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Abstract 

Purpose: To investigate the separated and combined influences of inner zone 

(IZ) diameter and effective add power of dual-focus contact lenses (CL) in the 

image quality at distance and near viewing, in a functional accommodating 

model eye.  

Methods: Computational wave-optics methods were used to define zonal bifocal 

pupil functions, representing the optic zones of nine dual-focus centre-distance 

CLs. The dual-focus pupil functions were defined having IZ diameters of 2.10, 

3.36 and 4.00 mm, with add powers of 1.5, 2.0 and 2.5 dioptres, for each 

design, that resulted in a ratio of 64%/36% between the distance and treatment 

zone areas, bounded by a 6 mm entrance pupil. A through-focus routine was 

implemented in Matlab to simulate the changes in image quality, calculated 

from the Visual Strehl ratio, as the eye with the dual-focus accommodates, from 

0 to -3.00D target vergences. Accommodative responses were defined as the 

changes in the defocus coefficient, combined with a change in 4th and 6th order 

spherical aberration, that produced a peak in image quality at each target 

vergence.  

Results: Distance viewing image quality was marginally affected by IZ diameter 

but not by add power. Near image quality obtained when focusing the image 

formed by the near optics was only higher by a small amount compared to the 

other two IZ diameters. The mean ± standard deviation values obtained with the 

three adds were 0.28±0.02, 0.23±0.02 and 0.22±0.02, for the small, medium 

and larger IZ diameters, respectively. On the other hand, near image quality 

predicted by focusing the image formed by the distance optics was considerably 

lower relatively to the other two IZ diameters. The mean ± standard deviation 
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values obtained with the three adds were 0.15±0.01, 0.38±0.00 and 0.54±0.01, 

for the small, medium and larger IZ diameters, respectively.  

Conclusions: During near viewing through dual-focus CLs, image quality 

depends on the diameter of the most inner zone of the CL, while add power 

only affects the range of clear focus when focusing the image formed by the CL 

near optics. When only image quality gain is taken in to consideration, medium 

and large IZ diameters designs are most likely to promote normal 

accommodative responses driven by the CL distance optics, while a smaller IZ 

diameter design is most likely to promote a reduced accommodative response 

driven by the dual-focus CL near optics. 

 

 

 Introduction 

 

 Myopia control is one of the main challenges in vision sciences for the 

21st century, as the prevalence of myopia is projected to increase from 

approximately two billion people worldwide in 2010 to almost five billion people 

in 2050, bringing with it both short and long-term health challenges.1,2  

The possibility of actively interfering with the progression of myopia by means of 

refractive therapeutic intervention, rather than simply compensating, addresses 

myopia not only as a refractive anomaly that can be optically compensated but 

also a condition that can be treated, or at least managed.3,4 The basis for this 

refractive therapeutic intervention is set in the hypothesis that hyperopic 

defocus imposed on young eyes accelerates eye growth while imposed myopia 

slows it.5,6 This hypothesis has given birth to two main theories cited in the 

literature: 1) evidence based from animal studies suggests that peripheral 

hyperopic defocus exacerbates myopia progression, while inducing myopic 

peripheral defocus can slow myopia progression;7 or 2) myopes with esophoria 

at near tend to present higher accommodative lags to prevent the increase of 

the esophoria and potentially double vision through additional accommodative 

convergence, thus providing an addition power at near would compensate for 

hyperopic defocus while maintaining simple binocular vision.8–10 Independently 

of the myopic regulatory mechanism proposed, contact lenses (CL) with power 

profiles like the ones used to compensate for presbyopia, with central distance 

areas surrounded by near vision zones (addition power) or alternating near-

distance areas, seem to provide a pathway for this refractive therapeutic 

intervention.  

During the last decade, several studies comparing the efficacy of 

multifocal and single vision lenses reported reductions in myopic progression. 

The reported efficacy ranged from 30% to 72% as measured by mean 

cycloplegic spherical equivalent (SE) with a maximum of 80% in axial length 

(AL), depending on the CL’s design.11–15 More recently a new study providing 

data from three years reported a 59% of efficacy in slowing myopia progression, 

as measured by mean cycloplegic SE, and 52% as measured by mean axial 

elongation of the eye when compared to the children in the control group 

wearing a single vision CL (Paul Chamberlain et al., IMC, September 16, 2017). 

Although these average results seem promising, they present an intriguing 



inter-subject variation concerning the efficacy of this supposed regulatory effect 

that could, at least in part, be related to the CL design and intrinsic optical and 

anatomical characteristics of each individual.  

It is well documented that myopic individuals present a large variability in 

their ocular dimensions, particularly in posterior pole shape,16–19 that might 

compromise the therapeutic effect of the CL optics when combined with the 

eye’s optics. For instance, a more prolate or less oblate retinal shape will yield a 

more hyperopic or less myopic peripheral refraction, respectively.20 Another 

possible source of variation might be related with the different nature of the two 

myopia progression mechanisms postulated in the literature. If a bifocal CL is 

fitted to produce peripheral myopic defocus, but the patient, instead of 

accommodating, uses the treatment zones during near viewing as if they were 

addition zones, then the distance correction zones will produce hyperopic retinal 

defocus during near viewing with the potential for exacerbating eye elongation 

and myopia progression.21 On the other hand, the use of add powers to control 

myopia development is based upon the accommodative lag hypothesis of foveal 

hyperopic blur, which implies that the patient makes use of the addition zones 

during near viewing. Lag theory should also need a lower addition power 

compared to the peripheral defocus theory, otherwise children would only 

benefit from the lens near optics for accommodative demands equal or above 

the effective addition power of the CLs. When considering these aspects, and in 

spite of some controversy found in the literature, it seems unlikely that there 

might be some kind of synergistic effect between the two hypothetical myopia 

progression mechanisms. Thus, the same bifocal optical profile might not be 

adequate for both purposes.  

Therefore, we hypothesise that the actual image quality of young patients 

when viewing through bifocal contact lenses prescribed for myopia control might 

be dependent on the power profile of the CL, in particular its inner zone (IZ) 

diameter and effective add power, and that these differences in image quality 

during near viewing might eventually influence the patient’s accommodative 

response differently. Although the core idea of examining the impact of zone 

geometry and add power interacting with ocular higher order aberrations 

(HOAs) on the resulting image quality for distance and near targets has been 

extensively studied before by Bradley and co-workers for presbyopic eyes,22 the 

changing in spherical aberration (SA) that accompanies accommodation 

necessitates a re-examination for young accommodating eyes. These potential 

sources of variation were investigated through numerical simulation in an 

accommodative functional eye model “fitted” with different bifocal centre-

distance concentric designs, also designated as dual-focus power profiles. 

Separated and combined influences of the dual-focus IZ diameter and effective 

add power in the final image quality were investigated. 

 

Methods 

 

Dual Focus Power Profiles 

 



Computational wave-optics methods were used to define zonal dual-

focus pupil functions, representing the optic zones centre-distance bifocal CLs 

with different power distributions over an 8 mm optic zone. The dual-focus 

profiles were calculated from combinations of IZ diameters of 2.10, 3.36 and 

4.00 mm and near addition powers of +1.5, +2.0 and +2.5 dioptres (D), resulting 

in a total of nine power profiles. The three IZ diameters were specifically chosen 

to represent the effects of small, medium and large centre-distance correction 

zones, relatively to a 6 mm entrance pupil. This choice of pupil size was based 

on extrapolated data published by Winn et al.23 for 10 years old subjects under 

medium luminance levels (220 cd.m-2). A further requirement was that the 

distance and near zones areas of the power profiles were approximately the 

same for all designs, during distance and near viewing. For near viewing, this 

requirement was limited by the 4.00 mm IZ diameter, and was only maintained 

for pupil diameters above 5.4 mm (see Table 1), which, in the functional 

accommodative model described below (see Trough Focus Image Quality 

section), represents an accommodative response (A) of about +1.75 D. 

 For each dual-focus design, two wavefront error maps were computed 

across an 8 mm fixed diameter, one containing a distance correction of –2 D 

and another with -2 D + add power, defined over a 512 x 512 array, using a 

monochromatic reference wavelength of 0.55 µm for all calculations. Next, 

these wavefront maps were subdivided in four zones, which were interleaved to 

assemble a single, composite wavefront with zero phase discontinuities. 

Transition zones with a 0.1 mm width were modelled at the interface between 

each neighbouring zone. Although these could be considered as intermediate 

zones (making the profiles multifocal instead of bifocal), due to their small area 

they do not present a considerable impact in the through-focus performance, 

and only have the purpose of mirroring the physical reality of zonal dual-focus 

CLs. The resulting wavefront comprised the phase portion of the eye plus dual-

focus pupil function, specified relative to the ideal spherical wavefront that 

converges onto the retina. No spherical aberration was added to the resulting 

wavefront, therefore, we assume that the average positive spherical aberration 

of the eye24,25 couples with the negative spherical aberration26 regularly 

implemented in contemporary contact lenses.27 The resulting sagittal power 

profiles of the dual-focus lenses on the eye, calculated using differential 

geometry of the wavefront,28 are plotted in Figure 1.  

 

 
Figure 1. Sagittal power of the dual-focus profiles on the eye, plotted as a 

function of radial position from the centre to the edge of the pupil, for a 2.10 

(left), 3.36 (middle) and 4.00 mm (right) IZ diameters, with a +2 D addition, in 



the relaxed (solid line) and accommodated states (dashed line: A=+1.25 D and 

dotted line: A=+2.50 D), showing the ocular contributions to image quality.   

 

 

 

 

 

 

 

 

 

 

Table 1. Dimensions used to model each of the dual-focus profiles zones and 

their correspondent near (NZ) and distance (DZ) zone areas, for different pupil 

diameters/accommodative responses (A). Transitions zones were considered 

as extensions of the distance and near zones divided at half width.  
 

Zones Diameter (mm) 
Area (%) vs. Pupil Diameter 

6 mm  
(A=0D) 

5.56 mm 
(A=+1.25D) 

5.13 mm 
(A=+2.50D) 

DZ1 NZ1 DZ2 NZ2 DZ NZ DZ NZ DZ NZ 

2.10 4.17 6.18 8.00 64% 36% 58% 42% 51% 49% 

3.36 4.92 6.57 8.00 64% 36% 58% 42% 51% 49% 

4.00 5.37 6.78 8.00 64% 36% 58% 42% 61% 39% 

 

Image quality 

 

Image quality was defined by the Visual Strehl computed in the OTF 

domain (VSOTF). The VSOTF is a normalized measure of retinal image quality 

defined as the volume under the visually-weighted optical transfer function 

(OTF) for an aberrated eye divided by the corresponding volume for an optically 

perfect eye (diffraction limited).29,30 To make VSOTF comparable as pupil size 

varies with accommodation, we modified the standard definition by normalising 

by the diffraction limited volume for a fixed pupil size of 6 mm. This re-

normalization was designated VSOTF*. Optical transfer functions were 

computed by standard Fourier methods31 using custom Matlab software 

(Mathworks, http://www.mathworks.com), and weighted by a standard contrast 

sensitivity function (CSF) of the human eye.32  

 

Through Focus Image Quality 

 

Peak image quality was computed for the nine dual-focus designs, as a 

function of target vergence (TV) in dioptres, ranging from 0 to -3 D, in -0.25 D 

steps, representing an object placed between infinity and about 33.3 cm, from 

the eye’s entrance pupil. For each target vergence, we simulated how 

accommodation will respond to maximize image quality. The procedure 



consisted in adding wavefronts with positive defocus in +0.05 D steps, together 

with different combinations of fourth and sixth-order SA, to the eye + dual-focus 

composite wavefront, which has the effect of modelling the changes in optical 

path added by the hyperbolic shape of the surfaces of the human lens during 

accommodation.33 This change in SA with accommodation was modelled based 

on the equations described by Navarro34 and experimentally validated by 

López-Gil,35 and predicts, for a 6 mm pupil, a reduction in C4
0 of about -0.06 µm 

and an increase in C6
0 of about 0.002 µm/D, per dioptre of positive defocus (see 

Figure 1).  Accommodative miosis was accounted for by setting the diameter of 

the non-zero zone of the amplitude portion of the pupil function to decrease with 

each iteration, so that the final relation between pupil size (Dp) and 

accommodation was of about , in similarity to other published 

results.36 Accommodation in dioptres was calculated from the added wavefronts 

using the equation , where C2
0 is now the zernike defocus coefficient, 

expressed in microns, scaled for a “natural” pupil size of radius r millimetres.  

For each iteration, the resulting image quality value was calculated and 

stored in a vector. The algorithm was then programmed to find local maxima 

using the Matlab built in function findpeaks, with a minimum peak height set to 

VSOTF* = 0.12. This value predicts a level of logMAR visual acuity of about 

0.20,37 and it has been used in previous publications as the threshold for 

acceptable vision.38,39 Hypothetical accommodative responses were defined as 

the dioptric change in positive defocus that, together with the correspondent 

change in SA, produced a significant peak in image quality at each target 

vergence. Figure 2 illustrates this procedure for the three IZ diameters dual-

focus profiles with a +2.00 add, using a target vergence of -2.50 D. 

 

 
 

Figure 2. Change in image quality as the eye accommodates for a target 

located at 40 centimetres (TV = -2.50 D). Blue, red and green curves 

correspond to the through-focus image quality obtained for the small, medium 

and large IZ diameters profiles, respectively, with a +2 D add. The dashed line 



corresponds to the accommodative through-focus image quality obtained for a 

diffraction limited naked eye. 

 

Results 

 

Distance viewing image quality, defined by the neural weighting of 

contrast and resolution, was not affected by add power, but was marginally 

affected by diameter of the inner zone (VSOTF* = 0.022  IZ diameter + 0.36; 

R2 = 0.42). 

As expected, for target vergences with accommodative demands near or 

above the effective add power used, the accommodative through-focus curves 

produced a second peak in image quality, from which we can conclude that 

there could be two different accommodative strategies available to the young 

myopes: (1) accommodation is driven by the distance optics for all 

accommodative demands; or (2) the eye attempts to focus the image formed by 

the CLs near optics for accommodative demands near or above the effective 

addition power, together with a reduced accommodative response, whenever 

the image quality yielded by this peak is sufficient for a specific visual task. 

Figure 3, illustrates the change in peak image quality for both hypothetical 

accommodative responses. To facilitate a direct comparison between additions 

and IZ diameters, near image quality obtained for target vergences between -

add and -3 D was averaged and presented in Table 2 as the mean value. 

 
 

Figure 3. Image quality as a function of target vergence, for two possible 

accommodative responses. Each value in the green lines corresponds to a 

peak (local maxima) in image quality produced by accommodating to focus the 

image formed by the distance optics, and each value in the yellow/orange/red 

lines corresponds to a peak in image quality produced by accommodating to 

focus the image formed by the near optics. Peaks bellow VSOTF* = 0.12 were 

disregarded.  

 

 



 

 

 

 

 

 

 

 

 

 

Table 2. Distance viewing peak image quality (IQ) and near viewing mean 

image quality assuming that the eye accommodates to focus the image formed 

by the CL distance optics or by the CL near optics. 

CL# ADD (D) 
IZ diameter 

(mm) Distance IQ 
Near mean IQ 

(distance optics) 
Near mean IQ 
(near optics) 

1 1.5 2.10 0.41 0.15 0.30 

2 1.5 3.36 0.40 0.39 0.25 

3 1.5 4.00 0.46 0.55 0.23 

4 2.0 2.10 0.41 0.16 0.27 

5 2.0 3.36 0.41 0.38 0.22 

6 2.0 4.00 0.44 0.54 0.21 

7 2.5 2.10 0.41 0.15 0.26 

8 2.5 3.36 0.41 0.38 0.21 

9 2.5 4.00 0.48 0.54 0.19 

 

For medium and larger IZ diameters, during near viewing, the simulation 

predicts higher image quality if the subject accommodates to focus the image 

formed by the distance optics of the CLs instead of using the near zones add. 

The opposite was observed for the smaller IZ diameter design. In this case, for 

accommodative demands above the addition power used, the simulation 

predicts a better image quality when focusing the image formed by the near 

optics with a reduced accommodative response. Although this might seem an 

advantage of the smaller IZ diameter, in fact near image quality obtained by 

accommodating to focus the image formed by the near optics was only higher 

by a small amount compared to the other two designs, with mean ± standard 

deviation values for the three adds of 0.28±0.02, 0.23±0.02 and 0.22±0.02, for 

the small, medium and larger IZ diameters, respectively. On the other hand, 

near image quality predicted when accommodation is driven by the distance 

optics was considerably lower relatively to the other two IZ diameters, with 

mean ± standard deviation values for the three adds of 0.15±0.01, 0.38±0.00 

and 0.54±0.01, for the small, medium and larger IZ diameters, respectively.  

 

Discussion 

 

We hypothesised that image quality of non presbyopic patients when 

viewing through dual-focus contact lenses prescribed for myopia control might 

be dependent on the contact lens IZ diameter and effective add power, and that 



this variation in image quality might eventually influence the patient’s 

accommodative response differently. According to the obtained results, distance 

viewing image quality seems not to depend on the effective add power and it 

was only marginally influenced by IZ diameter. On the other hand, a 

dependence relationship seems to exist between near image quality and the 

diameter of the most inner zone during near viewing, when focusing the dual-

focus distance optics with a normal accommodative response. In this situation, 

the larger IZ diameter provided a better image quality for all target vergences. 

The contrary was observed for the smaller 2.10 mm IZ diameter, as near image 

quality obtained by accommodating to focus the distance optics decreased with 

target vergence.  

Previous modelling studies22 suggest that image quality when focusing 

peripheral optical zones will be reduced due to aperture shape and diffraction, 

as well as the high rate of change in power caused by SA in the outer zones. 

Also, in the presence of large amounts of SA (e.g. when accommodating for 

higher demands), the difference in effective power of each zone of nominally 

the same power (see Figure 1) can lead to multiple peaks in the image quality 

profiles or to an increased depth-of-focus surrounding shallower image 

peaks,22,40 such as that observed with the smaller IZ diameter profile plotted in 

Figure 2. Therefore, the drop in image quality for increasing TV seen with the 

smallest IZ diameter design can be explained by the fact that most of its 

distance optics is in an annular zone that has an image quality very susceptible 

to levels of SA, which are increasing with accommodation. On the other hand, 

the image quality achieved by the distance focus of the larger IZ designs is 

dominated by the central IZ diameter, which is much less affected by the 

elevated SA levels. 

Although the performance of bifocal or multifocal contact lenses tends to 

be pupil dependent,37–40 the current results were only obtained with a 6 mm 

distance pupil diameter which decreased with accommodation. For larger or 

smaller pupils, the obtained results will tend to be similar only if the relation 

between pupil diameter and IZ diameter of the CL is maintained.43 Yet, for 

larger pupils, the effects of SA introduced by accommodation will increase the 

negative shift in effective power of the most outer annular zones, making the 

bifocal profiles to behave like multifocals, with multiple and shallower peaks in 

the image quality profiles appearing at higher accommodative demands.  

 

Dual-focus designs with larger distance-centre inner zones will tend to 

promote normal accommodative responses, since image quality during near 

viewing would be significantly higher compared to the one obtained when 

attempting to focus the image formed by the near optics with a reduced 

accommodative response. On the other hand, the smaller inner zone diameter 

profiles tend to promote a reduction in accommodative response, since image 

quality is higher when attempting to focus the image formed by near optics at 

target vergences near or above the effective add power. These results seem to 

agree with former studies that measured the accommodative response of young 

subjects fitted with bifocal contact lenses. In one of these studies,11 subjects 

were fitted with a dual-focus contact lens that was designed having a similar 



power profile as the one of the lenses simulated in this study (IZ diameter = 3.3 

mm; Add = +2.0 D), and accommodation was assessed using an open-field 

autorefractor. The authors concluded that when viewing a target at 40 cm 

distance (TV = -2.50 D) the subject´s accommodation was “driven through the 

central distance-correction zone of the dual-focus contact lens”. Lam et al.15 

also evaluated the accommodative response of young subjects fitted with a 

similar bifocal contact lens for myopia control. Although the power profile of this 

contact lens was not entirely specified, the authors describe it as having 

concentric alternating distance and near zones with a +2.50 D add, 

denominated Defocus Incorporated Soft Contact (DISC). The subject’s 

amplitude of accommodation while wearing the DISC contact lenses was 

measured using the push-up method with Royal Air Force ruler and compared 

against the measure obtain while the subjects were wearing spectacles. The 

authors concluded that the amplitude of accommodation with DISC contact 

lenses was not significantly different from spectacles, and that children wearing 

DISC lenses could accommodate normally to near objects and were “less likely 

to use the defocusing zones for viewing during near tasks”. 

In another study, Aller et al.14 reported a high effectiveness in limiting the 

rate of myopia progression and axial elongation in children and adolescents 

during a 12-month treatment period, with a small IZ diameter centre-near bifocal 

contact lens (Acuvue Bifocal), relative to a conventional single-vision contact. 

Contrary to the previous mentioned studies, the bifocal contact lenses were 

prescribed so that the patients would make use of the near zones of the contact 

lens during near viewing, and the add power was chosen to neutralize near 

associated esophoria. Considering that myopes tend to present high 

convergence to accommodative ratios (AC/A),44 a compromised binocular vision 

due to near esophoria might promote a reduced accommodative response (lag) 

in an effort to maintain normal bifoveal fusion. Because accommodative lag 

generally grows as the accommodative demand grows, there might be a larger 

lag when attempting to focus the (high demand) distance optics, but less lag 

when using the plus power in the near optics (low accommodative demand). 

These differences in lag (defocus) might counterbalance the differences in peak 

image quality achieved when focusing the distance and near optics, caused by 

zone geometry and ocular aberrations. For instance, at a +2.50 D 

accommodative demand, when viewing with the medium IZ diameter design, an 

accommodative response of +2.00 D (lag of +0.50 D, with respect to the 

demand) will achieve a VSOTF* = 0.13 (see Figure 2), which is significantly 

lower than the 0.21 value obtained for a +0.50 D accommodative response. 

Therefore, in the presence of accommodative lag, patients might experience 

better binocular image quality when focusing the image formed by the near 

optics with a reduced accommodative response. In these particular cases, 

patients might also benefit of lower adds to increase the interval of clear vision 

through the near zones (see Figure 3). 

In conclusion, during near viewing through centre-distance bifocal 

contact lens, image quality seems to depend on the diameter of the most inner 

zone of the bifocal contact lens while add power only affects the range of clear 

focus provided by the near optics. When only image quality gain is taken in to 



consideration, larger IZ diameters are most likely to promote normal 

accommodative responses to focus the image formed by the distance optics, 

while the smaller IZ diameter profiles are most likely to promote reduced 

accommodative responses driven by the near optics of the dual-focus contact 

lens. 

Considering that these, and possibly other, specific factors might 

influence the efficacy of such devices in myopia control, it seems important to 

refine clinical protocols to ensure that patients fitted with these devices actually 

experience the desired optical effect.  

 

Acknowledgments. 

 

This work was funded by the Foundation for Science and Technology (FCT), 

through the grant SFRH/BPD/116351/2016 awarded to Miguel Faria-Ribeiro. 

 

Disclosure 

 

The authors report no conflicts of interest and have no proprietary interest in 

any of the materials mentioned in this article. 

 

References 

 

1.  Holden BA, Holden BA, Fricke TR, Wilson DA & Jong M. Global 
prevalence of myopia and high myopia and temporal trends from 2000 
through 2050. Ophthalmology 2016; 123: 1036-1042. 

2.  Verkicharla PK, Ohno-Matsui K & Saw SM. Current and predicted 
demographics of high myopia and an update of its associated 
pathological changes. Ophthalmic Physiol Opt 2015; 35: 465-475.  

3.  González-Méijome JM, Peixoto-De-Matos SC, Faria-Ribeiro M, et al. 
Strategies to regulate myopia progression with contact lenses: A review. 
Eye Contact Lens 2016; 42. 

4.  Queiros A, Lopes-Ferreira D & Gonzalez-Meijome JM. Astigmatic 
peripheral defocus with different contact lenses: Review and meta-
analysis. Curr Eye Res 2016; 3683: 1-11.  

5.  Wildsoet CF. Active emmetropization--evidence for its existence and 
ramifications for clinical practice. Ophthalmic Physiol Opt 1997; 17: 279-
290.  

6.  Smith EL, Huang J, Hung LF, Blasdel TL, Humbird TL & Bockhorst KH. 
Hemiretinal form deprivation: Evidence for local control of eye growth and 
refractive development in infant monkeys. Investig Ophthalmol Vis Sci 
2009; 50: 5057-5069. 

7.  Smith EL 3rd. Prentice Award Lecture 2010: A case for peripheral optical 
treatment strategies for myopia. Optom Vis Sci  2011; 88: 1029-1044. 

8.  Pauné J, Thivent S, Armengol J, Quevedo L, Faria-Ribeiro M & González-
Méijome JM. Changes in peripheral refraction, higher-order aberrations, 
and accommodative lag with a radial refractive gradient contact lens in 
young myopes. Eye Contact Lens 2016; 42 

9.  Schor C. The influence of interactions between accommodation and 
convergence on the lag of accommodation. Ophthalmic Physiol Opt 1999; 



19: 134-150.  
10.  Berntsen DA, Sinnott LT & Mutti DO, Zadnik K. A randomized trial using 

progressive addition lenses to evaluate theories of myopia progression in 
children with a high lag of accommodation. Investig Ophthalmol Vis Sci  
2012; 53: 640-649. 

11.  Anstice NS & Phillips JR. Effect of dual-focus soft contact lens wear on 
axial myopia progression in children. Ophthalmology 2011; 118: 1152-
1161. 

12.  Walline JJ, Greiner KL, McVey ME & Jones-Jordan LA. Multifocal contact 
lens myopia control. Optom Vis Sci 2013; 90: 1207-1214.  

13.  Pauné J, Morales H, Armengol J, Quevedo L, Faria-Ribeiro M & 
González-Méijome JM. Myopia control with a novel peripheral gradient 
soft lens and orthokeratology: a 2-year clinical trial. Biomed Res Int 2015; 
2015. 

14.  Aller TA, Liu M & Wildsoet CF. Myopia control with bifocal contact lenses: 
a randomized clinical trial. Optom Vis Sci 2016; 93: 344-352.  

15.  Lam CS, Tang WC, Tse DY & Tang YY, To CH. Defocus Incorporated 
Soft Contact (DISC) lens slows myopia progression in Hong Kong 
Chinese schoolchildren: a 2-year randomised clinical trial. Br J 
Ophthalmol 2014; 98 :40-45. 

16.  Faria-Ribeiro M, López-Gil N, Navarro R, Lopes-Ferreira D, Jorge J & 
González-Méijome JM. Computing retinal contour from optical biometry. 
Optom Vis Sci 2014; 91: 430-436. 

17.  Gilmartin B, Nagra M & Logan NS. Shape of the posterior vitreous 
chamber in human emmetropia and myopia. Investig Ophthalmol Vis Sci 
2013; 54: 7240-7251. 

 18.  Atchison DA. Optical models for human myopic eyes. Vision Res 2006; 
46: 2236-2250. 

19.  Faria-Ribeiro M, Navarro R & González-Méijome JM. Effect of Pupil Size 
on Wavefront Refraction during Orthokeratology. Optom Vis Sci 2016; 93 

:1399-1408. 
20.  Faria-Ribeiro M, Queirós A, Lopes-Ferreira D, Jorge J & González-

Méijome JM. Peripheral refraction and retinal contour in stable and 
progressive myopia. Optom Vis Sci  2013; 90: 9-15.  

21.  Smith EL, Hung LF, Huang J, Blasdel TL, Humbird TL & Bockhorst KH. 
Effects of optical defocus on refractive development in monkeys: 
Evidence for local, regionally selective mechanisms. Investig Ophthalmol 
Vis Sci  2010; 51: 3864-3873.  

22.  Bradley A, Nam J, Xu R, Harman L & Thibos L. Impact of contact lens 
zone geometry and ocular optics on bifocal retinal image quality. 
Ophthalmic Physiol Opt 2014; 34: 331-345.  

23.  Winn B, Whitaker D, Elliott DB & Phillips NJ. Factors affecting light-
adapted pupil size in normal human subjects. Invest Ophthalmol Vis Sci 
1998; 35 :1132-1137. 

24.  Papamastorakis G, Panagopoulou S, Tsilimbaris MK, Pallikaris IG & 
Plainis S. Ocular higher-order aberrations in a school children population. 
J Optom 2015; 8: 93-100. 

25.  Kingston AC & Cox IG. Population spherical aberration: Associations with 
ametropia, age, corneal curvature, and image quality. Clin Ophthalmol  
2013; 7: 933-938.  



26.  Lopez-Gil N, Benito A, Castejon-Mochon JF, et al. Aberration correction 
using customized soft contact lenses with aspheric and asymmetric 
surfaces. Invest Ophthalmol Vis Sci 2002; 43:U213-U213. 

27.  Plainis S, Atchison DA, Charman WN. Power Profiles of Multifocal 
Contact Lenses and Their Interpretation. Optom Vis Sci 2013; 90: 1066-
1077. 

28.  Navarro R. Refractive error sensing from wavefront slopes. J Vis 2010; 
10: 3 

29.  Guirao A & Williams DR. A method to predict refractive errors from wave 
aberration data. Optom Vis Sci. 2003; 80: 36-42.  

30.  Thibos LN, Hong X, Bradley A & Applegate RA. Accuracy and precision of 
objective refraction from wavefront aberrations. J Vis 2004; 4: 329-351. 

31.  Goodman J. Introduction to Fourier Optics. Englewood: Roberts & 
Company; 2005. 

32.  Campbell FW & Green DG. Optical and retinal factors affecting visual 
resolution. J Physiol 1965; 181: 576-593.  

33.  López-Gil N, & Fernández-Sánchez V. The change of spherical aberration 
during accommodation and its effect on the accommodation response. J 
Vis 2010; 10: 12 

34.  Navarro R & Santamaria J. Accommodation-dependent model of the 
human eye with aspherics. J Opt Soc Am A. 1985; 2: 1273-1281. 

35.  López-Gil N, Fernández-Sánchez V, Legras R, Montés-Micó R, Lara F & 
Nguyen-Khoa JL. Accommodation-related changes in monochromatic 
aberrations of the human eye as a function of age. Investig Ophthalmol 
Vis Sci 2008; 49: 1736-1743.  

36.  Gambra E, Sawides L, Dorronsoro C & Marcos S. Accommodative lag 
and fluctuations when optical aberrations are manipulated. J Vis 2009; 9: 
1-15.  

37.  Cheng X, Bradley A & Thibos LN. Predicting subjective judgment of best 
focus with objective image quality metrics. J Vis 2004; 4: 310-321. 

38.  de Gracia P, Dorronsoro C & Marcos S. Multiple zone multifocal phase 
designs. Opt Lett  2013; 38: 3526-3529.  

39.  Yi F, Iskander D & Collins M. Depth of focus and visual acuity with 
primary and secondary spherical aberration. Vis Res 2011; 51: 1648- 

40.  Martin JA, Roorda A. Predicting and assessing visual performance with 
multizone bifocal contact lenses. Optom Vis Sci 2003; 80: 812-819.  

41.  Bakaraju RC, Ehrmann K & Ho A. Extended depth of focus contact lenses 
vs. two commercial multifocals: Part 1. Optical performance evaluation via 
computed through-focus retinal image quality metrics. J Optom 2017: 1-
11.  

42.  Legras R & Rio D. Simulation of commercial vs theoretically optimised 
contact lenses for presbyopia. Ophthalmic Physiol Opt 2017; 37: 297-304.  

43.  Chateau N & Baude D. Simulated in situ optical performance of bifocal 
contact lenses. Optom Vis Sci 1997; 74: 532-539.  

44.  Mutti DO, Mitchell GL, Jones-Jordan LA, et al. The response AC/A ratio 
before and after the onset of myopia. Investig Ophthalmol Vis Sci  2017; 
58: 1594-1602. 

 

 


