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——— Abstract

In this paper we present a metagrammar based algorithm for exercise generation in the domain
of context-free grammars. We also propose a probabilistic assessment algorithm based on a new
identity theorem for formal series, a matrix version of the well-known identity theorem from the
theory of analytic functions.
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1 Introduction

This paper deals with (1) exercise generation and (2) assessment in the theory of context-free
grammars. We describe a process of exercise generation based on metagrammars and an
algorithm of assessment allowing one to decide, with high probability, if two context-free
grammars are equivalent or not. It is well-known that the equivalence of two context-free
grammars is an undecidable problem [9]. This is true if we consider the problem as an
algebraic one. In this paper we show that the context-free grammars equivalence problem
admits a solution if considered as a problem of analysis. Such a situation is not new. For
example the fundamental theorem of algebra [7] has no algebraic proves but admits a simple
proof using methods of analysis. The main idea of the assessment algorithm is the following.
We associate to any context-free grammar a system of nonlinear equations. The system
admits a solution in the form of formal series [10]. We substitute the symbols of terminal
alphabet by 2 x 2-matrices and numerically solve the system of nonlinear matrix equations.
This amounts to calculating of the value of the corresponding matrix series. We prove a
new identity theorem. This theorem claims that if the sums of two formal power series
coincide for all possible substitutions of 2 x 2-matrices, then the series are identical. From
the practical point of view this implies that it suffices to check the equality between the
sums of two series for a sufficiently big number of different substitutions, in order to decide
if the grammars are equivalent or not. This leads us to a probabilistic assessment algorithm.
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This algorithm allows one not only to distinguish between two different languages but also
to distinguish between grammars with different ambiguity.

2  Exercise generation and assessment

The exercise generation in the field of formal grammars can be based on several methods:
Completely hand written,
Example based methods (sets of positive and negative examples)
Automata or regular expression-based generation,
Grammar based generation.
As a result one pretends to obtain the statement of the problem, its solution and, if possible,
an assessment method.
In this paper we consider a method based on a generative grammars.

2.1 Metagrammars for exercise generation

We define an attribute grammar which generates an exercise statement and the respective
solution (a grammar). We refer to this attribute grammar as metagrammar [12, 11, 6]. The
right-hand side (rhs) of any production-rule of the metagrammar is composed of two parts:
a traditional grammar rhs to describe a grammar;
a template to build an exercise statement, using subparts returned by the elements of the
first part (attributes).
Schematically, an exercise generating metagrammar production has the following form:

= ("GrammarComponent” | [ NonTerminal )* )

{TemplateWithAttributes}

2.2 Example

Consider the following metagrammar example:

- "S- ””|A; A— ””|Int;”

{Give a context — free unambiguous grammar for thelanguage of the
arithmetic expressionsincluding integers, $2 operator and $4 .}

7S — A7{infix subtraction}

"8 + A7{infix addition} (2)
7S « A”{in fix multiplication}

"SJAinfix division}

7(S){roundbrackets}

” f(S){prefizunary functions}

4+ ___ 1

In the templates $2 and $4 stand for attribute expansions following the Yacc[1], Bash, Perl
syntax.
An example of generated exercise is:

» Example 1. Give a context-free unambiguous grammar for the language of the arithmetic
expressions including integers, infix subtraction operator and round brackets.
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The generated correct grammar for this exercise is the following:

S & S—4A
A

A S (S) (3)
| Int

2.3 Assessment

The comparison of languages may take different flavor depending on the situation:

If we are dealing with regular languages, we can use minimal automata comparison [3, 2J;

It is possible to use a set of tests (positive and negative sentences) to verify if two

grammars generate the same language;

In some situations it is possible to directly compare the grammars.

But these approaches are only applicable to special cases or do not completely solve the
problem. Below we propose a new assessment method. It consists of the following steps:
1. The transformation of a context-free grammar into a system of formal nonlinear equa-

tions [9, 10];

2. The substitution of the terminal alphabet letters by randomly generated 2 x 2-matrices;
3. Creation of a numerical solution of the system of nonlinear matrix equations;

4. Tterating the previous steps k times.

The identity theorem proved in the next section says that if the sums of two formal power
series coincide for all possible substitutions of 2 x 2-matrices, then the series are identical.
Motivated by this result we use a probabilistic approach to compare two grammars. Namely,
if the solutions of the respective systems of matrix equations coincide for & successive random
matrix substitutions, we conclude that the grammars generate the same language.

Note that the use of 2 x 2-matrices is a key point of the approach. The multiplication
of matrices is not commutative, and this fact allows one to distinguish between two words
composed of the same terminal symbols collocated in different order. Obviously the use of
numbers (instead of matrices) would not solve this problem.

3 Context-free grammars, formal power series, and nonlinear matrix
equations

Any language can be defined in terms of a formal powers series in associative but noncom-
mutative variables [9, 10]. Let Vr be a terminal alphabet, W (Vr) be the set of words over
Vr, and Z, be the set of nonnegative integers. A map ¢ : W(Vr) — Z, defines a formal
power series

s= Y ¢(P)P (4)

PeW (Vr)

with nonnegative integer coefficients. Let u be a map from Vr to the set R?*2 of 2 x 2-
matrices. By pu(P) we will denote the matrix obtained substituting the letters a; € P by the
matrices u(a;) and calculating the respective matrix product. If the series

s(w =Y. ¢(P)uP) (5)

PewW (Vr)

converges, its sum is a 2 X 2-matrix. (If the series is divergent, we set s(u) = co.) The
assessment of exercises is base on the following identity theorem
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» Theorem 2. Let s1 and sy be two formal power series. If s1(u) = sa(p) for all p: Vp —
R2%2 then s; = sq.

Proof. It suffices to consider the class of matrices

(1)

By induction it is easy to prove the equalities

-5 1) - (0 7). @

=1

where

n n m—1
P:Hui and QZZ(H ui>vm+fu1. (7)
i=1 m=2

= i=1

(It is allowed u; = u;, and v; = v;.) The polynomial P allows one to identify the letters
appearing in the word ajas...a,, while the polynomial @ makes it possible to uniquely
reconstruct the order of the letters. <

» Remark. It suffices to check the equality of the series sums for matrices with a sufficiently
small norm. This will guarantee the convergence of the series.

It is well-known [9, 10] that for any context-free grammar there exists a system of nonlinear
equations allowing one to obtain, by an iterative procedure, the formal power series whose
terms are the words of the respective language. This correspondence between the series and
systems of equations makes it possible to effectively calculate the sums of the series for all
possible substitutions of 2 x 2-matrices.

Let X;, i = 0,m, be the nonterminals of a context-free grammar and let Pj?, i=0,m,
j = 1,1;, be the words appearing on the right-hand sides of the production with the left-hand
side X;. Then the system of formal equations corresponding to the grammar reads

X1 =P +...+ P,

: (8)
Xoy =P +...+ P

Substituting the letters of the terminal alphabet, a; € Pj, by matrices p(a;), we get a system
of nonlinear (matrix) equations. This system, X = F(X), can be solved using an iterative
procedure: X*+1 = F(X*), X° =0, or using the Newton method. The latter is much more
faster. Note that, in view of the Identity Theorem, it suffices to consider only matrices of
the form

- u v

with u,v € [0, 1] and sufficiently small . The convergence of the iterations can be guaranteed
for grammars in Chomsky and Greibach normal forms. If we deal with regular languages,
then system (8) is linear.
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4 Example

Let us go back to the example considered in Sec. 2. Assume that we generate the following
exercise:

» Example 3. Give a context-free unambiguous grammar for the language of the arithmetic
expressions including integers, infix subtraction operator and round brackets.

The generated correct grammar for this problem is:

S —- S-A
| A
A = (5) ©)
| Int
To avoid confusion in notation we set a = —, b = Int, ¢ = (, and d =). Thus the right

solution is given by

S — SaA
| A
A — eSd (10)
| b
The corresponding system of matrix equations reads [9, 10]
S =SaA+ A,
A=cSd+0b. (11)

Let us consider other three possible answers.

Alternative correct solution. The following grammar is different but generates the same

language:
S — AaS
| A
A — ¢Sd (12)
| b
and the corresponding system of matrix equations is
S = AaS+ A,
A=cSd+0b. (13)

Wrong solution. The following grammar does not generate the same language (does not
generate the sentence cbabd):

S — SadA
| A
A — cAd (14)
| b
The corresponding system of matrix equations is
S =SaA+ A,
A=cAd+b. (15)

10:5
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Ambiguous solution. The following grammar generates the same set of sentences but is
ambiguous (the sentence babab possesses more then one derivation):

S — SaS
| A
A — cSd (16)
| b
and the corresponding system of matrix equations is
S =5aS5+ A,
A =cSd+b. (17)

Generating random matrices a, b, ¢, and d with random elements uniformly distributed in
the interval [0,0.1] and solving systems (11), (13), (15), and (17) (the iteration process starts
at S = A = 0) we see that the difference between S components of solutions for systems (11)
and (13) is zero, while for the pair (11) and (15) or (11) and (17) is of the order 1074 +1075.
This allows one to clearly distinguish between the correct solution and the wrong one.

The interval where the elements of the random matrices are generated must be (a)
sufficiently small in order to guarantee the convergence of iterations, (b) big enough to
distinguish between two different languages.

5 Probabilistic assessment

It is clear that to distinguish between the correct solution and a wrong solution it suffices
to find a matrix substitution u(a;), a; € Vr, giving different solutions to systems (8)
corresponding to two different grammars. But how many substitutions are needed to
conclude that two (unambiguous) grammars generate the same language? The answer to this
question can be given in a probabilistic form. Probabilistic approach is not new in program
testing [4] or assessment of math exercises [8] and showed good results.

Consider the following thought statistical experiment. We randomly generate a pair of
grammars with the same terminal alphabet (see Sec. 2) and solve, for an infinite sequence
of matrix substitutions u(a;), a; € Vi, the corresponding systems (8) of matrix equations.
The number of substitutions giving the same result for two systems of equations is a random
variable &. It is natural to assume that ¢ is distributed according with the Poisson law:

Aree—2

Pig =k} = “—,

where )\ is the average number of events. Our simulations show that A < 1. Thus the
probability to have k times equal results for two different languages (recall that we consider
languages with different ambiguity as different languages) is

AFe=A 1

From the practical point of view this implies that if we have the same result for two systems
of equations in, for example, k = 10 successive random matrix substitutions u(a;), a; € Vr,
then the grammars generate the same language.
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6 Application to real size grammars

In the context of exercise generation, the grammars are rather small, because the aim is to
deal with one thing at a time. Typical examples of such grammars have half a dozen of
nonterminal symbols, and a dozen of productions. In this situation we had no problems with
the presented approach.

Comparing two real size grammars, we may fall in situations of non-convergence, or
in situations where it is impossible to distinguish between two different grammars due to
insufficient computer accuracy. In order to test our approach for real size grammars we used
a C-like grammar [5] (44 nonterminals, 104 production rules). We compared this grammar
with an equivalent one and with a slightly modified grammar generating a different language.
Generating random matrices with components in the interval [0,0.01], we could correctly
solve the respective systems of equations and to establish the coincidence of the languages
generated by the equivalent grammars and to distinguish between the correct and the wrong
grammars.

7 Conclusion and future research

In this paper we demonstrated that numerical methods can be an effective tool to compare

context-free grammars.
We presented:

1. An algorithm for exercise generation in the domain of formal languages, namely context-
free grammars. The algorithm makes use of metagrammars;

2. A probabilistic assessment algorithm allowing one to decide, with high probability, if two
context-free grammars are equivalent or not.

The algorithms allow one to automatically generate and assess exercises involving context-free

grammars.
In the future research we plan to address the following issues:

1. Determination of the range of random matrices guaranteeing the convergence of numerical
methods used to solve the systems of nonlinear matrix equations;

2. A profound study of statistical properties of the random variable £ defined in section 5.

Acknowledgments. The authors would like to thank the reviewers for their comments,
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