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Abstract 

The seismic vulnerability of masonry infilled reinforced concrete (rc) frames observed during 

past earthquakes in some south European countries resulted in losses of human lives and huge 

repair or reconstruction costs, justifies the need of deeper study of the seismic behavior of 

masonry infills enclosed in rc frames. Therefore, the main goals of this study are related to: (1) 

better understanding of the cyclic in-plane behavior of traditional brick infills built in the past 

decades as enclosures in rc buildings in Portugal; (2) analysis of a strengthening technique based 

on textile reinforced mortar (TRM) aiming at enhancing the in-plane behavior. To accomplish 

the objectives, an extensive experimental campaign based on in-plane static cyclic tests on seven 

reduced scale rc frames with masonry infill walls was carried out.  The performance of 

strengthening of masonry infill based on textile reinforced mortar was also evaluated 

experimentally. 

Among the conclusions of this research, it should be stressed that: (1) the presence of infill inside 

the bare frame could significantly enhance the in-plane stiffness and resistance of bare frame; (2) 

TRM technique could enhance the in-plane behavior of infilled frames by improving the lateral 

strength and by reducing significantly the damage of the brick infill walls. 

1 Introduction 

Masonry infills have been widely used in the building construction as enclosure walls in 

reinforced concrete (rc) or steel structures for many decades due to their good thermal and 

acoustic insulation properties and also reasonable fire resistance. Nowadays, masonry infills are 

still typically used in modern buildings as partition and also as enclosure walls in reinforced 



concrete frames. Generally, they are assumed as non-structural elements and are not considered 

in the design of the buildings. Although the infill panels are assumed as non-structural elements, 

their damage or collapse is not desirable, given the consequences in terms of human life losses 

and repair or reconstruction costs. 

Past earthquakes such as Mexico City earthquake in 1985 [1], Kocaeli (Turkey) earthquake in 

1999 [2] Bhuj earthquake in 2001 [3], L’Aquila earthquake in 2009 [4] have confirmed that  

masonry infills can affect the global and local behavior of the masonry infilled reinforced 

concrete (rc) or steel frames. This influence can be positive or negative. When it is positive it 

means that the presence of masonry infills increases the strength and stiffness of the structure to 

resist the lateral loads due to earthquakes. The negative influence mainly relates to the formation 

of soft story and short column phenomena, which can result in the global or local failure of the 

structure.  

In-plane interaction of infill panel with its surrounding frame was studied by different 

researchers, either considering reinforced concrete [5-7] or steel [8, 9] as structural frames. From 

these experimental researches, it was concluded that for low levels of in-plane loading, the 

infilled frame acts as a monolithic load resisting system but when the lateral load increases, the 

infill tends to partially separate from its bounding frame and a compression strut mechanism 

develops. The assumption that infill wall behaves as a compression strut seems to be reasonable 

and has been supported in several experimental researches [10, 11]. It was also concluded that 

the added infills significantly improve the lateral strength and initial stiffness of the bare frame 

and also change its dynamic properties [5] [12], which results in a relevant change in the seismic 

demand of the structure. Another contribution of the masonry infill within the frame is the 

enhancement of the energy dissipation capacity during earthquake due to the cracking of the 

masonry infill, being possible to increase the damping ratio from 4-6% to 12% [12]. 

Based on experimental observations, five main failure mechanisms were considered by Mehrabi 

et al [13] as probable failure modes that can develop in rc frames with masonry infills. Those 

failure modes depend on the relative strength and stiffness of the surrounding frame with respect 

to the infill wall, the geometric configuration of the frame, as well as the loading conditions.  

The high seismic vulnerability of the masonry infilled frame structures observed during the last 

decades has promoted research on techniques and materials to strengthen the masonry infill walls 

and, thus, to improve their seismic performance. With this respect, conventional techniques or 

innovative materials for in-plane strengthening have been presented. The strengthening can 



change the behavior of the structure by changing its fundamental period as well as the center of 

mass and stiffness [14, 15].  

Composite materials have been received large attention from the research community and they 

have been already applied in real context. With this regard, different researchers investigated the 

effectiveness of using FRPs on enhancing the stiffness, strength and energy dissipation capacity 

of reference specimens in the in-plane direction [16, 17]. In spite of many advantages associated 

with use of FRPs, this retrofitting technique is not problem-free. Some of its drawbacks are 

related to the poor behavior of epoxy resins at high temperatures, relatively high cost of epoxy, 

non-applicability of FRPs on wet surfaces or at low temperatures and incompatibility of epoxy 

resins with some substrate materials such as clay. Specific properties of clay such as porosity and 

roughness, which affects the epoxy-brick bond behavior may inhibit the use of FRP [18]. 

One possible solution to the above mentioned problems can be the replacement of organic 

binders with inorganic ones such as cement based mortars. Smeared fibers can be replaced by 

reinforcing meshes such as textile meshes with different continuous fibers. This results in the 

textile reinforced mortar technique (TRM) which is relatively new (it was started to use in early 

1980s) [18-41]. The first studies on TRM technique were mainly carried out on concrete 

specimens. In the research carried out by Triantafillou et al. (2006) [19] TRM is used as a tool 

for increasing the axial capacity of RC columns through confinement. It was concluded that 

using TRM jacketing resulted in substantial gain in compressive strength and deformability of 

the specimens. Bournas et al. [21, 25, 27] investigated the influence of TRM technique on 

confinement of RC columns and Triantafillou et al. [20] conducted a research on shear 

strengthening of RC members using TRM technique as an alternative to fiber reinforced 

polymers (FRP).  Also in the tests carried by  Brückner et al. (2008) [23] and by Al-Salloum et 

al. (2012) [30] [23, 30] the effectiveness of textile reinforced mortar (TRM) as a mean of 

increasing the shear resistance of reinforced concrete beams was investigated. 

The effectiveness of TRM technique on flexural resistance of two-way RC slabs was 

investigated by Koutas LN, Bournas (2017)  [41] by considering different parameters such as 

number of TRM layers, the strengthening configuration, the textile fibers material (carbon versus 

glass) and the role of initial cracking in the slabs. 

In the scope of masonr strsutures, Papanicolaou et al. (2008) [24] compared the effectiveness of 

TRM technique with respect to FRP and NSM methods and concluded that TRM technique 

comprised an extremely promising solution for the structural upgrading of masonry structures 

under out-of-plane loading. In the similar study [26], masonry specimens were tested under static 



and cyclic out-of-plane loading and the coresponding flexural behavior was analyzed. The 

parameters investigated included the type of masonry wall (concrete block, sandstone, and 

brick), mortar (natural lime and cement-based), and textile mesh (bitumen coated E-glass, basalt, 

or coated basalt fibers). It was concluded that the TRM specimens developed a substantial out-

of-plane strength and displacement ability under static loading. Under cyclic loadind the 

masonry specimens were able to present  stiffness and strength degradation after peak load and 

considerable ultimate displacement capacitiy. Papanicolaou et al. (2007) [22] conducted also a 

research by testing 22 medium-scale masonry walls subjected to cyclic in-plane loading. From 

the results it was concluded that TRM technique hold strong promise as a solution for the 

structural upgrading of masonry structures under in-plane loading. In a recent study carried out 

by Da Porto et al [36], the effectiveness of different strengthening solutions for light masonry 

infills were investigated by testing eight full-scale one-bay one-storey clay masonry infilled 

frames, namely special lime-based plaster with geo-polymer binder, bidirectional composite 

meshes applied with inorganic materials and textile reinforced mortar (TRM) with anchorage of 

the mesh to the rc frame. The specimens were subjected to the combined in-plane/out-of-plane 

loading. It was concluded that the application of special plasters or TRM strengthening systems 

does not significantly change the initial stiffness or maximum in-plane resistance of the reference 

frame. The main contribution can be related to the reduction of damage in the infill. It was also 

concluded that TRM strengthening systems improve the out-of-plane behavior of infill walls.  

The research conducted by Koutas et al [35, 37] focused on TRM strengthening of one-bay 

three-storey infilled frames. Connectors were used to fix the textile meshes to the upper and 

bottom rc beams. The specimens were tested quasi-statically and the results showed that the 

retrofitting scheme enhances the lateral strength by 56% and dissipates 22% more energy than 

the control unstrengthened specimen. It was also concluded that the presence of custom-

fabricated textile-based anchors was proved to be particularly effective in delaying or even 

precluding the debonding of TRM. Martins et al [38] proposed an innovative reinforcing mesh to 

be used in the TRM strengthening technique for brick masonry infills. The textile meshes are 

composed of braided composite rods (BCR) manufactured from a braiding process. Fifteen 

wallets of masonry strengthened with different commercial textile meshes and with new mesh 

with braided composite rods were tested under four-point bending tests. It was concluded that the 

specimens strengthened with manufactured reinforcing meshes of BCRs with carbon fibers 

exhibit higher resistance to bending than other retrofitted specimens. It should be also mentioned 

that the specimens retrofitted with manufactured meshes of braided composite materials with a 



core of glass fibers presented remarkably better post-peak behavior than the other retrofitted 

specimens. 

The evaluation of the performance of the above mentioned textile meshes composed of braided 

composite rods in masonry infill tested under in-plane loading is presented and discussed in this 

paper as part of an extensive research carried out on the mechanical behavior and strengthening 

of traditional brick masonry infills used in Portuguese reinforced concrete buildings and that can 

be also representative of the construction practice in other south European countries in the past 

decades. This paper presents and discusses the experimental results on in-plane static cyclic tests 

of double leaf (cavity) brick masonry infill walls before and after strengthening with textile 

reinforced mortar. Additionally, the masonry construction quality is also taking into 

consideration by using two different masons in the construction of masonry infills. 

Although the effect of infills inside rc frames were studied by large number of researchers taking 

into account different configurations, there are some factors in this research that makes it 

relevant to strengthen the state of the art in this field of study: (1) the typical Portuguese masonry 

infilled rc frame from 1960s are considered to be also typical construction practice in other south 

European countries. The infill consists of double-leaf masonry with horizontally perforated clay 

bricks of low compressive strength; (2) the strengthening based on textile reinforced meshes 

needs to be better studied, particularly when there is a need to study the strengthening of this 

type of constructive elements and when the performance of a new mesh is evaluated. 

2 Experimental Program 

The experimental program for the characterization of the in-plane behavior of traditional brick masonry 

infill walls typical of south European countries was based on static cyclic in-plane tests. For this, five 

brick masonry infilled rc frames were considered. Additionally, two additional rc frames with 

strengthened masonry infills were tested by using the same experimental setup and protocol. The 

strengthening of the masonry infilled frames was carried out by adding textile meshes embedded in 

rendering mortar (textile reinforced mortar – TRM) to the brick masonry infilled frames. Taking into 

account the limited facilities at the laboratory of Civil Engineering at University of Minho and to avoid 

difficulties in handling full scale specimens, it was decided to design reduced scale specimens to represent 

the full scale rc frame with infill wall. The design of the reduced scale specimens was based on Cauchy’s 

similitude law and test them according to the loading pattern that complies with FEMA-461 guidelines 

[42]. Details about the prototype walls, the design of the reduced scale specimens, tests setups and 

loading pattern are represented in the next sections. 



2.1 Characterization of Prototype and designing reduced scale specimens 

The prototype of an rc frame with masonry infill was defined based on a study carried out for the 

characterization of the typical rc buildings constructed in Portugal since 1960s [43]. About 80 

buildings were analyzed to identify the cross section of beams and columns, the reinforcing 

schemes of those elements, the geometry of the brick masonry walls and the number and 

typology of the openings within the walls and also their position. From this study, a prototype 

with length of 4.50m and height of 2.70m was defined. The cross section of the rc columns was 

0.3mx0.3m and of the rc beams was 0.3mx0.5m. The masonry infills were mostly built as cavity 

walls composed of two leaves with horizontal perforated clay brick units. The external leaf has a 

thickness of 15cm and the internal leaf has a typical thickness of 11 cm, being separated by an 

air cavity of about 4 cm. 

An overview of the scaled reinforcement scheme of the rc frame and of the cross sections of 

columns and beams are shown in Figure 1 and Figure 2.  For the masonry infills, horizontally 

perforated bricks of 175mmx115mmx60mm and of 175mmx115mmx80mm were used to have 

similar height to length ratio of the bricks (0.67) with the one used in the prototype.  

For the design of reduced scale specimens, an allowable stress design approach was followed. A 

scale factor of 0.54 was adopted to scale all elements, including the dimensions of the bricks. In 

the first step, the sections of the real scale  rc columns and beams of prototype were analyzed 

based on ACI 318-08 [44] guidelines in order to obtain the maximum resisting forces and 

flexural moments in the columns and beams. After this, Cauchy’s similitude was applied to 

calculate the maximum allowable forces and bending moments of reduced scale cross sections 

from the maximum allowable forces and flexural moments of real scale sections obtained in the 

first step. Finally, cross-sections and reinforcement of the reduced scale structural elements were 

designed based on the same allowable stress design approach. 

 

 

 

 

 

 



Table 1 Relation between different parameters of prototype and model based on Cauchy’s Similitude Law 

Parameter Scale Factor Parameter Scale Factor 

Length (L) 
m

P

L

L  Mass (m) 
3

m

P

m

m  

Elasticity Modulus (E) 1
m

P

E

E  Weight (W) 
3

m

P

W

W  

Specific Mass (ρ) 1
m

P


  Force (F) 

2
m

P

F

F  

Area (A) 
2

m

P

A

A  Flexural Moment (M) 
3

m

P

M

M  

Volume (V) 
3

m

P

V

V  Stress (σ) 1
m

P


  

Displacement (d) 
m

P

d

d  Strain (ε) 1
m

P


  

Velocity (v) 1
m

P

v

v  Time (t) 
m

P

t

t  

Acceleration (a) 
1 

m

P

a

a  Frequency (f) 
1 

m

P

f

f  

 

In total, seven specimens were considered in the experimental campaign (Table 2), namely one 

bare frame (specimen BF-I), four unstrengthened infilled frames and two strengthened specimens 

with TRM technique. It is stressed that the unstrengthened specimens were tested until distinct 

values of imposed lateral drift to simulate different in-plane damage levels: one specimen was 

tested until collapse (specimen SIF-I-A), one specimen was tested until imposed lateral drift of 

0.3% (specimen SIF-I(0.3%)), one specimen was tested until lateral drift of 0.5% (specimen SIF-

I(0.5%)) and one specimen was tested until lateral drift of 1.0% (specimen SIF-I(1.0%)). 



In the strengthened specimens two different types of reinforcing meshes were used, namely a 

commercial mesh (specimen SIF(CTRM)-I-B) and the textile mesh developed at University of 

Minho (specimen SIF(DTRM)-I-B). 

 

Figure 1 Geometry and reinforcement scheme of the reduced scale rc frame 

 

Figure 2 Cross-sections of columns and beams in reduced scale rc frames 

 

Table 2 Designation of the specimens for in-plane static cyclic loading 

Name Type of specimen 
Type of 
loading 

Number of 
leaves during 
construction  

Group of 
Mason 

BF-I Bare frame In-plane -  
SIF-I-A Solid infilled frame In-plane Double leaf  A 

SIF-I(0.3%)-B Solid infilled frame 
Prior In-plane 
drift of 0.3%  

Double leaf  B 

SIF-I(0.5%)-B Solid infilled frame 
Prior In-plane 
drift of 0.5%  

Double leaf  B 

SIF-I(1%)-B Solid infilled frame 
Prior In-plane 

drift of 1%  
Double leaf  B 

SIF(DTRM)-I-B 
Solid infilled frame  

strengthened with TRM- 
designed mesh 

In-Plane Double leaf  B 

SIF(CTRM)-I-B 
Solid infilled frame  

strengthened with TRM- 
commercial mesh 

In-Plane Double leaf  B 



 

It should be mentioned that the workmanship used in the construction of the unstrengthened 

specimen loaded until collapse was different from the workmanship used in the construction of 

the remaining specimens. For the specimen loaded until collapse, the workmanship is considered 

as type “A” and for the other specimens the workmanship is denoted as type “B”. This 

designation is considered in the last part of the labeling of the specimens as presented in Table 2. 

The need of a new mason for the construction of the remaining specimens was derived from the 

poor workmanship available for the construction of unstrengthened specimens.  

The steel used for the construction of rc frame was of class A400NR, with a yielding tensile 

strength of 400MPa and for the concrete, a C20/35 class was adopted. 

The commercial and developed reinforcing meshes used in the strengthened specimens consist of 

bi-directional glass fiber meshes. The developed mesh is composed of a set of composite rods 

with an external polyester helicoidally braided with a reinforcing nucleus of glass fibers. The 

idea is that the braided rod can protect the reinforcing fibers and provide ductility after the 

rupture of the fibers [38], see Figure 3a. The bond between the external braid and the reinforcing 

fibers can be ensured in the manufacturing process by adding polyester resin during the braiding 

process or after the production of the composite braided rods by adding the resin over the 

external polyester manually [38]. For the application on the masonry infills, the composite rod 

was composed of a braided structure with 15 multifilament of polyester with 11 Tex and one 

braided element with a simple structure consisting of 8 braided polyester yarns produced at the 

maximum speed of the production equipment (1.07m/min). To have manufactured meshes that 

are comparable with commercial meshes, 5 glass multifilament of the 544 Tex were required, 

corresponding to a density of 207 g/m2 (about 92% compared to commercial mesh). As the 

commercial meshes present a spacing of 25 mm, the manufactured meshes were manufactured 

with the same spacing. The manufacturing of the meshes is carried out by interlacing the 

composite rods in two directions, assuming that the configuration of the connections of rods in 

two directions may promote an additional interlocking and can work as additional roughness, 

improving the bond adherence between the meshes and the rendering mortar, see Figure 3b. The 

mesh has a tensile strength of about 55kN/m and stiffness of about 154kN/m. 

The commercial mesh consists of resistant glass fibres in both directions, see Figure 3c. The 

mesh density is 225 g/m2 with spacing between the fibres of 25 mm. From the technical 

information, it is seen that the tensile strength is 45 kN/m and the ultimate elongation is about 

1.8%. The modulus of elasticity is 72GPa and the equivalent thickness is about 0.035mm.  



 

 

(a) (b)  (c) 

Figure 3 Details of braided rods and meshes; (a) cross section of a braided mesh [38]; (b) designed mesh; (c) 
commercial mesh 

 

2.2 Mechanical properties of materials 

2.2.1 Brick units and mortar 

The construction of the masonry infills was carried out by using a premixed mortar of class M5, 

given that the compressive strength shall be close to the one used in the past decades in the 

construction of infills in rc buildings. In addition, in order to control the quality of mortar, it was 

decided to use a premixed mortar. The sampling of the mortar was carried out during the 

construction of the masonry infill walls (internal and external leaves) for the assessment of the 

construction quality of masonry walls and mechanical characterization. The consistency of 

mortar was based on flow table tests [45] and the compressive and flexural strength was obtained 

according to EN 1015-11:1999[46]. In spite of the special attention made for mixing the mortar, 

some scatter on the results of the flow table test was achieved, ranging from 165mm in specimen 

SIF(CTRM)-I-B to 180mm in specimen SIF-I-A. This resulted also in some variation on the 

flexural and compressive strength of mortar. The average compressive strength ranges from 

2.76MPa with a coefficient of variation (COV of 5.0%) to 6.18MPa (COV of 5.8%). The average 

flexural strength, ff, ranges from 1.20MPa (COV of 9.0%) to 2.51MPa (COV of 6.0%). 

As mentioned before, the units used in the construction of the brick infills were considered with 

reduced dimensions to comply with the requirements of the reduced scale of masonry infills. 

Taking into account that the typical thickness of double leaf brick infills is 15cm for the external 

leaf and 11 cm for the internal leaf, it was decided to use commercial brick units with theoretical 

dimensions of 24.5cmx11.5cmx8cm and 24.5cmx11.5cmx6cm (length x height x thickness) for 

the external and internal leaves respectively. To have the similar height to length ratio of the 

units of the prototype in the reduced scale units, the length of the bricks was cut to 17.5mm.  

The compressive strength of bricks was obtained according to the European Standard EN-772-

1:2000  [47] and by considering three directions of loading, namely the direction parallel to the 



height, parallel to the horizontal perforation and parallel to the thickness. According to the 

average compressive strength of the bricks, fb, shown in Table 3, the compressive strength is 

clearly different among the loading directions. The higher value is obtained in the parallel 

direction to the length, corresponding to the direction of perforations. It should be noted that the 

resistance of the bricks used in the external leaf is lower than the compressive strength obtained 

in the bricks used in the internal leaf, and lower than the value provided by the producer.  The 

average modulus of elasticity, obtained according to EN-772-1:2000  [47],  in direction of 

parallel to the perforations is 3958.81 MPa (COV of 22.9%) and 9805.97MPa (COV of 20.3%) 

in the bricks of external and internal leaf respectively.  

 

Table 3 Compressive strength of bricks. Coefficient of variation is indicated inside brackets. 

fb (MPa) External leaf Internal leaf 
Parallel to the height 1.57 (15.1) 2.75 (27.7) 
Parallel to length 2.53 (22.8) 8.17 (3.4) 
Parallel to the thickness 1.83 (28.6) 4.86 (15.3) 

 

The quality of the rendering mortar was controlled by testing the consistency of mortar according 

to EN 1015-3, 1999 [45] in the fresh state and by obtaining the compressive and flexural strength 

in hardened mortar according to EN 1015-11, 1999 [46]. For the latter case, three samples of 

mortar were taken per each retrofitting layer to characterize the flexural and compressive 

strength according to European standard. The flow table test results on mortar used for rendering 

with designed and commercial meshes were calculated as 162mm and 160mm respectively. The 

mortar used in rendering with designed mesh had a compressive strength of 9.11MPa (COV of 

2.31%) and a flexural strength of 3.50 MPa (COV of 2.59%). Those values for the mortar used in 

commercial mesh were 10.44 MPa (COV of 4.28%) and 3.87 MPa (COV of 6.62%) respectively. 

 

2.2.2 Brick masonry 

The mechanical properties obtained in the mechanical characterization of brick masonry include 

the compressive strength, tensile and shear strength, flexural strength and the mechanical shear 

properties of the unit-mortar interface. 

The compressive strength and the elastic modulus of brick masonry used in the construction of 

the infill walls were obtained based on uniaxial  compressive loading following the European 

standard of EN1052-1:1999 [48]. Three specimens were adopted to represent the external leaf of 

the masonry and only one specimen was used to represent the internal leaf due to the limitation 



of brick units. An average compressive strength of 1.17MPa (COV of 4.8%) and an average 

elastic modulus of 1154.8MPa (COV of 29.8%) were obtained for the brick specimens 

representing the external leaf. The compressive strength and the elastic modulus for the brick 

masonry representing the internal leaf were 1.59MPa and 1258.6MPa respectively. Although the 

brick units of the internal leaf were clearly stronger than the bricks of the external leaf, its 

compressive strength is closest to the compressive strength of the external leaf.  

The shear resistance of brick masonry was characterized through diagonal compression tests, 

following the recommendations of ASTM standard [49]. Diagonal compression tests were 

performed on three masonry specimens representing the external leaf and on one specimen 

representing the internal leaf. An average shear strength of 0.24MPa (COV of 9%) and shear 

modulus of 1252.8MPa (COV of 1.1%) were obtained for the brick specimens representing the 

external leaf. The shear strength and shear modulus for the brick masonry representing the 

internal leaf were 0.17MPa and 1017.1MPa respectively. 

The flexural resistance of the brick masonry was obtained in two different directions, namely in 

directions parallel and perpendicular to the bed joints. The dimensions of the specimens adopted 

for flexural testing were defined according to European standard EN 1052-2 (1999) [50]. In the 

test setup, the specimen was placed vertically and the flexural load was applied in the horizontal 

direction. This testing configuration was decided based on the test setup facilities and on the 

fragility of the specimens, due to their reduced thickness. Three specimens of the brick masonry 

representing the external leaf and one specimen of the brick masonry representing the internal 

leaf were tested for each direction. The flexural tests were carried out under displacement control 

by monotonically increasing the displacement by 0.1mm/sec. For the external leaf, the average 

flexural strength of 0.053MPa (COV of 6.4%) in the direction parallel to the bed joints and of 

0.29MPa (COV 14%) in the direction perpendicular to the bed joints were obtained. In case of 

the specimen representative of the internal leaf, the flexural strength in direction parallel to the 

bed joints was 0.059MPa, whereas in the direction perpendicular to the bed joints it was 

calculated as 0.23MPa. 

The in-plane initial shear strength of unit-mortar interface was determined by testing nine 

masonry prisms representative of the external leaf wall according to the European standard 

EN1052-3:2003[51]. As the compressive strength of the units is less than 10MPa, the pre-

compression loads were defined so that they represent reasonable values without any type of 

compression failure. Therefore, confining compressive stresses of 0.1MPa, 0.3MPa and 0.5MPa 

were adopted. Average values of about 0.18MPa and 0.58 were calculated for the cohesion and 



tangent of friction angle, calculated through the linear fitting to the experimental results 

(r2=0.87). 

2.3 Construction and strengthening of the specimens 

The construction process of the specimens was divided into two phases, namely casting of the rc 

frames and construction of the brick masonry infills. In order to make the casting of the rc frames 

easier, it was decided to put the wooden molds in the horizontal position. The reinforcement was 

mounted separately and then placed inside the wooden mold. As there was little space between 

the longitudinal reinforcement of the beams in the reduced scale specimens, a concrete with a 

maximum aggregate of 9mm with a characteristic compressive strength of 25MPa was ordered to 

ensure uniform concrete in the specimens, even in the places where little space exists between 

the reinforcements. The construction of the masonry infills was carried out in the storage area 

when the frames were placed and after finishing the construction of the walls, they were covered 

to be protected from the rain. After 28 days of curing time for masonry infills, the rc fames with 

brick masonry infills were carefully transported to the testing place by means of a crane to avoid 

any cracking. 

The rendering mortar used in the strengthened specimens was a pre-mixed commercial mortar 

indicated to be applied with the selected commercial textile mesh and was applied in both 

external surfaces of internal and external leaves. A multipurpose latex additive was added to the 

pre-mixed mortar aiming at improving its workability and consequently enhancing the 

mechanical and adhesive characteristics of cement-based rendering mortar. Additionally, L-

shaped glass fiber connectors were used both in the masonry infill and in the rc frame aiming at 

avoiding any detachment of the rendering mortar (Figure 4a). The application of reinforced 

rendering to the masonry infills was carried out in the following steps: (1) definition of the 

pattern for pilot holes (Figure 4a) to place the connectors aiming at improving the adherence of 

the rendering mortar to the masonry infill; (2) drilling and cleaning the holes and insertion of 

plastic row plugs shown in Figure 4b in the holes (Figure 5a); (3) application of the first thin 

layer of about 5mm of mortar (Figure 5b); (4) injection of a chemical anchor into the holes and 

inserting the L-shaped glass fiber connectors; (5) positioning of the textile mesh on the first layer 

of mortar; (6) application of the second layer of mortar and rectifying the rendered surface, see 

(Figure 5c,d). The total thickness of the rendering was measured as approximately 20mm in all 

the specimens. The application of the rendering in two successive layers enables the involvement 

of the textile mesh by the mortar and also adequate development of the adherence between them.  

 



   
(a)                   (b) 

Figure 4 Details of the mesh connectors; (a) pattern of the connectors (b) plastic row plug and glass fiber connector  

    

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 Application of the reinforced rendering; (a) drilling the pilot holes (b) applying the first layer of mortar (c) 
positioning of the textile mesh and application of the second layer of mortar; (d) final aspect after rendering 

2.4 Experimental setup and instrumentation 

The test setup designed for the static cyclic in-plane testing of the rc frames with masonry infills 

is shown in Figure 6. The rc frame with masonry infill was placed on two steel beams (HEA300) 

that were firmly attached to the strong floor to avoid its sliding and uplifting. Additionally, the 

sliding of the rc frame was prevented by bolting an L-shape steel profile 

(L200mmx200mmx20mm) to each side of the steel beam. In turn, the uplifting was additionally 

prevented by bolting two tubular steel profiles (two welded UNP140 steel profiles) to the steel 

beams. The out-of-plane movement of the enclosure frame was restrained by putting L-shaped 

steel profiles (L100mmx100mmx10mm) at each side of the upper concrete beam, which instead 

were bolted to the top steel frame, see Figure 6b. Three rollers were placed on upper L-shaped 

profiles to minimize or even eliminate the friction between them and the upper reinforced 

concrete beam during in-plane loading.  



Two vertical jacks were placed on the top of the columns to apply the vertical load of 160 kN, 

corresponding to 40% of the column’s axial force capacity. Each jack was pinned to the lower 

steel beam by means of four vertical rods with a diameter of 16 mm (two at each side). A 

hydraulic actuator with a capacity of 250kN was attached to the reaction wall and connected at 

mid height of the top concrete beam of the rc frame to apply the horizontal cyclic load.  Two 

steel plates (400x300x30mm3) were mounted on the left and right sides of top rc beam and were 

connected by two 2φ50 steel rods confining the top rc beam. The right steel plate was connected 

to the horizontal actuator by means of a hinge, enabling the application of reversed cyclic 

loading. 

 

(a)  

 

 

 

 

 

(b) 

Figure 6 a) Test setup for in-plane cyclic loading b) out-of-plane support of the upper beam in the in-plane testing 

The instrumentation adopted for the measurement of the most relevant displacements during the 

static cyclic in-plane testing is shown in Figure 7. Twenty-two linear variable differential 

transformers (LVDT) were used to record the key displacements. From these LVDTS, four 

LVDTs were mounted on the masonry infill to measure the diagonal deformation of both leaves 

(L1, L2, L21 and L22). Two LVDTs were placed on the reinforced concrete frame to measure 

the diagonal deformation of the surrounding frame (L19 and L20). Eight LVDTs were used to 

measure the relative displacement of the infill with respect to the surrounding frame in the 

corners (L3, L4, L5, L6, L7, L8, L9 and L10). LVDTs L11 and L12 measured the sliding and 

uplifting of the infilled frame with respect to the steel profile. Four LVDTs of L13, L14, L15 and 

L16 measured the sliding and uplifting of the steel profiles with respect to the strong floor. These 

measurements were taken to control the reliability of the test setup. The LVDTs L17 and L18 

measured the horizontal displacement of the upper beam of the reinforced concrete frame. 



The instrumentation of the strengthened specimens was defined to have the response of both 

leaves recorded, see Figure 8. Four LVDTs (L1 to L4) were placed along the diagonals to 

monitor the diagonal deformation of the external and internal leaves. Twelve LVDTS (L5 to 

L16) were placed on the rendering layer to capture its possible detachment in relation to the rc 

frame in the out-of-plane direction. Six LVDTs (L17 to L22) were positioned to monitor the 

possible uplifting and sliding of the specimen from ground and steel profiles and thus control the 

reliability of the test setup. Finally, two LVDTs, L23 and L24, were placed on the top beam to 

measure the horizontal displacement at the top rc beam in the direction of the applied load.   

 
(a)  

(b) 
Figure 7 Instrumentation for in-plane loading; (a) external leaf (b) internal leaf 

  

 
(a) 

 
(b) 

Figure 8 Instrumentation of the specimen for in-plane loading; (a) external leaf (b) internal leaf 

2.5 Loading Protocol 

The in-plane static cyclic tests were performed in displacement control by imposing increasing 

pre-defined levels of displacements through an LVDT connected to the horizontal hydraulic 

actuator. The loading protocol adopted for in-plane static cyclic testing, which is in accordance 

with the guidelines provided by FEMA 461[52], is shown in Figure 9. The loading protocol 

includes sixteen different sinusoidal steps, starting from a displacement of 0.5mm, representing 



0.03% drift, calculated as the ratio between the top lateral displacement and the height at which 

the horizontal load is applied from the base of the frame. 

  

Figure 9 Displacement protocol for in-plane testing  

The maximum lateral displacement in the protocol is 66.68mm, corresponding to a lateral drift of 

3.5%. Each step was repeated two times unless the first step that was repeated for six times. The 

displacement amplitude (ai+1) of step i+1 is 1.4 times the displacement amplitude (ai) of step i: 

Eq. 1 
 

It should be stressed that the abovementioned loading protocol is a general protocol used for all 

specimens that enables to follow the in-plane response until a lateral drift of 3.5%. However, in 

case of specimens tested until certain lateral drifts to induce different levels of in-plane damage, 

the tests were stopped at the corresponding displacement. The wall subjected to the maximum 

lateral drift of 0.3% was tested until a lateral displacement of 5.7mm, the wall subjected to the 

maximum lateral drift of 0.5% was tested until a lateral displacement of 9.5mm, and the wall 

subjected to the maximum lateral drift of 1.0% was tested until a lateral displacement of 

19.1mm. The acquisition rate was two per second. 

3 Experimental results and discussion 

3.1 Force-displacement diagrams  

The lateral force-displacement diagrams obtained for the different unstrengthened specimens 

tested under cyclic in-plane loading are shown in Figure 10. The positive direction is considered 

to be the direction in which the hydraulic actuator pushes the specimen whereas the negative 



direction is the direction in which the actuator pulls the specimen through two plates that were 

connected with two thick steel rods.  

It is important to note that both lateral strength and initial stiffness of the rc frame with masonry 

infill are significantly higher than the values found for the bare frame, which confirms the role of 

the masonry infill in the lateral strength of the rc frames. The lateral displacement at which the 

lateral resistance is attained is much lower in case of the rc fame with masonry infill, which is 

related to the higher stiffness of the infilled frame. The force-displacement diagrams are 

characterized by an initial linear behavior corresponding to the elastic behavior of the structure. 

After the onset of cracking, the nonlinear behavior is visible both through the nonlinearity of the 

force-displacement envelop and through the higher hysteresis corresponding to the development 

of damage and dissipation of energy. Given the shape of the hysteretic force-displacement 

diagram, it is expected that the energy dissipation is higher in the rc frame with masonry infill, 

being associated to the cracking development in the masonry wall. The strength degradation in 

the second cycle starts after cracking and increases as the damage accumulation increases. This 

is particularly evident in the complete force-displacement diagram of rc frame with masonry 

infill built with mason A tested until failure.  

The post-peak behavior is characterized by a progressive but smooth reduction on the lateral 

strength and stiffness, meaning that the damage is controlled and progressive. The lateral 

strength of the rc frame with masonry infill corresponding to the ultimate displacement is higher 

than the lateral strength of the bare frame, which appears to indicate that in spite of the severe 

cracking of the masonry infill, it still contributes for the lateral strength of the composite 

structure until the end of the test.  

 
(a) 

  
(b) 



 
(c) (d) 

 
(e) 

Figure 10 Force-displacement diagram; (a) bare frame; (b) specimen SIF-I-A; (c) specimen SIF-I(0.3%)-B; (d) 
specimen SIF-I(0.5%)-B; e) specimen SIF-I(1%)-B 

The cyclic behavior of the rc frames with masonry infills is characterized by relatively low 

values of permanent deformation, being great part of the deformation corresponded to a certain 

imposed lateral drift recovered during the release of the lateral force. This feature is attributed to 

the opening and closing of the cracks that developed through unit-mortar interfaces by applying 

and releasing the force respectively. 

The lateral strength of the rc frame with masonry infill built with mason B tested until 0.5% and 

1% lateral drifts is higher than the strength of the rc frame with masonry infill built with mason 

A. The increase is about 26% and 16% in the specimens tested until lateral drifts of 0.5% and 1% 

respectively. Note that it is considered that in both cases the maximum lateral strength is 

attained, even if at different lateral drifts, enabling the comparison in terms of lateral strength. It 

is also interesting to mention that the displacement corresponding to the maximum lateral force 



tends to be higher in the rc frames with masonry walls built with mason B. These results show 

the relevance of the quality of the workmanship in the in-plane response of the rc infilled frames.  

The cyclic force-displacement diagrams obtained for the  masonry infilled frames strengthened 

with textile reinforced mortar are shown in Figure 11. The most relevant difference with respect 

to the complete response of the rc frame with masonry infill built with mason A is the increase of 

the stiffness and lateral strength. The nonlinear behavior before the peak is more limited in the 

strengthened masonry specimens, when compared with the rc frames with masonry infill. The 

deformation capacity of these specimens is higher than the deformation attained in the 

unstrengthened specimens but the plastic deformation is higher, which should be associated to 

more permanent damage.  

 
(a) 

 
(b) 

Figure 11 Force-displacement diagram (a) specimen SIF(CTRM)-I-B; (b) specimen SIF(DTRM)-I-B 

The post-peak behavior is very controlled, meaning that very progressive and smooth reduction 

of the lateral loadbearing capacity of the composite structure is observed. The ultimate lateral 

drift is slightly higher in case of the specimen strengthened with the designed textile mesh 

(SIF(DTRM)-I-B) when compared to the specimen strengthened with the commercial mesh 

(SIF(CTRM)-I-B), but it should be stressed that there are no significant differences between both 

strengthened specimens. This appears to indicate that the role of the textile meshes is very close. 

3.2 Crack patterns 

The final cracking pattern developed in the cavity walls during the cyclic in-plane tests are 

shown in Figure 12.  



  
(a)  

(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 12 Final cracking pattern of the bare frame; (b) specimen SIF-I-A at end of the test; (c) specimen SIF-
I(0.3%)-B at end of the test; (d) specimen SIF-I(0.5%)-B; (e) specimen at lateral drift of 1%; (f) specimen 

SIF(CTRM)-I-B 

It is clear that the final cracking patterns of the bare frame show that all the cracks are mostly 

concentrated in the columns, indicating the development of plastic hinges at the top and bottom 

part of the columns. This behavior should be associated to the design criteria of rc frames used 

before 1980s, when no specific seismic design was used for rc buildings. It can be concluded that 

based on the experimental results, the concept of weak column-strong beam characterizes this rc 

frame model representing a prototype built before 1980s. 

It is important to stress that the crack patterns observed on the rc frames with the brick masonry 

infill walls are clearly dependent on the maximum lateral drift imposed to the composite 

structure. In fact, the most cracked specimen is, as expected, the one tested until the lateral drift 

of 2.5% (SIF-I-A), corresponding practically to a near collapse limit state. In this case, the 

cracking pattern of the masonry infill is characterized by: (1) separation of the infill from its rc 



frame. This separation starts from very early stages of lateral deformation; (2) diagonal cracking 

along the unit-mortar interfaces. After the separation between the masonry infill and the rc 

frame, the diagonal strut forms and diagonal cracking develops; (3) crushing of brick units 

adjacent to the top interface between the rc frame and masonry infill. It is observed that the 

cracking of the rc columns is more controlled in case of presence of the masonry infill. The 

damage observed in the infilled frames is increasing with increasing imposed lateral 

displacement. In the specimen tested until lateral drift of 0.3%, part of the rc frame-masonry 

interfaces were separated, together with very thin cracks along the main brick-mortar interfaces. 

For the specimen tested until 0.5% lateral drift (SIF-I(0.5%)-B), the masonry infill was 

completely separated from the rc frame and the density of stair-stepped cracks along the unit-

mortar interfaces is higher, being visible some horizontal sliding cracks. Few cracks in the 

connection of the rc columns to the top beam were also observed. The specimen subjected to the 

lateral drift of 1% (SIF-I(1%)-B) presented more intense damage when compared to the damage 

observed in the specimen tested until lateral drift of 0.5% (SIF-I(0.5%)-B), mainly at the level of 

cracking density on the masonry infill and at the rc columns. It is important to note that the 

cracking shown in Figure 12 is regarding to the external leaf but the cracking in the internal leaf 

is very similar, indicating that that both leaves are effective in the resistance to the in-plane 

loading. This similar behavior exhibited by the internal and external leaves is also confirmed by 

the average shear distortion calculated for both internal and external leaves that presented in 

Figure 13. 

 
(a) 

 
(b) 

Figure 13 Average shear distortions (a) masonry infill built with mason A; (b) rc frame with masonry infill tested 
until lateral drift of 1% 



The final cracking patterns observed in the specimens strengthened with textile reinforced mortar 

are presented in Figure 14. It is noticed that smeared cracking pattern is observed in the mortar 

layers of the specimen strengthened with the commercial glass fiber mesh. The cracks developed 

mostly along the diagonals and some horizontal cracks at the level of the upper and bottom 

interfaces between the masonry infill and rc frame were also observed. These horizontal cracks 

should indicate the trend of separation of the masonry infill from the rc frame. In case of the 

specimens strengthened with bi-directional mesh composed of braided composite rods, only few 

cracks were developed in the reinforced mortar layer. Horizontal cracking was visible along the 

infill-rc frame interfaces. Some small cracks were also observed in the areas where the shear 

connectors were totally failed. The strengthening mortar layers started to detach from the rc 

frame at early stages of loading (lateral drift of 0.07% in both directions) as observed from the 

evolution of the displacement measured at the LVDTs placed to measure eventual  debonding of 

the mortar layer, see Figure 15. From the results obtained, it seems that other type of connectors 

should be used in the rc fame. Besides, it should be mentioned that the failure of the connectors 

of the rc frames is brittle and, thus, more ductile material should be selected. On the other hand, 

it is mentioned that the connectors behaved in appropriate way in case of brick infill, as no 

detachment of the reinforced mortar layer from the masonry infill was detected. It is observed 

that the displacements measured by different LVDTS are very similar, which indicates that the 

separation of the mortar layer from the rc frame was practically uniform along the height of the 

specimen. The appropriate preparation of concrete surface before applying the rendering mortar 

according to what is pointed out by Escrig et al (2015)  [53] can be assumed as an alternative 

solution for enhancing the adherence of the rendering mortar to the reinforced concrete frame. 

 

Figure 14 Cracking pattern in the rendering mortar at the end of the test; (a) specimen SIF(CTRM)-I-B; (b) 
specimen SIF(DTRM)-I-B 



 
(a) 

 
(b) 

Figure 15 Detachment of the reinforced mortar layer from the rc frame (a) specimen strengthened with commercial 
mesh at lateral drift of 0.27% b) (a) specimen strengthened with developed mesh at lateral drift of 0.20%  

After the test, the reinforced mortar layer was removed mechanically to obtain information about 

the damage of the brick infill. It was seen that the masonry units crushed along the rc frame-infill 

interfaces, see Figure 16.  

    

(a) (b) 

Figure 16 View of the crushing of bricks of the infill after removing some parts of the retrofitting layer in specimens 
a) SIF(CTRM)-I-B b) SIF(DTRM)-I-B 

This could be related to the higher concentration of compressive stresses along the edge of the 

brick infill. It was also seen that no additional cracks were formed in the brick infill apart from 

the crushing in the bricks adjacent to the rc frame, indicating that the reinforced mortar layer acts 

as a damage controller by limiting the development of cracks in the brick infill. The crushing of 

the bricks along the interface is very similar between both strengthened specimens, even if it 

appears to be more significant in the specimen strengthened with the commercial textile mesh. 



3.3 Evaluation of in-plane performance 

3.3.1 Key parameters 

The force-displacement envelops of all specimens tested under cyclic in-plane loading are 

presented in Figure 17. These envelops were defined for the first cycle of in-plane loading 

protocol. The comparative analysis among the curves enables to identify clearly the differences 

among the distinct specimens. These envelops are used to define the key parameters for 

systematic comparison of the in-plane response of the rc frames with masonry infills, namely: (1) 

the lateral force corresponding to the crack initiation, Hcr, and the corresponding lateral 

displacement, dcr,; (2) the secant stiffness at the first cracking point, calculated as the ratio 

between the crack initiation force and crack initiation displacement; (3) the maximum lateral 

force, Hmax, and the corresponding lateral displacement, dHmax. The key parameters characterizing 

the in-plane response of the different specimens are shown in Table 4. 

 

(a) 

 

(b) 

Figure 17 Monotonic in-plane force-displacement diagram of all specimens 

It is clear that the presence of infill significantly increases the initial stiffness and lateral strength 

of the rc bare frame. This increase in the initial stiffness and lateral strength is about 5.2 and 1.25 

times in case of brick infill built with mason A. In case of brick infill built with mason B, the 

improvement on the initial stiffness and lateral strength is even higher, being approximately 14.9 

and 1.9 times respectively. Additionally, it is observed that the initial stiffness of specimens built 

with masonry B is more than the double of the initial stiffness recorded for the specimen built by 

the first mason (mason A). It is considered that the maximum lateral force was attained in 

specimens tested until lateral drifts of 0.5% and 1%. In case of the specimen tested until the 

lateral drift of 0.5%, the maximum force was attained at the lateral drift of 0.38% and 0.27% in 

the positive and negative directions respectively. Based on this, it is possible to calculate the 



average lateral strength for these two specimens and compare it with the lateral strength obtained 

in the specimen built with mason A. The lateral strength obtained in the specimens built with 

mason B is around 30% higher than the lateral strength obtained in the specimen built with 

mason A. This result highlights again the importance of the workmanship used in the 

construction of brick infills in the in-plane behavior.  

Table 4 Key parameters characterizing the in-plane behavior of tested specimens  

 Positive direction Negative direction 
 Hcr 

(kN) 
dcr 

(mm) 
Ke 

(kN/mm) 
Hmax 

(kN) 
dHmax 

(mm) 
Hcr 

(kN) 
dcr 

(mm) 
Ke 

(kN/mm) 
Hmax 

(kN) 
dHmax 

(mm) 
Bare Frame 19.2 3.7 5.1 53.9 53.8 -12.2 -2.7 4.6 -51.4 -39.3 
SIF-I-2L(NC)-A 89.0 2.7 33.4 133.9 10.3 -52.3 -1.9 27.4 -103.6 -10.3 
SIF – I(0.3%)-B 105.3 1.35 78.0 - - -63.6 -0.9 70.7 - - 
SIF – I(0.5%)-B 113.5 1.35 84.1 175.2 7.32 -104.4 -1.35 77.3 -168.4 -5.23 
SIF – I(1.0%)-B 72.5 0.98 74.0 143.9 14.35 -80.2 -0.95 84.4 -130.6 -19.05 
SIF(CTRM)-I-B 185.0 1.84 100.8 219.2 5.15 -201.1 -1.82 110.5 -201.1 -1.82 
SIF(DTRM)-I-B 195.9 1.85 106.1 227.1 3.60 -185.1 -1.79 103.5 -205.3 -3.62 
 

The specimens constructed with mason B tested until lateral drifts of 0.3%, 0.5% and 1% 

(specimens SIF-I(0.3%)-B, SIF-I(0.5%)-B and SIF-I(1%)-B) presented similar responses in 

terms of initial stiffness, but the specimen loaded until the lateral drift of 0.5% presented higher 

lateral strength. On the other hand, it is seen that the lateral drift at which the maximum lateral 

strength is achieved appears to be higher in the specimen tested until lateral drift of 1%. It is 

concluded that the specimens that demonstrated higher lateral in-plane resistance and initial 

stiffness presented lower lateral drifts corresponding to their lateral strength, which should be 

associated to the higher brittleness of the masonry. 

The role of the textile reinforced mortar on the in-plane behavior is reflected very clearly in the 

load corresponding to the initiation of cracking, which is considerably higher than the one 

obtained in the specimens without reinforcement. The addition of the reinforced mortar layer by 

using different textile meshes resulted in very close lateral performance, increasing the in-plane 

lateral stiffness and resistance of unstrengthened specimens of about 40%. In both cases the 

cracking force is relatively close to the maximum lateral force, meaning that the linear elastic 

regime controls the pre-peak behavior of the walls. The higher stiffness of the strengthened 

specimens also justifies the lower values of displacement at which the maximum force occurs. 

An increase of about 56% on the lateral strength on brick infills strengthened with TRM 

was pointed out by Koutas et al [35, 37]. 



3.3.2 Secant stiffness degradation 

The evolution of the lateral stiffness at each level of lateral drift is calculated in the first cycle of 

the force-displacement envelope and is shown in Figure 18. The stiffness at each lateral drift is 

defined as the secant stiffness representing the slope of the line connecting the origin to the point 

corresponding to the maximum force obtained in the first cycle of monotonic force-displacement 

diagram.  

 It is observed that the stiffness degradation exhibits similar path in the positive and negative 

directions and decreases for increasing lateral drifts. The exponential trend of the stiffness 

degradation is in accordance with other typologies of masonry walls subjected to in-plane lateral 

loading. This trend indicates that the initial cracking and pre-peak damage lead to a sudden 

decrease on the lateral stiffness. After this, the lateral stiffness degrades at a lower rate, 

particularly after the peak lateral strength. 

 

 
(a) 

 
(b) 

Figure 18 Stiffness degradation for different levels of lateral drift; (a) unstrengthened specimens; (b) strengthened 
specimens 

It is observed that the specimens with higher initial stiffness exhibit higher degradation rate, 

particularly at low levels of lateral drift, see Figure 18a. At higher lateral drifts (approximately 

0.5%), the stiffness is practically the same in unstrengthened specimens built with different 

masons. The stiffness degradation of the bare frame occurs at different rate when compared to 

the rc frames with brick infills in which the degradation is mostly related to the stiffness 

degradation of the brick infills inside them. As expected, for high levels of damage of the brick 

infills, the lateral stiffness tends to approach the lateral stiffness of the bare rc frame. For 

strengthened specimens, both specimens present similar response in terms of stiffness 



degradation curve. At early stages of loading, strengthened specimens have higher initial 

stiffness than unstrengthened specimens. By increasing the imposed displacements, the 

difference between the stiffness of unstrengthened and strengthened specimens decreases and at 

lateral drift of 0.75% in the positive and negative directions, they exhibit similar results. 

 

3.3.3 Energy dissipation 

The total energy dissipated during the in-plane testing for increasing lateral drifts is presented in 

Figure 19. If the energy dissipated until a certain lateral drift is compared in the bare frame with 

respect to the rc frame with masonry infill built with mason A, it is clear that the infilled frame 

dissipated much more energy than bare frame.  

  
(a) (b) 

Figure 19 Energy dissipation for increasing lateral drifts; (a) comparison among unstrengthened specimens; (b) 
evaluation of the strengthening technique 

The damage developed through different cracking patterns, namely cracking along the unit-

mortar interfaces and crushing of units in the masonry infill wall, is responsible for the increase 

of the energy dissipation. It is also observed that the masonry construction quality plays an 

important role on the ability of the brick masonry infill to dissipate energy. In all specimens 

tested until the imposed lateral drifts of 0.3%, 0.5% and 1%, the energy dissipation is also clearly 

higher than the energy dissipated in the rc frame with brick infill built with mason A. It is seen 

that the energy dissipated in the specimens strengthened with textile reinforced mortar is 

considerably higher than the energy dissipation of the rc frame and masonry infilled frame built 

with mason A. For the lateral drift of 2.5%, increments of 51% and of 39% on the energy 

dissipation capacity were recorded respectively in the specimens strengthened with commercial 

and designed textile mesh respectively. The energy dissipation value of the strengthened 

specimens is the same until the lateral drift of 1.0%, after which the specimen strengthened with 



commercial mesh presented slightly higher values of energy dissipation during the damage 

development in the in-plane test. This should be related to the formation of more cracks in the 

rendering mortar as was shown in Figure 14, which is considered to be the main cause of 

dissipation of energy. 

4 Conclusions 

Based on the test results of experimental program, the following conclusion can be drawn for the 

in-plane behavior of infilled frames: 

1) The presence of low strength cavity brick walls within the bare frame increases the 

initial stiffness and lateral strength of the bare frame significantly. The increase in the initial 

stiffness ranges from 5.2 to 14 times and in the lateral strength ranges from 1.3 to 1.9 times, 

depending on the quality of workmanship. This also indicates that the specimens constructed by 

experienced mason demonstrated higher initial stiffness and lateral strength. It is revealed that, 

both leaves of the cavity walls behave in a similar way, demonstrating that both leaves are 

contributing to the lateral strength and stiffness of the composite structure. 

2) The strength degradation of the specimens begins due to the formation of the cracks and 

increases after the lateral strength of the specimen is achieved. It is observed that stiffness 

degradation rate of the infilled frames is considerably higher than the rate observed in the bare 

frame at the first levels of loading. 

3) The presence of infill within the bare frame limits the amount of damage in the bare 

frame considerably due to in-plane loading. 

4) The textile reinforced mortar (TRM) technique enhances the in-plane behavior of 

infilled frame, namely the initial stiffness and lateral strength.  

5) The textile meshes are also important to control the damage in the masonry infills. It is 

observed that much lower cracking was developed in the brick masonry infills strengthened with 

textile reinforced mortar.  

6) The effectiveness of the retrofitting technique in the in-plane direction by using 

developed textile meshes is similar to the commercial meshes which validates the use of textile 

mesh based on the composite braided rods. 
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