Validation of percutaneous puncture trajectory during renal access
using 4D ultrasound reconstruction
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ABSTRACT

Background: An accurate percutaneous puncture is essential for disintegration and removal of renal stones. Although this
procedure has proven to be safe, some organs surrounding the renal target might be accidentally perforated. This work
describes a new intraoperative framework where tracked surgical tools are superimposed within 4D ultrasound imaging
for security assessment of the percutaneous puncture trajectory (PPT).

Methods: A PPT is first generated from the skin puncture site towards an anatomical target, using the information
retrieved by electromagnetic motion tracking sensors coupled to surgical tools. Then, 2D ultrasound images acquired
with a tracked probe are used to reconstruct a 4D ultrasound around the PPT under GPU processing. Volume hole-filling
was performed in different processing time intervals by a tri-linear interpolation method. At spaced time intervals, the
volume of the anatomical structures was segmented to ascertain if any vital structure is in between PPT and might
compromise the surgical success. To enhance the volume visualization of the reconstructed structures, different render
transfer functions were used.

Results: Real-time US volume reconstruction and rendering with more than 25 frames/s was only possible when
rendering only three orthogonal slice views. When using the whole reconstructed volume one achieved 8-15 frames/s. 3
frames/s were reached when one introduce the segmentation and detection if some structure intersected the PPT.

Conclusions: The proposed framework creates a virtual and intuitive platform that can be used to identify and validate a
PPT to safely and accurately perform the puncture in percutaneous nephrolithotomy.

Keywords: guided surgery, percutaneous puncture, minimal invasive surgery, electromagnetic tracking sensors,
ultrasound reconstruction

1. INTRODUCTION

The prevalence of kidney stones has risen over the past 30 years [1-3]. Nowadays, percutancous nephrolithotomy
(PCNL) is golden standard for treating upper urinary tract stones. The stone clearance rate and treatment outcome is
highly dependent on the accuracy of needle puncture in the desired calix [4, 5].

Multiple paths and technological advances have been proposed in the field of urology and minimal invasive surgery to
improve this procedure. In what concerns PCNL puncture in particular, the most relevant contributions have been
provided by the application of medical imaging techniques, as well as the fusion of multiple imaging procedures [6-9].
Aside from medical imaging, robotic systems [9-11], navigation systems [12-14], finite element models [15, 16] and
recent developments in computer graphics and image processing [9], have been proposed in recent years to improve
percutaneous puncture.

Despite all the different technological improvements, PCNL puncture step still remains the most challenging task,
promoting anatomical targeting errors and damage of vital structures. Although this procedure has proven to be safe,
some organs surrounding the renal target might be accidentally perforated. Injuries to the lung, liver, spleen, biliary
system, colon, or small bowel have been reported [17, 18].

To this extent, in clinical routine, the PCNL needle puncture is often performed under image guidance [19]. Although
medical imaging can provide further information for diagnostic and per-operative planning, it presents some drawbacks.
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Real-time images from computed tomography (CT) and fluoroscopy C-arm lead to a significant increase in radiation
exposure both to patient and surgeon. On its turn, ultrasounds (US) and magnetic resonance (MR) have proven to be an
advantageous imaging option by providing radiation-free real-time imaging. However, their targeting ability for small
calculi is limited [7, 20].

In order to reduce imaging dependences, the authors have already tested and evaluated, in animal model, a new real-time
electromagnetic tracking (EMT) navigation system for in vivo kidney puncture. Within this previous work, the surgeon
performed the percutaneous puncture through a virtual trajectory calculated and displayed in a 3D software [14].

Although capable of directing, correctly and accurately, the puncture path, the previously developed system is unable to
guarantee the safeness along the PTT in terms of organs perforation. In order to overcome this drawback, one now
presents an evolution of the previous system, resorting to pre-operative US imaging to detect organs in between the PPT
and alert for its presence. This system allows the surgeon to: 1) visualize a PPT between the skin puncture site and an
anatomical target using an intuitive visual interface; 2) 4D ultrasound imaging around a volume of interest centered in
the PPT; and 3) access the security of the PPT.

2. METHODS

2.1 Framework

A Qt/C++ based framework — Renal Puncture (Figure 2) - was developed specially for this work. ITK (Segmentation &
Registration Toolkit) libraries were used to aid 4D volume reconstruction and image segmentation. VTK (The
Visualization Toolkit) libraries were used only for 3D rendering.

The volume was reconstructed using B-mode ultrasound images acquired using a 3.3 MHz convex probe from Vivid 3
Ultrasound System (GE, Medical Systems). All processing was performed using an Intel Core i7-3770K @ 3.50GHz,
NVIDIA GeForce GTX 670 and 16 GB Ram.

The commercially available Aurora electromagnetic tracking system (Northern Digital Inc., Waterloo, Canada) was used
to track the catheter tip, needle tip and ultrasound probe during in vitro experiments. The navigation system was
composed by (1) one planar low-intensity and varying electromagnetic field generator that establishes a tracking volume;
(2) three Aurora sensor interfaces that decrease the possibility of electromagnetic interferences in the testing room; and
(3) one 18G/180 mm Chiba needle with 5 degrees of freedom and two ureteral catheter with 1.1 mm diameter and 2 m
length with 6 degrees of freedom.

An abdominal ultrasound phantom was used to test this new methodology. It includes all abdominal organs (spleen,
liver, colon and the urinary collecting system) that might be injured during renal access.
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Figure 1. Overview of the 4D freehand ultrasound for PPT security validation: (left) ultrasound scan along the PPT using a
tracked probe; (center) percutaneous puncture using a catheter and needle that integrate electromagnetic sensors; (right)
possible surgical setup comprising the Aurora field generator, tracking volume around the patient abdominal area,
ultrasound machine and interface monitor for percutaneous guidance.
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2.2 System overview
A system overview is shown in Figure 1.

At the first surgical step, a catheter will be inserted and guided, through an ureterorenoscope with a camera and guided
tip, trans-urethrally towards the renal calix. This catheter will have a position and orientation electromagnetic sensor on
its tip that will function as a real-time anatomic target locator. At the next step, the puncture one, it will be used a needle
that also integrates a similar sensor. From the data provided by both sensors, it will be possible to define the PPT from
where the needle will be inserted [14, 21].

This PPT will be presented to the surgeon using a graphical user interface. Here, the surgeon will be guided in order to
create an ultrasound reconstructed volume using a tracked probe in order to evaluate the risk of possible perforation of
vital anatomic structures. When, the PPT is checked and approved by the surgeon, the puncture procedure will be
conducted without further imaging modalities. The puncture success is assured using the ureterorenoscope video camera.

2.3 4D ultrasound reconstruction

To provide PPT intraoperative imaging during percutaneous nephrolithotomy, the presented framework can reconstruct
3D and 4D ultrasound by freehand scanning using a tracked convex ultrasound probe.

2D US images, acquired with a tracked probe, were used to reconstruct a 4D ultrasound around the PPT. This volume
was used to ascertain that any vital structure is in between both sensors and might compromise the surgical success.

Before testing, an Aurora catheter sensor was mounted on the ultrasound probe and calibrated using Strdx software [22].
It integrates automatic spatial and temporal calibration systems for 3D ultrasound. Firstly, a fabricated non-ferromagnetic
mold rigidly attaches the sensor on the body of the ultrasound probe. Then, a 30x30x15 cm box filled with distilled water
at room temperature and a flat and roughen bottom (made of cork), was used to improve the reflection of ultrasound at
oblique angles. The calibration process was performed by moving the probe while imaging the bottom of the water bath
by: (1) moving the probe vertically up and down without changing its orientation; (2) rotating the probe in each 3D
coordinate axis (each axis individually and then all together) while keeping the scan plane and the phantom plane
perpendicular; (3) translate the probe while performing motions (1) and (2). Simultaneously, Stradx track the bottom of
the water bath in the image with a line detector algorithm [22]. By matching the image motion and the Aurora tracking
readings, it was possible to estimate a temporal calibration the position and image streams.

After de calibration, real-time ultrasound reconstruction was achieved using different synchronized and parallel threads:

(1) Thread one buffers and receives ultrasound frames: each video frame was resampled by a factor of 2 and allocated
onto an image stack along with a timestamp tv that describes when the video was acquired. The video was captured at
full rate of 30 frames/s;

(2) Thread two receives and processes tracking data: the Aurora tracking information, received via serial port, was
converted to a 4 by 4 matrix and pre-allocated along with a timestamp tA that describes when the tracking data was
acquired;

(3) Thread three triggers a signal that specifies the starting of a new cardiac cycle for reconstruction gating. Since kidney
and surround tissues may move during the reconstruction process, they must be inserted into the partially 3D volume at
similar points of the cardiac cycle. To this extent, the user must specified an expected heart rate for the reconstruction
procedure by averaging the heart rates recorded over a user-specified time period;

(4) Thread four updates the partially reconstructed volume, under GPU processing, by inserting the most recent US
frame. Every time that Thread three triggers a signal, the period of the previous cycle is used to predict the timestamps
for the upcoming cycle. The ultrasound frames and tracking matrices, with timestamps tv and tA, that are closest to these
predicted values are inserted into the correct output volume using the associated tracking transforms;

(5) Thread five processes volume rendering of the output volume using color and opacity transfer functions (Figure 1-C);

(6) Thread six displays the partially reconstructed 3D ultrasound volume into the main application;
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(7) Thread seven assures that there are no gaps in the reconstructed volume by triggering a function every 200 ms that
searches all empty voxels and modifies its voxel intensity using a tri-linear interpolation method of the closest non-
empty voxels.

2.4 PPT security assessment

Thread eight assured multi-organ segmentation of volume structures and its intersection with the PPT. For segmentation,
the image histogram was smoothed by solving a non-linear diffusion equation [23]. The Tukey’s biweight as edge-
stopping diffusivity function (1):

1/2[1- (/o) ],

Qﬂﬁa

ﬂﬁa

g(x,0)= (1)

was used to create a more accurate histogram underlying different groups of objects. By estimating the histogram local
maximums (specified histogram region that is concave down) it was possible to define multi-threshold levels that create
8-connected labels of different structures.

The kidney label was automatically identified by choosing the most cylindrical and largest structure in a 5 cm radius
(approximately the kidney size) around the Aurora catheter sensor (real-time anatomic target locator). Then, the points
along the PPT were intersected with image labelled regions. When the user starts the puncture procedure, the framework
will assume that all structures that intersects the PPT are not vital and can be perforated. From there, if any anatomical
structure changes along the PPT, the framework will advise the user by rendering a text and sound alert. Here, the
surgeon must accept or reject this new structure as a possible vital structure and continues the puncture procedure.

3. RESULTS

The calibration process was performed only one time before US reconstruction and took about 6 minutes. Any further
calibration was not necessary as long as the Aurora sensor does not change its position relative to ultrasound probe body.
A slight latency of around 16 ms between the tracking system and ultrasound video was accurately measured with Stradx
software [24] and accurately compensated during reconstruction.
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Figure 2. (up) Overview of the Renal puncture Framework; (down) Segmentation results with random PPT (yellow).
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Thirty-seven US phantom volumes were reconstructed with different probe orientations. Real-time US volume
reconstruction and rendering with more than 25 frames/s was only possible when only three orthogonal slice views
where rendered to the user. When using the whole reconstructed volume, one achieved 15 frames/s for volume with size
7x7x15 em3 and 8 frames/s for 10x10x15 cm3. When labelling the different image structures we obtained 3 frames/s.

The segmentation process were able to identify if any anatomical structure was in between the PPT with an efficiency of
98.89+4.28% along the PPT. The median time for ultrasound checking was 3.5 min (range 2-6 min) while the puncture
step was performed in 25 seconds (range 15-54s) for doctors.

4. DISCUSSION

Although 4D ultrasound visualization has been integrated into commercial ultrasound systems [25], the inaccessibility of
raw image data makes these system unsuitable for personalized guided surgery, advanced visualization and virtual
navigation. A significant advantage of the Renal Puncture framework over literature is that both 3D and 4D ultrasound
can be generated in real-time and, at the same time, different volume structures are segmented and evaluated if they
intersect the PPT. The proposed framework creates a virtual and intuitive platform that can be used to identify and
validate a PPT to safely and accurately perform the puncture during percutaneous nephrolithotomy.

Comparing to state of the art results, the need for image registration with pre-operative imaging was eliminated by using
ultrasound checking and a miniaturized sensor that can be inserted near the anatomical target [13]. The uncertainty of
possible anatomical structures in between puncture path [14, 21] was reduced by performing a 4D ultrasound before the
puncture step around the puncture site. Although, compared with the work described by the authors in [14], the time for
puncture planning increases with a median of 3.5 minutes, the uncertainty of some anatomical structure in between the
PPT is eliminated.

Since medical imaging assistance to puncture commonly requires approximately 10 min [26-29], the puncture step itself
remains faster than any literature approach, without any radiation exposure.

Although some motion artifacts where presented in the 4D ultrasound reconstruction, they did not interfere with the
puncture path security assessment. Further wok needs to be conducted in particular considering in vivo testing. On the
other hand, since minimally invasive surgical procedures comprising percutaneous puncture of the kidney are highly
dependent on the accuracy that the needle reaches the desired target, further work may also include an automatic and real
time kidney segmentation.

5. CONCLUSION

This paper describes a new intuitive framework for security assessment of PPT for renal access guided using EMT
sensors. This new approach can guarantee the safeness of the percutaneous puncture trajectory in terms of organs
perforation for the system already proposed by the authors [14].

The synergy of ultrasound checking and tracking modalities will allow puncture guidance through the optimal path
towards the precise calculus location. This framework may increase surgeon’s confidence and reduce possible
complications such as organ perforation. In addition, it has the potential to make percutaneous renal access free of
ionizing radiation for both patient and surgeon.
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