : ’hz;
71 assign ready = (state == READY_READ || state ==

READY_WRITE ) ? ’h1 : ’hz;
72
73
74 genvar i;
75 genvar j;
76 generate
77 for (i=0; i < MAPPED_REG_SIZE ; i=i+1) begin :

MAPPED_REGS
78 assign bus_write_enable [i] = (( state ==

WRITE) && (offset == i));
79 assign mapped_registers_next_value [i] = (

bus_write_enable [i]) ? din :
mapped_registers_input [i];

80
81 for (j=0; j < WORD; j=j+1) begin :

MAPPED_REGS_BITS
82 assign write_enable [i][j] = (

bus_write_enable [i] ||
ip_write_enable [i][j]);

83
84 always@ ( posedge clk)
85 begin
86 if(rst)
87 mapped_registers [i][j] <= ’d0;
88 else if( write_enable [i][j])
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89 mapped_registers [i][j] <=
mapped_registers_next_value [i
][j];

90 end
91 end
92 end
93 endgenerate
94
95 generate
96 for (i=0; i < INTERRUPTS_SIZE ; i=i+1) begin

: INTERRUPTS
97 always@ ( posedge interrupt_enable [i])
98 begin
99 if(! rst)
100 $ qemu_raise_interrupt (i);
101 end
102 always@ ( negedge interrupt_disable [i])
103 begin
104 if(! rst)
105 $ qemu_lower_interrupt (i);
106 end
107 end
108 endgenerate
109
110
111 //IP instantiation
112 wire [WORD -1 : 0] _input;
113 wire [WORD -1 : 0] _output ;
114 wire _output_ready
115 example_IP example_instance (clock(clk), .reset(rst),
116 .input(_input), .output( _output ), . output_ready (

_output_ready )
117 );
118
119 // Port INPUT
120 assign _input = mapped_registers [0];
121 assign mapped_registers_input [0] = ’hz;
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122 assign ip_write_enable [0] = ’d0;
123
124 // PORT OUTPUT
125 assign mapped_registers_input [1] = _output ;
126 assign ip_write_enable [1] = {WORD{ _output_ready }};
127
128 endmodule

F.4 Verilog QEMU virtual System bus Slave IP
wrapper with IRQ Mapping Example

1 module wrapper #( parameter WORD = 32)
2 (
3 input clk ,
4 input rst ,
5 input [63 : 0]addr ,
6 input [WORD - 1 : 0]din ,
7 input write ,
8 output [WORD - 1 : 0]dout ,
9 output ready
10 );
11 localparam MAPPED_AREA_SIZE = (WORD * 2);
12 localparam INTERRUPTS_SIZE = 32’d1;
13 localparam MASTER = 1’d0;
14 parameter MEMORY_MAPPED_ADDRESS = 64’ h10013000 ;
15 parameter NAME = " Example HW IP";
16 localparam INTERRUPT_0 = 32’d8;
17
18 localparam MAPPED_REG_SIZE = MAPPED_AREA_SIZE /( WORD

/8);
19 wire [63 : 0] offset = (addr - MEMORY_MAPPED_ADDRESS

) / (WORD /8);
20 wire [ WORD - 1 : 0 ] mapped_registers_input [

MAPPED_REG_SIZE - 1 : 0];
21 wire [ WORD - 1 : 0 ] mapped_registers_next_value [

MAPPED_REG_SIZE - 1 : 0];
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22 wire [ WORD - 1 : 0 ] write_enable [ MAPPED_REG_SIZE -
1 : 0];

23 wire bus_write_enable [ MAPPED_REG_SIZE - 1 : 0];
24 wire [ WORD - 1 : 0 ] ip_write_enable [ MAPPED_REG_SIZE

- 1 : 0];
25 wire [ INTERRUPTS_SIZE - 1 : 0] interrupt_enable ;
26 wire [ INTERRUPTS_SIZE - 1 : 0] interrupt_disable ;
27
28 reg [ WORD - 1 : 0 ] mapped_registers [ MAPPED_REG_SIZE

- 1 : 0];
29
30 // Write access state machine
31 // states
32 localparam WAIT = 3’d0;
33 localparam READ = 3’d1;
34 localparam WRITE = 3’d2;
35 localparam READY_READ = 3’d3;
36 localparam READY_WRITE = 3’d4;
37 reg [2 : 0] state;
38 reg [2 : 0] next_state ;
39
40 // Sequential state logic
41 always@ ( posedge clk)
42 begin
43 if(rst)
44 state <= WAIT;
45 else
46 state <= next_state ;
47 end
48
49 // Next state logic
50 always@ (*)
51 begin
52 case (state)
53 WAIT:
54 begin
55 if(( addr >= MEMORY_MAPPED_ADDRESS )
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&& (addr < ( MEMORY_MAPPED_ADDRESS
+ MAPPED_AREA_SIZE )))

56 next_state = write ? WRITE :
READ;

57 else
58 next_state = WAIT;
59 end
60 READ:
61 next_state = READY_READ ;
62 WRITE:
63 next_state = READY_WRITE ;
64 READY_READ :
65 next_state =MEM WAIT;
66 READY_WRITE :
67 next_state = WAIT;
68 endcase
69 end
70
71 assign dout = (state == READ || state == READY_READ )

? mapped_registers [offset] : ’hz;
72 assign ready = (state == READY_READ || state ==

READY_WRITE ) ? ’h1 : ’hz;
73
74
75 genvar i;
76 genvar j;
77 generate
78 for (i=0; i < MAPPED_REG_SIZE ; i=i+1) begin :

MAPPED_REGS
79 assign bus_write_enable [i] = (( state ==

WRITE) && (offset == i));
80 assign mapped_registers_next_value [i] = (

bus_write_enable [i]) ? din :
mapped_registers_input [i];

81
82 for (j=0; j < WORD; j=j+1) begin :

MAPPED_REGS_BITS
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83 assign write_enable [i][j] = (
bus_write_enable [i] ||
ip_write_enable [i][j]);

84
85 always@ ( posedge clk)
86 begin
87 if(rst)
88 mapped_registers [i][j] <= ’d0;
89 else if( write_enable [i][j])
90 mapped_registers [i][j] <=

mapped_registers_next_value [i
][j];

91 end
92 end
93 end
94 endgenerate
95
96 generate
97 for (i=0; i < INTERRUPTS_SIZE ; i=i+1) begin

: INTERRUPTS
98 always@ ( posedge interrupt_enable [i])
99 begin
100 if(! rst)
101 $ qemu_raise_interrupt (i);
102 end
103 always@ ( negedge interrupt_disable [i])
104 begin
105 if(! rst)
106 $ qemu_lower_interrupt (i);
107 end
108 end
109 endgenerate
110
111
112 //IP instantiation
113 wire [WORD -1 : 0] _input;
114 wire [WORD -1 : 0] _output ;
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115 wire _output_ready
116 example_IP example_instance (clock(clk), .reset(rst),
117 .input(_input), .output( _output ), . output_ready (

_output_ready )
118 );
119
120 // Port INPUT
121 assign _input = mapped_registers [0];
122 assign mapped_registers_input [0] = ’hz;
123 assign ip_write_enable [0] = ’d0;
124
125 // PORT OUTPUT
126 assign mapped_registers_input [1] = _output ;
127 assign ip_write_enable [1] = {WORD{ _output_ready }};
128
129 / INTERRUPT0
130 // enable
131 assign interrupt_enable [0] = _output_ready ;
132 assign interrupt_disable [0] = mapped_registers

[0][0];
133 assign mapped_registers_input [0][0] =

interrupt_enable [0];
134 assign ip_write_enable [0][0] = interrupt_enable [0];
135
136 endmodule

F.5 Sequence diagrams
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(a) Proxy interface device write sequence di-
agram

(b) Proxy interface device read sequence di-
agram

Figure F.3: Proxy transactions sequence diagram
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Appendix G

pq theory

The pq theory, also known as instantaneous real and imaginary power theory, was
first proposed by Akagi et al. in 1993 (Akagi et al., 2007)

This theory is based on the Clarke transform, or α-β-0 transform, which is a
space vector transformation of time-domain signals (e.g. voltage, current, flux,
etc) from a natural three-phase coordinate system (ABC) into a stationary two-
phase reference frame (α-β-0 ). It is named after electrical engineer Edith Clarke.

The mathematical expressions used to perform the Clarke transform on currents
ia, ib, ic and voltages va,vb,vc are the following:
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Once the Clarke transform is calculated, the instantaneous real power(p), imagi-
nary power(q) and zero-sequence power(p0) may be calculated using both voltage
and current transformed values using the following expression:
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