
A Repair Operator for Global Solutions of 
 

Vitor BARBOSA 
a,1, Ana RESPÍCIO b and Filipe ALVELOS 

c 
a

 Escola Superior de Ciências Empresariais, Instituto Politécnico de Setúbal 
b

 Centro de Matemática, Aplicações Fundamentais e Investigação Operacional, 
Faculdade de Ciências, Universidade de Lisboa 

c Departamento de Produção e Sistemas, Universidade do Minho 

Abstract. This paper proposes a new repair operator to be used inside algorithms 
based on the concept of Search by Column Generation (SearchCol). This concept 
has revealed to be suitable to address problems represented by models that 
decompose the problem into several subproblems and in which a global solution 
can be obtained by combining solutions of the subproblems. SearchCol starts by 
solving the linear relaxation of the integer programming decomposition model 
using column generation. Metaheuristics are then used to search for the best global 
integer solution by combining subproblems’ solutions. The new repair operator 

intents to fix the invalid solutions but ends up has a generator of new subproblems’ 
solutions and allows to change the search space as the metaheuristic explores the 
search space. The success of the repair operator is verified in a SearchCol based 
evolutionary algorithm to solve a Bus Driver Rostering Problem. 

Keywords. Search, Column generation, metaheuristics, repair operator.  

1. Introduction 

The theoretical concept of Search by Column Generation was presented as SearchCol 
in [1]. This framework proposes a new concept of using metaheuristic search combined 
with column generation [2], to obtain approximate solutions of decomposable 
optimization problems, as occurs when the Dantzig-Wolfe decomposition [3] is applied 
over a compact model. Further developments and a more detailed description of the 
framework concept and its implementation were included in [4]. 

SearchCol algorithms can be used to address problems which are very hard to 
solve using exact methods, such as branch-and-bound or branch-and-price, used to 
solve the compact or the decomposition model of a problem, respectively. For large 
problems, branch-and-bound can consume all the computational resources, particularly 
the memory, while the time needed by branch-and-price to explore all nodes can be too 
large in some problems. 

The purpose of the framework SearchCol is to achieve good quality integer 
solutions for an overall problem defined by a decomposition model using a reduced 
amount of time when compared with the time required by branch-and-price. An integer 
global solution for a decomposable problem is made with a solution from each of its 
subproblems. Several metaheuristics based on the evolution of a single solution [5] are 

                                                           
1 Corresponding Author; E-mail: vitor.barbosa@esce.ips.pt. 

Decomposable Problems

STAIRS 2016
D. Pearce and H.S. Pinto (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-682-8-143

143



available in the framework to search for the best combination of subproblems’ 

solutions found in the search space. The first population based metaheuristic, an 
evolutionary algorithm [6], based on the SearchCol concept was proposed in [7] to 
address the Bus Drivers Rostering Problem (BDRP) [8; 9]. SearchCol was already used 
to address other problems and with distinct metaheuristics. In [10] the network load 
balancing problem is addressed and the metaheuristic used is the Greedy Randomized 
Adaptive Search Procedure (GRASP) with path relinking. The Forest Harvest 
Scheduling Problem [11], the Two- and Three- Stage Bin Packing Problems in [12] and 
the Machine Scheduling Problem with Job Splitting in [13]. 

Independently of the problem and the metaheuristic used in the search for the best 
integer solution for the overall problem, it may occur that the subproblems’ solutions 

available do not allow to build a global solution of good quality.  
In this paper we propose a new repair operator that is integrated in the SearchCol 

framework to fix invalid global solutions (not respecting the global constraints). This 
operator allows to change the search space from inside any metaheuristic. The primary 
objective is to repair invalid global solutions but, in the context of the SearchCol 
algorithms and how the solutions are represented, if a subproblem’s solution is changed, 
the new solution is stored as if it was obtained during the column generation.  

The generation of a new solution for a given subproblem, due to the application of 
the repair operator, corresponds to an expansion of the search space, as if a new 
iteration of the column generation is run but with the advantage that it occurs during 
the metaheuristic search. 

In the next section, an overview of the concept of search for decomposable 
problems is described and the evolutionary algorithm is presented. In section 3 the 
proposed repair operator is detailed. Section 4 presents results of computational tests to 
evaluate the impact of the new operator in the solutions of a BDRP decomposition 
problem. The paper ends with conclusions. 

2. Evolutionary Algorithm for decomposable problems 

Let P, the overall problem integer programming model defined by equations (1) to (4), 
represent an optimization problem that was decomposed into a set of similar 
subproblems: 

   (1) 

  (2) 

  (3) 

 (4) 

Where  is the set of subproblems defined by the decomposition and  is the set 
of solutions from subproblem . The decision variable  is used to decide if the 
solution represented by column with index  for subproblem k is selected to enter the 
global solution. Constraints (2) state that each subproblem has a solution. Constraints 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems144



(3) are linking constraints including variables from different subproblems. Each 
variable  is associated with a subproblem’s solution with coefficient  in the 
objective function (1), a coefficient 1 in the constraint with index  from the group of 
constraints (2) and coefficient  in the constraint with index  from the group of 
constraints (3). The value of is the sum of the values of subproblem variables in 
solution  from subproblem  that are present in linking constraint with index . 

The column generation method [14] is used to solve problems modelled with 
decomposition models. The method starts with a restricted master problem (RMP) 
representing the linear relaxation of the problem (P) (without requiring the integrality 
of the decision variables) and containing a limited set of feasible columns. The method 
is iterative and in each iteration subproblems are solved to search for new columns 
attractive to add in the RMP to improve its solution.  Whenever these columns are 
found, they are added to the RPM and the RPM is solved. This cycle continues until no 
new columns are generated.  The optimal linear solution of the RMP is also the linear 
solution of P. The RMP solution may be fractional, but the solutions obtained from the 
subproblems are integer and correspond to solutions for a part of the original problem. 

Considering the BDRP as an example, the objective of the problem is to define the 
roster with lower cost assigning all the duties to the drivers and considering all the 
labour rules in the definition of each driver’ work-schedule. In the decomposition 
model (as presented in [7]) each subproblem contains the constraints and variables 
considered in the definition of a driver’ work-schedule and the problem (P) defines that 
the combination of a work-schedule for each driver (which are the subproblems’ 

solutions, each one associated with one variable  ) assure that all duties are assigned 
to a driver (with constraints (3)) and that each driver has a work-schedule defined (with 
constraints (2)). The RMP is initialized with empty work-schedules and then the 
column generation is used solving the subproblems to obtain additional work-schedules 
to include in the RMP until the optimal linear solution is achieved. 

The SearchCol suggests that problem (P) can be viewed as the combinatorial 
problem to select a single subproblem’s solution from the set  to each subproblem, as 
defined by constraints (2), and where the linking constraints (3) are respected, 
minimizing the sum of costs ( ) associated to the subproblems solutions. 

A global solution to problem (P) can then be defined as 
, where , , is the index of the solution  

selected from set  to be the solution of subproblem . 
The SearchCol core idea is to solve any decomposition model using column 

generation and then, starting from a global solution  use metaheuristics to search for 
the best solution  by exploring the search space defined by all the subproblems’ 
solutions in . For the BDRP, a global solution is a roster and is defined by a 
selection of a work-schedule for each driver. This selection for a particular driver 
corresponds to solve the subproblem associated to that driver. 

If a global solution  is built taking randomly a solution for each subproblem, it is 
possible that constraints (3) are not respected. Each solution is evaluated by a pair of 
values: the infeasibility and the feasibility values. The first represents a measure of the 
amount of constraints (3) not respected by the solution . The feasibility value 
represents the cost of the solution, as defined in the objective function (1). A solution 
with a lower infeasibility value is always better. The feasibility value can only be 
compared in the feasible solutions (infeasibility equal to zero). 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems 145



A new evolutionary algorithm (EA) [6] adopting the SearchCol concept was 
proposed in [7]. The resemblance between a global solution for a decomposition model 
and a chromosome, following the concept of representation of an individual/solution in 
an EA is evident, as show Figure 1. Each gene contains the subproblem’s solution 
identifier and the gene locus define to which subproblem the solution belongs. The 
evaluation of the global solutions is also kept to compare individuals, following the 
concept of fitness function in EAs. For the BDRP, a chromosome represents a roster 
and each gene the work-schedule of the driver with index equal to the gene locus. 

 
C1 C7 C23 … C10 

SP 1 SP 2 SP 3 … SP  

Figure 1. Global solution representation as an EA chromosome. 

The initial population of the proposed EA is configured in runtime by defining the 
number of individuals created by each of the pre-existing global solution generators 
(included in the framework that implements the SearchCol concept). The algorithm 
uses the tournament selection by comparing pair of individuals considering its 
infeasibility and feasibility values, noting that the infeasibility is the first value 
compared since the objective is to achieve feasible solutions. The feasibility value is 
only used to compare individuals with the same infeasibility value. Currently, 
tournaments consider pairs of individuals, but the selection pressure can be increased 
by adding more individuals in each tournament [15]. The variation operators 
implemented are the standard crossover (optionally with one or two crossover points) 
and the mutation operator. The standard crossover [16] is used because the locus of 
each gene cannot change, since each subproblem’s solution is only valid for the 
corresponding subproblem. The mutation operator allows the replacement of the 
content of the -th position gene by another subproblem’s solution from the set of 
solutions for the same subproblem . 

The use of an elite population [17] is also optional in the EA. Its size and the 
proportion of individuals selected from that population to the mating population are 
defined by parameters read in runtime. Another option available in the algorithm is the 
use of a local search [18; 19] procedure to explore the neighbors of the selected 
individual. The neighborhood of an individual is the set of solutions with a single 
difference in one and/or two subproblem’s solutions. The local search can explore all 
the neighbors or stop in the first improvement found. 

The results obtained by the initial implementation of the EA in [7] show that the 
solutions achieved by the EA in the search space composed by the added column 
during the column generation have a large gap to the best known integer solution 
values. In [20], the EA, already with the elite population and local search options, is 
compared with two single solution metaheuristics (variables neighborhood search [21] 
and simulated annealing [22]) and the EA is the metaheuristic obtaining the best 
solution to the higher number of test instances, showing that the gap observed in the 
solutions is independent of the metaheuristic used in the search. 
  

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems146



3. Repair Operator 

Independently of the metaheuristic used in a SearchCol based algorithm, the 
metaheuristic searches for the best combination of solutions stored in the pools of 
subproblems’ solutions ( ) during the column generation. If a new 
subproblem’s solution may improve the global solution but that solution was not 
generated yet, the metaheuristic cannot provide that improvement in the global solution. 

A random global solution for the BDRP, independently of the solution cost, needs 
to assign all the duties once and only once in order be considered valid. Thus, 
infeasibility occurs in case of under-assignment: any duties are unassigned; or in case 
of over-assignment: whenever a duty is assigned more than once (the same duty is 
assigned to multiple drivers). 

To address the infeasibility problem observed, neglecting the subproblem 
constraints, a possible strategy could be the replacement of a schedule by removing the 
repeated duties and inserting the missing ones, as illustrated in Figure 2. In this 
example, the old work-schedule for driver 3 (subproblem’s solution), highlighted in 
grey, and that includes two repeated assignments (duties 1.3 and 3.2), is replaced by a 
new one where the duties assigned to that driver on days 1 and 3 are changed to the 
ones that were not assigned (duties 1.1 and 3.1), resulting in a global solution without 
under and over-assignment. 

Even if the described procedure is simple, it is subjected to some restrictions, 
concretely: 

� The described procedure illustrates the repair of a global solution for the 
BDRP, however the EA must be independent of the problem type; 

� Existing subproblems’ solutions cannot be changed, since they were used to 
generate a column in the RMP and they can be part of other global solutions. 
A change in a work-schedule (subproblem’s solution) can result in an update 
on the cost and in the assigned duties (as in Figure 2), if it occurs, all the 
global solutions containing that subproblem’s solution will have to be re-
evaluated. 

� The subproblem’s constraints must be considered in the assignment of an 
additional duty in a driver’ work-schedule. 

Considering the enumerated restrictions on the implementation of a repair operator 
for a global solution and using the knowledge about the SearchCol framework 
implementation, some changes were made in the framework in order to include the 
repair and allow its use inside the metaheuristic. 

Since the repair of a global solution of a particular problem must be independent of 
the metaheuristic (in this case, the EA), a new abstract method was included in the 
class that implements the decomposition models. With this new method, each particular 
decomposition can implement its own repair procedures considering the starting 
solution, all the knowledge about the problem (particularly the constraints), and access 
the already existing solutions in the pools. 

Independently of the problem type, and considering the restriction about the 
changes on the existing subproblems’ solutions, another change was implemented: if 

one or more subproblem’s solutions are changed, the resulting solution is saved in the 
pool of solutions of the corresponding subproblem. The method used to save a solution 
checks if the solution is already in the pool of solutions and, if so, it uses the existing 
one, otherwise the new solution is saved and a new column is added to the RMP as 
occur during the CG stage. 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems 147



 Day#.Duty#  
 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2 3.3 Cost 

Driver 1 0 0 1 0 0 1 0 0 1 120 
 +  

Driver 2 0 1 0 0 1 0 0 1 0 150 
 +  

Driver 3 0 0 1 1 0 0 0 1 0 100 
     +      

Driver 3 (new) 1 0 0 1 0 0 1 0 0 110 
 =  

Assignments 1 1 1 1 1 1 1 1 1 380 

Figure 2. Repair procedure example 

Figure 3 describes how the new repair operator can be included in any 
metaheuristic. The metaheuristic only needs to define the criteria to identify if a global 
solution should be repaired and then apply the repair procedure in the solution to repair. 
It is easily observed that all the repairing work is done in the decomposition 
implementation, here represented by the activities Clean and Complete to symbolize 
the removal of the over-assigned duties and the try to assign the remaining ones, 
respectively. After the repairing, the new subproblem’s solutions are also saved inside 
the decomposition implementation, making it invisible to the outside if new columns 
were generated or not. From the context of the metaheuristic, it only asks the 
decomposition to repair a global solution and receives a new one repaired, which can 
be included in the population since all the components (subproblem’s solutions) are 
valid and it was already evaluated to update the feasibility and infeasibility values. If 
new subproblem solutions were created during the process, they are stored in the pools 
of solutions and the corresponding columns are added to the RMP. 

 
Figure 3. Call the repair procedure from the metaheuristic 

For the BDRP problem, the Clean stage of the repair procedure consists in 
removing the repeated assignments, keeping the one with lower cost, if they are 
distinct; otherwise, the first assignment of each duty is kept and the subsequent are 
removed. In the Complete stage, if there are any duties not assigned, for each of them, 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems148



its assignment is tested in all available drivers. If a repeated duty was removed from a 
driver work-schedule in the same day to which the duty we need to assign belongs, it 
may be inserted if all the rules of the work-schedule design are verified. 

As previously stated, the repair operator is included inside the decomposition 
model implementation. This allows each problem to use specific knowledge to 
implement tailored procedures in the Clean and Complete stages adapted to the 
problem, considering specific linking constraints sign and how the infeasibility value is 
obtained. 

4. Computational tests 

To evaluate the effect of the proposed repair operator, computational tests were made 
using a set of ten instances of BDRP problem, designated as P80. The P80 instances 
have 36 drivers available (36 possible subproblems), and 467 duties to assign, in 
average, for a rostering period of 28 days. Instances details are presented in [9]. 

The search space was defined by solving the decomposition model using the 
standard column generation, using only an exact solver to obtain subproblems’ 

solutions. The number of subproblems is reduced to the number of drivers in a global 
solution obtained by a greedy heuristic. The number of used subproblems in each 
instance is presented in Table 1. 

Table 1. Number of subproblems by instance 

Instance P80_1 P80_2 P80_3 P80_4 P80_5 P80_6 P80_7 P80_8 P80_9 P80_10 
# subproblems 25 20 26 26 26 23 26 32 25 33 

The number of columns generated by CG for each instance is presented in Table 2. 
The number of subproblems’ solutions is significantly large to allow for a complete 
search in the solutions space. Considering the average number of solutions from each 
subproblem and the number of subproblems used, as an example, for the instance 
P80_1, the number of combinations to evaluate would be 1732^25.  

Table 2. Number of subproblem’s solutions to explore 

Instance P80_1 P80_2 P80_3 P80_4 P80_5 P80_6 P80_7 P80_8 P80_9 P80_10 
# subproblem 

solutions 43299 33758 37168 29570 36616 26044 34318 38899 45602 15579 

#solution/ 
subproblem 1732 1688 1430 1137 1408 1132 1320 1216 1824 472 

To evaluate the repair operator inside the EA, the EA was applied in P80 with and 
without the repair operator. The configuration of the EA is presented in Table 3. The 
only change in both configurations is the use of the repair operator. 

Table 4 shows the evolution of the infeasibility value obtained in each instance 
using the EA configuration without the repair operator. Observing the data, in the 
initial population, the best solution has in average 54 duties not assigned (under-
assignment) and 102 assigned more than once (over-assignment). The EA is able to 
reduce the number of unassigned duties to less than half (57% reduction), but in 
average 19 duties still not assigned at the end of the search. Looking at the over-
assignment, the performance is worse since the average reduction on the number of 
duties assigned more than once is 34%, resulting in 62 duties over-assigned in average 
at the end of the search. The inability of the metaheuristics to replace the over-assigned 
duties by the missing ones was the primary motivation to develop the repair operator. 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems 149



Table 3. Evolutionary Algorithm configuration 

Initial Population 

1 global solution selecting the subproblem´ solutions with the higher 
value in the optimal solution of the CG; 
1 global solution selecting the subproblem´ solution that was optimal last 
time the subproblem was solved; 
(7xNumber of Subproblems) global solutions selecting randomly with the 
probability of one subproblem´ solution being chosen given by its weight 
in the CG optimal solution; 
(3xNumber of Subproblems) global solutions selecting randomly each 
subproblem´ solution. 

Selection Binary tournament. 
Variation 
Operators 

One point Crossover over 90% of individuals; 
Mutation operator over 20% of offspring. 

Elite Population Population with the 20-th best solutions; 
5% of the matting pool parents are selected from here. 

Local Search 

Local Search used to explore the neighborhood of a random individual 
defined by the solutions with a single change (1 distinct subproblem 
solution), stopping in the first improvement found. 
The local search is used in a random individual each 10 iterations and in 
the best solution in the last iterations (when approaching the number of 
iterations without improvement limit). 

Stopping Criteria 300 iterations without improvement in the best solution. 

Repair Operator 

Used every 100 iterations on the individuals with infeasibility value 
greater than zero (duties over/under assigned). 
The first use occurs only after half of the iterations defined in the 
stopping criteria were run. 

Table 5 shows the evolution of the infeasibility value obtained in each instance 
using the EA configuration with the repair operator. The table shows that the best 
solutions found in the initial population are slightly worse, with 60 duties not assigned 
in average and 113 over-assigned. However, the repair operator is totally effective in 
the removal of the over-assigned duties and also in the re-assignment of the missing 
ones, as the final results are zero duties not assigned and zero assigned more than once 
for all the instances. 

Table 4. Infeasibility evolution using the EA configuration without repair  

 Under-assignment Over-assignment 
Instance Iterations Time (s) Begin End Reduction Begin End Reduction 

P80_1 562 34,3 87 7 -92% 152 73 -52% 
P80_2 432 15,8 78 11 -86% 148 61 -59% 
P80_3 1032 56,2 77 21 -73% 101 53 -48% 
P80_4 982 39,2 60 16 -73% 99 39 -61% 
P80_5 562 39,2 52 6 -88% 123 66 -46% 
P80_6 962 33,3 7 5 -29% 56 48 -14% 
P80_7 982 82,5 71 63 -11% 90 108 20% 
P80_8 679 61,5 44 0 -100% 92 30 -67% 
P80_9 682 75,7 9 8 -11% 43 41 -5% 

P80_10 1022 102,6 54 49 -9% 113 105 -7% 
Average 789,7 54,0 53,9 18,6 -57% 101,7 62,4 -34% 

 
Besides the clear effectiveness on the repair function, the operator extends the 

metaheuristic search. In the configuration without the repair operator, the average 
number of iterations was 790 and in the configuration with the repair operator the 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems150



average number of iterations is 2212, showing that multiple improvements were 
achieved, not only in the infeasibility value but also in the feasibility (cost of the global 
solution). The raise on the number of iterations and the additional computational effort 
of the repair operator results in an average increase of approximately 300% in the EA 
runtime.  

Table 5. Infeasibility evolution using the EA configuration with repair  

 Under-assignment Over-assignment 
Instance Iterations Time (s) Begin End Reduction Begin End Reduction 

P80_1 2002 146,5 83 0 -100% 150 0 -100% 
P80_2 1802 117,8 74 0 -100% 144 0 -100% 
P80_3 2402 90,7 69 0 -100% 113 0 -100% 
P80_4 1202 147,5 61 0 -100% 100 0 -100% 
P80_5 4102 370,0 10 0 -100% 69 0 -100% 
P80_6 1702 69,3 55 0 -100% 117 0 -100% 
P80_7 1702 167,1 67 0 -100% 113 0 -100% 
P80_8 3302 355,0 48 0 -100% 92 0 -100% 
P80_9 2202 110,2 73 0 -100% 115 0 -100% 

P80_10 1702 388,9 59 0 -100% 114 0 -100% 
Average 2212 196,3 59,9 0 -100% 112,7 0 -100% 

 
The value of the feasibility observed at the end of the search in the configuration is 

presented in Table 6. The average value of the final population and the value of the best 
global solution found are presented. The feasibility values of the configuration without 
repair are not presented since the value is distorted by the cost of the duties over-
assigned and do not include the cost of the ones not assigned.  

Considering the final best global solution obtained by the configuration with the 
repair operator, which is an integer and valid solution for the global problem, in Table 
6 the value is compared with the lower bound provided by the column generation. The 
value of the column generation solution is necessarily lower than or equal to the 
optimal integer value. A positive gap does not imply that the integer solution obtained 
is not optimal or of poor quality, it only means that its optimality was not proven. Note 
that if the lower bound is poor, even an optimal solution will have a large gap. 

Even if the EA with the repair operator was effective in achieving a clean roster for 
each of the instances, the gaps observed show that it was unable to achieve the 
minimum number of drivers used in the optimal solution. In this set of tests, the fixed 
cost of using an extra driver was set to 10000 cost units, which corresponds to around 
4% of the gap. The average gap in the ten instances is 7,1%.  

Further developments need to be made in the EA with the repair operator to 
achieve more compact solutions in order to set free the additional driver that is being 
used in the current solutions. 

To validate the effectiveness of the repair operator, ten tests with each of the 
instances were made. The results are presented in Table 7 where, for each instance, the 
values of the best, the average and the standard deviation of the feasibility value are 
presented. The average count of unassigned and over-assigned in the best global 
solution from the initial population of each run, the average number of generations and 
the average search time are also presented. All the runs achieved clean global solutions, 
without unassigned or over-assigned duties. The best feasibility value obtained in the 
10 runs was improved for 5 instances (highlighted in bold), however these solutions are 
not achieved in all runs. 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems 151



Table 6. Feasibility values at the end of the search and LB gap 

 With Repair  
Instance Average Best LB Gap 
P80_1 268283 256369 244284 4,9% 
P80_2 214288 202750 188623 7,5% 
P80_3 281289 269320 255074 5,6% 
P80_4 278925 266473 244182 9,1% 
P80_5 278114 255306 237007 7,7% 
P80_6 247472 236029 223659 5,5% 
P80_7 279103 277466 255216 8,7% 
P80_8 344251 321166 304580 5,4% 
P80_9 268730 256351 236155 8,6% 
P80_10 352719 339975 315494 7,80% 

Table 7 also presents, in the last column, the time used in the search with the local 
search and the repair operator. Obviously, the increment on the number of iterations 
and the additional computational work of the repair operator increases the running 
time, but with an average search time of 210s all the runs were able to return a 
complete global solution. 

Table 7. 10 runs results (EA with repair operator) 

Feasibility Average 

Instance Best Average σ Under- 
assignments 

Over- 
assignments Generations Time (s) 

P80_1 256432,7 262464,1 5157,8 74,9 97,6 2528 166,3 
P80_2 202724,5 202775 47,1 49,3 76,4 1662 59,2 
P80_3 269199,1 274256,1 5266,5 79,8 106,7 1702 100,3 
P80_4 256339,6 261457,4 5188,4 65,9 109 2522 215,4 
P80_5 245204,4 252226,7 4822,0 57,3 111,9 2882 266,6 
P80_6 235848,7 238944,3 4775,7 68,2 90,5 1652 86,4 
P80_7 267487,2 276467,5 3156,4 79,1 101,9 1959 145,6 
P80_8 321023,6 323155,3 4272,9 83,5 134,3 2182 526,8 
P80_9 246372,3 252362 5130,8 63 102,4 1802 149,7 
P80_10 329704,3 333996,3 5117,3 91,7 139 2092 394,3 
Average 202724,5 267810,5 36736,4 71,27 106,97 2098,31 211,1 

To better observe the effect of the repair operator through the search, Figure 4 and 
Figure 5 present the evolution of the infeasibility and feasibility values (vertical axis), 
respectively, for instance P80_2, using a not-to-scale representation of the number of 
iterations (horizontal axis). In Figure 4, the best solution in the initial population has 46 
duties not assigned and 78 over-assigned. The repair operator is used by the first time 
at iteration 300 after which only one duty is not assigned. In the second repair, in 
iteration 400, the best solution achieves the zero infeasibility value. Besides the impact 
on the best solution value, the charts also give evidence of decrease on the population 
average solution value at each application of the repair operator.  

 
Figure 4. Evolution of the infeasibility 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems152



Figure 5 shows the evolution of the cost of the best solution and the average of the 
entire population. A mark identifies the iteration when the zero infeasibility value was 
reached and then very small decreases are obtained until the iteration 1100 when the 
global solution was able to reduce one driver usage (corresponding to 10000 cost 
units). 

 
Figure 5. Evolution of the feasibility 

5. Conclusion 

We proposed and evaluated a new repair operator which was developed to be used by 
an evolutionary algorithm based on the concept of search by column generation. We 
used the evolutionary algorithm in the context of the BDRP to evaluate the proposed 
operator but it can be used by any other metaheuristic available in the SearchCol 
framework or in any other decomposition problem since each decomposition can define 
its own procedures to clean and complete invalid global solutions. 

Computational tests with a set of BDRP instances show the effectiveness of the 
repair operator to fix invalid solutions, which do not fully respect the linking 
constraints, in the search for a global integer solution. The additional runtime results in 
better quality solutions, especially in valid ones considering all the linking constraints. 

The repair procedure can be improved to help the metaheuristic achieving integer 
solutions of higher quality, since the gaps to best known integer solutions show a slack 
for improvement and we can study new strategies to reassign the duties in the 
incomplete solutions. 

The usage of the proposed repair operator inside the evolutionary algorithm 
addressing the BDRP intends to be a proof of concept, from which tailored repair 
operators may result to address distinct problems or/and be shared by all the 
metaheuristics available in the SearchCol framework. 

Acknowledgement 

This work is partially supported by National Funding from FCT - Fundação para a 
Ciência e a Tecnologia, under the project UID/MAT/04561/2013. 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems 153



References 

[1] F. Alvelos, A. de Sousa, and D. Santos, SearchCol: Metaheuristic Search by Column Generation, in: 
Hybrid Metaheuristics, M. Blesa, C. Blum, G. Raidl, A. Roli,  and M. Sampels, eds., Springer Berlin / 
Heidelberg, 2010, pp. 190-205. 

[2] G. Desaulniers, J. Desrosiers, and M.M. Solomon, Column Generation, Springer, New York, 2005. 
[3] G.B. Dantzig and P. Wolfe, Decomposition Principle for Linear Programs, Operations Research 8 

(1960), 101-111. 
[4] F. Alvelos, A. Sousa, and D. Santos, Combining column generation and metaheuristics, in: Hybrid 

metaheuristics, E.-G. Talbi, ed., Springer, 2013, pp. 285-334. 
[5] E.-G. Talbi, Single-Solution Based Metaheuristics, in: Metaheuristics, John Wiley & Sons, Inc., 2009, 

pp. 87-189. 
[6] J.H. Holland, Adaptation in natural and artificial systems, MIT Press, 1992. 
[7] V. Barbosa, A. Respício, and F. Alvelos, A Hybrid Metaheuristic for the Bus Driver Rostering Problem, 

in: ICORES 2013 – 2nd International Conference on Operations Research and Enterprise Systems, B. 
Vitoriano and F. Valente, eds., SCITEPRESS, Barcelona, 2013, pp. 32-42. 

[8] M. Moz, A. Respício, and M. Pato, Bi-objective evolutionary heuristics for bus driver rostering, Public 
Transport 1 (2009), 189-210. 

[9] A. Respício, M. Moz, and M. Vaz Pato, Enhanced genetic algorithms for a bi-objective bus driver 
rostering problem: a computational study, International Transactions in Operational Research 20 
(2013), 443-470. 

[10] D. Santos, A. de Sousa, and F. Alvelos, A hybrid column generation with GRASP and path relinking 
for the network load balancing problem, Computers & Operations Research 40 (2013), 3147-3158. 

[11] I. Martins, F. Alvelos, and M. Constantino, Decompositions and a Matheuristic for a Forest Harvest 
Scheduling Problem, in: Operational Research, J.P. Almeida, J.F. Oliveira,  and A.A. Pinto, eds., 
Springer International Publishing, 2015, pp. 237-260. 

[12] F. Alvelos, E. Silva, and J. de Carvalho, A Hybrid Heuristic Based on Column Generation for Two- and 
Three- Stage Bin Packing Problems, in: Computational Science and Its Applications – ICCSA 2014, B. 
Murgante, S. Misra, A.C. Rocha, C. Torre, J. Rocha, M. Falcão, D. Taniar, B. Apduhan,  and O. 
Gervasi, eds., Springer International Publishing, 2014, pp. 211-226. 

[13] L. Florêncio, C. Pimentel, and F. Alvelos, An Exact and a Hybrid Approach for a Machine Scheduling 
Problem with Job Splitting, in: Operational Research, J.P. Almeida, J.F. Oliveira,  and A.A. Pinto, eds., 
Springer International Publishing, 2015, pp. 191-212. 

[14] M.E. Lübbecke and J. Desrosiers, Selected Topics in Column Generation, Oper. Res. 53 (2005), 1007-
1023. 

[15] B.L. Miller and D.E. Goldberg, Genetic algorithms, tournament selection, and the effects of noise, 
Complex Systems 9 (1995), 193-212. 

[16] M. Mitchell, An introduction to genetic algorithms, MIT Press, 1996. 
[17] J.A. Vasconcelos, J.A. Ramirez, R.H.C. Takahashi, and R.R. Saldanha, Improvements in genetic 

algorithms, Magnetics, IEEE Transactions on 37 (2001), 3414-3417. 
[18] D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis, How easy is local search?, Journal of Computer 

and System Sciences 37 (1988), 79-100. 
[19] E.H.E.H.L. Aarts and J.K. Lenstra, Local Search in Combinatorial Optimization, John Wiley & Sons, 

Inc., 1997. 
[20] V. Barbosa, A. Respício, and F. Alvelos, Comparing Hybrid Metaheuristics for the Bus Driver 

Rostering Problem, in: Intelligent Decision Technologies, R. Neves-Silva, L.C. Jain,  and R.J. Howlett, 
eds., Springer International Publishing, 2015, pp. 43-53. 

[21] N. Mladenović and P. Hansen, Variable neighborhood search, Computers & Operations Research 24 
(1997), 1097-1100. 

[22] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, Optimization by Simulated Annealing, Science 220 
(1983), 671-680. 

 
 

V. Barbosa et al. / A Repair Operator for Global Solutions of Decomposable Problems154


