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Abstract
Software maintainers are often challenged with source code changes to improve software systems,
or eliminate defects, in unfamiliar programs. To undertake these tasks a sufficient understanding
of the system, or at least a small part of it, is required. One of the most time consuming tasks
of this process is locating which parts of the code are responsible for some key functionality or
feature.

This paper introduces Conclave, an environment for software analysis, that enhances pro-
gram comprehension activities. Programmers use natural languages to describe and discuss the
problem domain, programming languages to write source code, and markup languages to have
programs talking with other programs, and so this system has to cope with this heterogeneity
of dialects, and provide tools in all these areas to effectively contribute to the understanding
process. The source code, the problem domain, and the side effects of running the program are
represented in the system using ontologies. A combination of tools (specialized in different kinds
of languages) create mappings between the different domains. Conclave provides facilities for
feature location, code search, and views of the software that ease the process of understanding
the code, devising changes. The underlying feature location technique explores natural language
terms used in programs (e.g. function and variable names); using textual analysis and a collection
of Natural Language Processing techniques, computes synonymous sets of terms. These sets are
used to score relatedness between program elements, and search queries or problem domain con-
cepts, producing sorted ranks of program elements that address the search criteria, or concepts
respectively.
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1 Introduction

Reality shifts, bug fixes, updates or introduction of new features often require source code
changes. These software changes are usually undertaken by software maintainers that may
not be the original writers of the code, or may not be familiar with the code anymore. In
order to carry out these changes, programmers need to first understand the source code [41].
This task is probably the main challenge during software maintenance activities [10]. The
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programmer is able to understand the program when he or she can explain the source code,
and relate the code with the concepts in its problem domain [3].

Software reverse engineering is a process that tries to infer how a program works by
analyzing and inspecting its building blocks and how they interact to achieve their intended
purpose. Many of the techniques used in reverse engineering rely on mappings between
human oriented concepts (described using natural language), and program elements (im-
plemented using programming languages) [33]. These are often used to locate which parts
of the program are responsible for addressing specific domain concepts [3], and are usually
referred in the literature as feature location techniques [11].

Natural languages are used to describe and discuss real world problems, and programming
languages are used to develop computer programs that address these problems. Although,
programming languages have unambiguous grammars and limit the sentences that can be
used to write software, still give some degree of freedom to the programmer to use natural
language terms (e.g. program identifiers, constant strings or comments). These terms can
give clues about which concepts the source code is addressing, and the meaningfulness of
these terms can have a direct impact on future program comprehension tasks [24]. Most
of the programming communities promote the use of best practices and coding standards
that usually include rules and naming conventions that improve the quality of terms used
(e.g. the “Style Guide for Python Code”1). Feature location techniques that exploit such
elements and possible relations between different language domains are typically described
as textual analysis, often combined with static analysis [11].

This paper introduces Conclave2, a system of tools for software analysis. The main
goal of this system is to provide programmers with insight and information about software
packages to enhance program understanding activities and ease software maintenance tasks.
The system provides a set of facilities for searching and a feature location technique, that
measures semantic relatedness between source code elements, and elements supplied by the
maintainer as query searches. Several views provide mappings between source code and
real world concepts, facilitating feature location activities. The underlying feature location
technique uses source code static analysis to extract data from source code (e.g program
identifiers, function definitions). The extracted data is loaded to an ontology that represents
the program. Other ontologies can be added to the system if available (e.g. the problem
domain ontology, dynamic traces information). Using a set of Natural Language Processing
(NLP) techniques and textual analysis, kind-of Probabilistic Synonymous Sets (kPSS) are
computed for every element present in the ontologies, and a scoring function is used to
measure the semantic relatedness3 between them. The main output of this tool is a list of
ranks – sorted by relevance – of program elements that are prone to address some specific
real world domain concept. The system also provides a Domain Specific Language (DSL),
for writing search queries.

The next section introduces the Conclave system, including a brief description about
the major stages of the system workflow. Section 3 describes in more detail some tools
and results that can be produced using the system. Section 4 presents related work, and
introduces some state-of-the-art techniques for feature location. Section 5 describes the
experimental validation held to do a preliminary evaluation of some Conclave tools and

1 Available from: http://www.python.org/dev/peps/pep-0008/ (Last accessed: 29-01-2014).
2 Conclave website: http://conclave.di.uminho.pt (Last accessed: 10-03-2014).
3 In ontologies the term similarity is used to refer how similar two concepts are, and is usually based on
a hierarchy of is-a relations, in the context of this work concepts can be related in many ways, hence
the adoption of the term relatedness.

http://www.python.org/dev/peps/pep-0008/
http://conclave.di.uminho.pt
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Figure 1 Overview of the major stages of the Conclave system workflow.

techniques, including results discussion. Finally, Section 6 presents some final remarks and
trends for future work.

2 Conclave Architecture Overview

The Conclave environment provides a set of tools to perform software analysis. The main
system workflow is divided in three stages: (a) collecting data; (b) processing collected data
and loading ontologies; and, (c) reasoning about data in the ontologies and providing views
of computed information. Figure 1 illustrates this workflow, and the next sections describe
in more detail the different stages. All the tools implemented in the context of this system
are modular (or work as plugins), and some provide web-services, so that they can be used
as standalone applications, or composed together to create more complex applications or
other workflows.

2.1 Collecting Data
This is the first stage of the main workflow; its goal is to collect data from a software
package, and any kind of problem specification if available. It takes as input the complete
package (and other available documents) and produces as output an heterogeneous collection
of resources. The processing tools involved in this stage can use different type of analysis:
static source code analysis (e.g. parsing code to extract identifiers and static call graphs),
dynamic analysis (e.g. execution traces), Natural Language Processing (NLP) approaches
(e.g. processing non-source code content for domain vocabulary), etc.

Any analysis can be used to collect information, and produce a resource. In the context
of this work, some tools were implemented to provide some initial data to the system and
contribute to PC in general, here are some examples:

Conc-clang: is a static analysis tool, based on the clang compiler library [22] for gathering
identifiers and static functions calls information for C/C++ programs;

Conc-antlr: is a static analysis tool, based on the ANTLR parser generator framework
[29], for gathering program identifiers information for Java programs;

SLATE 2014



22 Conclave: Writing Programs to Understand Programs

DMOSS: is a toolkit for software documentation assessment. It produces an attribute
tree representation of a software package, and other software related resources like the
documentation corpus that is used later to create a initial version of the problem ontology.
For more details about this framework refer to [8].

The heterogenous set of tools used during this stage produce a multitude of resources in
distinct formats. In order to take advantage of all these resources, all the information needs
to be conveyed to a common format, more suitable for querying and processing. Ontologies
were adopted as a common target format. Building ontologies from collected data is done
during the second stage, which is discussed in the next section.

2.2 Normalizing Information, Populating Ontologies
The main goal of this stage is to convey the data collected during the previous stage into
the system ontologies. The input of this stage is a collection of resources, and the output
is a set of populated ontologies. Usually three ontologies are populated for each software
package:

Program Ontology: abstract representation of some key program elements (e.g. methods,
functions, variables, classes);

Problem Ontology: concepts and relations in the problem domain;
World 4 Ontology: runtime effects of executing the program (e.g. program run traces).

There are two important details about this stage. The first one is the format and tech-
nology chosen to store the ontologies. A RDF based triple-store technology was adopted
to store the data. This allows for a scalable and efficient method for performing storing
and querying operations, and also allows to export the data in several community accep-
ted ontology formats (e.g. OWL, RDF/XML, Turtle) [19, 21]. Querying facilities are also
readily available; for instance, SPARQL is a querying domain specific language for RDF
triple-stores [30,32].

Although these technologies provide scalable and efficient environments for handling in-
formation, development wise, they are far from the abstraction desired by the applications
level implementation. To overcome this problem the Ontology ToolKit (OTK)4 was de-
veloped, which provides an abstraction layer on top of the RDF technology, to develop
ontology-aware applications. In practice, when applications developers want to perform an
ontology related operation, instead of using triple-store low level primitives, they can use
the abstraction layer. To motivate for the development of this abstract framework, con-
sider the modern Object-Relational Mappers (ORM) in the context of relational databases.
Which provide an abstraction layer and interface for programming languages to handle data
(stored in databases) as objects, allowing the development of applications regardless of the
underlying database technology used [20].

The second important detail is the data semantic shift. Resources tend to produce raw
data, but the data stored in the ontologies conveys a richer semantic. Most resources require
a specific tool to read the resource data, and translate it to information that is ready to
store in the ontology, i.e. follows the semantic defined by the ontology. OTK has also proven
useful to implement this family of tools.

4 Implemented as a set of libraries for the Perl programming language.
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Figure 2 Program ontology sub-set of the class hierarchy.

A simple example to illustrate the previously discussed details follows. Imagine the
Conc-clang tool was used to process a C source code file, included in a software package.
The raw output of this tool is a set of lines that look something like5:

Function , source .c:: add ::6,add ,, source .c,6,8

This line by itself conveys small to none semantic of the data being included in the final
resource. In loose english this line states that: “in the ‘source.c’ file there is a ‘Function’
definition which has a identifier represent by the string ‘add’ that starts in line ‘6’ and ends
in line ‘8’ ”, and this is the kind of semantic that needs to be conveyed to the ontological
representation of the program. The Program Ontology has a class to represent instances of
elements that are functions in the source code, another for identifiers, and the line numbers
are stored as data proprieties6. To illustrate the use of OTK, the following snippet illustrates
a simplified version of the required code to load this information to the Program Ontology.

use OTK;
my $ontology = OTK ->new($pkgid , ’program ’);
$ontology -> add_instance (’add ’, ’Function ’);
$ontology -> add_instance (’add ’, ’Identifier ’);
$ontology -> add_data_prop (’add ’, ’hasLineBegin ’, 6, ’int ’);
$ontology -> add_data_prop (’add ’, ’hasLineEnd ’, 8, ’int ’);
$ontology -> add_obj_prop (’add ’, ’inFile ’, ’source .c ’);

The Program Ontology used is in line with other authors’ proposed descriptions (e.g.
[35,43,44]). This also eases future integration processes with other tools that followed similar
approaches. Figure 2 illustrates a subset of the class hierarchy exported to OWL. Once all
the data is stored in the ontologies, the reasoning layer can be used to relate information
gathered from different elements and domains to build semantic bridges between elements.
More details about this stage are discussed in the next section.

2.3 Reasoning and Views
During this stage more knowledge about the system is built and provided to the system
end-user. The tools in this stage use as input the ontologies built during the previous
stage, and generally fall in one of the two categories, either they: (a) process information to

5 More examples available in the tool website: http://conclave.di.uminho.pt/clang (Last accessed:
27-01-2014).

6 Although a triple-store RDF approach is used to store the actual information, we are using OWL
vocabulary and specification to make clear the aimed semantics for the program representation [2].
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Table 1 Some AbcMidi package characteristics.

Total Files Size (KLOC9) Total Ids. Multi-word Ids.

86 ∼ 33 3437 2142 (62%)

compute new information and knowledge about the system – usually in this case the tool
output is new content added to the ontologies; or (b) information or knowledge suitable for
visualization is built – in this case the output is a view about a particular aspect of the
package system.

Querying the ontology, and adding information if necessary, can easily be done using
the OTK framework. Also note that the tools in this stage are language agnostic, in the
sense that data about the source code (language dependent) has already been gathered, and
OTK tools do not depend anymore on the source language. For example, if a tool processes
identifiers, to get a list of the program identifiers simply query the Program Ontology using
OTK, as follows:

use OTK;
my $ontology = OTK ->new($pkgid , ’program ’);
my @identifiers = $ontology -> get_instances (’Identifier ’);

Conclave-Mapper, one of the tools described in the next section, is an example of
tools that are used during this stage.

3 Conclave Quick Tour

The goal of this section is to illustrate some practical applications of the Conclave system.
Two tools are introduced, and some features are illustrated. The software analyzed and
used in the next examples in this section is AbcMidi (version 2012.12.25)7, a package that
provides a set of tools to convert Abc8 files to the Midi format. Table 1 presents some
characteristics about this software package.

Figure 3 illustrates the Conclave web interface front page, the system is divided in
blocks, and most of the applications use resources produced by other blocks. The tools
presented in this section address two popular problems in the context of program compre-
hension: (1) splitting multi-term program identifiers, and (2) mappings between program
elements and real world concepts.

3.1 Splitting Identifiers: Lingua-IdSplitter
Lingua-IdSplitter (henceforth abbreviated LIdS) is a simple and fast algorithm that
addresses the problem of splitting soft words10 that compose an identifier. It handles abbre-
viations, acronyms, or any type of linguistic short-cuts (for example, use only the first letter
of a word). The algorithm calculates a ranked list of all the possible splits for an identifier,
based on a set of dictionaries, and the top entry in the rank is proposed as the correct split.

7 Available from http://abc.sourceforge.net/abcMIDI/ (Last accessed: 11-03-2014).
8 A text notation to represent music.
9 Thousands Lines of Code.
10Usually refers to words that are combined together to create an identifier without using an explicit
mark between them (e.g., “timesort”) [24].

http://abc.sourceforge.net/abcMIDI/
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Figure 3 Conclave system web interface front page, main applications are divided in blocks.

Besides the actual split, the result includes the set of full terms that compose the identifier,
in case abbreviations were used for example. This technique can use an arbitrary set of
dictionaries, but one of the benefits introduced by this approach is the use of a software
specific dictionary computed automatically from a software package corpus – also computed
automatically and specific to each software package – using a combination of Natural Lan-
guage Processing (NLP) techniques. This dictionary enables the algorithm to correctly
handle identifiers splitting using arbitrary abbreviations or combinations of term specific to
the application domain, not prone to be present in more general programming dictionaries.
this technique can also cope with identifiers that use explicit marks, like underscores (e.g.,
“time_sort”) or the CamelCase notation (e.g., “timeSort”).

This tool is implemented as a Perl library that can be used in other tools and contexts,
and is available for download in the official Perl library archive11. In the context of PC this
is relevant when dealing with program identifiers (e.g., variable names, function names) that
were created using a combination of abbreviation and words. Correctly splitting program
identifiers has a direct impact on future programming comprehension techniques [24]. Even
a simple program can have thousands of identifiers, undertake this task manually would be
unfeasible, so the literature is rich on techniques to address this problem (e.g., [13, 14,23]).

In the Conclave system this tool retrieves the identifiers from the ontology, making it
independent of the programming language used. The resulting split and expansion sets are
loaded to the ontology and related to each identifier, so they are readily available for other
applications to use. Table 2 illustrates the split and term sets computed for some AbcMidi
identifiers, and Figure 4 is a screenshot of Conclave identifiers table for AbcMidi including
the splits and terms sets computed by LIdS.

LIdS algorithm for computing soft splits starts by computing all the possible valid strings
that can be found starting at every position of the identifier. A string is considered valid if
it is successfully found in any of the dictionaries being used. The next step is to build an
automaton, with all the strings found, to calculate all the possible sequence of nodes (paths),
that concatenate to rebuild the original identifier. The set of paths in the automaton defines

11Available from: http://search.cpan.org/dist/Lingua-IdSplitter/ (Last accessed: 18-03-2014).
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Table 2 AbcMidi identifiers examples, and corresponding splits and abbreviation expansions.

Identifier Splits Expands

mrest m | rest { multibar, rest }
timesig time | sig { time, signature }
chan chan { channel }

Figure 4 Conclave interface to view the splits and terms set for all identifiers in the package
being analyzed.

the set of string sequences that are candidates to be the identifier correct split. Next, the
algorithm computes the score for each candidate, creating a rank, where the top element
(the sequence with the higher score) is the resulting split.

The formula to calculate the score for a given sequence is analytically defined as:

score(S) =
(
∏length(S)

i=1 factor(Si)) + length(m)
length(S)2

where the multiplicand of factors (a factor is calculated for each element in the sequence)
plus the length of the longer string in the sequence, is normalized by the squared sequence
length. Each factor is calculated according to the formula:

factor(s, t, w) = length(s)× w

i.e., the length of the string found times the dictionary weight that validated the string.
The final result sets of terms are loaded to the program ontology, and related with the

corresponding identifier. These sets of terms, can then be used to compute relatedness with
words from other domains by other applications, like the one described in the next section.
More details about this technique in [7].

3.2 Creating Mappings: Conclave-Mapper
Conclave-Mapper is an application that relies on data computed by other tools (see
Sec. 2.1 and 2.2), to create relations between elements of any of the ontologies available
for a given package. The input for this application is a set of ontologies, and either a
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search query, or a mapping query; and the output is a sorted rank of element relations, or a
mapping of element relations respectively. The Program Ontology represents the elements
of the program, a software maintainer can ask the application to compute the relations
between elements in the program and either a set of keywords provided in a search query,
or elements in other ontologies (e.g. Problem Ontology) using a mapping query. In the first
case, the result is a sorted rank of the program elements that are related with the keywords
provided in the search query, and in the latter a matrix of relatedness score between the
elements selected from both ontologies. Both approaches can be used to find which parts of
the code are responsible for implementing a domain concept – feature location.

A rank is defined as a collection of entries, where each entry contains the semantic
relatedness score, between the element and the search query. An element represents an
instance in any ontology (if elements of the Program Ontology are being used all other data
is also available: source file, begin and end line, identifier, etc.), so elements in different
ontologies can be related. A map is defined as a matrix, with an element for each row
and column; each cell in the matrix (besides its position information) contains the semantic
relatedness measure score for the corresponding elements.

The application implements two main functions to compute each one of the available
output types. The locate function creates a rank and has the following signature:

locate :: Query → Rank

This function, given a query, computes a rank, by iterating over all the elements being ana-
lyzed (defined by the search query), and for each element computing a semantic relatedness
score, and adding it to the rank as a new entry. The element set being searched and the
scoring function are defined by the search query. The mapping function creates a map and
has the following signature:

mapping :: Query → Query → ScoreFunction → Map

This function, given two queries, and a scoring function, calculates a matrix of elements
where each cell includes the relatedness score between the corresponding row and column
element. This provides a matrix of relations between all selected (program, application
domain, etc.) elements, that can be sorted by relevance. Figure 5 illustrates a possible view
of these mappings, highlighting the best relevance ranking between the application domain
and functions.

The Query type used before describes a query supplied by the user (a pre-defined set of
queries is also available via the system interface). A DSL was developed to describe these
queries (either search or mapping). Each query has at least three main components: (a)
keywords; (b) domain and range constrains (e.g. search only functions, or variables); and,
(c) the scoring function used to compute the relatedness score between the elements (all
except keywords have default values). To illustrate the DSL some query examples are given
below.

The following query performs a search for the words "color" and "schema", but only
analyses elements that are instances of the class Function.

[ word=color word= schema class= Function ]

The next query searches variables for the word "color", and uses the levenshtein word
distance algorithm [25], to compute the score. By default, the scoring function based on
kPSS is used.

SLATE 2014
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Figure 5 A mapping produced by Conclave-Mapper: on the left the Problem Ontology can be
used to constrain the concepts being searched, on the right the Program Ontology can be used to
constrain the range of which program elements are being analyzed, and in the center the resulting
rank sorted by relevance (hovering the program element shows the corresponding zone in the file
where the element appears).

[ word=color class= Variable score= levenshtein ]

The following query, searches all the functions, and for each function also considers all the
elements that are related with that function by the relation inFunction (defined in the
ontology):

[ word=color class= Function aggr= inFunction ]

The inFunction relation is used to link all the local variables and parameters to all the
functions (or methods depending on programming language) where they are defined and
used. In practice, the score for each element (function) is the average between computing
the score for the element itself, and the score for every local variable and parameter defined
in that function.

The score between two elements (or an element and a word) quantify how close they are
semantically related. This score is used to sort the ranks computed by the locate function
by relevance, or to highlight the cells that express close relatedness between elements in the
matrixes computed with the mapping function.

The main scoring function available in the Conclave system is the kpss function (used
by default), and is based on kPSS, which defines a formalism to describe synonymous sets
based on Probabilist Synonymous Sets (PSS) [5, 40]. These define synonymous sets based
on statistical analysis of parallel corpora.

Once a kPSS is available for a pair of words, the relatedness score between these words
can be calculated. The kpss function is used to compute this score (as a Float) and is defined
as:
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kpss :: kPSS → kPSS → Float
kpss k1 k2 =

∑
[ min (prob x) (prob y) |

x ← flatten k1, y ← flatten k2, word x == word y ]

This function iterates over the flattened version of the kPSS, and sums the minimum prob-
abilities for terms that are common. The flattened version of the kPSS is simply a single
list of terms and corresponding probabilities.

Other scoring functions can be used to produced different ranks and mappings. The
levenshtein function is another example, this calculates the score as the word distance
between terms. Another function implemented in the system is the match function (this
helps simulating techniques based on grep12), that simply returns 1 if the words match, or
0 otherwise. Full details about Conclave-Mapper available in [6].

4 Related Work

Program Comprehension (PC) is a field of research concerned with devising ways to help
programmers understand software systems. In this context, feature (or concept) location is
the process of locating program elements that are relevant to a specific feature implement-
ation. This is typically the first step a programmer needs to perform in order to devise a
code change [3, 33].

Feature location techniques are usually organized by types of analysis: (a) dynamic
analysis, which is based in software execution traces, and examines programs runtime (e.g.
[1, 38]); (b) static analysis, based on static source code information, such as slicing, control
or data flow graphs (e.g. [9, 27, 37]); and (c) textual analysis, explore natural language
text found in programs like comments or documentation. This last type can be based on
Information Retrieval (IR) methods (e.g. [4, 26]), NLP (e.g. [18, 39]), or pattern matching
(sometimes also referred as grep-like) based approaches (e.g. [12]). For more details about
different trends and other approaches please refer to surveys [11] and [42].

The Conclave-Mapper underlying feature location technique uses a combination of
static and textual analysis, and ontologies. Examples of other approaches that explore the
same combination of analysis include: in [45], Zhao et al use a static representation of the
source code named BRCG (branch-reserving call graph) to improve connections between
features and computational units gathered using an IR technology; in [17], Hill et al present
a technique that exploits the program structure and also program lexical information; in [34],
Ratiu and Florian establish a formal framework that allows the classification of redundancies
and improper naming of program elements, which is used as a based to represent mappings
between the code and the real world concepts in ontologies; in [16], Hayashi et al proposed
linking user specified sentences to source code, using a combination of textual and static
analysis domain ontologies. Other applications of ontologies in software engineering in [15].

State-of-the-art feature location approaches involve combining techniques taking advant-
age of having data produced from different types of analysis (e.g. [23,26]).

5 Experimental Validations

This section describes two evaluations done for the tools illustrated in Section 3.

12 http://www.gnu.org/software/grep/ (Last accessed: 29-01-2014)
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5.1 Splitting Evaluation
Section 3.1 describes the identifier splitting technique available in Conclave. This section
briefly describes the experimental study undertaken to evaluate the technique ability to
correctly split and expand multi-term identifiers. The following research questions were
defined:
RQ1: What is the percentage of identifiers in a program that LIdS can correctly split?
RQ2: What is the percentage of identifiers in a program that LIdS can correctly split and
expand in case abbreviations were used?

To help answering these questions the following experience was performed:
Step 1: Create the oracle, i.e., for every AbcMidi identifier manually create the correct split

set, and correct term set. (this was done by the authors, and in cases where the was not
an agreement, or the original programmer purpose was not clear, the identifier was not
included).

Step 2: Compute the split and terms sets for every identifier in the oracle using LIdS hard-
split function.

Step 3: Compute the split and terms sets for every identifier in the oracle using LIdS soft-
split function, providing general purpose dictionaries.

Step 4: Compute the split and terms sets for every identifier in the oracle using LIdS soft-
split function, providing general purpose dictionaries and the software specific dictionary.

Step 5: Compare sets computed in Step 2-4 and the sets manually created in Step 1 and
measure precision and recall.

For a given identifier id to split let the oracle split set be: o = {o1, o2, ..., on}, and
s = {s1, s2, ..., sn} the computed split, then the precision and recall are calculated as:

precision = |o ∩ s|
|s|

recall = |o ∩ s|
|o|

where |x| represents the cardinality of x. The same formulae are applied when calculating
the measures for correct terms, but using the calculated sets of terms instead of splits.

Figures 6 and 7 illustrate the measurement results. For this software package the pro-
posed technique was able to correctly split and expand almost all identifiers (precision and
recall in the order of 90%). More details about this evaluation and comparisons with other
techniques in [7].



N.R. Carvalho, J. J. Almeida, M. J. V. Pereira, and P. R. Henriques 31

Table 3 Better effective measure for different approaches for the jEdit benchmark.

Scoring Analyzed Better Eff.
Function Bugs Measure

match 150 22
kPSS 150 51

5.2 Query Search Evaluation
Section 3.2 describe the underlying technique used in the Conclave system for feature
location, based on kPSS. This section describes the preliminary evaluation done, to verify
if this technique introduces benefits over other common techniques. In current available
IDEs, common search facilities available to programmers, are still grep-like approaches, so
the following research question was formulated:
RQ1: How does the kpss scoring function performs, when compared to the match scoring

function, for finding relevant elements of the code given a search query?
To help answering this question the following experience was performed:
Step 1: in order to ease the process or replicating this experience the benchmark provided

by Dit et al13 for the jEdit14 editor (version 4.3) was used, instead the devising a new
data set. The benchmark contains a set of 150 bug reports, including the function set
that was changed to resolve the bug (referred as the gold set) – more details about the
benchmark in [11];

Step 2: the title for each bug report was extracted, stop words15 were removed, and the
resulting set was archived as keywords;

Step 3: for each bug report, the locate function to compute a rank was called, using the
match scoring function, the keyword set computed in Step 2, and setting as range the
Function program element;

Step 4: replicate Step 3 but using the kpss scoring function;
Step 5: calculate the effectiveness measure for each resulting rank.

The effectiveness measure is calculated by analyzing the computed rank in order, and
its value is the first position of the rank that is a relevant function. Functions that are part
of the set of functions changed to resolve the bug (the gold set) are considered relevant.
The rank position can be compared for different scoring functions to measure which rank
produced the best results. This approach was also used in [31] and [36] for comparing feature
location techniques performance.

The results of this experience are presented in Table 3. They show that for this software
package the kPSS based scoring approach produced a better result 51 times, outperforming
the 22 better results achieved by the simple match function. The remaining times either both
approaches scored the same, or none of the relevant functions were found in the resulting
rank.

Although these results are satisfactory, they do not provide enough empirical data to
generalize the performance of kPSS based techniques. Also, the keywords used to build the
queries and the functions gold sets are a threat to validity because: (a) the keywords set
was built automatically from reports titles that sometimes lack relevant terms, or use only

13Available from: http://www.cs.wm.edu/semeru/data/benchmarks/ (Last accessed: 29-01-2014).
14Available from: http://www.jedit.org/ (Last accessed: 29-01-2014).
15Common words that tend to express poor semantics (e.g. “the”, “a”, “too”) [28].
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ambiguous words (e.g. “bug”), a human would be more prone to devise a set of terms (after
reading the report) that would create a more accurate rank; (b) sometimes, when fixing
bugs, the actual defect is really not related to the concepts functions are addressing, which
translates in changing code unrelated to search queries. Full details about this experiment
and other case studies in [7].

6 Conclusion

Systems like Conclave enables software engineers to devise mappings between the source
code and problem domain concepts. These relations help the programmer to understand
quicker the software, and discover which areas of the code need changing to address a specific
feature or bug fix.

Many tools and techniques can be used to gather information about programs and the
problem domain. The quicker the information is abstracted, the quicker other applications
can use it. Using ontologies allows the combination of heterogenous results and data in a
single representation format. Also, applications can take advantage of a panoply of tools
available (e.g. inference engines, descriptive logics, OTK-like frameworks), to perform data
analysis and relate elements in different domains. kPSS based feature location is a sound
example of such applications. The OTK framework for abstracting ontology operations from
the underlying technology has proven a valuable asset during applications implementation.

The main trends for future work include devising new functions to score relations between
elements in the different ontologies, as well as combinations of approaches to produce more
resources, and to convey more semantic information to ontologies with current available
resources.
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