
A Hazard Analysis Method for Systematic

Identification of Safety Requirements for User

Interface Software in Medical Devices

Paolo Masci1, Yi Zhang2, Paul Jones2, José C. Campos1

1 INESC TEC and Universidade do Minho, Portugal
{paolo.masci,jose.c.campos}@inesctec.pt
2 US Food and Drug Administration, USA
{yi.zhang2,paul.jones}@fda.hhs.gov

Abstract. Formal methods technologies have the potential to verify
the usability and safety of user interface (UI) software design in medical
devices, enabling significant reductions in use errors and consequential
safety incidents with such devices. This however depends on comprehen-
sive and verifiable safety requirements to leverage these techniques for
detecting and preventing flaws in UI software that can induce use errors.
This paper presents a hazard analysis method that extends Leveson’s
System Theoretic Process Analysis (STPA) with a comprehensive set of
causal factor categories, so as to provide developers with clear guide-
lines for systematic identification of use-related hazards associated with
medical devices, their causes embedded in UI software design, and safety
requirements for mitigating such hazards. The method is evaluated with
a case study on the Gantry-2 radiation therapy system, which demon-
strates that 1) as compared to standard STPA, our method allowed us
to identify more UI software design issues likely to cause use-related haz-
ards; and 2) the identified UI software design issues facilitated the defini-
tion of precise, verifiable safety requirements for UI software, which could
be readily formalized in verification tools such as Prototype Verification
System (PVS).

Keywords: Requirements identification/formalization; User interface software;
Medical devices.

1 Introduction

Use errors with medical devices are a leading cause of device incidents reported
in the healthcare domain (e.g., see [1,15]). Errors in user interface (UI) soft-
ware in medical devices, including design flaws and implementation mistakes,
can disrupt expected device-user interaction and induce use errors. For exam-
ple, a diabetes management mobile app was recalled in the U.S. because its UI
software could erroneously reset the recommended insulin bolus dosage when
the user changes the smartphone’s orientation, which might cause the user to
inadvertently command and receive unsafe insulin therapies [9].

It is thus crucial to the safety of medical devices to systematically assess
their UI software design and ensure that design issues likely inducing use errors
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are appropriately addressed. Formal methods have the potential to enable such
rigorous assessment. For example, our previous research shows that theorem
proving can be used to detect latent flaws in data entry software [19]. In fact, the
formal methods community has devoted substantial e↵ort on methods and tools
for analyzing various aspects of UI software design, including user tasks [3,26],
cognitive errors [28,29], and general usability principles [4,6,10,25]. But little
attention has been given to tools and methods that can support systematic
identification and definition of use-related safety requirements for UI software
design, even though the availability of such safety requirements has great impact
to the applicability and e↵ectiveness of formal methods in assessing UI software.

Current industrial practices rely on hazard analysis techniques to explore
safety hazards associated with a system and formulate requirements to miti-
gate the identified hazards. However, existing hazard analysis techniques do not
provide specialized assistance in analyzing UI software design. For example, Pre-
liminary Hazard Analysis [5] and Root Cause Analysis [13] merely rely on group
brainstorming to explore use hazards and their causes in safety-critical systems.
Other more systematic methods such as Fault Tree Analysis [16], FMEA [30],
and their variants focus on component failures or deviations in physical parame-
ters (as in HAZOP [14]), rather than use hazards and their causes in UI software
design. Whilst some variants of HAZOP can be used to analyze use errors (e.g.,
see [7,12]), their focus is mainly on assessing compatibility with given user tasks.

Leveson’s System Theoretic Process Analysis (STPA) [17] is a relatively new
hazard analysis method that can be utilized to identify use-related hazards in
control systems, and system design issues contributing to these hazards. This
method, however, o↵ers limited guidance on formulating hypotheses on what
aspects of UI software design could a↵ect the usability and safety of a system
under analysis. STPA requires developers to exercise their experience and exper-
tise to find answers to the key question: What UI software design features could

induce the user to operate or interact with a system unsafely?

In this paper, we extend the standard STPA analysis to provide developers
with clear guidelines in finding the answer to this key question. This is done by
extending standard STPA with a set of casual factor categories, which are tai-
lored to guide developers in systematically examining UI software design against
common use-related safety concerns and widely-accepted design principles. We
also refine the standard STPA analysis process such that developers can uti-
lize the casual factor categories to identify UI software design issues and define
corresponding safety requirements for realistic medical device systems.

Contribution. This paper makes the following contributions: (i) a novel
method that augments STPA to enable a more detailed analysis of UI software
in medical devices in terms of safety and usability; (ii) a case study on an ex-
perimental medical device demonstrating the applicability and benefits of our
method; and (iii) formalization in PVS [24] of natural language safety require-
ments produced in the case study, which results in the definition of a safety

reference model [20] that encapsulates the semantics of the requirements against
which UI software design must be verified.



2 Background on STPA

STPA focuses on early identification of safety hazards in control systems and
their causes in system design. It considers the system under analysis as a control

model, which in its simplest form includes a control loop with an automated
controller and a controlled process. The standard STPA process is carried out
in three steps (see the left-hand side of Figure 1):

Step 1: Identify system boundaries and unsafe control actions. In this
step, developers identify all system elements that could impact, directly or indi-
rectly, system safety. Potential hazards associated with the system are explored
in the form of unsafe control actions (UCAs) performed by system elements. To
identify use-related hazards, a human operator model can be introduced to the
system’s control model to capture hypotheses about the operator’s knowledge
and understanding of how the system works. STPA guides developers to explore
four types of UCAs potentially performed by system elements, including the
human operator:
– A control action required for safety is not provided or not followed (e.g., an

emergency stop button is not pressed when necessary).
– An unsafe control action is provided that leads to a hazard (e.g., the delivery

of a therapy with an excessive dose of radiation).
– A potentially safe control action is provided at the wrong time or in the

wrong order (e.g., a button for stopping the delivery of radiation is pressed
too late).

– A potentially safe control action is stopped too soon or applied for too long
(e.g., a button for decreasing the volume of an alarm is pressed for too long
and, as a result, the alarm gets disabled).

Step 2: Identification of causal factors. At this step, developers examine the
system’s design to identify issues (also called causal factors) enabling UCAs. For
UCAs from the human operator, STPA recommends to explore three categories
of causal factors:
– Feedback: feedback provided to the operator is inadequate, missing, or

delayed. An example is that the system does not provide an alarm on its UI
to inform the operator of abnormal system conditions.

– Mental Model: the operator’s perception or understanding of how the
system works is inconsistent, incomplete, or incorrect. For example, using
a non-standard color/symbol to display an alarm on the UI can be easily
misunderstood by the operator.

– External Information: wrong or missing inputs or external information.
This category explores issues related to information communicated to the
operator by elements outside the control model. For example, a procedure
described in the user manual is wrong, or a prescription used by the operator
to setup the therapy contains incorrect information.

Step 3: Define safety requirements and constraints. Developers define
testable safety requirements or constraints to address the identified casual fac-
tors, and in turn prevent or mitigate UCAs.



Fig. 1. Enhanced STPA process.

3 Enhanced STPA analysis

We enhanced the standard STPA analysis with the aim of providing developers
with additional guidance in systematic identification of UI software issues that
likely induce human operators to perform UCAs. The enhancement is realized
by refining the standard STPA causal factor categories with 16 new categories
that are specialized for identifying UI software issues in medical devices.

3.1 New causal factor categories

The new casual factor categories are derived from usability heuristics [23] and
UI design guidelines defined in medical device usability standards (ANSI/AAMI
HE75 and ISO 62366-1). For each category, we present a mnemonic name, a
definition, and a rationale explaining its relevance to device usability and safety.

Categories refining STPA Feedback

– F1: Consistency of feedback. Feedback for control actions or events that
are conceptually similar is not provided using the same modalities (e.g.,
visual, auditory, haptic) or the same UI elements. Rationale: Inconsistent

feedback leads to confusion and incorrect user actions.

– F2: Complexity of feedback: Feedback for frequent actions or important
events (e.g., system failure or patient-related emergencies) requires observing
and understanding multiple information resources. Rationale: In clinical set-

tings, operators may become distracted by other tasks or interrupted during

device use. Because of this, they could fail to monitor and analyze feedback

from multiple information resources.

– F3: Availability of feedback: Feedback reporting important information
(e.g., therapy parameters) or events (e.g., change of device modes) is erro-
neous, not visible, partially visible, or is visible at the wrong time or for a



too short period of time. Rationale: Operators could lose situation awareness

during critical operations if relevant information is not reported on the UI.

– F4: Salience of feedback: Feedback reporting important information or
events is not prominent or easy to locate on the UI, or secondary informa-
tion/events are erroneously more prominent than critical information/events.
Rationale: Feedback on the UI should promote selective attention on infor-

mation that is important for correct decision-making.

Categories refining STPA Mental Model

– M1: Reversibility of control actions: Functions for reversing the e↵ect of
control actions are not available. Rationale: UI functions such as undo, stop,

cancel, resume should be available to the operator to recover from errors.

– M2: Responsiveness to control actions: The e↵ect of critical control
actions is not reported to the operator in a timely manner. Rationale: If

feedback for control actions is delayed, users could fail to realize whether the

control actions on the UI have been successfully recognized by the system.

– M3: Consistency of controls: The same UI controls produce di↵erent
e↵ects in conceptually similar situations, or UI controls that are conceptually
similar require di↵erent interaction styles. Rationale: Consistent UI controls
facilitate the formation of accurate and complete mental models of how to

interact with the system.

– M4: Complexity of controls: Frequently used or critical UI controls re-
quire unreasonably complex manipulation or unreasonably long sequence
of user actions. Rationale: Users could fail to perform common or critical

actions/tasks if too much time or e↵ort is necessary to complete such ac-

tions/tasks with the available UI functions.

– M5: Predictability of controls: The UI does not provide means to help
the user anticipate the e↵ects or the consequences of control actions. Ra-
tionale: Predictable UI controls facilitate the formation of an accurate and

complete mental model of how to interact with the system.

– M6: Forgiveness for erroneous control actions: Safety interlocks are
not available to prevent accidental activation of critical controls or block-
/mitigate foreseeable use errors. Rationale: Lack of built-in safeguards for

known/common use errors (e.g., manipulation errors due to variability in

human performance or lack of attention) could lead to catastrophic failures.

– M7: Availability of controls: Control widgets necessary for safe operation
are partially available or not available on the UI, or they are available at the
wrong time or for a too short period of time. Rationale: UI functions should
be provided to allow operators to perform necessary control actions.

– M8: A↵ordance of controls: The visual appearance (shape, label, etc.),
relative position, and behavior of UI controls are not consistent with stereo-
typical knowledge about their function. Rationale: Design features of UI

widgets should promote correct understanding of the action-e↵ect relation of

the UI function associated with the widget.

– M9: Consistency with clinical workflows: Workflows supported by the
UI software are not consistent with best or actual clinical practice. Ratio-



nale: The UI software design should support and enhance existing clinical

workflows rather than disrupting them.

Categories refining STPA External Information

– E1: Availability of user manuals: Information necessary to understand
device feedback or operate the device are not available in the user man-
ual. Rational: User manuals should support the formation of a complete and

correct mental model of UI software functions.

– E2: Consistency with user manuals: Workflows described in the user
manual are not consistent with the behavior of the device. Rationale: The
software development process should produce user manuals that are correct

with respect to the UI software functions.

– E3: Complexity of user manuals: Critical information in the user manual
is mixed with non-critical information. Rationale: Critical information (e.g.,

recovery procedures) should be readily accessible in the user manual.

3.2 Process for using the new categories

Our method refines the standard STPA process to utilize the new casual factor
categories in analyzing specific system designs. As illustrated in Figure 1, Step
2 of the standard STPA process is decomposed into two sub-steps: Sub-step 2.1
identifies UI elements (displays, controls, etc.) used to perform critical control
actions; and Sub-step 2.2 instantiates the new casual factor categories for each
identified UI element to explore issues that could induce such UCAs.

Step 3 of the standard STPA process is also decomposed into two sub-steps.
Sub-step 3.1 defines a set of natural language safety requirements to address the
identified UI software issues. In their simplest form, safety requirements can be
formulated as the logical negation of the corresponding design issue. For exam-
ple, consider the design issue “Changing the smartphone orientation resets the
recommended insulin bolus dosage”. This issue would have been detected using
category a↵ordance of controls— stereotypical knowledge associates smartphone
orientation changes with view mode changes (landscape/portrait). A safety re-
quirements can therefore be defined as: “Changing the smartphone orientation

shall not reset/change the recommended insulin bolus dosage”.
Natural language requirements are formalized in Sub-step 3.2, where the

method presented in [20] can be adopted for such formalization. The formaliza-
tion method in [20] identifies key notions and relations in the textual description,
and then provides an interpretation to operationalize these notions and relations
for a specific design. This process further clarifies the correspondence between re-
quirements and UI software functionalities, and creates a safety reference model.
Demonstrating equivalence between a UI software design and the safety reference
model constitutes evidence that the UI design complies with given requirements.

4 Case Study: The Gantry-2 System

We have evaluated the applicability and potential benefit of our method on
the Gantry-2 system, an experimental radiation therapy device for advanced



cancer treatment. A team of researchers have applied the standard STPA to
analyze the UI design of the Gantry-2 system, based on its preliminary design
document [2]. We evaluated the UI software design in the Gantry-2 system and
compared our results with [2]. To ensure fair comparison, our study was based
on the same set of preliminary design documents, and the same control model
and system boundaries, as those considered in [2]. Our study results (illustrated
below) demonstrate that our method can help to identify not only all design
issues reported in [2] but also new critical UI software issues that were not
identified using the standard STPA.

Description of the system. The Gantry-2 system is a radiation therapy
device for treatment of tumors attached to mobile organs (e.g., lungs). These
tumors require continuous scanning of the patient to ensure correct delivery
of radiation to the tumor cells. The operator is responsible for setting up the
system for the patient, starting the treatment, monitoring the patient and the
device state. These operations are carried out using controls and displays on the
Gantry-2 consoles. The specific treatment plan for the patient is loaded by the
operator before starting the treatment. The treatment planning software uses the
treatment plan to configure automated controllers that will manage the delivery
of radiation to the patient. Feedback loops necessary to monitor the patient
status and the overall treatment delivery process are realized through beamline
sensors and cameras installed in the facility. Full details of STPA control models
representing the Gantry-2 system can be found in [2].

Analysis results using the new categories. Due to space limit, we only
discuss the analysis of the following UCA: “Treatment start command is acti-

vated even when there is no patient to be treated”. Identifying UI software issues
inducing other UCAs can be carried out similarly.

For this UCA, our analysis identified seven critical issues that were not re-
ported in [2]. To help readers better understand the identified issues and in turn
the benefits of our method, we present each of these issues as: a description of
the issue, UI elements, and causal factors categories used to identify the issue; a
scenario describing hazardous situations where the issue potentially induces the
operator to perform the UCA under analysis; and safety requirements for ad-
dressing the issue. Note that the decision of whether it is worth implementing a
given safety requirement in the final system depends on the level of risk addressed
by the requirement, which can be estimated using standard risk matrices.

– Issue 1: UI software does not provide feedback when patient is not ready.
• UI elements: Display.
• Causal factor: Availability of feedback.
• Scenario: Operator erroneously starts the treatment because the alert

indicating patient not ready is not available on the UI.
• Requirement R1. “Patient not ready” alerts shall be displayed on the

UI.

– Issue 2: UI software displays patient not ready alerts on the main operator
console but not on the remote console.
• UI elements: Display on the main and remote consoles.



• Causal factors: Consistency of feedback / Availability of feedback.
• Scenario: Operator erroneously starts the treatment because inconsis-

tent alerts on two consoles cause incorrect understanding of the patient
readiness status.

• Requirement R2. “Patient not ready” alerts shall be displayed at all

consoles.

– Issue 3: UI software fails to display patient not ready alerts in certain system
modes when it should.
• UI elements: Display.
• Causal factor: Availability of feedback.
• Scenario: Operator erroneously starts the treatment because the alert

“Patient not ready” is not displayed in the “Experimental Mode” (e.g.,
the patient readiness status is always set as “Ready” in this system mode,
which incorrectly disables the alert).

• Requirement R3. “Patient not ready” alerts shall be displayed when

the patient is not ready, regardless of the system’s operation mode.

– Issue 4: UI software fails to block the operator’s accidental press on the
start command (e.g., during system maintenance).
• UI elements: Start command.
• Causal factor: Forgiveness for erroneous control actions.
• Scenario: Operator erroneously starts the treatment because the UI soft-

ware fails to block the operator’s accidental press of the start command
when the patient is not ready.

• Requirement R4. UI software shall not accept a start treatment com-

mand when the patient readiness status is not ready.

– Issue 5: If the treatment activation sequence is interrupted (e.g., due to
power loss), UI software always resumes the sequence from where it was
interrupted, and does not provide the operator means to stop/abort/restart
the treatment activation sequence.
• UI elements: UI commands involved in the treatment activation se-

quence.
• Causal factor: Reversibility of control actions.
• Scenario: Operator erroneously starts the treatment because the treat-

ment activation sequence cannot be canceled.
• Requirement R5. A control to cancel the treatment activation sequence

shall be available on all user interface screens.

– Issue 6: UI software fails to provide timely feedback when the operator
presses the start command, which causes the user to press the command
multiple times and each press is registered as a legitimate command to deliver
the treatment.
• UI elements: Start command; Displays providing feedback to operator.
• Causal factor: Responsiveness to control actions.
• Scenario: Operator erroneously starts the treatment multiple times be-

cause the system seems to be not responsive to the first start treatment
command. Unbeknownst to the operator, the system registers all start
commands and delivers the treatment multiple times, even when the
patient is not ready.



• Requirement R6. When a control action is performed by the operator,

the UI should respond within x seconds to indicate whether the action

has been recognized.

– Issue 7: A system feature for automatic detection of patient readiness status
is disabled when the system is powered on by the operator, and UI software
forces the operator to navigate through multiple menus to enable it.
• UI elements: Widgets for navigating menus and enabling/disabling de-

tection of patient readiness status.
• Causal factor: Complexity of controls.
• Scenario: Operator erroneously starts the treatment when the patient is

not ready because they fail to, or choose not to, enable the automatic
patient detection feature.

• Requirement R7. Safety interlocks such as the automatic patient readi-

ness detection shall always be enabled when the system is initialized.

• Requirement R8. The status (enabled/disabled) of safety interlocks

shall always be visible on the UI.

5 Formalization of safety requirements in PVS

Safety requirements R1–R8 are testable in the sense that they prescribe specific
properties/design features that the UI software needs to satisfy to ensure safe
device-user interaction. Here we demonstrate how to formalize these require-
ments in the higher order specification language of PVS [24]. The formalization
assumes a PVS model structured using the following general pattern [11,19,25]:
– The system state is a record of state attributes, each characterized by a

unique name and a type. A special attribute mode identifies the current
mode of operation of the system.

– The system behavior is defined in terms of actions initiated either by the
operator or by an automated process. For example, action start models the
operator’s press on the start command.

– Additional aspects of the system such user manuals, workflows, and context
of use are modeled using state attributes and system behaviors that capture
facts about information resources (see [21,22]).

PVS syntax. A system is modeled as a theory and a set of logic expressions
describing the system behavior. Requirements are expressed as theorems, which
can be proved using the PVS theorem prover. PVS supports basic datatypes
commonly seen in programming languages. New datatypes (e.g., record or enum
types) can be defined using the keyword TYPE. The IMPORTING keyword allows
to import definitions from other PVS theories. Functions are in the form of f(x:
T1): T2, where f is the function name, x is an argument of type T1, and T2 is
the function return type. Arrays are defined as [A -> B], where A is the array
index type, and B is the datatype of the array elements.

5.1 Gantry-2 model in PVS

The specification fragment in Listing 1.1 presents a PVS model of the Gantry-2
system. Its characteristics are defined at a level of abstraction compatible with



the safety requirements discussed in Section 4. The model has been proved to
satisfy all given safety requirements. Thus, it is also called a safety reference

model, as it encapsulates the semantics of the safety requirements. A systematic
comparison against the functionalities of the reference model can be used as a
basis to verify a final UI software implementation [20].

1 gantry2: THEORY BEGIN IMPORTING gantry2_types
2 Console: TYPE = { main , remote }
3 Modes: TYPE = { off , on , ready , radiation , post }
4 UI: TYPE = [# viz: [Attr -> bool],
5 feedback: [Act -> bool],
6 alerts: [Alert -> bool] #]
7 Controller: TYPE = [# patient: PatientStatus ,
8 interlock: bool , mode: Modes #]
9 State: TYPE = [# console: [ Console -> UI],

10 controller: Controller #]
11 %-- actions
12 per_stop(st:State): bool = (controller(st)�mode /= off)
13 stop(c:Console)(st:( per_stop)): State =
14 LET st = action_registered(stop ,c)(st)
15 IN st WITH [ controller := controller(st)
16 WITH [ mode := ready ]]
17 %-- ... additional definitions of actions omitted
18 END gantry2

Listing 1.1. Fragment of the PVS model of the Gantry-2 system.

The PVS model in Listing 1.1 defines a record type State (lines 9–10) to track
the system’s operational status, which includes two state attributes for modeling
relevant characteristics of the main and remote consoles and the beamline con-
troller. Lines 4–6 in Listing 1.1 model UI consoles using three state attributes.
Specifically, attribute viz indicates the visibility of a state attribute on the con-
sole. For example, viz(mode) = true means that state attribute mode is visible
on the console. Attribute feedback indicates whether feedback is presented on
the console for a given command. For example, feedback(start) = true indi-
cates that feedback is presented for the start command. Lastly, attribute alerts
indicates whether an alert is displayed on the console. This abstract representa-
tion of UI consoles is su�cient for the verification of safety requirements defined
in Section 4. Similarly, the controller of the Gantry-2 system is represented us-
ing three state attributes (lines 7–8 in Listing 1.1): patient, which indicates the
patient readiness status; interlock, which indicates whether a safety interlock
is enabled to prevent erroneous treatment activation when the patient is not
ready; and mode, which indicates the current operation mode of the controller.

The following user actions are defined in the PVS model: start, for starting
a treatment; stop, for stopping a treatment; on, for powering on the system;
and off, for shutting down the system. An automatic action tick models the
advance of time in the system. Further, function init captures the initialization
of the system. Lines 13-16 in Listing 1.1 demonstrate how user action stop is
formally specified. Specifications for other actions can be defined similarly, but



are excluded from Listing 1.1 for brevity. The specification of action stop takes
two parameters: c of type Console indicates to which UI console stop is applied;
and st indicates the controller’s current mode. Note that subtype (per stop)

applied to st indicates that stop can only be applied to system states where
the controller’s operation mode is not off ((per stop) is a shorthand for pred-
icate { st: State | per stop(st) }). The LET-IN construct at lines 14–16
first registers the stop action (line 14), and then returns a new system state
with the controller’s operation mode set to ready.

5.2 Formalization of the requirements

Formalization of R1–R3. Safety requirements R1–R3 can be conveniently
aggregated into a single requirement “Patient not ready” alerts shall be presented

on both the operator console and remote consoles in all operation modes, which
can be formalized as the PVS theorem patient alerts th below.

1 patient_alerts_th: THEOREM
2 FORALL (pre , post: State , c: Console):
3 %-- induction base
4 (init?(pre) IMPLIES pt_status_visible ?(on(c)(pre))) AND
5 %-- induction step
6 (( pt_status_visible ?(pre) AND trans(pre , post))
7 IMPLIES pt_status_visible ?(post))

Theorem patient alerts th checks if every possible system state satisfies that
the patient readiness status is actually visible, when it should be, on the display
of both UI consoles. Predicate pt status visible, as elaborated below, holds
true if the patient readiness status is visible (i.e., viz(patient) is true) on the
display of both consoles when the patient is not ready and the system is on.

1 pt_status_visible ?(st: State): bool =
2 (controller(st)�mode /= off AND
3 controller(st)�patient = NOT_READY) IMPLIES
4 (st�console(main)�viz(patient) AND
5 st �console(remote)�viz(patient))

Note that theorem patient alerts th uses structural induction to define all
possible system states satisfying a property p, i.e., p should be satisfied at the
system’s initial state (induction base); then, if p holds for system state pre,
it must hold for any successor state post reachable from pre as the result of
executing system actions, as specified by trans(pre, post) (induction step).

Formalization of R4. Safety requirement R4 prohibits the start of treatment
when the patient is not ready. Theorem patient not ready th listed below for-
malizes this requirement, asserting that user action start shall not be permitted
(i.e., per start(st) returns false) when the patient status is NOT READY.

1 patient_not_ready_th: THEOREM FORALL (st: State):
2 controller(st)�patient = NOT_READY IMPLIES
3 NOT per_start(st)



Formalization of R5. This requirement allows the operator to cancel the
treatment activation sequence. Its formalization, as listed below as theorem
cancel activation th, asserts that the command is always available when the
device is turned on (controller(st)‘mode /= off), and the system shall go
back to mode ‘ready’ as result of pressing button stop.

1 cancel_activation_th: THEOREM
2 FORALL (st: State , c: Console):
3 controller(st)�mode /= off IMPLIES
4 controller(stop(c)(st))�mode = ready

Formalization of R6. This requirement mandates timely feedback after the
operator performs a control action. Theorem acknowledge start th listed be-
low formalizes this requirement for user action start. It is defined based on
attribute feedback(start), which is true when feedback is presented on the
UI. The attribute is checked immediately after registering user action start.
This formalization is su�cient for the demonstrative purposes of this paper. An
additional condition is also included to ensure that feedback is not displayed
persistently (in this case after one tick) on the console after pressing start.
Formalizing R6 for other user actions can be done similarly.

1 acknowledge_start_th: THEOREM
2 FORALL (pre , post: State , c: Console):
3 (per_start(pre) AND post = start(c)(pre)) IMPLIES
4 (console(post)(c)�feedback(start) AND
5 NOT console(tick(post))(c)�feedback(start))

Formalization of R7. Theorem interlocks active th formalizes safety re-
quirement R7, which ensures that interlock is true (i.e., safety interlocks are
enabled) after the system is powered on (modeled by action on).

1 interlocks_active_th: THEOREM FORALL (st: State):
2 init?(st) AND per_on(st) IMPLIES
3 (FORALL (c: Console): controller(on(c)(st))�interlock)

Formalization of R8. Formalization of safety requirement R8 involves defining
a predicate interlock visible? that checks whether the status of interlocks
(attribute interlock) is visible on both UI consoles. Structural induction can
then be used to build a theorem, like that used in formalization of R1–R3, to
assert that interlock visible? holds true for all reachable system states.

1 interlock_visible ?(st: State): bool =
2 controller(st)�mode /= off IMPLIES
3 (FORALL (c: Console): st �console(c)�viz(interlock))

We have proved that the PVS model in Listing 1.1 satisfies all PVS theorems
discussed in this section. The proof was carried out using the predefined PVS
proof strategy grind, which performs automatic instantiation, rewriting, and
expansion of definitions. The full PVS theory and proof can be downloaded
from https://goo.gl/7ftTlv.



6 Related work

STPA extensions dedicated to improving the analysis of use hazards were pro-
posed in [31]. These extensions refine the human controller model in standard
STPA using concepts from applied psychology: a detection/interpretation com-
ponent is introduced to capture the operator’s ability of observing and under-
standing feedback correctly and in a timely manner; and an action identification
component is included to model the operator’s ability to identify actions suitable
to manipulate controls provided on the UI. Whereas this refined model enables
developers to identify human cognitive errors that lead to UCAs (e.g., the op-
erator performs an unsafe action because of incorrect interpretation of system
feedback), it does not help to explore design issues in the UI software that likely
induce such human cognitive errors.

Leveson has introduced an STPA extension designed to validate the assump-
tions made by developers when defining a control model for the system un-
der analysis [18]. The validation is done using indicators suitable for measuring
changes made by developers during the definition of the system’s control model.
This extension is orthogonal to our method in that it improves the fidelity of
control models necessary for the STPA analysis of a system.

Dokas et.a. [8] extended the STPA control model to facilitate the analysis
of catastrophic failures. The intuition is that detecting early warning signs of
catastrophic failures and studying how they propagate in the control model
can help improve the overall safety of the system. This extension is suitable
to identify management-level causes of use hazards in complex socio-technical
systems, rather than UI software design issues.

Procter and Hatcli↵ used standard STPA to analyze interoperable medical
devices and identify safety requirements for mitigating design issues in these
systems [27]. They enriched STPA with additional guidelines to support the
identification of UCAs and their casual factors in interoperable medical systems,
and created AADL extensions for documenting the analysis results and subse-
quently defined safety requirements. Their focus is on interoperability issues,
rather UI software design issues.

7 Conclusion

We have presented an enhanced STPA analysis method to support i) systematic
identification of UI software design issues that could induce use errors with
medical devices, and ii) definition of safety requirements to address such design
issues. The benefits of our method has been demonstrated in a case study on
an experimental medical system. Our method facilitated the identification of
subtle UI software design issues that are di�cult to detect with the standard
STPA. It also helped us to define testable safety requirements that can be readily
formalized to address the identified issues. This might potentially improve the
applicability of formal methods in evaluating UI software design in safety-critical
systems such as medical devices. Future research includes investigating ways to



mechanize the instantiation of the casual factor categories to a specific design,
and detailed pragmatic guidelines for formalizing safety requirements identified
by our method.
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