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ABSTRACT

This paper describes a sequential quadratic programming (SQP) algorithm for
solving nonlinear inequality constrained optimization problems. The QP sub-
problems are solved by a primal-dual interior-point method that uses a variant
of the Mehrotra “s predictor-corrector algorithm. Preliminary numerical testing
indicates that the method is effective.
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1. INTRODUCTION

For easy of presentation, we consider the formulation of the nonlinear problem with
inequality constraints and simple bounds as follows:

minimize  F(x)
1)
subject to b < h(z)<b+r [ <z <u,

where hy : R"—= R for £k = 1,...,m and F : R"— R are nonlinear and twice continuously
differentiable functions. r is the vector of ranges on the constraints h(z), v and [ are the
vectors of upper and lower bounds on the variables respectively and b is assumed to be a
finite real vector. Elements of the vectors r, [ and u are real numbers subject to the following
limitations: 0 < 7, < 00, —00 < ;, u; < oo for k=1,...,m, ¢ = 1,...,n. Constraints of the
form b < h(xz) < b+r are denoted by range constraints. The equality constraints are treated
as range constraints with r = 0.

Let VF(z) denote the gradient of F(z) and Vh(z) denote the Jacobian matrix of the
constraint vector h(x)” = [h(z) — b, b+ 7 — h(x), x — I, u — x]. A solution of (1) will be
denoted by z*, and we assume that there are a finite number of solutions. We also assume
that the second order Kuhn-Tucker conditions hold (with strict complementarity) at x*.
Thus, the constraints are verified and there exists a Lagrange multiplier vector \* > 0 such
that

VE(x*) = Vh(x*)TA*, h(x*)TA* =0. (2)

Methods for solving (1) are iterative in the sense that the new approximation is given by
Tpr1 = Tk + aply, where xy is the current approximation, /\j is the search direction
and @y, is a nonnegative step length (0 < @, < 1). The central feature of a sequential
quadratic programming (SQP) method is that the search direction A is the solution of a



quadratic programming subproblem whose objective function approximates the Lagrangian
function and whose constraints are linear approximations to the constraints in (1). The
usual definition of the QP subproblem is the following;:
minimize %ATHkA +VEEA
AER™ ’

3
subject to b< VhtA+hp <b+r, I <A+z,<u ®)

where Vh(x) denotes the Jacobian matrix of the constraint vector h(x), and VF}, hj and
Vhy denote the relevant quantities evaluated at xp. The matrix Hy is a symmetric positive
definite approximation to the Hessian of the Lagrangian function. This problem has a
solution A\ and a Lagrange multiplier 73, that satisfy the constraints and

Hi AN+ VEF, = Vﬁzﬂk, Wg (VE;CA]C +Ek) =0, @ >0.

Solving QP problems with equality constraints is straightforward. However, problems that
have inequality constraints are significantly more difficult to solve than problems in which
all constraints are equations since it is not known in advance which inequality constraints
are active at the solution. Active-set methods move sequentially from one choice of active
constraints to another choice that produces at least as good a solution. Clearly the most
common approach for solving (3) considers active-set methods (see, for example, Nocedal
and Wright (2001)). In this paper, we describe a new SQP method that is based on the
interior-point paradigm for solving the QP subproblems.

The paper is organized as follows. Section 2 describes the interior-point method used to
solve the QP subproblems. Section 3 reports on the used merit function to ensure conver-
gence and Section 4 contains the numerical results and some concluding remarks.

2. THE INTERIOR-POINT PARADIGM FOR SOLVING QP

This section describes an infeasible primal-dual interior-point method for solving the
quadratic subproblem (3). We refer to Vanderbei (1994) for details. Adding slack variables
w, p, g and ¢, (3) becomes

minimize %ATH;CA + VFkTA
subject to  VhyA —w=0b—hy, VRgA+p=b+r—hy, A—g=1—xp, (4)
A+t =uU—Tk, W,p,g,t > 0.

The nonnegativity constraints are then eliminated by incorporating them in logarithmic
barrier terms in the objective function transforming (4) into

o ) 1 T - m m n n
minimize 5& Hy AN+ VF, A — uZln(wj) — u;hl(pj) — ,u;ln(gi) — ,u;hl(ti)

Jj=1

subject to the same equality constraints, with g a positive barrier parameter. Optimality
conditions for this subproblem produce the standard primal-dual system

HkA-FVFk—thy—Z-FS:O, WVe, = pey, Vhi AN+ hp—b—w=0,

y+q—v=0, PQe; = pe, r—w—p=0, (5)
GZes = pes, AN+xp—1—g=0,
TSes = pes, u—AN—x—t=0,

where V' = diag(vi, ..., vm), @ = diag(q1, ..., qm), Z = diag(z1,...,2zn), S = diag(s1, ..., $n),
W = diag(wi, ..., Ws), P = diag(p1,...,om), G = diag(gi,...,gn), T = diag(ty,...,t,), e1 =



(1,1,...,1)T and ey = (1,1,...,1)T are m and n vectors respectively and y = v — q. The
first two equations define the conditions of dual feasibility, the next four equations are the
complementarity conditions and the last four equations define the primal feasibility. This is
a nonlinear system of 5n+5m equations in 5n+5m unknowns. It has a unique solution in the
strict interior of an appropriate orthant in primal-dual space {(A,g,w,t,p,y,2,v,$,9) : g,
w, t, p, z, v, 8, ¢ > 0}.

The central path is an arc of strictly feasible points. It is parameterized by the scalar u,
and each point on the central path solves the primal-dual system (5). As u tends to zero,
the central path converges to an optimal solution to both primal and dual problems.

For a value of y, let (A, g, w,..., ¢) denote the current point in the orthant. Our aim is to
find (AA, Ag, Aw, ..., Aq) such that the new point (A+AA, g+ Ag, w+ Aw, ..., ¢+ q)
lies approximately on the primal-dual central path at the point (A, gu, wy, ..., ¢.) . We see
that the new point (A + AA, g+ Ag, w+ Aw, ..., g+ Aq), if it were to lie exactly on the
central path at u, would be defined by

—H AN +VEhEAYy + Az — As = HyA +VEF, —Vhly — 24+ s=o,
—Ny—Ng+DNv=y+q—v=0,
VWA + Aw = pV ey —w — VTIAV Aw = v,
P7lQAp+ Aq=puP ey —q— PT'APAq = Vg
G ZNAg+ Nz =pG ey — 2 — GT'AGAz = v, (6)
T YSAt+ As=puT ey — s — T 'ATAs = 4,
Vhe AN — HDw =w+b— VhyA — hy, = p,
Aw+Ap=r—w-—p=a,
AN -—Ag=1l—-A—zx+g=v,
AN+ Nt=u—AN—x,—t=T,

where we have introduced notations o, 3, p, &, v, T, Yw, Vg, V2> Vs as short-hands for the right-
hand side expressions. This is almost a linear system for the direction vectors (AA, Ag,
Aw, ..., Aq). The only nonlinearities appear on the right-hand sides of the complementarity
equations (i.e., in v, Vg, V2, Vs)-

The algorithm implements a predictor-corrector (Mehrotra (1992)) approach to finding
a good approximate solution to equations (6). First, we calculate the predictor step (AAP,
AgP, AwP, ..., AgP) which consists of dropping both the p terms and the “delta” terms that
appear on the right-hand side in (6).

To measure the effectiveness of this direction, we find @ to be the longest step length
that can be taken along this direction before violating the nonnegative conditions (g, w, t,
D, Z, U, 8, q) > 0, with an upper bound of 1. An explicit formula for this value, considering
only the negative “delta” variables, is as follows:

wy ti U Sj

@P _mln{l,095m1n (M”M’M,’AS‘?)} (7)

with ¢ € {1,...,n} and j € {1,...,m}. Then an estimate of an appropriate target value
for p is made using p = 0 (z'g+s5"t+v"w+p"q)/ (2m+2n) with z = z + aPAzP,
G=g+aPAgP, ..., G=q+aP ¢ and § = ((@ — 1)/ (@ — 10))>.

Then, the corrector step (AA, Ag, Aw, ..., Aq) is obtained by reinstalling the p and
“delta” terms on the right-hand side in (6). This step is used to move to a new point



in primal-dual space. We calculate the maximum step @ that can be taken along these
directions before violating the nonnegativity conditions by using a formula similar to (7).
The new point is given by A = A +aAAN, w =w + alw, ..., v =v + alv.

Solving the indefinite system: Clearly the main computational burden is to solve system
(6) twice in each iteration. It is important to note that this is a large, sparse, indefinite,
nonsymmetric linear system, that can be symmetrized. The symmetry of the resulting
system suggests a systematic process of elimination which brings us to the so-called reduced
KKT system:

)

—(Hy+ D) | VA AN ] [o=2GT 0= STTIE
Vh. | E Ay - p—E(ﬁ—QP‘l&)

where E= (VW14 QP )", D=ZG '+ ST}, B=8—-VW 1y, @ =a— PQ v,
D=v+GZ 'y, and T =7 — TS v,.

Once the reduced system has been solved for AA and Ay, the other “delta” variables
that were eliminated are recuperated by

Aw=—E (B_ QP 'a + Ay) . At=TS ! (y, — As),

Aq=QP ' (hw - a), Dg=GZ 7 (. — Dz),
Nz =ZGH (0 - AN), Ap=PQ™ (vq — Aq),
Ns=ST 1 (AL -7), A=VWL(y, — Aw).

Implementation details: At each iteration k, to start the interior-point algorithm we
need to provide initial values for all the variables. First, /A and y are found as solutions to
the following system:

— (Hy+1) | VAT No 1 [ VF,
th | I Yo o b— hk ’

(For k = 0, we used Hy = V?F(z) with guaranteed positive definiteness through a modified
Cholesky decomposition.) The other variables are set as follows:

go = max (abs(Ao 4+ x — l),?) , W = max (abs (thAoj— hi —b) ,5) ,

zo = max(abs(Ly), 9), po = max (abs(r — wy),0),
to = max (abs(u — N — xk),g) , (o = max (abs(yo)ﬁ) ,
so = max(abs(/g), 0), vo = max (abs(yo + qo), ) ,

where max() and abs() denote componentwise maximum and absolute value, respectively.
The parameter 6 is used to guarantee that all the variables constrained to be nonnegative
are at least as large as 6. A solution of the quadratic subproblem is declared primal/dual
feasible if the relative measures of primal and dual infeasibility are less than 10~*. So, the
QP subproblem has a solution (A, ) with Ay = A and 7} = (v, g, 2, s).

3. THE MERIT FUNCTION IN SQP
To ensure that the SQP method converges from any starting point we use a line search

strategy. The chosen merit function is the augmented Lagrangian (Gill et al. (1986)), which
has the form

L (z, A, ss;8) = F (z) = A" h(z) + = (h(z) — ss)T (h(z) — ss), (8)



where 3 > 0 is the penalty parameter, h(z) is the constraint vector, \ is the Lagrange
multiplier vector associated to (1) and ss is a vector of slack variables that are used only in
the line search procedure. The vector ss at the beginning of iteration k is taken as

~_f max(0, k) if 3=0
5% = hi —X; /B) otherwise.

As in Gill et al. (1986) we treat the elements of A as additional variables so that
is used to define a “search direction”; &, for the multiplier estimate A, and the line search
is performed with respect to both x and \. At iteration k, a vector triple d{ = (Ag, &k,
k) is computed to serve as direction of search for the variables (xx, Ak, ssx). The new
values are defined by 11 = T + Dk, Mer1 = Ak + i, SSk11 = 88k + 0k, and the
vectors Ay, & and (i are found from the QP subproblem (3) as described below. Thus
&y, is defined as &, = m, — Mg, so that if &, = 1, Agy1 = m. The vector ¢ is then defined
by VhiA + by, = (s + ssp, from which we can see that (i, + ssj, is simply the residual of
the inequality constraints from problem (3). Lemma 4.3 in Gill et al. (1986) establishes
the existence of a nonnegative penalty parameter such that the direction dj is a descent
direction for the merit function (8). So, at iteration k, the penalty parameter (3, is defined
as follows

— ) — T
Bk _ ﬁkfl,\ if VIL (xlm)\kassk;ﬂkfl) dk < *%A%Hkﬂk
max(3, 263,_;) otherwise

where 3y = 0 and B, = 2||&ll, /(|| — ssk||) (see Lemma 4.3 in Gill et al. (1986)). Then,
an Armijo type rule is used to guarantee a sufficient decrease of the merit function along
the iterative process.

4. RESULTS AND CONCLUDING REMARKS

To test this SQP framework based on the primal-dual interior-point strategy we selected
32 constrained problems from Hock and Schittkowski collection (HS). The tests were done in
double precision arithmetic with a Pentium 4 and Fortran 90. For a successful termination
of the algorithm, the iterative sequence of xz-values must converge and the final point must
satisfy the first-order Kuhn-Tucker conditions (see (2)) with a 10=* tolerance.

Our numerical results are reported in parts 5 and 6 of Table 1. Each of these parts
contains the number of QP subproblems solved (Ngp), the total number of iterations
(T'N;:) and the number of function evaluations (Ny.). We exercised the algorithm using
a symmetric positive definite quasi-Newton BFGS approximation to the Hessian of the
Lagrangian (Hy = V2F(zg), with guaranteed positive definiteness) (part 6), and the mod-
ified Cholesky factorization of the Lagrangian Hessian (part 5), as Hy. Clearly, the use
of the BFGS approximation to the Lagrangian Hessian gives better results than the ver-
sion with the Lagrangian Hessian. The table also contains the number of iterations (N;;)
and the number of function evaluations required by a primal-dual interior-point method
(IP) to solve problem (1), in parts 3 and 4. As in our SQP framework we tested two
versions. One uses the modified Lagrangian Hessian (part 3) and the other implements a
quasi-Newton BFGS approximation to the Hessian (part 4). Except for 11 problems, our
quasi-Newton SQP framework requires less function evaluations than the corresponding IP
method. Column 2 reports the number of iterations needed by the solver SNOPT (a spe-
cific implementation of an active-set method) to solve the chosen problems as published in
http://www.princeton.edu/~rvdb/cute _table.pdf.



Table 1: Results of SNOPT, IP method and our SQP(IP) method

Prob. | SNOPT P IP/BFGS SQP(IP) SQP(IP)/BFGS
N; Nit Nyfe | Nit ' Nye | Ngp TNyt Nje | Nop TNy Nye
HS1 33 28 59 24 52 48 102 97 44 95 103
HS2 30 33 79 42 87 19 45 39 13 28 29
HS3 5 1 4 1 4 1 2 3 1 2 3
HS4 2 5 12 5 12 2 10 11 2 10 12
HS5 10 4 10 9 36 5 23 12 9 29 40
HS15 2 27 60 - - 7 90 199 10 78 71
HS16 1 26 54 24 55 12 81 25 5 46 11
HS17 12 15 48 7 18 18 108 38 12 73 27
HS18 15 26 126 12 89 11 67 164 6 38 73
HS19 4 74 398 31 80 9 103 7 7 61 15
HS20 1 25 53 34 70 - - - 7 52 16
HS21 3 5 12 5 12 2 12 15 2 12 15
HS23 2 - - 31 110 6 40 19 6 39 13
HS24 6 14 31 16 36 10 69 73 6 29 13
HS30 5 16 34 8 18 24 81 49 11 37 23
HS31 15 16 34 13 28 - - - 7 28 75
HS32 4 22 71 8 43 9 38 23 5 26 11
HS33 1 12 26 10 22 5 25 11 5 22 11
HS34 5 10 26 10 23 7 31 25 8 28 39
HS35 16 2 6 2 6 2 6 5 2 6 5
HS36 3 11 27 17 39 - - - 6 25 35
HS37 7 7 16 18 38 - - - 9 37 19
HS38 123 33 159 25 64 38 92 90 13 18 27
HS41 11 16 47 39 85 4 20 10 12 51 25
HS44 7 10 22 19 40 2 16 5 6 36 22
HS45 0 1 4 4 10 20 121 255 5 24 11
HS53 8 18 41 9 24 14 70 29 3 15 7
HS55 3 6 14 11 24 1 4 3 1 4 3
HS60 12 22 169 11 30 14 43 154 12 36 64
HS63 30 10 22 11 24 12 120 27 9 47 21
HS64 37 38 169 50 118 19 120 192 - - -
HS65 22 16 34 9 20 16 40 33 10 31 64

The numerical results show that our SQP framework based on a quasi-Newton primal-
dual interior-point method for solving the QP subproblems is effective on small dimensional
problems. Future work will include testing with larger problems and possibly the implemen-

tation of limited-memory quasi-Newton approximations to Hy.
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