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1. The continuous problem

1.1. Classical formulation

Let © be an open bounded connected set of R? with piecewise C! boundary I'. Let I'y be a part of
I' having strictly positive measure and I'y = I"' — I';. We denote by x = (x1,x2) a generic point of
Q= QUT. For x € I'y, we denote by v (z) = (v1 (z),v2 (x)) the outward unit vector normal to I'y at
the point x. If v = (vy,v2) is a function defined on  taking values in R?, we consider

1 8111- 81}]' .o
P = — < < .
gij(v) 5 <8l’j+afﬁi>’ 1<i4,7 <2, (1.1)

and )
oij(v) = A (Z 6kk(v)) 0ij + 2ueij(v),  1<4,j<2, (1.2)
k=1
where §;; denotes the Kronecker’s symbol and A and p are constants such that
A>0, wp>0.
Let us consider the following problem: given functions
f=(f1,f2): Q=R and  g=(g1,92): 2 — R

find a function u = (uy,uz) solution of

0
- Z 92,010 (uy=fi; in Q 1<i<2 (1.3a)
j=1 %
u;=0 on I, 1<i<2 (1.3b)
2
Zaij (wyvj=g; on Iy, 1<i<2. (1.3c)
j=1

The problem (1.3) describes the displacement field u with respect to the natural state of an elastic
homogeneous isotropic solid subject to a density force f in €2 and a density force g on I's - see e.g.
Raviart and Thomas (1998). The displacements u are imposed null over I';. The coefficients A and
are the so-called Lamé’s constants for the material occupying (2 and relate the coefficients o;; of the
stress tensor to the coefficients €;; of the linearized strain tensor as given by (1.2).

1.2. Variational formulation

We use the standard notation for the classical spaces L? (Q) and H' (Q) (Sobolev space of order 1),
see e.g. Adams (1975).

We denote by (-, ), the inner product on L? (Q2) and [L? (Q)]Q, that is
€00 = [ edn ecerr@)
2

(u,v)y = Z (Ui, vi)g, u,v € [L2 (Q)]z,

=1



6 1.2. Variational formulation

where u = (uy,u2) and v = (v1,v2). The norms induced by these inner products will be denoted by
I1lo:
1/2
l€llo = €5, €€ L*(@),

lollg = (v, 0} = (Z ||vl|ro) , we 2]

We further denote by (-, -); the inner product on H' (Q) and [H! (Q)]2, that is

2

o 0
&0 = mm+2<£é£>
=1 7 7

2
(Uav)1 = Z quz
=1

and by ||-||; the corresponding induced norms:

lell, = (6%,

oy = (v = (vaznl)

The following results are not trivial - see e.g. Duvaut and Lions (1972), Adams (1975):

Theorem 1. (Korn’s inequality) Let € be an open bounded connected set of R? with piecewise C!
boundary T" and I'; a part of I such that meas(I'y) # 0. Then, there exists a constant C' > 0 such
that

2
Z les;(W)llg. = C (AT Iolliq, Yoe [H' (D),

t,j=1
such that v =0 on I'y.

Theorem 2. (Trace theorem) Let 2 be an open bounded connected set of R? with piecewise C*
boundary I'. Then

(i) there exists a unique bounded linear operator -y
Vi HY(Q) = L2(D),
with the property that if ¢ € C* (ﬁ), then v (§) = &|p in the conventional sense;
(i) the range of v is dense in L (T').

We also recall the Green’s formulas:

%3
a’L'i
Q

(der=—

+/&wm,%iem@%i—LZ
T

where dvy denotes the one-dimensional measure of I'.

We assume that f = (f1, f2) € [L? (Q)]2 and g = (g1,92) € [L? (Fg)]2, and consider the space of
admissible displacements

V= {U = (v1,v2) € [Hl (Q)]2 : (v1,v2) = (0,0) on Fl}. (1.4)
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Then, if u is a solution of problem (1.3) smooth enough to belong to V', we have

u€eV:

/ 18%0—” )Uid:n—/z:fzvzdx Yo = (vy,vg) € V.
ij=

Invoking Green’s formula, we obtain
ueV:
2 2
Z aij (u) €ij (v) dﬂf—/ > oij (u)vv; d’V:/wai da,
5,j=1 i,5=1 i=1
) Q
Yo = (v1,v2) € V.

Taking into account the condition (1.3c) involving the forces acting on I'y , then u is a solution of the
variational problem

Find v € V such that:

2 2 2
> 0ij(u)eij (v) dz = / 3 fivide 4+ | S gividy,
=1
T2

f =1 =1
Yo = (v1,v2) € V.

Using the relation between the components of the stress tensor o and those of the strain tensor € (cf.
(1.2)), then an equivalent form for the problem is

Find v € V such that:

/ 22: {A <22: ffkk:(u)) dij + 2#6@'(@} €ij (v) do = 22? fividz + Zi givi d,

i,j=1 k=1 =1
Q Ty

Yo = (vi,v2) €'V,

or
Find v € V such that:

2 2 2
/)\divudivvdx+/2,u > eij(u) ey (v) doe = / > fivide 4+ | > gividry,
‘ ' i=1
Q Q

Q b=l = Ty
Vo = (vi,vg) € V.
Defining the bilinear form a : V x V — R:
2 2
a(u,v) = / Z oij (u) g5 (v) de = //\divudivvd:p + /ZM Z gij(u) €55 (v) dx (1.5)
Q ii=1 Q o =l

and the linear form [ : V' — R:

2 2
= /Z fivi dx + /Zgﬂ)i dr, (1.6)
q =1 P, i=1

the variational continuous problem is written as

Find u € V such that: a(u,v) =1(v), Yv € V. (1.7)

In order to prove the existence and uniqueness of solution of problem (1.7) we recall the Lax-Milgram’s
lemma:
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Theorem 3. (Lax-Milgram lemma): Let V' be a real Hilbert space with norm |||, a:V xV — R a
bilinear form and [ : V' — R a linear form verifying:

(i) a is continuous on V: |a(u,v)| < M ||lu|| ||v||, VYu,veV, M >0;
(ii) a is V-elliptic: a(v,v) > a |[v|[*, Yo eV, a>0;
(iii) [ is continuous on V: |l(v)| < C ||lu||, Yv eV, C>0.
Then there exists and unique element u satisfying:
uweV, a(u,v)=Iwv), YveV

Since the space V defined by (1.4) is an Hilbert space (subspace of the Hilbert space [H' (Q)]2), in
order to prove the existence and uniqueness of solution of problem (1.7) we only need to prove that
the hypotheses of the Lax-Milgram’s lemma hold.

We first show that the linear form defined by (1.6) is continuous on V. Let v € V be an arbitrary
element of V. Then

1) = /ifzvzdan/Zgzvzdfy
Q

=1

2
< / fivi dx| + /Zgzvz dry
Q =1
= 1(f:v)osl + (g, vors|
< |fllog lIlvllog + llgllor, vlor,
< Iflogllvlg +Cliglor, lolhg, € >0,
< Jolua (Ifloa+Clglor,)

where we have used the Cauchy-Schwarz inequality and the continuity of the trace operator.

To show that the bilinear form a is continuous on V| we use the Cauchy-Schwarz inequality and write:

2

la(u,v)] = /)\divudivvdm‘+2u/ Z gij(u) ;5 (v) dx
Q q &=1
2
< A /le’LLleUd.’IZ + 24 /Ze,] u)gij (v) dz
Q Q b=l
2
< A(divu,divo)g ol + 2p Z (€4 (w), €5 (v))o,0l
i,j=1
< Aldivullgg ([divellg g + 24 Z leij (@)l i (V)llog -

3,7=1

Given that all the norms in the above expression are L? (Q)-norms of various combinations of first
derivatives of u and v it follows that there is a constant M > 0 such that

la(u, v)] < M lull, o V]l q
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as required.
To prove the V-ellipticity of the bilinear form a we consider

2
a(v,v) = //\(divv)2 da:+2,u/ Z [e4;(v)]? da

Q Q B3=1

2
2
> 20 ) e )l

ij=1
Invoking the Korn’s inequality, we obtain
2
a(v,v) = a |v[ly

as required.



2. The approximate problem

2.1. );-quadrilaterals

Let us consider the reference finite element (T, Qu, f))/,\ where T is the reference square T =10,1]x[0,1]
and X = {@;, i = 1,2,3,4} is the set of vertices of T" as shown in Figure 2.1. @Q; denotes a space of
polynomials defined on T" with variables 71, T2 of degree less than or equal to 1 in each variable:

Ql = <17§17§:\27{L‘\1§2> .

Given 4 points a1, as, as, as € R? we denote by T' the convex hull of a1, as, as, as. Assuming that T is
not degenerated and denoting the set of vertices of T by Y7 = {al, i = 1,2,3,4}, it can be shown

7 )

that there is a unique invertible map Frp : T — R2 such that
Fr) ~\2
FT:<< 1>€(Q1)5
(FT)2

with the property R
T=Fp(T) and o =Fr(a;), i=1,..,4

(see Figure 2.2). Under these conditions we can define the “Q;-finite element” (7', Pr, ¥7) induced by
the map Fpr, where

PT:{p:THR:ﬁ:poFTGC@l}. (2.1)
Since dim @1 = 4, taking {p1,D2,D3,P1} as a base of @1 having the property
pi(aj) = dij, 1<1i,5 <4,

(see § 2.6), leads to

4
~\2
Fr@ =Y (af) 5i(@) € (Q1)
=1
X
a4 as
1
T
i ay
0 1

Figure 2.1: The reference element T

Furthermore, considering the definition of the space Pr (2.1) and taking x = Fr (Z), we get

pi (@) = (pf o Fr) @) =p] (z), 1<i<4, (2.2)

10
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as

g =(0,1) g =(1,1)

~>
v

a

ay
ay =(0,0) s =(1,0)

Figure 2.2: Quadrilateral element 1" and the corresponding map Fr
or, alternatively,

pl(x)=pioFp'(z), 1<i<4

It can be shown that under these conditions
peEPr = polre@ CP A pOFT|8ﬁ€P1,

where P stands for the space of polynomials of degree ¢ in each variable defined on T = [0, 1]2, while
0Tl is the side [ of the reference square T with 1 <[ < 4.

2.2. Global formulation

Let 7;, be a triangulation of Q of finite elements type, compatible with the partition I' = I'; U Iy,
made of quadrilaterals, that is:

(i) Q= Urez, T, where T is a non-degenerated quadrilateral;

(i) TyNTy = @, VT1, Tz € T, Ty £ T;
(ili) 71 NTy = @, or Th N1y = shared corner, or 71 N1y = shared edge, V11,15 € Ty, T1 # T5;
(iv) TNT; =9, or TNT; = corner of T, or TNT; = edge of T, for i = 1,2, VT € Tp;

and consider

hr = diam(T) = max {|z —y|}, T € T,
z,yeT

h = max hp
TeT), ’

n

1/2
where |z| = <Z z2> denotes the Euclidean norm in R”.

7
i=1

We now define the space of finite elements, X, as
Xn = Xin X Xop,

where

th—XQh—{'UhECO( ) : vh|T€PT, VTG'];L} (23)
The space of admissible displacements, V}, C V, is defined by

Vh:{thXhtthOOnrl}.
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Therefore, the approximate counterpart of the continuous variational problem (1.7) is

Find wj, = (u1p, ugp) € V4 such that: (2.4)
a(up,vp) = l(vy), Yop = (vip,ven) € Vi,
with (cf. (1.5) and (1.6))
2
Z eij(un) €5 (vp) de,

a(up,vp) = /)\divuhdivvhdm+/2u

Q =l
2 2

l(vn) = /waihdx-F/Zgwith-
5 =1 £, =1

Let Xp, be the set of nodes forming the triangulation (see Figure 2.3), that is,

Sh=|J Sr={ai:1<i<N}.

TeT),
ar ag Qg aio a3
. o
Z
Z
Z
Z
Z
Z
Z
7
7 .
I Z —— 1 ay

é Qy as Qg agy

Xr 7
Z

h 7

Z
Z
Z
Z
_
Z .
a1 %) as a2 ays

Figure 2.3: Triangulation nodes

Since every function vy, of X, (i =1,2) is univocally determined by the degrees of freedom
vin(a1), vip(az), ..., vin(an), the dimension of X, is N. The (global) basis functions of Xj;;, are the
N functions {wy, : 1 < k < N} satisfying

wg € Xin, Wk (aj) = (Skj, 1=1,2, 1<k,j<N. (2.5)

Therefore, every function v;, of X, has a unique representation
N
Vih = E vih(aj) wj.
j=1

We now introduce the vector of the global degrees of freedom v:

vip (ar1)
vap, (a1)
U= : , DeR?, wy e Xy, i=1,2,
vin (an)
vap, (an)

that is,

1<j<N.

Y — =

{ U251 = v1p (a;)

Uaj = vay, (ay)
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Since {(w;,0), 1 <j < N}and {(0,w;), 1 <j < N} are bases of the spaces X1j, and Xoy, respectively,
we write

N
v, = (U1, Vap) E Ugj—1 (w;,0) + E v2; (0, wy) .

Then, the bilinear form a can be written as
N N N N
a(up,vn) = a | i1 (wi,0)+ > Tai (0,w5), > Taj (w),0) + Uy (0,w;)
=1 =1 j=1 j=1

= > Ty1 a((wy,0), (w;,0)) i1+ Z 25 a((0,w;), (wi,0)) Uzi—1+

i,j=1 1,j=1
N N
+ ) Tio1 a((wy,0),(0,w:) i+ Y Uy a((0,wy), (0,w;)) i,
i,j=1 1,j=1
leading to
a(up,vp) =08 A7, (2.6)

where A is a matrix of order 2N with the following structure:

a((wbo)’(wlao)) a((wlao)a(()’wl)) a((w1a0)7(07w1\7))
a((oawl)a(wlao)) a((()?wl)a(()’wl)) a((oaw1)7(07w1\7))

A= : : : . : (2.7)
a((ova)>(w170)) a((ova)ﬂ(OﬂUl)) a((o>wN)v(07wN))

Since the bilinear form a is symmetric, we have

Agi—12j-1 = a((w;,0), (wy;,0))
Agi—125 = a((w;,0),(0,w;))

, 1<i,j<N. (2.8)
Azigj—1 = a((0,w;), (w;,0))
Aginj = a((0,w;), (0,w;))
In a similar way, we obtain for the linear functional I:
I(v) =00, (2.9)
where b € R?V is given by
! ((w17 0))
L((0,w1))
b— : : (2.10)
L ((wn,0))
! ((07 'U}N))
that is
1<i<N

boi—1 = 1 ((w;,0))
bgi =1 ((O, ’LUZ))
Supposing that nodes a;;, ¢ =1,...,5, belong to I'1, then the members of V}, are such that

vip(a) = vap(ay,) =0, i=1,...,5,

or, equivalently,
Vg1 =09, =0, i=1,...,5.



14 2.3. Local formulation
Hence, inserting (2.6) and (2.9) into (2.4), we conclude that the approximate problem corresponding
to the continuous problem (1.7) is
Find u € R?Y, with @y, 1 = g, =0, i = 1,..., S, satisfying:
vtAu=20tb (2.11)
You € ]RQN, such that vy, 1 =v9, =0, i =1,...,95.
2.3. Local formulation

Let T € 73, be an arbitrary element of the triangulation. Since we are using Lagrange ()1 elements
and
Ql = <1,331,:I:2,:L‘1:B2> = dile =4,

each (quadrilateral) element 7" will have 4 nodes
Y = {a{,a?,a?,af} ,
that coincide with the 4 vertices of the element. We also consider
T .
D; € PT7 1 << 47
the ith base polynomial of element 7' (T', Pr, ¥r), and impose (cf. (2.5))
pi (a]) =05, 1<i,j<A4 (2.12)

Now, let v;, be an arbitrary member of the finite element space X, (i = 1,2). We have v;|, € Pr
by definition (2.3), so that

4
vinlp = > _vin (af) of = (o] p5 p§ pi )
k=1

for 1 <4 < 2. We also have

vin (o)
Ovip | . T 319{ _ ( oo opy opl op] Vih, (a2T)
0z T_<§Um(ak) Ox; _<W]— Oxj  Ox; Wj) v, (ad)
vip, (af)

for 1 <i,j < 2. Therefore, defining the vector of local degrees of freedom, vy € R8,

T = [vlh (CL,{) ; Ulh (Gg) , Ulh (a{,{) , Ulh (CLZ) ; U2h (a,{) , V2h (ag) , V2n (CL:?Z;) , U2h (GZ)]t )

U1k
V2h

pi py p3s pi O 0 0 0
0 0 0 0 pf pb pi pf

we may write, on the one hand,

= [P"]vr (2.13)
T

where

_ < '] [POT} ) & Moy, (2.14)
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with
(PT] = (pl pb pI pI )€ Mixy,

and, on the other hand,

vy
o1
Ovyp,
Oxo T
vy, = [DP*] vr, (2.15)
o1
8v2h
Oxo T
where
R A A A P
ox1 ox1 ory 0x
R A A AN N N
T Oxo Oxo Oxo Oxa
[pPT] =
8pf apg apg 8pZ
00 0 0 %% @ T T
opT  opT  opl  opT
0 0 0 0 7% Za %o 7os
2 xr2 xr2 T2
[DPT] 0
= eM 2.16
with

ovi Opy Ops P

ox ox ox ox

T 1 1 1 1
[DP ]: T o T o T o T €M2><4

Op; Op, Ops Op;

612 a$2 axg axg

At this stage, it is useful to consider the strain vector {¢} and the stress vector {o}, which are defined
using the entries of the corresponding (symmetric) tensors. For the strain vector {¢} we have (cf.

(1.1))

8'Z)1h
€11 (vn) gfl
{e(wn)}ly = £22 (vn) = 72>
212 (vp) T vy | Ougy
Poz T Bar
Ovip
ox1
10 00 vy,
= o001 e
V2h
0110 GE)
szh
\ Jz2 J I
= [D][DP"] ur, (2.17)
where (2.15) has been used, and
1 0 00
D= 0 0 0 1
0110
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The stress vector {o} is defined by (cf. (

2))
o11 (vn)
022 Uh) }
o12 (vn)

£
&

{o ()}l =

2pe12

€11

€22

2812 T
= {5 Up }|T

= [E | [D] [DP] vy, (2.18)

A+2n A0
[ET] = A A+2u 0 :
0 0 v/ |y

Thus, we can write the bilinear form (1.5) present in the approximate problem (2.4) as

( (€11 + €22) + 2pen )
(€11 + €22) + 2uen
T
0
0
L

T

A
A+ 2u

0
with

a (up,vp) = /22:: (up) €ij (vp) dx = /{5 vy, } {o (up)} du.

Q'
Taking into account that Q = Urez, T, we obtain using (2.17) and (2.18)
a (up,vp) = /{5 vp) ¥ !T {o (up)}|p dz = Z /vT DPT [ ] [D] [DPT] ur dx.
TeT), T TeT, T
Furthermore, defining
[£7] =[] [E"][D] = € Muxa,

A
0
0
+2u /|,

Sx®E ® ©
o= T O©

A

we obtain
a (up,vp) = Z vk [DPT]t [ET] [DPT] ur dx. (2.19)
TeT) T

Similarly, we have for the linear functional (1.6) present in the approximate problem (2.4)

2
'Uh /Zfzvzhdx+/zgzvzhd’7— (/Z fz’T 'Uzh|T dz + / Zgi|aT 'Uih|T d’}/) ’
TeTy, i

Q = 1 TAC =1

resulting

L) = (/( o )|y [ da e [ S (o oo )y [o7] dv),

T ATy =1

7-(4), = - (3)

and [g
with [fT], [QT] € May1. Hence, using (2.13) we get

(Z /’UT PT fT] dx + / vk [PT]t [gT] d’y). (2.20)

TeTn 1 TAT,

where

)

orT
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Expressions (2.19) and (2.20) allow us to write the approximate problem (2.4) as

Find uj, € X} such that:

> [ o) [ PP urds = S | [or [P [ ot [ op [P (6]

TeT TeTn \'r TN,

Yop € Vj.

2.4. Formulation using the global degrees of freedom

Let us consider once more the vectors of the global degrees of freedom

v1p (a1) uyy (a1)
vop, (1) uzp, (1)
T = : , U= : . 0,0 € RPN wp, v € Xin, 1= 1,2
vip (an) up (an)
vop, (an) ugp (an)

Given the fact that for an element 7', having nodes af, al’, al’, al, we have

T
A

=a,r, 1<a<4, 1<n] <N,
then there exists a matrix BT € Mgyon, depending on T, such that
vr = [BT] 7, (2.21)

that is

S

>4
iy
>
3

Q

U1h

Q

S}
S

U1h

S

IS}
3

U1h

S
S

U1h

V2h

3

Q

V2h

S
3

Q

V2h

S
3

S S
BN W N R R Wy vy =

— —
<
=
=

V2

~— N Y Y~ Y~ ~— ~— ~—
|
Sy
~
[—)
<
N
=

<

N

>
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It can be easily shown that
[B"],,=0,0,r_1 and [B'],, . =9
with 1 <i<4 and 1 <j <2N. We may also write

BT =¢ - (2.22)

() . N jvc;r,
6‘7"2“1’1"74 'Lf 5 S 1 < 8,

where

(2.23)
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For example, for the triangulation shown in Figure 2.4,

leading to
¢'=1{7,9, 3,1, 8, 10, 4, 2}

In this case BT € Mgx12 would be given by (cf. (2.22))

0 - 0 1 0 - 0
0 oo e 0 1 0 0

00 1 0 0

- 1 0 0
0 - 0 1 0 0

0 - 0 1 0 0

0 1 0 0

We are now able to write the approximate problem using the global degrees of freedom. For that we
suppose that nodes a;;, i = 1,...,.S, belong to I'y, that is,

uip(ay,) = ugp(ar,) =0, i=1,...,5,

or, equivalently,
ani—lzaQZiZOa Z:177S

Hence, the approximate problem (2.4) can be written in the form
Find @ € R?N, with @y, 1 =y, =0, i =1,..., 5, satisfying:
S° @t [BT) [pPT]' [€7) [DPT] [BT] ude =

TeT), T

=X | [ P e [t P ) e

Vo, € Vi, where & = [v1y, (a1) ,van (a1) - .-, v1n (an) , van (an)]" € R2V.
Since the mapping from vy, € V}, to © € R?V, such that

Ug—1 =0y, =0, i=1,...,5,
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is an isomorphism, the approximate problem (2.4) is equivalent to
Find u € R?Y, with @y, 1 = g, =0, i = 1,..., 5, satisfying:

TS ([P e R e ) 57 -

—e S [P e [P ) b
TeT, T TNy
Vo € RV such that Vg1 =09, =0, t=1,...,8.

Defining the elementary rigidity matrix
mﬂ:/pﬂrwqwﬂmm R € My, (2.24)
T

and the elementary second member vector
ﬂ:/@ﬁﬂﬂym+/[ﬂT@ﬂm,ﬂew, (2.25)
T TNy

the approximate problem is written
Find @ € R?V, such that g, 1 = U, =0, i =1,..., 5, satisfying:
oy Y [BRT[BT] pa=utq YO[B 0T
TeT, TeTy

Vo € RN with Uy, 1 =0y, =0, i =1,..., 5.
It is useful to define the global rigidity matrix

t
A=>"[B"]'[R"] [B"], A€ Manuan, (2.26)
TeTy
as well as the global second member vector
b= [BT]" b7, beR. (2.27)
TeT),
The approximate problem is now
Find @ € R?V, such that g, 1 = Uy, =0, i =1,...,5, satisfying:
vt Au =vtb, (2.28)

Vo € R?V | with U, 1 =09, =0, i =1,...,S.

Since the approximate problems (2.11) and (2.28) are the same, we conclude that there are two
equivalent ways of defining the rigidity matrix A - (2.7) and (2.26) - and the second member vector b
- (2.10) and (2.27).

Let us suppose that, for practical reasons, the numbers of the S nodes belonging to I'y are the N — S

last ones, that is,
h=M+1,1l,=M+2,...,ls=M+S5=N.

eV, & 5—(31 >—<U1>,516R2M.
V11 0

Then
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Using the following decomposition of A and b:

Arr A
A = 9 A G M )
(AIII A ) 11 IMx2M

b = (bl ) by € R?M
brr

the approximate problem (2.28) becomes

Find @1 € R*M such that:

(5) (o am ) ()= (8) (i) (220
0 At Amn 0 0 b )’
V/ﬁIG]RQM,

that is, the linear system of order 2M

Find %1 € R2M guch that:
There are several ways of solving this problem, in particular concerning the scheme used to impose

the conditions to the nodes belonging to I'y. However, from the computational point of view, the best
way is to solve a problem that is "computationally equivalent" to (2.29), namely,

Find @ = (ur, ugr)t € R?Y, with a; € R?M and ayp € R?9, such that:

A A up \ _ (b (2.30)
Anp 01 UL 0 ’

where T is the identity matrix of order 25 and @ is a high value constant (for example, 103°).

If, for sake of flexibility, we do not impose any particular scheme for the numbering of the nodes be-
longing to I'1, a simple algebraic manipulation of the system of equations (2.30) leads to the equivalent
problem:

¥ =5

Find @ € R2YN such that:
Au =

where A and b are built using A and b as a base, respectively, taking into account the conditions
imposed to the nodes lying on I'y. In this case, the entries of A and b coincide with those of A and b,
except the following ones:

Agpy—1,2—1 = Aay 1, = 0
bot;—1 = bay;, =0

In this way, the matrix A and the vector b depend only on the triangulation and the finite element
chosen, being not affected by the essential boundary conditions present in the problem. We also note
that this procedure can be used to “block” any degrees of freedom that do not belong to I'y if that is
required by the nature of the problem being addressed.

Since A is a positive-definite symmetric band matrix, AU = b is solved using the Choleski direct
solution method, the entries of A being stored as described at the end of § 2.5.

2.5. Some implementation considerations and algorithms

2.5.1. Main steps

1. Representation of the geometrical data concerning the triangulation (mesh generation).
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Finite elements data (nodes, reference element, base polynomials, .. .).

For each element: computation of the elementary rigidity matrix R” and the elementary second
member vector b7 (involves problem data, numerical integration quadrature formulae, ... ).

Assembly of the rigidity matrix: A = Z [BT]t [RT] [BT] .
TeT)

Assembly of the second member vector: b = Z [BT]t bT.
TeT,

Handling of essential boundary conditions: A — /T, b— b.
Solution of the linear system At = b.
Complementary calculations (stresses, error estimates, ... ).

Postprocessing: graphics, interface with other problems.

2.5.2. Representation of geometrical data for the triangulation

We suppose that the mesh is generated a priori, being therefore considered as input data for the
problem. Anyway, to describe a triangulation appropriately we need the following data (see Figure

2.5):

a)

r2
7 1 2 3
N
N
N
@ ©, O~
8 6 5 N\
4N
N
3 NONENG r
§ 1
9 10 11 N\
S
12N
© S
N
N
N
N
16 15 14 13
rS
Figure 2.5: Triangulation data
Coordinates of the N nodes, a1, as,...,ay. This information can be stored in a matrix z (N, 2)

of reals where z;; is the jth coordinate of node number i. The origin of the (global) coordinate
system is arbitrary.

List of nodes in each of the N, elements (connectivities): lists the nodes ApT'5 AT 5 QT G T of
each element 7' € 7;,. The description is made using a matrix of integers, M (N,,4), where m;;
is the number the jth node of the ith element. In the (local) numbering of the nodes of each
element these should be considered is counter-clockwise direction (see Figure 2.6).
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Figure 2.6: Local numbering of nodes

For the mesh in Figure 2.5 we would have:

1 7 8 6
6 5 2 1
5 4 3 2
M=1 9 10 6 8
10 11 5 6

c) Reference numbers for nodes and edges: Indicate if a given node/edge belongs to a given part
of the boundary. These numbers are used to impose the boundary conditions. We have

1 <7< N.

(i) =

{ 0 if a; is an interior node

j if node i belongs to I';
For the mesh in the previous example we would get:
(=2, 1(3)=1, (8 =1, I(11)=0, 1(14)=3.

For the faces we consider a matrix of integers, K (IVe,4), where k;; indicates the “position” of
the jth face of the ith element. Therefore, for element number ¢ we have
o 0 . L . is interior,
K(i,7) = if the face starting in the jth node
m belongs to I'y,.
We suppose that, for a given element 7', the 4 faces are taken in the direct sense. Therefore, for
the mesh in Figure 2.5 we obtain

OO OO N
SO = O =
O O NN O
o= O O O

2.5.3. Assembly of the rigidity matrix
As we have seen previously (cf. (2.26)), the rigidity matrix is given by

A= [B")'[RT)[B"],

TeT),
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where R” is the elementary rigidity matrix. On the other hand, if 7" is a triangulation element with
vertices
al =a,r, 1<i<4,

(2

then (cf. (2.22)),
57, =0

with ¢7 given by (2.23). Therefore, the contribution of element T to the global matrix A is, taking
1<4,j<2N

(1) () 87), = (1877 [8))

v

im [BT] mj Z [BT} :l [RT} Im [BT]mj

m=1 l,m=1

8

- 3 [ (5,

= D[R], 8ir 0t

l,m=1

that is,

(57" (81 [87]), =

[RT]QQ if =l 5= Cg, for some «, 5 € {1,2,...,8},
0 otherwise.

Hence, the only entries of A to which T contributes to are ACT 1> 1 < a,8 < 8, which are modified
by adding [RT] op" The algorithm to build the rigidity matrix is then

Initialize to zero the matrix A of order 2N

For all the elements 7' of the triangulation, 1,2,..., N, do
For a=1,...,8 do
For 5 =1,...,8 do
Acrer = At r + Bag
End of loop on 3
End of loop on «
End of loop on the triangulation elements

2.5.4. Assembly of the second member vector

As we have seen previously (cf. (2.27))

b= [BT] oT

T€Ty

where b € R® and b € R?V. The contribution of element T to the global vector b s, taking 1 < j < 2N,

([B]°7)

8

8 8
Z[BT];k bi = Z[BT]kj bp = Zdj,CE b
- k=1

7= k=1

that is,

(15117,

{ bl if j=¢L, for some a € {1,2,...,8},
j

0 otherwise.

Therefore, the only entries of b to which T contributes to are bCT, 1 < a < 8, that are modified by
adding bL. The algorithm to build the global second member vector is then
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Initialize to zero the vector b &€ R2N

For all the elements 7' of the triangulation, 1,2,..., N, do
For a=1,...,8 do
— T
ber = ber + b
End of loop on «
End of loop on the triangulation elements

2.5.5. Rigidity matrix bandwidth and profile

In order to establish the bandwidth and profile of the rigidity matrix A we consider (2.8) again:

Agi_172j—1 =a ((wlv O) s (wja 0))

Agi—1.25 = a((w;,0), (0,w;))

A21‘72j—1 =a ((07 wz) ) (wja 0))

A2i,2j =a ((vai) (0, wj))
Due to the form of a (cf. (1.5)), the entries listed above, involving the 2 degrees of freedom of nodes i
and j, are not zero only if the supports of the base functions w; and w; have non-empty intersection.
Therefore, entries 2j — 1 and 2j of lines 2i — 1 and 2i of matrix A are not zero only if nodes 7 and

j belong to the same element. So, A is a sparse matrix, as expected. Moreover, A is a symmetric
matrix, having a (symmetric) profile as illustrated in Figure 2.7, where

A(@)=min{j:1<j<i, Aj;#0}, 1<i<2N,

that is,
An :AZQ:-":Ai)\(i)_l =0, 1<3:<2N.

Therefore, the bandwidth of the rigidity matrix is given by

bandwidth of A = 1§jngl?§2N {i—j+1:A;#0}=  fax, {i—=X()+1}.

Ay —

Figure 2.7: Rigidity matrix profile
For a given triangulation, the entries of A are given by
A2i—1)=AQ2i)=min{2n] —LVT €Tp:a,€T,1<j<4}, 1<i<N.
For computational reasons, it is advisable to store only the non-zero elements of each row of A

Aixys Aixy+1s -+ Ay, 1 <9 < 2N,
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in a vector a. Since the matrix is symmetric, we need only to store the diagonal and lower triangle.
In this way, to locate an element of A in vector o we just need to know the indexes vector u:

w(1)=0, p(i+1)=position in a of entry A;;, 1 <1i < 2N.
As a result
Ajj=a(p(@)+j—A@)+1), j=XG),A0)+1,...,4

The pointer p is obtained from vector A:
p+)=p@)+i—AGE)+1, 1<i<2N.

To minimize the bandwidth (and consequently the length of vector o and the memory needed to store
A), it is essential that the non-zero elements stay as close as possible to the diagonal. For this reason,
we should number the nodes so that for a given element the corresponding node numbers are as close
as possible to each other. This is a problem without optimal solution. There are, however, some good
numbering algorithms that can be used to minimize the bandwidth based on the theory of graphs
(Gibbs, Grooms, Akha, Cuthill-Mckee, etc.).

2.6. Computation of elementary rigidity matrices and second member vectors

The computation of the elementary rigidity matrix (2.24) and of the second member vector (2.25)
involves the evaluation of integrals. These integrals, involving the elementary matrices [P7] and
[DPT] - see (2.14) and (2.16), respectively - are calculated using a change of variable to the reference
element as described below.

2.6.1. Change of variable to the reference square T

Let us consider again the reference finite element T. As we have seen previously (cf. § 2.1), for a given
finite element T we consider the invertible map Fr : R? — R2, such that

4
~ o \2
T=Fr(T) and Fr@ =3 () (@) e <Q1) ,
i=1
where {al, i =1,...,4} stands for the set of nodes of T' (recall Figures 2.1 and 2.2). In this way,

(Fr), (2) >

Fr(z) =
" ((FTW)

_ ( i+ bz + c%'fg + b, 717, ) (231)
E 4+ a4+ LEy + L EEy ) '
where & = [Z1,Z]" € [0,1]%. Denoting the coordinates of the vertices of T' by
v = (a)), 1<i<2 1<j<4,
it can be easily shown that
ch =z, ch=min—mn, cy=zu—zn, cf=z3+z0—Ti2 —Tias
with ¢ = 1,2. On the other hand, we have shown that (cf. (2.2))
pi@ =pl(z), 1<i<A4 (2.32)

This result, together with condition (cf. (2.12))

pi €Pr, pi(a)) =20, 1<i,j<A4,
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leads to R
pi € Q1, Dpi(a;) =0, 1<i,5<4
Therefore,
Pr=01-21)(1-22), po=(1-22)21, p3=2122, ps=(1—-21)72.
From (2.14) and (2.32) we obtain
[PT] (x) = [PT) o Pr (z) = [P) (), (2.33)

-~ p1 p2 b3 pa 0 0 0 O [P] 0O
[P] = = | € Maxs,
0 0 0 0 p1 p2 p3 ps 0 [P]

with [P] € M4 given by

[Pl=(P1 P2 D3 Pa )=((1-Z1)(1—-T3) (1-Z2)T1 1%z (1—71)T2 )

Furthermore, defining

where

p; op]

S oz1 2 T ox 2 .

Vp; = 8}32 eR?, Vp;, = 8p;} € R, 1=1,2,
8%2 Oxa

and taking into account that
2 2 A
Oxy, Op} _ Z o (Fr),, (z) opl

— 8@} 8$k el 8@\] 8.’1%’

opi(z) _ Opf (=

8l‘j 8$j

) _
k

we get
(Vou | V2 | Via | Vi) (@) = [Fr @) (Yol | Vo3 | VeS| V9f) (@),
where FJ. (Z) € Maxs is given by (cf. (2.31))

a(FT)1 a(FT)Q T T ~ T T ~
F (3) Bi) 0o Clp T CiaT2  Cop + Coyu2
T\¥) =\ s a(F - ~ ~
(Fr)y  9Fr)y iy +clyT1 o3+ g

0T2 02

So, we can write

(Vol | Vod | Vof | VE) (@) = [Fr @) " (V51| VB2 | Vs | Via) (@):

Taking
T T~ T T~
. - 1 Co3 T Co4T1  —Cop — Cy42
GT($) = [Fj"‘ (x)] 1 — dtT ( T T~ T T~ ) € Moyo (2.34)
et [Fr (2)] —C13 — C14T1  Cip + Ciu%2
and defining
. Gr(z) 0
Or(z) = R € Myxa, 2.35
7(7) ( 0 Gr(3) 4x4 (2.35)
leads to (cf. (2.16)) -
[DP"] (2) = Gr(2) [DP)(2), (2.36)
where
op: op: Ip: ap.
% om0 0 0 0
Op; op: Op- oD, ~~
. | % & o oam 00 00 [DP] 0
0 0 0 0 8—551 8—5 8—§? aTi 0 [DP]
opr  Op> 0P Opa
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with [513] € May4 given by

Opy  Opy Op3 0Py ~ ~ ~ ~

- o On Om Om (—(1—932) (1-32) T~ (2.3
opn  O0py  Ops  Opy —(1-7 -7 T 1—-7 ) ’
0 Um0 0n =% 1B -E)

We can now express the integrals over T" present in the elementary rigidity matrices and second member

vectors in the following manner,

/ W(z) do = / (4 o Pr) (2) det [F} ()] da, (2.39)
J J

T

where

det [FZ/“ (55)} = (01T2C2Tg - 0{3652) + (01T2C2T4 - 0{4052) Ty + (01T4C2T3 - C{3C2T4) Ta.

The adoption of the “positive” direction for the local numbering of nodes (cf. § 2.5 and Figure 2.6)

A~

ensures that det [ (Z)] > 0.
Using the change of variable x = Frr (Z), we get for the rigidity matrix (cf. (2.24) and (2.36))

] = [ [pP"]'[€7) [PP7) do
[DP"]" o Fr [€7 o Fr] [DP"] o Fr (det ) dz

[DP)'GL [€7 o Fr] Gr[DP)] (det F}) dz. (2.40)

HS~—— D~ S

Similarly, the “f-term” of the second member vector becomes (cf. (2.25) and (2.33))
T Tt 10T
o= [P 1) e

[P7)" o Fr ([f7] o Fr) (det F}) d&

[PI* [T o Fr] (det F}) da. (2.41)

S~— D S

The nature of the integral present in the “g-term” of b1 (cf. (2.25)) is different from the previous
ones, since it is defined over 9T,

t
i [ P " (2.2
TNor'y
Let us consider the integral
p(x) dy
TNoT'

and define
{ 1 if thesidel of T C I’y
X[ = ’

0 otherwise,

where 1 <[ < 4. Therefore,
4

/ p@)dy=3"xF / o(z) dy. (2.43)

TAT, =1 5
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Since each side of element T is a linear segment, the change of variable x = Fr (Z) leads to
[etwrar= [ (oorn) @ &
8Tl 8T‘l

where 6 is the size of segment [ of element 7. From (2.42) and (2.43) we get

o= d [P @

= ST / [ﬂt 9" o Fr] a7, (2.44)

where (2.33) has been used.

2.6.2. Elementary calculations

In order to compute the integrals present in the expression giving the elementary rigidity matrix, as
well as those for the “f-term” and “g-term” of the elementary second member vector, we use the
Gauss-Legendre quadrature formulae with k& nodes for the interval [0, 1]:

[ 3@ a ~ g@a(@),

where @; (i = 1,2) are the quadrature weights, while b; (1 = 1,2) are the quadrature nodes which
are obtained through an affine transformation of the k roots in [—1, 1] of the Legendre polynomial
of degree k. These formulae are exact for polynomials of degree 2k — 1 defined on [0,1]. Table 2.1
summarizes some relevant data for the Gauss-Legendre quadrature formulae.

k| 2k—1 ZZ w; order
1l 1 5 1 2
2| 3 +¥3 gl 11 4
3] 5 |24 | meem|

Table 2.1: Data for Gauss-Legendre quadrature formulae with 1, 2 and 3 nodes

Computation of the elementary rigidity matrix

We have for the elementary rigidity matrix (cf. (2.40))
[RT] = / (DP)'GL [€7 o Fr] Gr[DP) (det F}) da. (2.45)
T

If €T and F}. are both constant (homogeneous isotropic material and parallelogram quadrilaterals),
the integrand above involves at most polynomials of degree 2 in each variable, since in that case Gr
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and det F. are also constant. Therefore, under this hypothesis, to integrate

/ (DPIGL [€7 o Fy] Gr[DP] (det Fy) di

T

exactly we need to use a quadrature formula that must be exact for polynomials that are P in each
variable. That can be ensured using the Gauss-Legendre quadrature formula with 2 nodes (exact for
polynomials of degree 3 in each variable)

2
[ i@ e~y (h). het.
=1

in combination with the Frobenius theorem:
/¢ (3) di — / [/ D (31, 72) dfig} d&1
| 0 0
T

1 1
~ Wl/ (0 <b1,§2> dﬁi\2+w2/ P <b2,5c\2> dZo
0 0

~ wi (bl,bl) + w1 w2 [17) <31,32> +9 (Zz,glﬂ +wip (32752) )

where ,
wL=wy =5
and . LA L
1:§+?, 52—5—?.
Schematically,
X, N
1. 1
® b, N El §2 o byt @ ) .
~ 0 1 X, T
o} S S
8'1 3'2 -
In this way,
[3@ da~ 5 [9(0) 49 (Bube) +5 (Babr) + 3 (ba) ]
leading to '
(R ~ 5 [0 (ub) 43 (5u8) +8 (B + 3 (BasBa)]
where

o = [DP)' Gh [T o Fr] Gr [DP) (det Ff) € Msxs.

It should be stressed that the hypothesis used to obtain this result, namely the assumption that we are
dealing with a homogeneous isotropic material and parallelogram quadrilaterals, in combination with
the order of the quadrature scheme used, does retain the order of convergence of the finite element
method - see e.g. Ciarlet (1993) and references therein.
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Defining
_ / SN _ / GT 0 Bﬁ 0
H 0
= ( OT Hy > € Myxs,
with
[Hy) = (det F}) [Gr] [ﬁﬁ} € Moy,
and since
A+2u 0 0 A
0 wop 0
g = :
€] 0 a0
A 0 0 A+2p /|,
we finally get
~ 1 T
Vr = g Pl [€7 o Fr] [rta].

or

Computation of the “f-term” of the elementary second member vector

As for the rigidity matrix, the “f-term” of the elementary second member vector (cf. (2.41))

bh = / (det F7) [PT ([f7 o Fr]) dZ, (2.46)

T

involves at most polynomials of degree 2 in each variable if fI and FF. (%) are assumed constant.
Therefore, it can be integrated exactly using the Gauss-Legendre quadrature formula with 2 nodes.
Hence,

5~ 2 (2 (08) + 3 (Buba) + (B ) + 3 (BaBo)|
where
3] = (det Fy) [B)f [f7 o Fy] € B,

Thus,

@), = (det Fr) > [Pl floFPr 1<i<8.
1<k<2

Again, it can be shown that assuming f7 and F}. constant, together with the quadrature scheme used,
retains the order of convergence of the finite element method.
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Computation of the “g-term” of the elementary second member vector

To evaluate the integrals present in the “g-term” of the elementary second member vector (cf. (2.44))

ZX / H 9" o Fr] a7, (2.47)

o,
we define the following change of variable for face T, = [al,am]

€[0,1] =@ (0) = (g —a) o +a, 1<1<4,

[@da—/01@<¢l<a>> @

or

where 7 = imod 5. Then

yielding

7t Lr o t
/ P] 19" o Fr] a7 = / P@ @) 19" (Fr @ 3))] d5. (2.48)
ot
If we assume that g7 is constant, the integrand above involves at most polynomials of degree 1 in &.
Therefore, under this hypothesis, to integrate

! fay t
/0 P@@)] " (Pr @) do

exactly we need to use a quadrature formula that must be exact for P; polynomials. That can be
ensured using the Gauss-Legendre quadrature formula with one node (exact for polynomials of first

degree):
1 ~ —~
/0 35 ~ (%) , (2.49)

- (1
Cl = ¥ 5 )

the center of face T} of the reference element, (2.48) and (2.49) lead to

[ rema = ()] (7 (2())

T

Defining

- [P@) ls" @)

Therefore, taking into account that ¢; = Fr (¢;), we obtain (cf. (2.42))
4 . ¢
ST ol [P@)] o7 (@)
=1

+ X1 05 ;1
+x3 05 91
+x3 03 ¢
+ X1 01 91
+ X4 54 92
+x3 65 g2
+x3 53 g2
+ X1 07 g2

X1 01 o1
51 9
X2 52 n
X3 53 g1
51 92
51 g2
52 g2
X3 53 g2

1 Cq

C1 Cc2
co cs3

C3 C4

| =

1 Cq

C1 C2

co c3

A~ N N N N N /S
— — — ~— — — ~— ~—
A~ N N N N N SN

)
)
)
)
)
)
)
)

C3 C4
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Alternatively, if we define
~ t
T =of [P @) [o" (@) €R®, 1<1<4,

then only four entries of bf]’T are non zero, namely,
1T 1T i 1T 1,7 5
7, = =S e (7] = [ ] = e,
[9 A L e o RGN L Pl L = A G

leading to

4
T T 41T
by ~ ZXI by -
=1

2.7. Postprocessing calculations

After the numerical solution of the linear elasticity problem has been obtained, it is useful to compute
some quantities that are often used in the analysis of results, namely the main stresses and the von
Mises stress. On the other hand, when the problem being solved has a known analytic solution, it
is possible to compute the error ||u — uh||07Q, allowing to derive the order of approximation of the
solution. In the following paragraphs we give some hints on the computation of these quantities when
the approximated displacement field is known.

2.7.1. Computation of main stresses and von Mises stress
Here we will focus on the computation of the stress tensor for a given point x € T":

011 (uh) 012 (uh) )

021 (uh) 022 (Uh)

o () = o (un)ly = (

T
In order no to burden the notation we will use o = o (up).

The main stresses, 01 and o9, can be obtained from the eigenvalues {\1, A2} and eigenvectors {vy,va}
of matrix o. These are given by:

1
A1o= 5 <U11 + 022 — \/(011 —022)2 +4a%2> )
vy = <2012, 011—022—\/(011—022)24—40%2)
and
1 5 9
Ay = 5 (o tont (011 — 022)” + 403, |,
vy = (20’12, 0’11—022+\/(011—022)2%-40%2)7

where we used the fact that 15 = 091.

On the other hand, the von Mises stress is the invariant given by

”UHVM = Il2 — 31,

where I and Iy are, respectively, the first and second invariants of the stress tensor o:
L = tr(o) =M+ M\,

L - %{[m« @) ~tr(o?)} = M.
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Thus,

lollyvay = \/()\1 + A2)? — 3\

— 2 2 2

Hence, to compute the approximate main stresses and von Mises stress at a given point of T' € 7}, we
only need to calculate an approximation of o at that point. As we have seen previously (cf. (2.18)),
the stress vector {o} is given by

{J}’T = g929 = [ET] [D] [DPT] (37) ur,
012 T
where
A+2u 0 0 A
[ET] [D] = A0 0 A2 ||,
0 " 0 T
while

ur = [ulh (a{) , Ulh (GQT) , Ulh (Gg) , Ulh (CLZ) , U2h (CL,{) , W2h (ag) , W2h (ag) , W2h (G‘Z)]t
is the vector of local degrees of freedom. We recall that (cf. (2.21))
ur = [BT] u,

where @ is the vector of global degrees of freedom. Using (2.36) and taking into account that z =
F! (), we obtain

o R
ag922 = [ET] [D] QT(E) [’D'P] (55) ur,
012 T

with Gr(Z) and [DP](Z) given by (2.35) and (2.37), respectively. If we consider ur = [uir, ugr]t, we
can derive

i Gr(7) [DPI(@) uar
i (R { Gr(@) [DPI(@) ar }

where Gp(Z) and [DP](Z) are given by (2.34) and (2.38), respectively.

For postprocessing purposes the main stresses and the von Mises stress are first evaluated at the
barycentre ap of each element 1" using

i B Gr @) [DP] (@) u
G (L { Gr @ (DP) @ wr }

ar

where ap = Fr (a) and @ = (1/2,1/2). The value of these quantities at each node of the triangulation
is obtained taking the average over the barycentre values of the elements to which the node belongs
to. The weights used in this average can be either constant - that is, 1/m, where m is the number of
elements that contribute to a given node - or proporcional to the area of each element involved, the
latter being the “default” setting.
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2.7.2. Computation of |ju — up||y g

When the analytic solution of the problem w is known it is useful to compute the error

2
lu=wlde = Y lu—wlr = 3= 3 [ = unlp)? o (250)

T€eT, TET, i=1

since the estimate

Ju — UhHo,Q < Ch? ‘U|1Q ) (2.51)
where
) ) 1/2
ou;
‘uyl,ﬂ = Z awz ’
ij=1 J 110,92

holds for the problem conditions imposed previously - namely, the fact that f € [L2 (Q)]2 implying

that u € [H? (Q)]2 - [cf. Ciarlet (1993)], allows to test the order of approximation of the solution.
The constant C' does not depend on h, satisfying

uUu—mu
‘u|1,Q

whenever h — 0.

In view of (2.50) - (2.52), we will devote our attention to the computation of

/T(ui (2) = win (@)|p)? do, i=1,2.
Using (2.13) and (2.14) one has
wip(z)|p = [PT] () wir, i=1,2.
The change of variable z = Fr (Z) in combination with (2.32) and (2.39) leads to
/T (ui(e) — [P7] () usr)” de = / {(wio Fr) @) ~ [PI(@) uiT}2det (Fh(@)] dz, i=1,2.

T

Hence,

2
fu-wlia= 3 [{weF)@ - Pi@wr} det [F @] &

TeT, i=1 =
(S’ 7

the integral on the right-hand side being evaluated numerically using a quadrature scheme similar to
the one used for the computation of the elementary rigidity matrices.
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The principles presented in the previous sections were implemented in a C+4 numerical code, allowing
to solve the linear elasticity problem for a 2D elastic body. Both preprocessing (mesh, displacement
constrains, loads) and postprocessing (displacements, main stresses, von Mises stress, error estimates)
are handled using the software GiD (version 7.2). The relevant files needed for the interface between
the numerical code and GiD are presented in Appendix A.

Here we present some tests by solving a certain number of 2D linear elasticity problems for which
an analytic solution can be obtained. Both structured and unstructured meshes are used, as well as
homogeneous and non-homogeneous bodies. At the end of this chapter we present some results for a
problem (deformation of a 2D wrench) for which an analytic solution cannot be derived, and compare
them with those obtained using MODULEF.

In the following discussion the values of all physical quantities are given in S.I. unit system unless
stated otherwise.

3.1. Test problem 1 - Homogeneous square plate; solution € (Q1)2

3.1.1. Problem description

We consider the homogeneous square plate presented in Figure 3.1, having Young modulus E and
Poisson ratio v with values

E = 5x10° (Pa),
v = 0.3,

that are typical of rock material. The corresponding values of the Lamé’s constants A and p are
obtained from the following relations:

Ev

AT Ao a-w) (3.12)

yielding

A = 2.8846 x 10° (Pa),
p = 1.9231 x 10° (Pa).

The linear elasticity problem for this plate is

Find u = (uq,uz) such that:

2.0
— TUij(u):fi in Q 1<i<2,

j=10%j

(3.2)

u; =0 on Iy, 1<i<2,

2
Yooij(wrj=g; on Ty 1<i<2
j=1
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with = [0,1)%, Ty = v, Uy, while the loads imposed are:

fi=2(u+A)x 1072 =9.6154 x 10" (Nm™?),
fo=—(p+A) x 1072 =—48077 x 10" (Nm™?),

over €,
gil,, = [(2p + A) 22 — 20 x 1072 = (6.730822 — 5.7692) x 10" (Nm™?),
g2l = (1= 22) x 1072 = (1.9231 — 3.84622) x 10" (Nm~?),

on boundary 7, and

gil,, = p (@1 —2) x 1072 = (1.9231z; — 3.8462) x 10" (Nm™?),

g2l = [-2(2pu+ A z1 + A] x 1072 = (—13.46221 + 2.8846) x 107 (Nm™?),

Y2

on boundary 7,.

X
Y2
15
I Q V1
0 1
Iy .

Figure 3.1: Schematic representation of the homogenous square plate of Problem 1

As we have seen in § 1.2, considering the space of admissible displacements
V= {U = (v1,v2) € [Hl (Q)]2 : (v1,v2) = (0,0) on Fl}

and the linearized strain tensor

“(’U)—l 8@1- +81}j
cij\v) = 2\0x; Ox;

the corresponding variational problem is

Find v € V such that:

/ 22: {)\ <]§:1 5kk(u)> dij + 2,u€,~j(u)} gij (v) de = ﬁ: fividx + f:lgivi d~y,
- A i=

f, =1
Yo = (v1,v2) € V.
The analytic solution of this problem is known:

ui (z1,22) = mxe X 1072 (m),

ug (w1, 29) = —2m1m3 x 1072 (m).

(3.3)

(3.4)
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Since u € [Q1 (Q)]%, we expect the numerical solution to coincide with the analytic solution if the
quadrature formulae used allow to integrate the elementary rigidity matrices and the elementary
second member vectors exactly. Taking into account that

felP (P, gelP ()P,

and the fact that the mesh used is made of parallelogram quadrilaterals, it is easy to show that one
can compute exactly:

(i) the elementary rigidity matrices (2.45) using the Gauss-Legendre quadrature formula with 2
nodes;

(ii) the “f-term” of the elementary second member vectors (2.46) using the Gauss-Legendre qua-
drature formula with 2 nodes;

(iii) the “g-term” of the elementary second member vectors (2.47) using the Gauss-Legendre quadra-
ture formula with 2 nodes.

As we have seen in § 2.6, conditions (i) and (ii) should be used to retain the order of convergence
of the finite element method. As to condition (iii), a 2 node quadrature formula is now prescribed
instead of the 1 node formula mentioned in § 2.6. Since the code allows the user to choose the number
of nodes to use in each of these integrations, we will also present the “exact solution” obtained.

3.1.2. Results

We computed the solution for 5 different uniform meshes of square finite elements, having different
values for h, in order to check the convergence rate of the method. The relevant data is presented in
Table 3.1, where |u[, , = 1.8257 x 1072. Plotting the values of ||u — up||y o / |ul; o against those of h
(see Figure 3.2) we see that the numerical results obtained agree well with the error estimate (2.52),
leading to C' = 0.102.

The results for the 30 x 30 mesh (cf. Figure 3.3) concerning the displacements (|uy,|, ui, and ugp,), the
von Mises stress ([|opy5,), and the error estimate for each element (||u — upllq ) and for each node
(|lu — upl), are presented in Figures 3.4 to 3.7.! Taking into account that

Ju —upllgq ~ 4 % 1076, max [w—unllor ~ 1076, I%EZXW —up| ~ 5 x 1075,

we conclude that the numerical results are very close to the analytic predictions. Furthermore, the
value of the von Mises stress obtained at the point (z1,72) = (1,0), 1.2156 x 108 Pa, agrees well with
value prescribed by the analytic solution, 1.2163 x 108 Pa.

A further calculation has been performed for the 30 x 30 mesh using the Gauss-Legendre quadrature
formula with 2 nodes for all the numerical integrations (see discussion above), yielding

Ju = wnllpg ~ 5% 107, ma flu—unllgr ~ 4% 1077, maxu— ug| ~ 101,

These results show that the “exact solution” is obtained under these conditions, as expected. In this
case, the value of the von Mises stress obtained at the point (1,0) coincides with the one predicted by
the analytic solution.

! Throughout the text, results concerning displacements, stresses and error estimates will be always presented in the
deformed configuration.
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clements h max fu — e =wnlloe | lu—unlloq / lulyq
10 x 10 1.4142 x 1071 3.0220 x 104 3.7074 x 107° 2.0307 x 1071
16 x 16 | 8.8388 x 102 1.3598 x 104 1.4555 x 1075 7.9723 x 1074
20 x 20 7.0711 x 1072 9.2482 x 107° 9.3272 x 1076 5.1088 x 10~*
25 x 25 5.6569 x 1072 6.2680 x 107° 5.9743 x 1076 3.2723 x 1074
30 x 30 4.7141 x 1072 4.5509 x 107° 4.1507 x 1076 2.2735 x 1074

Figure 3.2: Order of convergence of the numerical solution for Problem 1 from data presented in Table

3.1

Table 3.1: Error estimates for different meshes for Problem 1

lu—upllyq

[u]) o

0.0025 T

0.0015 T

0.0005 T

S

0.002 T

0.001 T

”u —Up ”()Q

=0.1024°
[u]1 0

0

0.025 0.05

0.075

0.1 0.125 0.15

h

(Gl

Figure 3.3: Problem 1 : the 30 x 30 finite elements mesh

»

fees |

i 0.022316
I 0.018837
0017357

- 0.014878
- 0.012398
- 0.0099183
- 0.0074386
0.004859
0.0024794

2.19159e-26

(Gl

Figure 3.4: Problem 1 : the displacement field |uy| for the mesh presented in Figure 3.3
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1y 2n
i 0.0099709 i -1.6011e-26
I 0.008663 I -0.0022184
0.0077551 -0.0044367
- 0.0066472 - -0.0066551
- 0.0055393 - -0.0085734
- 0.0044314 +-0.011092
- 00033236 - -0.0133
0.0022157 -0.015529
0.0011078 -0.017747
-3.2034e-26 -0.019965
L m
ks X

Figure 3.5: Problem 1 : the displacement fields uy; (left) and wgp (right) for the mesh presented in
Figure 3.3

1 Il g

i 1.2156e+08
I 1.0805e+03
9.4547e+07

- 5.1041e+07

- 6.7534e+07

- 5.4027e+07

- 4.052e+07
2.37013e+07
1.3506e+07
5.0554e-15

A. Gill

Figure 3.6: Problem 1 : the von Mises stress field for the mesh presented in Figure 3.3

e — 5| | ”u_ukllo,r

i 4.5509e-05  1.0848e-08
I 4.0453e-05 I 9.6424e-07
3.8396e-05 8.4372e-07

- 3.033%e-05 - 7.232e-07

- 2.5283e-05 - 6.0268e-07

- 2.0226e-05 - 4.8216e-07
- 1.517e-05 - 3.6164e-07
1.0113e-05 2.4112e-07
5.0562e-06 1.2059e-07
2.15915e-26 G4451e-11

v ™
h. Gill

Figure 3.7: Problem 1: the distribution of |u — up| (left) and |[u — up||o 1 (right) for the mesh presented
in Figure 3.3
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3.2. Test problem 2 - Homogeneous square plate; solution ¢ (Q;)?

3.2.1. Problem description

The plate (geometry and material), as well as the displacement constrains imposed, are the ones
considered in Problem 1 (cf. Figure 3.1). However, the loads imposed are different, namely,

fi=1[e" (A + p) — 222™ (A +20)] x 1072 = (4.8077e" — 13.462z2€™) x 107 (Nm™?),
fo=[=2e" (A + p) + 216" (A + 2p)] x 1072 = (—9.6154e™ + 6.7308z1€™) x 107 (Nm™?),
over €,
gl = [2(A +2p) ey — Ae™] x 1072 = (13.462e x5 — 2.8846) x 10"  (Nm™?),
gal,, = n(2e —e™ —1) x 1072 = (3.8462e — 1.9231e™ — 1.9231) x 10"  (Nm™?),
on boundary 7, and
gil,, = p (2" —e—1) x 1072 = (3.8462¢™ — 1.9231 x 107e — 1.9231) x 10" (Nm™?),
gol,, = [2Ae™ — (A +2p) ex1] x 1072 = (5.7692¢™ — 6.7308e 1) x 10" (Nm™~?),

on boundary 7. The space of admissible displacements is again defined by (3.3) and the solution of
(3.4) is now

up (z1,22) = 2(e"™ —1)xg X 1072 (m),

ug (z1,22) = —(e®2 — 1)z x 1072 (m).

In this case u ¢ [Q1 ()] and therefore uy, does not coincide with u.

3.2.2. Results

As in the previous problem, we computed the solution for 5 different uniform meshes of square fi-
nite elements, having different values for h, in order to check the convergence rate of the method.
The relevant data is presented in Table 3.2, where |u|, o = 3.0189 x 1072. Plotting the values of
[u —unlloq /lul; o against those of h (see Figure 3.8) we see that the numerical results obtained agree
well with the error estimate (2.52), leading to C' = 0.108.

The results for the 30 x 30 mesh, already used in Problem 1, concerning the displacements (|up|, w1p,
and ugp,), the von Mises stress (||op||y /), and the error estimate for each element (||u — upl/, ) and
for each node (Ju — uy|), are presented in Figures 3.9 to 3.12. Since

lu = unllo.gq ~ 7> 107, max [|u — upfl g ~ 2 X 1077, max |u — up| ~ 1074,

we conclude that the numerical results agree well with the analytic predictions. The value of the
von Mises stress obtained at the point (z1,72) = (1,1), 2.9812 x 10® Pa, agrees well with the value
prescribed by the analytic solution, 3.0682 x 10® Pa.

The error ||u — upllyr (and |u — up|) can be reduced if the number of elements around the top right
corner of the plate is increased (see Figure 3.13). Figure 3.14 presents the error distribution obtained
for the refined mesh. In this case,

Ju—upllgq ~ 2 % 1076, max Ju—upllgp ~ 1077, max lu — up| ~ 1077,

We conclude that the error has been improved with respect to result obtained with the uniform mesh
although the number of elements remains unchanged. For this mesh, the value of the von Mises stress
obtained at the point (x1,z2) = (1,1) is 3.0417 x 108 Pa, a value closer to the analytic prediction
when compared to the one obtained with the original mesh.
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elements h max fu — | e —unllog | lle—unllog / lulig
10 x 10 1.4142 x 1071 7.1389 x 1074 6.4587 x 107° 2.1394 x 1073
16 x 16 | 8.8388 x 102 3.2632 x 10~* 2.5460 x 107° 8.4335 x 10~*
2020 | 7.0711 x 1072 2.2339 x 1074 1.6332 x 107° 5.4099 x 10~*
25 x 25 5.6569 x 1072 1.5232 x 1074 1.0469 x 107° 3.4678 x 1074
30 x 30 | 4.7141 x 1072 1.1110 x 1074 7.2764 x 1076 2.4103 x 1074

Table 3.2: Error estimates for different meshes for Problem 2

”u —Up H 0.Q
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0.0015 T
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Figure 3.8: Order of convergence of the numerical solution for Problem 2 from data presented in Table

3.2
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Figure 3.9: Problem 2 : the displacement field |uy| for the mesh presented in Figure 3.3
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Ulh

i 0.034279

I 0.03047

0.026861

- 0.022852

- 0.019044

- 0.015233

- 0.011426
0.0078173
0.0038085
1.7355e-26

3.2. Test problem 2

©2n
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Figure 3.10: Problem 2 : the displacement fields uq;, (left) and wugp, (right) for the mesh presented in

Figure 3.3

1 Il g
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I 2 6oe+08

2.3187e+08
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- 1.325e+08
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6.6247e+07
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Figure 3.11: Problem 2 : the von Mises stress field for the mesh presented in Figure 3.3

[es = 22|

00001111
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[l = 2y |l o7
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Figure 3.12: Problem 2 : the distribution of [u —up| (left) and [ju —up|ly, (right) for the mesh

presented in Figure 3.3
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S il

Figure 3.13: Problem 2 : the 30 x 30 finite elements refined mesh

-
Jeé = 3| ”u_uhHQJ
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Figure 3.14: Problem 2 : the distribution of [u — up| (left) and ||u — up|| 7 (right) for the refined mesh
presented in Figure 3.13

3.3. Test problem 3 - Homogeneous triangular plate; solution € (Q1)2

3.3.1. Problem description

We consider the homogeneous triangular plate presented in Figure 3.15, having Young modulus £ and
Poisson ratio v with values E = 5 x 10? (Pa) and v = 0.3 as in Problem 1 and Problem 2. The linear
elasticity problem for this plate is

Find u = (u1,uz) such that:

2.0
Y —oy(w)=fi i Q 1<i<2,

(3.5)
u; = 0.1, ug = —0.05 on I,

2
Soij(wvj=g on Ty 1<i<2,
j=1

with I's = v U7y, while the loads imposed are:
fi=2(p+A)x1072=9.6154 x 10" (Nm™?),
fo=—(p+X) x 1072 = -4.8077 x 10" (Nm™?),
over {2,
gil,, = —p (1 +2) x 1072 = — (1.92312; + 3.8462) x 10" (Nm™?),

goly, = = [\ =221 (A +2p)] x 1072 = — (2.8846 — 13.462z1) x 107 (Nm™?),
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on boundary 7;, and

1 _
g1l,, = —= B (21 — 222 + 2) + 4 ((A + 2p) (z2 + 1) — 2Az1)] x 10 2

Vil
= (1.2013z5 — 2.1023z; + 7.2081) x 107 (Nm™?),

1
92’72 = —= [4,LL (.’L'l — 2x9 + 2) +5 ()\ (.’L‘Q + 1) — 21 (/\ + Q/L))] x 1072

Vil
= (4.6552 — 0.15021x5 — 9.3104z1) x 107 (Nm™?).

on boundary -y,.

Considering the space of admissible displacements
V= {v = (v1,v9) € [H" ()] : (v1,02) = (0.1,-0.05) on rl} : (3.6)

the variational problem corresponding to (3.5) has analytic solution:

uy (z1,22) = [104+ 21 (z2+1)] x 1072 (m),
ug (x1,3) = [=5—2z(22—1)] x 1072 (m).

X

4

2
I 4
Q
0 Vi 5 X

Figure 3.15: Schematic representation of the homogenous triangular plate of Problem 3

Since u € [Q1 (Q2)]?, we would expect the numerical solution to coincide with the analytic solution if
the elementary rigidity matrices and the elementary second member vectors were integrated exactly.
However, that is not possible since the finite elements involved are not parallelograms as was the case
in Problem 1. Still, we expect to obtain a numerical solution that is very close to the analytic one,
even when relatively coarse meshes are used, if the Gauss-Legendre quadrature formula with 2 nodes
is employed as we did in Problem 1.

3.3.2. Results

As in the previous problems, we computed the solution for 5 different meshes, having different values
for h. The relevant data is presented in Table 3.3, where |u|; o = 0.17654. Plotting the values of
lu—unlloq /ul; o against those of h (see Figure 3.16) we see that the numerical results obtained
agree well with the error estimate (2.52), leading to C' = 0.0186.

The results obtained with the 7257 elements mesh (cf. Figure 3.17) for the displacements (|up|, uip,
and ugy,), the von Mises stress ([|on|lyy,), and the error estimate for each element (|lu — uplg ) and
for each node (|u — wuy|), are presented in Figures 3.18 to 3.21. Since

lu—unllog ~4>x107%  maxfu—uplloz ~4>x107%  maxfu—up| ~2x 1074,
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we conclude that the numerical results agree well with the analytic predictions. The value of the von
Mises stress obtained at the point (z1,22) = (5,0), 6.0904 x 108 Pa, is close to the value prescribed
by the analytic solution, 6.1306 x 10% Pa.

The error ||u — up||yp (and |u —upl) can be reduced if the number of elements around the right
corner of the trianguiar plate is increased (see Figure 3.22). Figure 3.23 presents the error distribution
obtained for the refined mesh. Comparing the maximum values of |[u — uplly, and |u — up| present
in Figures 3.21 and 3.23, and taking into account that [[u —upllgq = 2.3287 X 1075 for the refined
mesh, we conclude that the error improves although the number of elements remains unchanged.
Furthermore, for the refined mesh, the value of the von Mises stress obtained at the point (z1,x2) =
(5,0), 6.1186 x 108 Pa, is now closer to the analytic prediction.

A further calculation has been performed for the refined mesh using the Gauss-Legendre quadrature
formula with 2 nodes for all the numerical integrations, leading to

Ju —upllgq ~ 2 % 1072, max [w—upllgr ~ 8 % 1077, max |u — up| ~ 1072,

The error improves with respect to the one obtained with the “default” integration schemes, but only
moderately. This is due to the fact that some integrations are still not performed exactly due to the
geometry of the finite elements in the mesh. The value of the von Mises stress obtained at the point
(w1, 22) = (5,0), 6.1204 x 108 Pa, is now even closer to the analytic prediction.

elements h max fu — | e —unllog | Ile—wuallog / lulig
1149 2.4460 x 1071 7.1900 x 1074 1.9717 x 1074 1.1169 x 1073
1587 2.3150 x 10! 6.1101 x 1074 1.7496 x 104 9.9105 x 10~4
2063 1.8467 x 1071 4.0970 x 10~* 1.1277 x 1074 6.3878 x 1074
3241 1.5311 x 107! 3.1685 x 1074 7.7949 x 107° 4.4154 x 1074
7257 1.0413 x 1071 1.5598 x 104 3.5735 x 107° 2.0242 x 1074

Table 3.3: Error estimates for different meshes for Problem 3
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Figure 3.16:
Table 3.3

Order of convergence of the numerical solution for Problem 3 from data presented in
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.-

Figure 3.17: Problem 3 : the 7257 finite elements mesh
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Figure 3.18: Problem 3 : the displacement field |uy| for the mesh presented in Figure 3.17
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Figure 3.19: Problem 3 : the displacement fields uq;, (left) and wugp, (right) for the mesh presented in
Figure 3.17
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Figure 3.20: Problem 3 : the von Mises stress field for the mesh presented in Figure 3.17
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i 0.00015593 ¢ 3.6745e-06
I 0.00013865 I 3.2667e-06
- 0.00012132 - 2.B858e-06
- 0.00010399 - 24512e-06
- B.6654e-03 - 2 0438e-06
- 6.9323e-05 - 1.6357e 06
- 5.1992e-03 - 1.227%e-06
J.4661e-05 §.2019e-07
1.733e-03 4.1243e 07
1.5516e-17 4.7143e-09
L .
h. - [

Figure 3.21: Problem 3 : the distribution of [u —wup| (left) and [ju —up|ly, (right) for the mesh
presented in Figure 3.17
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Figure 3.22: Problem 3 : the 7257 finite elements refined mesh
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Figure 3.23: Problem 3 : the distribution of [u —up| (left) and [ju —up|ly, (right) for the mesh
presented in Figure 3.22

3.4. Test problem 4 - Homogeneous triangular plate; solution ¢ (Q1)2

3.4.1. Problem description

We consider again the homogeneous triangular plate of Problem 3 (cf. Figure 3.15), subject to the
same displacement constrains, but with different loads imposed:

fi=M(p+ N a2 — 2\ +2u) (22 + 1)] x 1072 = (5.769272 — 13.462) x 10 (Nm™?),
fo=2(A+3p) 1 x 1072 = 1730821 x 10”  (Nm™?),
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over {2,

gil,, = —n (2] — 223 +2) x 1072 = (3.846223 — 1.92312] — 3.8462) x 107 (Nm?),

g2l = [Az1ma (A +20) = 20 (1 + 22) 1] x 1072 = (21154 — 5.7692) 1 x 107 (Nm™?),

on boundary 7, and

1 _
gl = T [8 (A +2u) (1 + x2) — 2A\x2) 1 + 5t (:B% — 222 + 2)] x 10 2
= (8.4094z1 + 1.2014z 122 + 1.501727 — 3.003423 + 3.0034) x 10"  (Nm™?),
1 -
92|72 = \/ﬁ [10(A (1 + z2) — 2z (A 4 2p)) @1 + 4p (:n% — 223 + 2)] x 10 2
= (4.5050z1 — 16.518z 122 + 1.201427 — 2.402723 + 2.4027) x 107 (Nm™?).

on boundary 7s.

The space of admissible displacements is again defined by (3.6) and the solution of (3.4) is now

[10 + 2% (22 + 1)] x 1072 (m)

ur = )
[—5 —2z1(z3 — 1)] x 1072 (m).

Uy =

In this case u ¢ [Q1 (Q)]? and therefore uj, does not coincide with u even if all the numerical integrations
were performed exactly.

3.4.2. Results

We computed the solution for 5 different meshes, having different values for h as in the previous
problems. The relevant data is presented in Table 3.4., where ]u\lﬂ = (0.47415. Plotting the values
of ||u —un|lgq/ |ul; o against those of h (see Figure 3.24) we see that the numerical results obtained
agree well with the error estimate (2.52), leading to C' = 0.0633.

The results obtained with the 29241 elements mesh (cf. Figure 3.25) for the displacements (|up|, w1p,
and ugp), the von Mises stress (||op||y /), and the error estimate for each element (||u — upl/, ) and
for each node (Ju — up|), are presented in Figures 3.26 to 3.29. Since

lu—unllog ~8>x107%  maxfu—unlloz ~4x107%  maxfu—up| ~3x 107",

we conclude that the numerical results agree well with the analytic predictions, even if a relatively
large number of elements is needed to achieve this level of approximation. The value of the von Mises
stress obtained at the point (1, z2) = (2.7277,1.8178), 1.1886 x 10? Pa, is close to the value prescribed
by the analytic solution, 1.1959 x 10° Pa.

elements h max fu — e —wnllon | lu—unlloq / lulg
2063 1.8467 x 1071 3.7498 x 1073 1.1029 x 1073 2.3260 x 1073
3241 1.5311 x 1071 2.2261 x 1073 6.8995 x 10~4 1.4551 x 1073
7257 1.0413 x 1071 1.0804 x 1073 3.0656 x 1074 6.4654 x 10~4
18732 7.0576 x 1072 4.4039 x 10~4 1.1895 x 1074 2.5087 x 10~*
29241 5.5962 x 1072 3.2086 x 1074 7.6205 x 107° 1.6072 x 104

Table 3.4: Error estimates for different meshes for Problem 4
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Figure 3.24: Order of convergence of the numerical solution for Problem 4 from data of Table 3.4

L

Figure 3.25: Problem 4 : the 29241 finite elements mesh

Figure 3.26: Problem 4 : the displacement field |uy| for the mesh presented in Figure 3.25
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Figure 3.27: Problem 4 : the displacement fields uy;, (left) and ugp (right) for the mesh presented in

Figure 3.25
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Figure 3.28: Problem 4 : the von Mises stress field for the mesh presented in Figure 3.25
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Figure 3.29: Problem 4 : the distribution of [u —up| (left) and [ju —up|ly, (right) for the mesh
presented in Figure 3.25

3.5. Test problem 5 - Non homogeneous plate; solution ¢ (Q;)’

3.5.1. Problem description

We consider the plate presented in Figure 3.30. The composition of the plate is not homogeneous: the
material in region Qg (rock) has Young modulus Eg = 5 x 10° (Pa) and Poisson ratio vg = 0.3, while
the material in region Q¢ (concrete) is such that Ec = 4 x 10° (Pa) and v¢ = 0.2. The corresponding
values of the Lamé’s constants A and u are obtained from (3.1), leading to

Ap = 2.8846 x 10° (Pa), pp=1.9231 x10° (Pa),
Ao = 11111 x 10° (Pa), pe = 1.6667 x 10° (Pa).

The linear elasticity problem for this plate is

Find u = (uq1,uz) such that:

2.0
Y —oy(w)=fi m Q 1<i<2

(3.7)
up =0, upg =0 on I'1UI,

2
Soij(wvj=g on Ty 1<i<2,
j=1
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with Q@ = QrUQc U I and I'y = U;—1 47;. The loads imposed are:

fi = [\g (2o — 1) + pg (2mxe — 1)] 7 sin (7z1) x 1072
= (66.43022 — 15.104) sin (1z1) x 10  (Nm™?),
fo=—[\r + pp (1 +7x2)] 7 cos (rxy) x 1072
= — (18.980x5 + 15.104) cos (721) x 10”  (Nm™3),

over g,
fi = o (moy — 1) + pe (2mze — 1)] 7 sin (7)) x 1072
= (43.865z2 — 8.7267) (sin7wzy) x 107 (Nm™3),
f2 = —[\e + pe (1 +722)] 7 cos () x 1072
= — (16.450z + 8.7267) cos (rz1) x 10°  (Nm™?),
over Qc,

g1ly, = (Ao + 2p0) T2 x 1072 = 13.96375 x 107 (N'm™?),
gl, =0 (Nm™?),
on boundary -y,
91|ﬂy2 = pc (1 +7) sinmay X 102 = 6.9028 sin z; x 107 (N m,Q) ’

92|, = TAc cos w1 + (Ac + 2p¢) (1 — cosTa) X 1072

= (4.4445 — 0.95388 cos7x1) x 107 (Nm™?),
on boundary 7,,

9il,, = (AR + 2pp) w2 x 1072 = 2114525 x 107 (N'm™?),

92|'Y3 =0 (Nm72) ’
on boundary 7s,

g1l,, = ie (1+27) sinmwzy x 1072 = 14.006 sinwzy x 107 (Nm™?),
92|, = [2mAc cos a1 + (Ac + 2p0) (1 — cosmay)] x 1072

= (2.5367 cosmay — 4.4445) x 107 (Nm™?),

on boundary .

Considering the space of admissible displacements
V= {U = (v1,v2) € [Hl (Q)]2 : (v1,v2) = (0,0) on Fl},
the variational problem corresponding to (3.7) has analytic solution:

up (x1,2) = x9sinmwry X 1072 (m),

ug (x1,9) = xo(l—cosmry) x 1072 (m).
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Figure 3.30: Schematic representation of the plate of Problem 5

In this case u ¢ [Q1 (Q)])? and therefore w;, does not coincide with u even if all the numerical integrations
were performed exactly.

3.5.2. Results

Following the methodology used in the previous test problems, we computed the solution for 5 different
uniform meshes, having different values for h. The relevant data is presented in Table 3.5, where
lul; o = 8.4391 x 1072, Plotting the values of lu—unllo g /[ul; o against those of h (see Figure
3.31) we see that the numerical results obtained agree well with the error estimate (2.52), leading to
C = 0.200.

The results obtained with the 3675 elements mesh (cf. Figure 3.32) for the displacements (|up|, wip,
and ugy,), the von Mises stress (||on|ly),), and the error estimate for each element (|lu — ullg ) and
for each node (Ju — up|), are presented in Figures 3.33 to 3.36. Since

Ju— Uh”o,Q ~Tx 1077 jmef% [lu— UhHo,T ~5x107°, I%EZX U — up| ~ 1074,

we conclude that the numerical results agree well with the analytic predictions. The value of the von
Mises stress obtained at the point (21, z2) = (0,2), 3.6591 x 108 Pa, is close to the value prescribed
by the analytic solution, 3.6750 x 108 Pa.

elements h max fu — e =wnlloe | lu—wunlloq / luliq
675 1.4902 x 1071 5.6821 x 10~4 3.7357 x 1074 4.4267 x 1073
1200 1.1180 x 1071 3.3276 x 10~* 2.1080 x 10~4 2.4979 x 1073
1875 8.9443 x 102 2.1939 x 1074 1.3512 x 1074 1.6011 x 1073
2700 7.4536 x 1072 1.5597 x 104 9.3908 x 107° 1.1128 x 1073
3675 6.3888 x 1072 1.1682 x 104 6.9029 x 107 8.1797 x 10~*

Table 3.5: Error estimates for different meshes for Problem 3
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Figure 3.31: Order of convergence of the numerical solution for Problem 5 from data of Table 3.5
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Figure 3.32: Problem 5 : the 3675 finite elements mesh
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Figure 3.33: Problem 5 : the displacement field |uy| for the mesh presented in Figure 3.32
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Figure 3.34: Problem 5 : the displacement fields uy;, (left) and ugp (right) for the mesh presented in
Figure 3.32
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Figure 3.35: Problem 5 : the von Mises stress field for the mesh presented in Figure 3.32
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Figure 3.36: Problem 5 : the distribution of [u —up| (left) and [ju —up|ly, (right) for the mesh
presented in Figure 3.32

3.6. Test problem 6 - 2D wrench

3.6.1. Problem description

Finally, we consider the homogeneous 2D wrench presented in Figure 3.37. The mechanical tool
is made of steel, having Young modulus £ = 2 x 10% (N cm*Z) and Poisson ratio v = 0.3. The
corresponding values of the Lamé’s constants A and p are (cf. (3.1))

A=28846 x 10° (Nem™2), p=19231x10° (Nem™?).

We assume the boundary I's is submitted to a force (—100, —100) Nm~2 and that boundary I'; does
not move. Therefore, the linear elasticity problem for this tool is
Find w = (u1,u2) such that:
2.0
- —aij(u):O in Q, 1§’i§2,
j=1 0]
(3.9)
'LLlZO, 'LLQZO on F17

2
SNoij(uwv;=g on Ty 1<i<2,
j=1

where
g1|F2 = —-0.01 (N cm_2) ,
92lp, = —0.01 (N cm_2) )

Since this problem has no analytic solution, we compare our numerical results with the ones obtained
by Rodriguez and Campo (2004) using the MODULEF package.

To make the comparison possible we had to make small adjustments to some of the “default” settings
of our code in order to match those of MODULEF, namely:
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(H1) the constitutive law used is

2
24 .
Oij = 2%+ A g_l Ekk | 0ij + 2pe45, 1<4,5 <2,

2
= A Z&ck 0ij + 2peij, 1<4,j <2,
k=1

where X = 2u\ (20 + A\) ! is the “homogenized” Lamé coefficient, instead of Hooke’s law (cf.

(1.2))

2

Tij = A Zﬁkk dij + 2peij, 1<4,5<2.
k=1

In practice, this corresponds to use a plane stress model instead of a plane model for the dis-
placements [see e.g. Ciarlet (1993)];

(H2) all numerical integrations are performed using 2 points in each direction, the quadrature points
coinciding with the nodes defining the element (or surface), whereas the “default” quadrature
schemes involve Gauss-Legendre quadrature points, 2 points in each direction in 2D integrations
and only one point in 1D integrations; Since the surface loads are constant, all possible settings
for 1D integrations lead to the same results;

(H3) nodal main stresses, and particularly von Mises stresses, are computed averaging over the values
at the barycentre of the elements to which the node belongs to using equal weights, instead of
weights proportional to the area of the elements involved (the “default” setting).

o5 e
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AL T T AL T
e L e
ST AL R T LA
e A SOy O it s b
e A P
g s

Figure 3.37: Schematic representation of the wrench of Problem 6; the coordinates are presented in
cm

3.6.2. Results

The numerical results were obtained for the mesh presented in Figure 3.37, involving 1153 nodes and
1046 elements.

The results obtained under conditions (H1)-(H3) for the displacements and the von Mises stress
coincide with those obtained using MODULEF. The results obtained for the displacements (|uf|, u{,,
and ug;,) and the von Mises stress (|07 ||,,,,) are presented in Figures 3.38 to 3.40. The corresponding
results obtained with the “default” settings - |up|, uip, ugn and |lop||y,, - are presented in Figures
3.41 to 3.44. These figures also present the differences with respect to the MODULEF results, that
is, under conditions (H1)-(H3).
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From the analysis of Figures 3.41 to 3.43 we conclude that the differences observed for the three
displacement fields are proportional to the field values, that is, for each field the relative differences
are essentially constant. In fact, one has

| | mean value standard deviation
U
1 1.037 0.047
Uqp
U
2 1.045 0.084
Uy,

The situation for the von Mises stress seems to be less evident, at least from the direct analysis of
Figure 3.44. However, one finds that

| | mean value standard deviation

g
Nonllvar 1.029 0.036

HUZHVM

Therefore, the values obtained for the displacements and the von Mises stress with the “default”
settings are, in general, a few percent higher than those obtained with MODULEF.
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Figure 3.38: Problem 6 : the displacement field |up| (in ¢m) for the mesh presented in Figure 3.37
using MODULEF settings
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Figure 3.39: Problem 6 : the displacement fields uyy, (left) and wugy, (right) - both in ¢m- for the mesh
presented in Figure 3.37 using MODULEF settings
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Figure 3.40: Problem 6 : the von Mises stress field (in N ¢m™2) for the mesh presented in Figure 3.37
using MODULEF settings
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Figure 3.41: Problem 6 : the displacement field |up| (left) and its difference with respect to the
MODULEF result |uj| (right) for the mesh presented in Figure 3.37; all results are in cm
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Figure 3.42: Problem 6 : the displacement field wuyy, (left) and its difference with respect to the

MODULEEF result ug,, (right) for the mesh presented in Figure 3.37; all results are in em
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Figure 3.43: Problem 6 : the displacement field wugp, (left) and its difference with respect to the
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MODULEF result u§, (right) for the mesh presented in Figure 3.37; all results are in c¢m
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Figure 3.44: Problem 6 : the von Mises stress field |lop||y,, (left) and its difference with respect to
the MODULEF result ||o ||/, (right) for the mesh presented in Figure 3.37; all results are in N cm ™2
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A. Files used for GiD interfacing

Here we present the relevant files used for the interface between the numerical code and GiD (version
7.2) for both preprocessing and postprocessing.

A.1. Configuration files

These files generate the conditions and material properties, as well as the proper general problem data
to be transferred to the mesh.

A.1.1. Conditions file (.cnd)

The file with extension’s name .cnd contains all the information about the conditions that can be
applied to different entities:

NUMBER: 1 CONDITION: Point-Constrains
CONDTYPE: over points

CONDMESHTYPE: over nodes

QUESTION: Displacement along X axis - Flag
VALUE: 0

HELP: 0: locked; 1: given below; other: computed in code
QUESTION: Displacement _along X axis - Value
VALUE : 0.0

QUESTION: Displacement along Y axis - Flag
VALUE: 0

HELP: 0: locked; 1: given below; other: computed in code
QUESTION: Displacement along Y axis - Value
VALUE : 0.0

END CONDITION

NUMBER: 2 CONDITION: Line-Constrains
CONDTYPE: over lines

CONDMESHTYPE: over nodes

QUESTION: Displacement along X axis - Flag
VALUE: 0

HELP: 0: locked; 1: given below; other: computed in code
QUESTION: Displacement along X axis - Value
VALUE : 0.0

QUESTION: Displacement along Y axis - Flag
VALUE: 0

HELP: 0: locked; 1: given below; other: computed in code
QUESTION: Displacement along Y axis - Value
VALUE : 0.0

END CONDITION

NUMBER: 3 CONDITION: Surface-Constrains
CONDTYPE: over surfaces

CONDMESHTYPE: over nodes

QUESTION: Displacement along X axis - Flag
VALUE: 0
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HELP: 0: locked; 1: given below; other: computed in code
QUESTION: Displacement along X axis - Value
VALUE : 0.0

QUESTION: Displacement along Y axis - Flag
VALUE: 0

HELP: 0: locked; 1: given below; other: computed in code
QUESTION: Displacement _along Y axis - Value
VALUE : 0.0

END CONDITION

NUMBER: 4 CONDITION: Point-Loads

CONDTYPE: over points

CONDMESHTYPE: over nodes

QUESTION: P_ flag

VALUE: 0

HELP: 0: no load; 1: load given below; other: load computed in code
QUESTION: Px

VALUE: 0.0

QUESTION: Py

VALUE: 0.0

END CONDITION

NUMBER: 5 CONDITION: Face-Loads

CONDTYPE: over lines

CONDMESHTYPE: over face elems

QUESTION: G_flag

VALUE: 0

HELP: 0: no load; 1: load given below; other: load computed in code
QUESTION: Gx

VALUE: 0.0

QUESTION: Gy

VALUE: 0.0

END CONDITION

NUMBER: 6 CONDITION: Element-Loads

CONDTYPE: over surfaces

CONDMESHTYPE: over elems

QUESTION: F_flag

VALUE: 0

HELP: 0: no load; 1: load given below; other: load computed in code
QUESTION: Fx

VALUE: 0.0

QUESTION: Fy

VALUE: 0.0

END CONDITION

A.1.2. Materials file (.mat)

A.1. Configuration files

The file with extension’s name .mat includes the definition of different materials through their prop-
erties. These are base materials as they can be used as templates during the pre-processing step for
the creation of newer ones:

NUMBER: 1 MATERIAL: rock
QUESTION: Young’s modulus - E:
VALUE: 5000000000

QUESTION: Poisson’s _ratio - nu:
VALUE: 0.3
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END MATERIAL

NUMBER: 2 MATERIAL: concrete
QUESTION: Young’s modulus - E:
VALUE: 4000000000

QUESTION: Poisson’s_ratio - nu:
VALUE: 0.2

END MATERIAL

A.1.3. Problem and intervals data file (.prb)

The file with extension’s name .prb contains all the information about the general problem and intervals
data:

PROBLEM DATA

QUESTION: title

VALUE: elasticity

HELP: project name for header of data file

QUESTION: analytic_solution known#CB#(1,0)

VALUE: 0

HELP: if this flag is set, an error estimate is computed using the analytic solution
QUESTION: gauss_points_for elements

VALUE: 2

HELP: gauss points per direction in element integration (rigidity matrix and f-loads)
QUESTION: gauss_points for g-faces

VALUE: 1

HELP: gauss points per direction in boundary integration (g-loads)

QUESTION: gauss points for error estimation

VALUE: 2

HELP: gauss points per direction in element integration (error estimates)
VALUE: 2

END PROBLEM DATA

A.1.4. Template file (.bas)

Once the user has generated the mesh, assigned the conditions and the materials properties, as well
as the general problem and intervals data for the solver, it is necessary to produce the data input files
to be processed by that code. The template file, with extension’s name .bas, describes the format and
structure of the required data input file for the solver that is used in a particular case:

ELASTICITY GENERAL DATA FILE

Problem Title

*GenData(title)

Control Parameters

Analytic Solution
*set var as = GenData(2,int)
*format "%101"

*as

Gauss Points per Direction
Elements g-Faces FError Estimation
*set var gel = GenData(3,int)
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*set var ggf = GenData(4,int)
*set var gee = GenData(5,int)
*format "%61%101%141"

*gel *gaf *gee

Problem Dimensions

Nodes Elements Nodes/Element Nodes/Face Faces/Element Dimension
*set var npf = 2

*set var fpe = 4

*format "%61%91%81%131%121%121"

*npoin *nelem *nnode *npf *fpe *ndime

Materials ~ Parameters/Material
*set var npar = 2

*format "%101%14i"

*nmats *npar

Nodes Constrained Point Loads Face Loads Element Loads
*set cond Surface-Constrains *nodes *or(1,int) *or(3,int)
*add cond Line-Constrains *nodes *or(1,int) *or(3,int)
*add cond Point-Constrains *nodes *or(1,int) *or(3,int)
*set var constr = CondNumEntities

*set cond Point-Loads *nodes

*set var point = CondNumEntities

*set cond Face-Loads *elems *CanRepeat

*set var face = CondNumEntities

*set cond Element-Loads *elems

*set var element = CondNumEntities

*format "%181%14i1%131%161"

*constr *point *face *element

Materials Properties
Material Young’s Modulus Poisson’s ratio
*loop materials

*format "%91%16.7¢%17.7¢"

*matnum() *MatProp(1) *MatProp(2)

*end

Nodes Coordinates
Node X Y Z
*set elems(all)

*loop nodes

*format "%51%16.7¢%16.7¢%16.7¢"
*NodesNum *NodesCoord

*end nodes

Connectivities
Element Node(l) Node(2) Node(3) Node(4) Material
*loop elems

*format "%81%10i%101%10i%101%10i"

*ElemsNum *ElemsConec *ElemsMat

*end elems

*set cond Surface-Constrains *nodes *or(1,int) *or(3,int)
*add cond Line-Constrains *nodes *or(1,int) *or(3,int)
*add cond Point-Constrains *nodes *or(1,int) *or(3,int)
*if(condNumEntities(int)>0)

Nodes Constrained

A.1. Configuration files
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Node Codes(x,y) Displacement Values(x,y)
*loop nodes *OnlyIncond
*format "%51%51%31%15.5¢%14.5¢"

*NodesNum *cond(1,int) *cond(3,int) *cond(2,real) *cond(4,real)

*end

*endif
*set cond Point-Loads *nodes
*if(condNumEntities(int)>0)

Point Loads
Node Code Load Values(x,y)
*loop nodes *OnlyIncond

*format "%51%51%15.5e%14.5¢"

*NodesNum *cond(1,int) *cond(2,real) *cond(3,real)
ES

end

*endif

*set cond Face-Loads *elems *CanRepeat
*if(condNumEntities(int)>0)

Face Loads

Element LNode(1) LNode(2) Code Load Values(x,y)

*loop elems *OnlyIncond
*format "%81%101%11i%51%15.5¢%14.5¢"

*elemsnum() *localnodes *cond(1,int) *cond(2,real) *cond(3,real)

*end

*endif

*set cond Element-Loads *elems
*if(condNumEntities(int)>0)

Element Loads
Element Code Load Values(x,y)

*loop elems *OnlyIncond

*format "%81%51%15.5¢%14.5¢"

*elemsnum *cond(1,int) *cond(2,real) *cond(3,real)
*end

*endif

A.2. Input and output files

A.2.1. Calculation (input) file
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The GiD command (Files—Export—Calculation file) writes the data file needed by the solver module.

The data file, with extension .dat, has the following structure:

ELASTICITY GENERAL DATA FILE

Problem Title
elasticity — test problem 1 : square

Control Parameters

Analytic Solution
1

Gauss Points per Direction
Elements g-Faces Error Estimation
2 1 2
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Problem Dimensions

Nodes Elements Nodes/Element Nodes/Face Faces/Element Dimension

961 900 4 2
Materials ~Parameters/Material
1 2

4 2

Nodes Constrained Point Loads Face Loads Element Loads
61 0 60 900
Materials Properties
Material Young Modulus Poisson’s ratio
1 5.0000000e4-09  3.0000000e-01
Nodes Coordinates
Node X Y 7
1 1.0000000e+00  0.0000000e+00
2 1.0000000e+00  3.3333333e-02
Connectivities
Element Node(l) Node(2) Node(3) Node(4) Material
1 959 956 960 961 1
2 958 953 956 959 1
Nodes Constrained
Node Codes(x,y) Displacement Values(x,y)
1 11 0.00000e+00 0.00000e+00
3 11 0.00000e+00 0.00000e+00
Face Loads
Element LNode(l) LNode(2) Code Load Values(x,y)
31 3 4 4 0.00000e4-00 0.00000e+00
61 3 4 4 0.00000e+00 0.00000e+-00

A.2. Input and output files
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Element Loads

Element Code Load Values(x,y)
1 2 0.00000e+00 0.00000e4-00
2 2 0.00000e+00 0.00000e+-00

A.2.2. Postprocess files

The results obtained from the code can be postprocessed using GiD. For that one has to supply two
files: a file with extension .post.res for the results (displacements, stresses, error estimates, etc.), and
another file with extension .post.msh containing the postprocess mesh. If the postprocess mesh is not
provided, GiD uses the preprocess mesh.

The data file with extension .post.res has the following structure:

GiD Post Results File 1.0

Result "Displacements" "Load Analysis" 1 Vector OnNodes
ComponentNames "X-displ", "Y-displ", "Z-displ"
Values
1 1.239316e-24  -2.518696e-24  0.000000e+-00
2 3.333333e-04  -6.666667e-04  0.000000e+-00

961  1.720085e-24  -1.076389¢-24  0.000000e+-00
End Values

Result "Main Stresses" "Load Analysis" 1 MainMatrix OnNodes
Values
1 -1.391552e400 -5.315254e+07 0.000000e4+00 9.732490e-01 -2.297529e-01 0.000000e+00
2.297529e-01 9.732490e-01 0.000000e+00 0.000000e+00 0.000000e+-00 0.000000e+00
2 -1.375765e+08 -5.152609e+07 0.000000e+00 9.769415e-01 -2.135070e-01 0.000000e+00
2.135070e-01 9.769415e-01 0.000000e+00 0.000000e+00 0.000000e4-00 0.000000e+00

961 5.075616e+06 9.107823e+07 0.000000e+00 -8.506508e-01 -5.257311e-01 0.000000e+00
-5.257311e-01 8.506508e-01 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
End Values

Result"von Mises Stress" "Load Analysis" 1 Scalar OnNodes
Values

1 1.216261e+08

2 1.203887e+08

961  8.864947e+07
End Values
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The data file with extension .post.msh has the following structure:

GaussPoints "Barycentre" ElemType Quadrilateral
Number of Gauss Points: 1
Natural Coordinates: Internal

End GaussPoints

A.2. Input and output files

Result "Error Estimate L2" "Load Analysis" 1 Scalar OnGaussPoints "Barycentre"

Values
1 1.474247e-18
2 9.969235e-19

900 1.693434¢-18
End Values

Result "Error Estimate Euclidean" "Load Analysis" 1 Scalar OnNodes

Values
1  2.807087e-24
2  1.065382¢-16

961 2.029115e-24
End Values

Mesh  Dimension 2 ElemType Quadrilateral Nnode 4

Coordinates
# Node X Y Z
1 1.000000e+00  -2.518696e-24
2 1.000333e+00  3.266667e-02
961 1.720085¢-24 1.000000e+-00
End Coordinates
Elements
# Element Node(1l) Node(2) Node(3) Node(4) Material
1 959 956 960 961 1
2 958 953 956 959 1
900 3 1 2 4 1

End Elements




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


