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1.  Introduction

Bladder cancer is the second most common genitourinary malignancy and the fourth most common cancer in 
men, with 80 000 new cases estimated to have occurred in the U.S. during 2017 (Stein et al 2011, American Cancer 
Society 2017). More than 70% of primary bladder tumors are superficial transitional cell carcinoma, in which 
recurrence rates for patients with Ta and T1 tumors are in the range of 50%–75% at 20 years (Fielding et al 2002, 
Grossman et al 2007). About 9 out of 10 people with this type of cancer are over the age of 55, in which the chance 
of men developing this cancer during their life is about 1 in 26, and for women about 1 in 88 (American Cancer 
Society 2017).

The inside of the bladder can be visualized through cystoscopy. This exam consists of inserting a thin tube 
through the opening of the urethra that advances into the bladder. The equipment is called a cystoscope and 
comprises a light source and a lens that allows for the images to be seen in an exterior monitor, leading to a quick 
prediagnosis of this area of the urinary tract. There is also a side channel where various thin devices can pass 
through. The initial diagnosis is based only on a visual analysis by the physician, which obviously depends on the 
urologist’s experience and expertise, among other subjective conditions. To confirm if it is cancer, the abnormal 
area identified during a cystoscopy is biopsied and classified according to its invasiveness and grade by a patholo-
gist (Messer et al 2005).
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Abstract
Correct classification of cystoscopy images depends on the interpreter’s experience. Bladder cancer 
is a common lesion that can only be confirmed by biopsying the tissue, therefore, the automatic 
identification of tumors plays a significant role in early stage diagnosis and its accuracy. To our 
best knowledge, the use of white light cystoscopy images for bladder tumor diagnosis has not been 
reported so far. In this paper, a texture analysis based approach is proposed for bladder tumor 
diagnosis presuming that tumors change in tissue texture. As is well accepted by the scientific 
community, texture information is more present in the medium to high frequency range which can 
be selected by using a discrete wavelet transform (DWT). Tumor enhancement can be improved by 
using automatic segmentation, since a mixing with normal tissue is avoided under ideal conditions. 
The segmentation module proposed in this paper takes advantage of the wavelet decomposition 
tree to discard poor texture information in such a way that both steps of the proposed algorithm 
segmentation and classification share the same focus on texture. Multilayer perceptron and a support 
vector machine with a stratified ten-fold cross-validation procedure were used for classification 
purposes by using the hue-saturation-value (HSV), red-green-blue, and CIELab color spaces. 
Performances of 91% in sensitivity and 92.9% in specificity were obtained regarding HSV color 
by using both preprocessing and classification steps based on the DWT. The proposed method can 
achieve good performance on identifying bladder tumor frames. These promising results open 
the path towards a deeper study regarding the applicability of this algorithm in computer aided 
diagnosis.
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According to the 2009 TNM (tumor, node, metastasis) classification system of malignant tumors, bladder 
tumors are classified as Ta when a non-invasive papillary carcinoma is present, CIS (carcinoma in situ), a ‘flat’, 
high-grade, non-invasive tumor which means that the lesion is only found on the bladder surface and T1 when a 
tumor invades the subepithelial connective tissue. These tumors can be treated by transurethral resection of the 
bladder (TURB). Tumors can also be classified as T2, when a tumor invades muscularis and T3 and T4 where the 
tumor invades adjacent fat or the adjacent organs, respectively (Rouprêt et al 2011, Babjuk et al 2017). Depending 
on the patient’s age, cystectomy can be performed as a treatment for these types of tumors (Witjes et al 2014). 
Usually, papillary tumors, both high and low-grade, are easily identified but hard to classify. On the other side, 
flat tumors are harder to identify (Mitropoulos et al 2005). CIS is often invisible to the naked eye, but it can 
quite frequently be identified as a red, velvet area along the surface of the normally, pink, translucent bladder 
wall (Vining et al 1995). These visual features usually induce ambiguity in the diagnosis between CIS or inflam-
mation. In those less aggressive tumor cases (Ta, T1, and CIS), after tumor removal, most patients are prone to 
experience recurrence at least once. Thus, every 3–6 months during 2–5 years, patients are submitted to controls 
by cystoscopy and urinary cytology (NCCN 2015). This whole process works as diagnosis; but the histological 
results can take several days, and due to their high prevalence, the need for early detection methods has become of 
huge importance. In this work, only T1 images were used because this is the first stage of tumor growth where the 
tumor has invaded the first layer of tissue and besides that, they are often of a higher grade than Ta tumors (Pasin 
et al 2008).

In previous works, the authors applied segmentation approaches to separate tumor from normal tissue in 
individual images taken from cystoscopy exams. This was done with a color-based analysis, considering that the 
distribution of the intensities of different color channels is modeled by a Gaussian mixture model, whose param
eters can be found by using the EM algorithm (Freitas et al 2017a, 2017b). Although, due to the repetitive change 
in the gray values and structures of the textures, traditional detection methods based on intensity or edge detec-
tion are ineffective because textures are realizations of non-Gaussian stationary processes. Texture is an inherent 
property in an image, especially in medical images since the tissue itself carries a dominant textural appearance 
(Maroulis et al 2008). There are three main approaches to the task of texture feature extraction: the spectral pro-
cessing approach, structural approach, and statistical approach (Kodogiannis et al 2007).

The lack of previous works regarding tumor detection in white light bladder images, lead us to focus on simi-
lar types of tissue, specifically intestinal tissue in images of wireless capsule endoscopy (WCE). When trying to 
detect intestinal tumors in WCE images, textural features lead to good results because of its irregular shape and 
heterogeneous appearance. One of the approaches is the use of Haralick descriptors, which are calculated with 
a gray-level co-occurrence matrix calculated in the four directions (Haralick et al 1973). These descriptors are 
considered state-of-the-art for texture codification, and have been used with good results in tumor detection in 
WCE images by Barbosa et al (2008a) and Lima et al (2009). Maroulis et al (2008) proposed a method based on 
the covariance of second-order textural measures in the wavelet domain for WCE images, namely, in the bands 
4, 5, and 6, while Kodogiannis et al (2007) proposed statistical approaches where descriptors are calculated from 
the histograms of different color spaces. They also proposed a scheme to extract features from texture spectra in 
the chromatic and achromatic domains (Barbosa et al 2012). Intestinal and bladder tissue have a high degree of 
similarity, so it can be inferred that similar methods can be applied while probably leading to good results. The 
discrete wavelet transform (DWT) has been widely used and provides a powerful tool for multi-resolution analy-
sis of images (Barbosa et al 2008b, Karkanis et al 2003, Maroulis et al 2008, Lima et al 2008, Barbosa et al 2012). 
The DWT is suitable for dealing with singularities, and extracting details in horizontal, vertical, and diagonal 
directions. The image or signal to be analyzed is passed through filters with different cut-off frequencies at differ-
ent scales, allowing a better decomposition of the patterns within an image (Barbosa et al 2011).

The experimental evaluation of extracted features, i.e. classification methods, focus mainly on the statistical 
analysis of texture, and have been based on several classifiers such as multi-layer perceptron (MLP) networks, 
radial basis functions (RBFs), extreme learning machines (ELMs), wavelet neural networks, support vector 
machines (SVMs), the K-nearest-neighbor (KNN), or the adaptive fuzzy logic system (AFLS) (Kodogiannis et al 
2007, Prasath 2016, Yahia et al 2017). MLP is a powerful ‘expert’ tool due to its remarkable ability to extract pat-
terns and detect trends from imprecise data that are too complex to be noticed by either humans or other comp
uter techniques. The backpropagation scheme combined with the parameter learning rate minimizes the func-
tion error. It has the capability to learn non-linear models and real-time models (Kuncheva 2014, Prasath 2016).

The proposed scheme to detect T1 tumor tissue in cystoscopy images contains three main steps: preprocess-
ing, segmentation, and classification. All steps are based on high frequency texture information obtained from 
filtering the frame in the wavelet domain. Since previous attempts to segment tumor frames (Freitas et al 2017a, 
2017b) did not perform optimally for T1 tumor aspects a preprocessing, which computes an image with only 
higher frequency content, allowed substantial improvements in segmentation. The segmentation module uses 
the maximum a posteriori (MAP) approach and the expectation-maximization (EM) algorithm. The classifica-
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tion module is based on the MLP classifier where multi-scale texture descriptors are extracted from the wavelet 
domain of the image and used as features.

2.  Methodology

This section is divided in three sub-sections: firstly, a brief explanation of texture characterization, specifically in 
the DWT domain, is given; secondly, an explanation of the segmentation method used is provided, and lastly, an 
overview of the overall method is presented.

2.1.  Texture characterization
Tumors are lesions that are visually described as having a very specific texture, when compared to healthy bladder 
tissue. The proposed method relies on a color textural features extraction process based on complex transform 
analysis, specifically, the DWT.

The wavelet transform emerged as an alternative to Fourier transform (FT) and its related transforms, 
namely, the discrete sine transform (DST) and the discrete cosine transform (DCT), which are more appropriate 
for signals generally assumed as periodic (Toufik and Mokhtar 2012). The DWT introduced a significant change 
in the direction of the research done on biomedical signal/image processing and allows a spatial/frequency rep-
resentation by decomposing the image at different scales with different frequency content. It has also been vastly 
explored for several problems, such as compression of medical images, image denoising, image enhancement, 
tomographic reconstruction, and feature extraction for image classification (Barbosa et al 2011). Large wavelet 
coefficients are located in the neighborhood of edges and irregular textures (Mallat 2008). Boundary extent and 
gradient direction are other important clues captured by the DWT and precisely located viewed at different scales 
along the image. Wavelet orthonormal bases of images can be constructed from wavelet orthonormal bases of 1D 
signals. The continuous wavelet transform (CWT) is a signal representation in a scale-time space, and its coef-
ficients of signal x(t) are given through:

Xψ (τ , s) =

∫ +∞

−∞
x(t)ψ∗

(
t − τ

s

)
dt,� (1)

where ψ is the mother wavelet function and * stands for the complex conjugate. Analogously, a signal can be 
recovered from its wavelet coefficients through the inverse transform (ICWT). By varying both the scale s and 
the translation shift parameter τ it is possible to obtain a family of daughter wavelets from the mother wavelet 
function ψ (Barbosa et al 2011):

ψτ ,s(t) =
1√

s
ψ

(
t − τ

s

)
.� (2)

One important property of the wavelet filter is that for a discrete set of scales, namely, dyadic scale s = 2i , a quality 
factor of the filter is defined as the central frequency to bandwidth ratio. Sampled points in the time-scale are 
separated by a power of 2, inspired by the so-called dyadic grid. Under this constraint, the DWT is defined as (3).

ψj,k(t) = s
−j
2

0 ψ(s−j
0 t − kτ0).� (3)

Since a dyadic scale is used, the scaling and translation factors are determined by s = 2 j and τ = k2 j , where j and 
k are integers, s0 = 2, and τ0 = 1. Under this scale progression the signal can be sequentially half-band high-pass 
(g[n]) and low-pass (h[n]) filtered (Kociolek et al 2001). The process proceeds iteratively in a scheme known as a 
wavelet decomposition tree, which is illustrated in figure 1.

These properties can be extended to the 2D space and applied to image processing. Mallat (1989) introduced 
an extension of the concepts of multi-resolution decomposition to image processing. The first step is identical to 
the 1D approach, however, instead of keeping the low-level resolution and processing the high-level resolution, 
both are processed using two identical filter banks after the transposition of the incoming data. Thus, the image is 
scanned in both rows and columns (Toufik and Mokhtar 2012).

The An is obtained by low pass filtering (H) leading to a less detailed image, at scale n. Dni are obtained by band 
pass filtering (G) in a specific direction, therefore, encoding details in different directions. This recursive filtering 
is the extension of the scheme represented in figure 1 to the 2D space represented in figure 2 (Lima et al 2010).

This 2D implementation is therefore a recursive 1D convolution of the low and band pass filters with the rows 
and columns of the image, followed by the respective subsampling. The 2D DWT decomposition, as shown in 
figure 3, is the result of each considered scale, in sub-bands of different frequency content or detail, in the dif-
ferent orientations. It is a compact representation of the original image, in which the key information will be 
sparsely represented. The inverse discrete wavelet transform (DWT) is possible through the application of the 
filter bank in the opposite direction (Mallat 1989, Lima et al 2010).

Phys. Med. Biol. 63 (2018) 035031 (11pp)
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Since in similar modalities (e.g. CE images) low frequency components of the images do not contain major 
texture information, the most important bands are those with higher frequency (lower scales). Good features 
should be invariant to the transformations which do not change object class. This multi-scale analysis requires 
that multiple images be synthesized from different levels of focus selected in the wavelet domain. This func-
tion allows a decomposition of texture information in three different directions for all frequencies and scales 
considered: vertical, horizontal, and diagonal; preserving both global and local information. Interesting texture 
information is presented in the sub-bands {1, 2, 3} shown in figure 3, corresponding to high frequency. Each cys-
toscopy frame I can be decomposed in three color channels, originally in the red-green-blue (RGB) color space, 
but with the possibility of transforming it into other color spaces; Ii where i  = 1, 2, 3 stands for the correspondent 
color channel.

Once an image is a 2D representation, a two-level DWT is applied to each color channel, Ii, resulting in a new 

representation of the original image by a low-resolution image and the detail images, Wi =
{

Li
n, Di

l

}
, where l  = 

1, 2, 3 stands for the wavelet band and n is the decomposition level. The image representation consists of the detail 
images produced from Wi for the values l  =  1, 2, 3 to a two-level wavelet decomposition as shown in figure 3. This 
results in a set of nine sub-images, once three sub-images are generated per each one of the three-color channel 
components.

Figure 1.  Wavelet decomposition tree.

Figure 2.  Wavelet 2D decomposition tree.

Figure 3.  Two-level discrete wavelet decomposition scheme of the original image for color channel i.

Phys. Med. Biol. 63 (2018) 035031 (11pp)
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2.2.  Segmentation
The main goal of the segmentation process is to locate lesion tissue to be processed separately from normal tissue. 
The segmentation algorithm used in these experiments was a multivariate MAP approach, based on Bayes’ rule 
(4) (Freitas et al 2017a), that indicates how the a posteriori probability, p(Ci|x), of each class is calculated. Once the 
objective is to separate abnormal from normal tissue, a two Gaussian model is appropriate.

P(Ci |x ) =
p(x |Ci ) · P(Ci)

p(x)
.� (4)

In (4), P(Ci) refers to the a priori probability of class Ci, and p(x|Ci) is the class conditional probability density 
function (pdf). The term p(x) is a scaling factor that can be ignored for class comparison. This manipulation 
represents the MAP estimation, with the purpose of maximizing the likelihood of a given value x to one of the 
k classes (Sprager and Zazula 2014). The pdf used is the Gaussian function and observations are modeled as a 
Gaussian mixture whose parameters can be iteratively estimated by using the EM algorithm under the maximum 
likelihood (ML) criterion. This process is repeated until convergence is reached, i.e. when from one iteration to 
the next one the increase in likelihood is negligible (below an established threshold). To do this, the usual way 
is to consider that a local maximum is reached when the content of each cluster does not change in consecutive 
iterations. The pdf of a multivariate normal distribution modeling each class can be computed by equation (5) 
(Vieira et al 2012, Freitas et al 2017a).

p(xj|Ci,Φi) =
1

(2π)D/2∣∣∑
i

∣∣1/2
exp

{
−1

2
(xj − µi)

T
∑

i

−1
(xj − µi)

}
,� (5)

where D is the dimension of the distribution, i.e. the number of different random variables (channels) considered 
as an input of the multivariate model (in this case D  =  3).

The likelihood of the whole dataset of size N (frame) with sample values X, considered the set of every feature 
vectors x is given by equation (6). In this equation, Φi is a tuple containing the estimated parameters for class i 
(mean vector µi, covariance matrix Σi, and class weight/coefficient).

p(X|Φ) =
N∏

j=1

p(xj|Φ) =
N∏

j=1

k∑
i

P(Ci)·p(xj|Ci,Φi).� (6)

Likelihood maximization is achieved by maximizing the log-likelihood, since the logarithm is a crescent function. 
The update of the parameters (Freitas et al 2017a), is given by (7.1), (7.2) and (7.3).

π̂i =
1

N

N∑
j=1

p(xj|Ci,Φi)� (7.1)

µ̂i =

∑N
j=1 p(xj|Ci,Φi).xj∑N

j=1 p(xj|Ci,Φi)
� (7.2)

∑̂
i
=

∑N
j=1 p(xj|Ci,Φi)(xj − µi)(xj − µi)

T

∑N
j=1 p(xj|Ci,Φi)

.� (7.3)

Initial estimates can be random or established according to some data distribution using a partition algorithm 
such as the K-means that divides the pixels into k clusters usually in accordance with the Euclidean distance. A 
partition algorithm improves initial estimates leading to local maxima closer to the global maximum being a 
usual procedure in practice. The entire algorithm is explained more in-depth in Freitas et al (2017a, 2017b).

Some advantages of the HSV color space domain are low correlation and perceptual motivation. While per-
ceptual motivation can be advantageous to mimic human findings, low correlation allows using the IID (inde-
pendents and identically distributed) criterion in such a way that the covariance matrix in equation (5) can be 
considered diagonal saving computational resources at runtime and the avoidance of inaccurate estimates of the 
off diagonal elements.

2.3.  Overall method
Figure 4 shows the entire pipeline of how the cystoscopy frames were analyzed to detect tumors in bladder tissue. 
The preprocessing using the DWT emphasizes high texture areas (tumors are characterized by high texture 
variations) by discarding the more constant ones. The use of this technique as a preprocessing step produced 
better visible results than the standard segmentation process as shown in figure 6. Since a database with manual 
segmentations does not exist, only a qualitative evaluation was performed.

Phys. Med. Biol. 63 (2018) 035031 (11pp)
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Once texture information is mainly encoded in the higher frequency bands, low frequency bands can be 
removed replacing by zeros the lower frequencies wavelet coefficients (Li

2, Di
4, Di

5, Di
6, as shown in figure 1), and 

applying the inverse DWT to the resulting matrix. Unfortunately, the contribution of each of the details of the 
scale regarding textures cannot be visually compared since the lack of the coarse scale (low frequency) removes 
most of the visual information. This step synthesizes one image containing only the most relevant texture infor-
mation from the source image. The resulting image is then segmented into two regions.

Feature value is defined as a real number which encodes some information about a property of an object. In 
the current case properties are texture information that can be extracted from the high frequency wavelet coef-
ficients, Di

1, Di
2, Di

3, as shown in figure 3. This representation comes from the three HSV color channels, resulting 
in a set of nine sub-images. The result of the segmentation procedure allows accessing suspected tumor tissue 
directly in this set of nine sub-images.

There are several texture descriptors extracted from the wavelet domain as statistical features, being the most 
common the mean (8) and the standard deviation (9) given as:

µ = E {P(i, j)} =
1

NM

∑
i

∑
j
P(i, j)� (8)

σ =

√
E
{
(P(i, j)− µ)

2
}
=

√
1

NM

∑
i

∑
j
(P(i, j)− µ)

2,� (9)

where N is the number of rows and M is the number of columns of the frame, and P(i, j) is the pixel intensity at 
position (i, j). Features are used as inputs of the classifier that assign them to the class they represent. This process 
emphasizes the difference between what characterizes a tumor and what characterizes normal tissue by extracting 
features from both regions. With this quantification the dimensionality of the problem is doubled, however, it 
is a way to measure the relative values in terms of texture between both regions; normal and tumor. Relative 
measures may be more robust to environmental conditions changing such as device related (light variations 
among different devices) and subject related than absolute measures usually obtained without segmentation 
facilities. Experimental results confirm this suspicion.

In order to compare the strength of these descriptors, a state-of-the-art methodology already used in WCE 
images was accessed (Barbosa et al 2012) regarding the HSV image. Thus, co-occurrence matrices were com-
puted and the 4 most significant measures among the 14 statistical Haralick measures are considered, namely, the 
angular moment (F1), the correlation (F2), the inverse difference moment (F3), and entropy (F4), representing the 
homogeneity directional linearity, smoothness, and randomness of the matrix (Haralick et al 1973). These meas-
ures are those which are mostly related to the human perception and discrimination of textures (Lima et al 2008).

3.  Classification process

Data classification was performed by using MLP and SVM classifiers. These are the most fundamental 
classification methods based on statistical pattern recognition and have been widely used for decades due to their 

Figure 4.  Algorithm flowchart.

Phys. Med. Biol. 63 (2018) 035031 (11pp)
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effectiveness and robustness. Unlike other statistical techniques, they can model highly non-linear functions and 
can be trained to accurately generalize when presented with new, unseen data (Li and Meng 2009).

The architecture of a MLP, as shown in figure 5, consists of one hidden layer of simple interconnected neurons 
(nodes) in a feed-forward way and utilizes a supervised learning technique called backpropagation to classify 
instances.

In this example, x is the feature vector and is submitted to an input layer, and g(x) is the output layer. The 
inputs are fed simultaneously into the units making up the input layer. These inputs pass through the input layer 
and are then weighted and fed simultaneously to a second layer, until they reach the final output layer. The num-
ber of hidden layers is arbitrary.

The backpropagation neural network is essentially a network of simple processing elements working together 
to produce a complex output. Here the output values are compared with the correct answer to compute the value 
of some predefined error. The error updates the network weights iteratively until the output error drops below 
the predefined threshold or until the limit of the number of iterations is reached. To adjust weights properly, it 
is applied a non-linear optimization method that is called gradient descend, which converges to a set of weights 
corresponding to a local minimum of the output error (Gardner and Dorling 1998, Arora and Suman 2012, 
Kuncheva 2014).

Since its conception, the SVM classifier has been a prominent landmark in statistical learning theory and its 
success is attributed to two main premises: the original space is transformed into a very high-dimensional new 
space and a large margin can be found in this new space. Thus, it has the objective to define a hyperplane, which 
can be used for good separation of the training data. This good separation is achieved by the hyperplane that has 
the largest distance (margin) to the nearest training data point of any class. The points which are at the exact min-
imum distance corresponding to the minimum margin are called the support vectors (Kuncheva 2014, Marsland 
2015). More elaborate schemes for classification purposes such as ensemble systems or deep neural networks 
are current lines of research of wide interest around the world, however, they require large datasets currently not 
available in the bladder tumor field.

4.  Results and discussion

The proposed algorithm was developed in MATLAB on a 2.60 GHz Intel Core i7-4510U processor with 8 GB of 
RAM. The experimental dataset contains a total of 353 frames from which 246 are normal and 107 are indexed 
as T1 bladder tumors. Some of the normal frames were extracted from cystoscopy videos of 8 healthy patients, 
and others from clean areas of 6 sick patients. The abnormal frames are from 6 different patients. All patients 
were between 52 and 90 years old. These images are of various resolutions due to the recording performed using 
three different devices, therefore, it was important to do a normalization step of the image resolutions. They were 
obtained and analyzed by several experienced urologists of the Hospital of Braga and the final classification of 
each lesion was obtained after the analysis of the biopsy done by experienced pathologists. Figure 6(a) shows 
some examples of frames belonging to the dataset.

The features were imported into the open source machine learning package WEKA (available at www.
cs.waikato.ac.nz/ml/weka/). A stratified ten-fold cross-validation procedure was chosen to train both classifiers. 

Figure 5.  A MLP with one hidden layer (Kuncheva 2014. Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.).

Phys. Med. Biol. 63 (2018) 035031 (11pp)
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The MLP model consisted of one hidden layer with five neurons, which was considered an appropriate number 
for the size of the dataset. The input, in both cases, was normalized in order to avoid biased network weighting 
optimization. The activation function used in the MLP was the unipolar Sigmoid. All the other parameters were 
kept at the default. The ten-fold cross-validation algorithm divides the data into ten partitions, where the pro-
portion of both normal and abnormal frames in each partition is similar to the entire dataset. The training and 
classification process is then repeated ten times, where 9 partitions are used to train and 1 partition is used to 
assess the classification process. This way, each frame will be used exactly once as test data, allowing efficient use 
of the available dataset. The test results are collected and averaged over all folds, which gives the cross-validation 
estimate of the accuracy. The variance of the resulting estimate is reduced as the number of partitions is increased 
(Alpaydın 2014).

In this experiment imbalanced data was used, i.e. the number of tumor frames is much smaller than the num-
ber of normal frames. This type of data usually induces high accuracy immediately, because the chosen model 
cleverly decides that the best thing to do is to always predict the class that allows a high accuracy. Due to these 
more reliable measures, the evaluation of the classification performance can be achieved by using the sensitivity 
(true positive rate), specificity (true negative rate), accuracy, and receiver operating characteristic curve (ROC) 
(Harrington 2012). The classification performance is high when both sensitivity and specificity are high.

The selected color space evaluated was the HSV, since it is more similar to the physiological perception of the 
human eye, and the components have a low correlation and can separate the image intensity from the color infor-
mation. Since the results obtained regarding the CIELab and RGB color spaces were substantially worse, only the 
classification performances regarding this color space are presented in this work.

Figure 6 shows the segmentation results of two images with and without preprocessing. It is possible to infer 
that the segmented region with the preprocessing in both examples is more similar to the tumor area.

The results of this paper show that textural information can be adequate to classify images from cystoscopy. 
This textural information was obtained from the mean and variances calculated over the wavelet frame trans-
formation of the different color bands. A two-level DWT was applied to each color channel, selecting medium 
and higher frequencies, medium frequencies, and a one-level discrete wavelet transformation selecting only the 
higher frequencies. This process was performed to verify if the higher frequencies are the ones that contain more 
textural information about bladder tumors. Table 1 indicates that the first scale captures more texture informa-
tion than the second scale, which is reflected by a better classification performance in both the MLP and SVM 

classifiers. It is also possible to verify that MLP allows obtaining higher performances.
Since the initial assumption based on works done in WCE images is confirmed, only the DWT lower scale is 

considered. We already showed that the preprocessing step is important to improve the segmentation results, as 

Figure 6.  Resulting segmentation of (a) two tumoral frames, (b) without preprocessing and (c) with preprocessing regarding the 
HSV color space.
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can be observed in figure 6. To prove that this preprocessing step can indeed improve the detection of tumors, we 
also compare the results from the classification system when the preprocessing is not used.

Table 2 summarizes the efficiency of the preprocessing procedure, by extracting the mean and standard devi-

ation, from both the normal and abnormal areas.
In this case, when the SVM is used to classify the data an increase in sensitivity was noted when preprocess-

ing is not employed. However, neither specificity nor accuracy follow the same behavior. When the MLP is used 
instead, a decrease in all measures can be observed in the absence of preprocessing. Relative to the SVM, the MLP 
allows achieving a higher accuracy rate.

Looking at table 3, we can see that the segmentation process applied leads to better results than those obtained 

when features are extracted directly from the DWT without any previous steps.
It is clear from the results shown in table 3 that relative measures are more effective than absolute measures 

in detecting tumor tissue as heuristically expected since relative measures are more robust to environmental 
variations such as device or subject related. Moreover, by not only comparing the segmentation of two tumoral 
frames, with and without preprocessing, as shown in figures 6(b) and (c), but also their performances, as pre-
sented in tables 2 and 3, we can infer that preprocessing does indeed increase the detection rates. 

Haralick descriptors are considered state-of-the-art texture descriptors, so we conducted some tests in order 
to compare Haralick and wavelet based texture descriptors. Table 4 shows that all metrics present a decrease when 
Haralick descriptors are used.

In spite of the different dimensionality in both cases, wavelet based texture descriptors seem to be signifi-
cantly superior to Haralick based descriptors for the purpose of bladder tumor characterization. In order to 
evaluate which color space allows achieving the best results with this implementation, the performances of the 
HSV, RGB, and CIELab color spaces were computed, as table 5 shows. With respect to the CIELab color space the 

influence of the lightness in the classification task was also studied by removing the L channel.
This comparison allows to deducing that the HSV is the color space with higher capacity to detect tumor 

frames. Both the RGB and CIELab performances are substantially lower than those obtained with the HSV. Dis-

Table 1.  Classification performance of the wavelet transform applying the preprocessing step for the MLP and SVM classifiers using the 
HSV color space. Performances achieved regarding scales of medium frequencies (M-F), medium and high frequencies (M  +  H-F) and 
higher frequencies (H-F) can be observed.

MLP SVM

Classification vector (mean and standard deviation) M-F M  +  H-F H-F M-F M  +  H-F H-F

Sensitivity (µ  ±  σ%) 69.7  ±  13.1 79  ±  14.5 91  ±  7.8 69.4  ±  10.1 71  ±  14.0 85.1  ±  8.8

Specificity (µ  ±  σ%) 91.9  ±  9.1 93.7  ±  3.4 92.9  ±  6.0 89  ±  9.8 90.1  ±  4.1 82.5  ±  5.7

Accuracy (µ  ±  σ%) 87  ±  8.2 90.5  ±  2.0 92.4  ±  5.1 83.4  ±  9.0 85.6  ±  2.9 85.1  ±  5.3

ROC (µ  ±  σ%) 90.7  ±  8.9 91.8  ±  5.6 96.5  ±  2.9 80  ±  11.3 79.7  ±  6.1 83.8  ±  3.5

Table 2.  Performances obtained for MLP and SVM classifiers in order to evaluate the influence of the preprocessing procedure using the 
HSV color space.

MLP SVM

Classification vector  

(mean and standard deviation)

Without  

preprocessing

With  

preprocessing

Without  

preprocessing

With  

preprocessing

Sensitivity (µ  ±  σ%) 81.4  ±  12.2 91  ±  7.8 94  ±  4.2 85.1  ±  8.8

Specificity (µ  ±  σ%) 91.6  ±  7.8 92.9  ±  6.0 85.7  ±  5.2 82.5  ±  5.7

Accuracy (µ  ±  σ%) 89.8  ±  5.5 92.4  ±  5.1 87.6  ±  7.1 85.1  ±  5.3

ROC (µ  ±  σ%) 93.3  ±  8.0 96.5  ±  2.9 89.8  ±  6.9 83.8  ±  3.5

Table 3.  Performances obtained for MLP and SVM classifiers to evaluate the proposed segmentation algorithm using the HSV color space.

MLP SVM

Classification vector  

(mean and standard deviation)

Without  

segmentation

With  

segmentation

Without  

segmentation

With  

segmentation

Sensitivity (µ  ±  σ%) 69.4  ±  8.1 91  ±  7.8 79  ±  6.3 85.1  ±  8.8

Specificity (µ  ±  σ%) 90.1  ±  4.5 92.9  ±  6.0 93.7  ±  4.1 82.5  ±  5.7

Accuracy (µ  ±  σ%) 85.6  ±  6.6 92.4  ±  5.1 86.5  ±  6.0 85.1  ±  5.3

ROC (µ  ±  σ%) 79.7  ±  9.3 96.5  ±  2.9 91.8  ±  2.8 83.8  ±  3.5
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carding the lightness did not lead to better results than those achieved when all three color channels are used. As 
mentioned above, the MLP classifier provided higher performances.

To confirm that the best result was obtained, a confusion matrix was used in which it could be observed that 
97 out of 107 were correctly predicted as abnormal frames and 228 out of 246 were correctly predicted as normal 
frames.

5.  Conclusion

Automatic tumor detection in cystoscopy exams could constitute an important diagnostic tool that could 
potentially be used by urologists. In this work the proposed module takes advantage of a wavelet decomposition 
tree to discard low frequency information in such a way that both steps of the algorithm, segmentation, and 
classification regarding the HSV, RGB, and CIELab color spaces, share the same focus on texture. It was possible 
to conclude that the preprocessing step increased the detection rate, as did the use of the HSV color space. 
The experimental results show that high accuracies can be achieved making the system reliable enough to be 
used in clinical practice. The obtained accuracies are in the range of the accuracies of systems used in other 
fields in clinical practice. More effective texture descriptors such as the those based on the curvelet transform, 
improvements in the segmentation module, and more powerful classification approaches such as ensemble 
learning strategies that however require a large database that is currently under construction could increase the 

performance of the system.
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