
 1

AN ACTIVITY ORIENTED VISUAL MODELLING LANGUAGE

WITH AUTOMATIC TRANSLATION TO DIFFERENT PARADIGMS

LUÍS M. SILVA DIAS
<lsd@dps.uminho.pt>

 A. J. M. GUIMARÃES RODRIGUES GUILHERME A. B. PEREIRA
 <agr@dps.uminho.pt> <gui@dps.uminho.pt>

Department of Production and Systems
 University of Minho

Braga, 4710-057, Portugal
<http://www.dps.uminho.pt>

Phone: +351253604740/+351936271733 Fax: +351253604741

ABSTRACT

The traditional approach for discrete event simulation
modelling includes visual support diagrams for modeller-
client communication purposes (model interpretation and
validation) and also to act as the basis for simulation lan-
guage program construction.

Although modern simulation packages use powerful
graphical interfaces for programming and animation pur-
poses, these packages still require enormous simulation
expertise to construct a simulation program. This work
suggests the use of the Activity Cycle Diagrams-ACD
(activity based philosophy) concepts for modeller-client
communication, but also to act as an automatic generator
of simulation programs under different paradigms - event
scheduling (Basic Simulation Facility – Simulation Li-
brary) and Process Flow (ARENA – Simulation Envi-
ronment) philosophies, thus eliminating any program-
ming effort and expertise.

1 INTRODUCTION

The use of visual support diagrams to help the program-
ming step of a simulation project is very common. Even
when generic programming languages were replaced by
specific purpose simulation languages the use of paper
diagrams remained as a previous step to programming.
[34] [25]. These diagrams were conveniently abstracted
serving as support to the communication between the
simulation client and the modeller (simulation expert),
but also helping the construction of the corresponding
computational programs [6] [29].

Modern simulation languages introduced new powerful
graphical interfaces, but these interfaces are clearly pro-

grammer oriented, raising the difficulty in communicat-
ing with the client and still requiring enormous simula-
tion expertise to use them [11].

In this paper, we still suggest the use of a (simple)
graphical support as a representation of what the client
formally needs, but these diagrams will also act as the
source to the automatic generation of simulation pro-
grams.

 The visual language chosen is the Activities Cycle Dia-
grams (ACD), for its simplicity and efficiency in repre-
senting real operating systems. [10] [25]

This mechanism also implied the construction of transla-
tion grammars. These grammars were written according
to a modular specification of visual languages, based on
attribute grammars [15] in MASOViLa (Modular Attrib-
ute-based Specification Of Visual Languages) [27] [9]
[36]. Our translation engine uses a pattern matching re-
writing mechanism.

Using Activity philosophy for modelling, then generating
simulation programs based on event philosophy and in
process philosophy, three major simulation approaches
[4] were explored and linked.

2 LAYOUT AND ANIMATION ORIENTED
SIMULATION ENVIRONMENTS

As already referred, appropriate diagrams were in use for
many years to support the communication among people
interested in a particular simulation. The simulation ex-
pert would then translate these models into a simulation
language or even a general purpose programming lan-
guage. As far as graphical support became available, an

 2

enormous variety of simulation environments
emerged.[16]. Graphical facilities were then used to
essentially represent a system layout for animation pur-
poses.

Animation is recognized as an important aspect of simu-
lation. However when the modelling process is focused
on animation, several disadvantages may arise:

1. The model may be overwhelmed by many modules
and accessory configurations.

2. Such a model, with increased complexity, will be dif-
ficult for the client to understand.

3. The analysis of a static model (in the first stages) based
on the layout will not add much over its photograph or
scheme. Thus the semantic validation will be left for the
animation phase.

3 PROJECT MAIN STEPS

The main steps of this research work are summarized
below:

1. The choice of an easy to use and widely spread visual
language : Activity Cycle Diagrams (ACD).

2. Formalization of ACDs (keeping it simple), allocating
to each graphical object the information required by the
model.

3. Specification of a file format to represent the referred
graphical objects (XML).

4. Implementation of a graphical editor to draw the
models.

5. Implementation of a compiler’s compiler for vis-
ual/graphical 2D languages.

6. Specification of a grammar for the ACD language.

7. Implementation of two compilers - the first compiler
generates the simulation program code in JavaBSF, and
the other one generates the Arena program (using both
Arena modules and new developed modules in VBA
code).

3.1 Programming tools

The main programming language used was Java [21] [5].
Several sets of classes were implemented (corresponding
to about nine thousand lines of code). Visual Basic for
Applications (VBA) was also used, both in ARENA and
in Microsoft VISIO. A template was built in ARENA
(Professional Edition) [18] with activities and queues to

implement an activity-based executive on a process-
oriented environment.

3.2 About the use of Graphics in Visual Modelling
and Programming

The idea behind this work is to enhance the utilization of
graphical facilities in modelling, making it a great con-
tribution to automatic generation of simulation pro-
grams, keeping it simple and portable.

Graphical facilities are more helpful when they support
model semantic than when it is based on system layout
and animation.

Furthermore the utilization of a simple axiomatic set may
be accessible to more potential users and clients.

The use of an activity-based philosophy seems to be
semantically richer and more simulation oriented than
process flow or event scheduling.

The strategy was to create a completely open system,
since the graphical editor creates a text file in XML (eX-
tended Markup Language). This is compatible with any
graphical editor using the established syntax. The com-
piler uses an XML file and a grammar to build a program
in an object simulation language.

3.3 Translation

Our first ACDs compiler generates a Java program ac-
cording to the event scheduling philosophy. Although
this is computationally highly efficient it is harder to pro-
gram. In other words we could say that it is more com-
puter friendly than programmer friendly. The complex
compiler developed allows an easier translation by the
computer.

By developing a template with new blocks for Arena
(process oriented), we were able to simulate ACDs us-
ing Arena objects built according to an activity based
philosophy.

Using these two compilers/translators, we explored
deeply on three major modelling philosophies [25] [29],
making automatic translation mechanisms between them.

 3

4 PROJECT MAIN TASKS

ACD.xml
Activity Based Model

(Text file representing
a ACD in XML format)

GRAPHEDITOR
[Java]

Generic Attribute based
Graphical Editor, with a
template to edit ACDs

SMAIS-GAP
[Java]

(Automatic Simulation
Programs Generator)

Generated java
program

Compilation
[javac]

with Java compiler

ANIM Java
[Java]

Animation of ACDs
inside the

GRAPHEDITOR.

Anim
ation

VISIO-ACD
[VISIO-VBA]

ACDs 'Stencil' + VISIO-
VBA application to import

& export ACD's

Statistical
Report

Run
[java]

Executable
simulation program.

Event Based
Executive

BSF
(java

simulation
library)

ANIM VISIO
[VISIO-VBA]

Implementing one
Activity based

executive, to simulate
ACDs (with animation).

Anim
ation

ARENA-CREATOR
[Arena-VBA]

Model builder

SMAIS-GAP
[Java]

Translator to ARENA

Arena input
file

Model/Program
 ready to run in

ARENA (Process
Based Executive)

ARENA-ACD
[ARENA

Professional]

Template with
ACD blocks,

ARENA

Statistical
Report

Anima
tion

ACD
Grammar
(to BSF)

ACD
Grammar
(to Arena)

MS VISIO MS VISIO

Statistical
Report

E
D

IT
O

R
E

D
IT

O
R

Figure 1: Project Map Diagram

The above diagram illustrates the interdependencies be-
tween the main tools and contributions of our project:

 ACD.xml «in the centre of diagram» represents the
chosen format to physically support the models: a text
file in XML. (See also Figure 13 and Figure 14)

 GRAPHEDITOR «upper left zone of the diagram» is
the graphical editor that was specifically built for this
purpose (see also Figure 9). Microsoft Visio was also
customised to deal with ACD XML files – VISIO-ACD.

 ANIM VISIO - «upper right zone» simulates and ani-
mates ACDs inside MS VISIO. The ANIM-Java tool
will animate ACDs in the GRAPHEDITOR (is not yet
completed, as signalled in the diagram by white back-
ground).

 SMAIS-GAP is the major tool of this project «lower
left section» allowing the translation of an ACD (activity-
based) into a program (event-based) (see also Figure 15,
Figure 16 and Figure 17). It uses the ACD Grammar (to
BSF) (see also Figure 10 and Figure 12).

 SMAIS-GAP using the ACD Grammar (to Arena)
«lower right section» refers to the translation to Arena

input file. ARENA-CREATOR, using that input file,
builds a model with blocks from ARENA-ACD tem-
plate (see also Figure 18, Figure 19 and Figure 21).

5 ACTIVITY CYCLE DIAGRAMS (ACD)

ACDs were widely used mainly with older languages
(e.g. ECSL [6], HOCUS) to schematically specify the
system’s behaviour, through each assumed entity cycle
diagram. These entity cycles explicitly refer the active
states into activities and passive states into queues. This
graphical language just requires the use of three types of
graphical objects: Rectangles (activities), Circles
(queues) and Arrows (links).

For an activity to start, it is necessary that entities exist
in the preceding queues in the required number and with
the adequate attributes. When these conditions hold, it is
possible to start the activity. When the activity ends, the
entities involved are moved to consequent queues.

The complete model consists of the Activity Cycle Dia-
grams of all the classes of entities, together. Interactions
between entities take place at activities. Figure 2 repre-
sents the basic activity concept, with one activity in the
middle that starts when each precedent queue has one
required entity. When the activity ends, the entities are
moved to the consequent queues.

Figure 2: Activity concept

The simplicity inherent to the activity concept and to

the ACD facilitates its easy understanding for validation
and teaching purposes. It has been advocated that the
ACD is useful for research discrete event simulation
studies.

 4

5.1 Example: the Bartender Problem

In this illustrative example we have a barman that serves
customers in a bartender [6] [29].

Entities of class CUSTOMER, are initially OUTSIDE.
They ARRIVE and then WAIT for activity POUR. When
served they are READY to DRINK. After that, if they
NEED to drink more they go to queue WAIT, otherwise
they leave to OUTSIDE. The ACD of CUSTOMER is
described below (Figure 3).

Figure 3: CUSTOMER ACD

Entities of class BARMAN, are waiting in the queue
IDLE and they can either participate in the activity
POUR or WASH:

Figure 4: BARMAN ACD

Entities of class GLASS are initially in the queue
DIRTY. After being WASHed (in batches of size 3), they
wait in the queue CLEAN. When there are 1 customer
waiting, 1 barman idle and 1 glass clean, then POUR
activity begins. Once FULL, the glass goes to activity
DRINK. The ACD of GLASS is in Figure 5.

Figure 5: GLASS ACD

This problem instance parameters are:
Activities duration:
- ARRIVE: Poisson distribution, average=20.
- POUR: Poisson, average=6 [poisn(6)].
- WASH: Fixed = 5.
- DRINK: 5 + Uniform distribution between 0 and 6

[5+randnum(0,6)].
Entities initial allocation:
- CUSTOMER: 20 in queue OUTSIDE.
- BARMAN: 1 in queue IDLE.
- GLASS: 12 in queue DIRTY.
Entities class setup:
- CUSTOMER: have one attribute: NEED.

Figure 6: ENTITIES setup

Attributes:
- ARRIVE: Customer attribute NEED is initialized

with : (int)randnum(0,3) + 1 {1,2,3,4}
- DRINK: Customer attribute NEED is decre-

mented. After this activity, customer attribute NEED
is evaluated to decide customers destination.

Simulation setup:
- DURATION: 1000 time units.
- WARM_UP: 120 time units.
- SEED: 123543.

Figure 7: Simulation setup

The following ACD (Figure 8) include all system infor-
mation:

Figure 8: Global ACD

 5

DOOR is an auxiliary entity used to control the Cus-
tomer’s arrives (one at a time). It is well described in [29].

The following image (Figure 9) shows a screenshot of the
GRAPHEDITOR, editing the bartender problem.

Figure 9: GRAPHEDITOR Screenshot

5.2 ACD Language Formalization

Some authors suggest modifications in ACD language, (e.g.
[8]), but in our opinion that compromises the ACD simplic-
ity.
A significant contribution of our work consisted on the devel-
opment of the ACD language formalization embedding in the
diagrams all the information required for the simulation.

1- We added attributes to the visual objects:
 - ‘duration’ and [‘priority’] in activities. (‘priority’ is
a value setting the activity priority over other activities.
Higher value means higher priority).
 - Entities attributes changing in activities. (EX: In
the DRINK activity of the example model, the customer
‘need’ attribute is decremented by one. (activity attribute
‘entity_customer’ = “need=need-1”)).
 - [‘initial_entities’] in queues.

2- In order to include global information on the simula-
tion a rectangle alone (called simulation setup) is used
with the following attributes :
 - ‘model_name’ – Model_Name_String
 - ‘duration’ - Simulation time
 - ‘warm-up’ - initialization time.

3-For global attributes and features of each entity, one
ellipse alone is created with:
 -‘entity_name’ – name of the entity
 -‘total_entities’ – number of total entities of this kind
that will exist in the simulation.
 - [‘attribute’]* - used zero or more times to declare
entity attributes. (EX: customers have one attribute: ‘need’).
 - [‘sort’] –expression establishing the queue sorting
rule. Value is defaulted to 1. If defined, the queue will
not be FIFO, this attribute must have an expression, ele-
ments are sorted in ascending order based on the evalu-
ated expression over each arriving entity. May be used to
create virtually, multi-queues.

4-Arrows
 - Arrow ending on activities:
 ‘label’ have the number of need entities (entering
throw this arrow in the activity) to start the activity (this
implements batches). Default value is 1 (if omitted). (EX:
3 is the batch number of ‘glasses’ to start ‘WASH’).
 - Arrow leaving from activities:
 ‘label’ have conditions to decide which destination
queue will be chosen (usually based on attributes values).
EX: ‘need’ attribute is used to decide if the ‘customer’ go
OUTSIDE or WAITING after drinking.

6 THE GRAMMAR AND TRANSLATION

To create the AIMS compiler, we wrote a set of
rules in Visual MASOViLa notation [9]. Each rule syn-
thesizes one new symbol. We developed rules for queue
(3), for activity (9), for entity (3), for input_link (1), for
output_link (1), for simulation (5), and also for syntacti-
cal and semantic error detection (10) – see Figure 11.

We include bellow one expression example, with
textual explanation, visual representation and the gener-
ated Java code (portion of the compiler code).
The next graph (Figure 10) is the rule that transforms an
arrow in an output_link, when it is connected from an
activity to a queue. The new output_link symbol, receives
all attributes from arrow symbol. Furthermore it synthe-
sizes the Link’s attribute origin from the activity’s attribute
name, the attribute destination from the queue’s attribute
name and also the condition attribute from arrow label.

a.arrivesTo(b)

activity arrow queue

output_link

b.leavesFrom(a)

 *

a a

name name

origin destination

entity_name a
label

condition

Figure 10: Output_link rule written in Visual MASOViLa

Java corresponding code:
 public static Symbol output_link(Vector args){
 Symbol activity = (Symbol) args.get(0);
 Symbol arrow = (Symbol) args.get(1);
 Symbol queue = (Symbol) args.get(2);
 if(((Arrow)(arrow.get("container")))
 .leavesFrom((Container)
 (activity.get("container"))) &&
 ((Arow)(arrow.get("container")))
 .arrivesTo((Container)
 (queue.get("container"))))
 {Symbol res = new Symbol(arrow);
 res.put("origin",activity.get("name"));
 res.put("destination",queue.get("name"));
 res.put("condition",queue.get("label"));
 res.put("entity_name",queue.get("entity_name"));
 return res;
 }else return null;
}//& output_link

Figure 11: - Java code for Output_link rule.

 6

Figure 12: Graph with the grammar rules interfaces, and
interdependencies

The Output_link rule is just one example that can be
found in the central region of Figure 12:
The translation is archived by an engine (the SMAIS-
GAP) that successively searches patterns in the Diagram
under analysis to try to apply each grammar rule (in a
specific order). Applying a rule, means rewriting or creat-
ing one symbol in the Diagram (some rules may also re-
move symbols from the diagram).

To the Output_link rule, the engine must know that this
rule needs: one activity, one arrow and one queue. The
engine then picks all combinations of symbols from the
diagram under analysis, submitting different sequences
with (activity, arrow, queue), to the rule. The rule will
then return null if the symbols are inappropriate, or return
a new symbol to the diagram. Attributes of each new
symbol are “richer” than previous (collecting pieces of
code). For this grammar, after several rule modifications,
the generated program is represented within an attribute
of a synthesized symbol (simulation).

7 XML FILE INTERCHANGE FORMAT

The objective was to give birth to a proven visual lan-
guage (an example of a complete program written in this
language can be found in Figure 8). This program is not
dependent on the translator/compiler used. We defined an
XML format (eXtended Markup Language) making pos-
sible to store it with all the attributes and to transfer it to
any application in a text file (since to keep it in bitmap
format (as a photo) would not obviously be appropriated).

In Figure 13 we can find the DTD corresponding to the
defined XML format. In Figure 14 we can see a portion
of one XML file corresponding to the barman problem.
Each file is a book: a collection of sheets. Each sheet
contains one ACD diagram. (Obviously, books can have
one only sheet).
<?xml version=’1.0’ encoding=’UTF-8’?>
<!--
<?xml version="1.0"?>
<!DOCTYPE Book SYSTEM "ACD.dtd">
<BOOK>
...
</Book>
-->
<!ELEMENT Visible (PCDATA)>
<!ELEMENT Value (PCDATA)>
<!ELEMENT Property (Visible|Type|Value)*>
<!ATTLISTProperty
 Name CDATA IMPLIED
 >
<!ELEMENT Foreground (PCDATA)>
<!ELEMENT Background (PCDATA)>
<!ELEMENT Type (PCDATA)>
<!ELEMENT Y (PCDATA)>
<!ELEMENT X (PCDATA)>
<!ELEMENT Shape
 (Property|Foreground|Background|Type|Height|Wi
dth|Y|X)*>

<!ATTLIST Shape
 Type CDATA IMPLIED
 Uid CDATA IMPLIED
 >
<!ELEMENT Height (PCDATA)>
<!ELEMENT Width (PCDATA)>

<!ELEMENT WorkSheet(Shape|Height|Width)*>
<!ATTLIST WorkSheet
 Order CDATA IMPLIED
 Name CDATA IMPLIED
 >
<!ELEMENT Book (WorkSheet)*>
<!ATTLIST Book

Figure 13: DTD file (XML specification)

Rectangle

Text

Arrow

Ellipse

Activity

Activity0

Queue

Error1

Error2

Queue0 entity0

Error11

Input_link

Output_link

Error3

Error4

Error5

Error6

Queue1

Activity1

Activity2

Activity3

Activity4

Activity5

Activity6Activity7

entity1

entity2

Error7

Error250

Simulation1

Simulation2

Error8

Simulation3

Simulation4

Simulation5

 7

<?xml version="1.0" encoding="ISO-8859-1" ?>
- <!--
 Last Saved on Sat Jan 08 22:28:37 BST 2005

 -->
- <Book Name="Bartender">
- <WorkSheet Name="Global ACD" Order="0">
 <Width>860</Width>
 <Height>580</Height>
- <Shape Uid="001" Type="Rectangle2D">
 <X>9280.0</X>
 <Y>9900.0</Y>
 <Width>140.0</Width>
 <Height>80.0</Height>
 <Type>Rectangle2D</Type>
 <Background>#C0C0C0</Background>
 <Foreground>#000000</Foreground>
- <Property Name="name">
 <Value>POUR</Value>
 <Type>String</Type>
 <Visible>true</Visible>
 </Property>
- <Property Name="priority">
 <Value>1</Value>
 <Type>String</Type>
 <Visible>true</Visible>
 </Property>
- <Property Name="duration">
 <Value>poisn(6)</Value>
 <Type>String</Type>
 <Visible>true</Visible>
 </Property>
 </Shape>

 …
 </WorkSheet>
 </Book>

Figure 14: Part of an XML file (representing one ACD
object.

8 JAVA-BSF – AUTOMATIC PROGRAM
GENERATION

Running SMAIS-GAP, using the “ACD GRAMMAR (to
BSF)” and giving the XML file as input program, we get
the generated “bsfProgram.java”, see Figure 15.
------------------- (1 - Generation) ----------------------------
Starting S+ (ACD->BSF generation):
 C:\Documents and Settings\LSD\SMAIS_ROOT\ACD.xml ->
C:\Documents and Settings\LSD\SMAIS_ROOT\bsfPack\bsfProgram.java

C:\Documents and Settings\LSD\SMAIS_ROOT\ACD.xml -> Read 36 Graphical
Symbols. In [341ms]
..
..................................
C:\Documents and Settings\LSD\SMAIS_ROOT\bsfPack\bsfProgram.java <-
Generated Program with 335 lines. [9654ms]

------------------------ (2 - Compilation) -----------------------
C:\jdk1.5.0\bin\javac "bsfPack\BsfProgram.java"

Figure 15: Screenshot of Script running, calling SMAISGAP
(Generation) and compiling it

The generated program is a low-level simulation program
written in a general purpose programming language in-

cluding an event-driven executive that uses a java simula-
tion library – BSF (Basic Simulation Facility).
In this Example, SMAIS-GAP read the 36 graphical ob-
jects from the file ‘ACD.xml’ and generated a fully com-
mented program with 335 lines in about 10 seconds.
An extract of the automatically generated program from
the Bartender ACD, (including all comments) can be
found below in Figure 16.

//|| ##### #
//||PROGRAM AUTOMATICALLY GENERATED BY AIMS(JavaBSF version 1.9) # #
//|| Authors: lsd & agr @dps.uminho.pt ##### #####
//|| URL: www.dps.uminho.pt/oio/simulation # #
//|| ##### #

// Program 'BARMAN Problem' Generated by S+ : Universidade do Minho,

//Queues Declaration and constants definition:
 static int FEvent = 1; //File to hold futur events
 static int CLEAN = 2; //queue to entity:GLASS
 static int FULL = 3; //queue to entity:GLASS
 static int DIRTY = 4; //queue to entity:GLASS
 static int DOOR_FREE = 5; //queue to entity:DOOR
 static int READY = 6; //queue to entity:customer
 static int WAIT = 7; //queue to entity:customer
 static int OUTSIDE = 8; //queue to entity:customer
 static int IDLE = 9; //queue to entity:BARMAN
 static int ARRIVE_DOOR = 10; //entity: DOOR in activity: ARRIVE
 static int ARRIVE_customer = 11; //entity: customer in activity: ARRIVE
 static int POUR_customer = 12; //entity: customer in activity: POUR
 static int DRINK_customer = 13; //entity: customer in activity: DRINK
 static int POUR_GLASS = 14; //entity: GLASS in activity: POUR
 static int POUR_BARMAN = 15; //entity: BARMAN in activity: POUR
 static int DRINK_GLASS = 16; //entity: GLASS in activity: DRINK
 static int WASH_BARMAN = 17; //entity: BARMAN in activity: WASH
 static int WASH_GLASS = 18; //entity: GLASS in activity: WASH

//Events List Declaration and constants definition
 static int Code_End_simulation = 1; //Code to the last event: "end of
simulation"
 static int Code_End_ARRIVE = 2; //Code to the event: "end of ARRIVE"
 static int Code_End_WASH = 3; //Code to the event: "end of WASH"
 static int Code_End_DRINK = 4; //Code to the event: "end of DRINK"
 static int Code_End_POUR = 5; //Code to the event: "end of POUR"

 static int total_number_of_events=5;

 static int code_warm_up=0;
 static int code_report=99;
 o o o
//============= Program Main Loop =============

 while (event_code != Code_End_simulation){
 r=Bsf.remove(FEvent,Clock);
 event_code=r.at2;
 Clock=r.time;
 if (event_code==Code_End_ARRIVE) end_of_ARRIVE();
 if (event_code==Code_End_WASH) end_of_WASH();
 if (event_code==Code_End_DRINK) end_of_DRINK();
 if (event_code==Code_End_POUR) end_of_POUR();
 if (event_code==code_warm_up) Bsf.reset_statistic(Clock);
 } //& MainLoop
System.out.println(Bsf.report(Clock));
} //& main

//@@@@@@@@@@ Activities BEGIN @@@@@@@@@@@
public void begin_of_WASH(){
 while(true){
 if(Bsf.number_in_queue(IDLE)<1) return; //BARMAN available?
 if(Bsf.number_in_queue(DIRTY)<3) return; //GLASS available?
 Bsf.set_distribution(WASH);
 int duration= (int)5;
 //Schedulle end of WASH activity:
 Bsf.insert(FEvent, Clock, Clock+duration, Code_End_WASH);
 r=Bsf.remove(IDLE,Clock); //remove one BARMAN from queue IDLE
(returns r.time,r.at1,r.at2)
 Bsf.insert(WASH_BARMAN,Clock,Clock+duration,r.at2); //puts one
BARMAN in the activity WASH
 for(int i=3;i>0;i--){ // 3 GLASS(s) necessary for this activity:WASH
 r=Bsf.remove(DIRTY,Clock); //remove one GLASS from queue DIRTY
(returns r.time,r.at1,r.at2)
 Bsf.insert(WASH_GLASS,Clock,Clock+duration,r.at2); //puts one GLASS in
the activity WASH
 }

 8

 }
} //& begin_of_WASH

 o o o

//@@@@@@@@@@ Activities END @@@@@@@@@@@@
public void end_of_WASH(){
 r=Bsf.remove(WASH_BARMAN,Clock); //(returns r.time,r.at1,r.at2)
 Bsf.insert(IDLE,Clock,Clock,r.at2);
 for (int i=3; i>0; i--){
 r=Bsf.remove(WASH_GLASS,Clock); //(returns r.time,r.at1,r.at2)
 Bsf.insert(CLEAN,Clock,Clock,r.at2);
 }
 //Attempts to start subsequent activities that may be viabilized
 begin_of_POUR(); //priority=1
 begin_of_WASH();
} //& end_of_WASH

 o o o

//End of Program 'BARMAN Problem'

Figure 16: Extract of Java generated simulation program

Figure 17, below, contains a screenshot of the bartender
program execution, with configurable initial entities allo-
cation, progressive running bar and final report.

----------------------------- (3 - Execution) ------------------
INIT: 12GLASS>DIRTY 1DOOR>DOOR_FREE 10customer>OUTSIDE
1BARMAN>IDLE
...10%...20%...30%...40%...50%...60%...70%...80%...90%..100% [in 40ms]

Relatorio em t = 1000 (Warm-up period 0-120)
Fila In Out Now Av-stay Av-len
 1 FEvent 267 264 3 9.189 2.614
 2 CLEAN 101 94 7 75.511 7.669
 3 FULL 94 94 0 0.000 0.000
 4 DIRTY 96 93 3 22.129 2.365
 5 DOOR_FREE 45 45 0 0.000 0.000
 6 READY 94 94 0 0.000 0.000
 7 WAIT 94 94 0 2.138 0.228
 8 OUTSIDE 52 45 7 147.667 7.334
 9 IDLE 125 125 0 1.328 0.189
10 ARRIVE_DOOR 46 45 1 19.844 1.000
11 ARRIVE_customer 46 45 1 19.844 1.000
12 POUR_customer 95 94 1 5.947 0.635
13 DRINK_customer 94 93 1 7.516 0.802
14 POUR_GLASS 95 94 1 5.947 0.635
15 POUR_BARMAN 95 94 1 5.947 0.635
16 DRINK_GLASS 94 93 1 7.516 0.802
17 WASH_BARMAN 31 31 0 5.000 0.176
18 WASH_GLASS 93 93 0 5.000 0.528

Figure 17: Screenshot of program execution and final
statistical report

This task (automatic translation) is quite complex since it
implies different abstraction levels, from an high level
(activity based approach) to a much lower level (event-
driven approach) using a generic programming language.

9 ARENA MODEL CREATOR

The hard part of this task was to create an activity-based
executive over a process-oriented environment. The ex-
ecutive developed shows to be more efficient than a
three-phase approach since we used a message passing
mechanism that only tries to start an activity when enti-
ties have arrived to one of its predecessor queues.
Given that we generate a model into a high-level simula-
tion environment it becomes possible to overcome limita-
tion of the activity-based approach since the model may
be completed in ARENA.

Figure 18 and Figure 19 illustrate the model as automati-
cally created in Arena for the Bartender Problem and a

Screenshot of animation phase. Figure 20 have details of
two activities with predefined statistics. Figure 21 have a
screenshot with part of the logic template (code) of the
activity block.

Figure 18: Screenshot of automatically builded model in

Arena (Bartender

Figure 19: Screenshot of animations in Arena (Bartender)

Figure 20: Screenshot of Arena animation details, with

statistics (Bartender)

 9

Figure 21: Activity definition - Part of Arena Logic Tem-

plate.

CONCLUSION

The work presented in this paper could constitute a major
step towards the generalisation of the use of simulation.
In fact, we suggest the use of a simple interface (Activi-
ties Cycle Diagrams) to model a real situation. Then we
present a tool capable of generating a simulation pro-
gram. Based on event scheduling simulation modelling
philosophy, our tool automatically generates a program to
use Basic Simulation Facility routines. Based on process
flow simulation modelling philosophy, our tool automati-
cally generates an ARENA program. Furthermore the
mentioned automatic generation of simulation programs
does not require expertise in simulation.

REFERENCES AND BIBLIOGRAPHY

[1] Banks, Jerry. Industrial and Systems Eng. Georgia,
“Handbook of Simulation”, Wiley, 1998.

[2] Bekey, George A., ed., "Modeling and Simulation
Theory and Practice (A Memorial Volume for Pro-
fessor Walter J. Karplus)" Kluwer Academic Pub-
lishers, 2003.

[3] Bell, Brigham. “Using Programming Walkthroughs
to Design a Visual Language”, Ph.D. dissertation,
Department. Of Computer Science, University of
Colorado, Boulder, Technical Report CU-CS-581-
92, 1992

[4] Bennett, Brian/Bennett, B. S. “Simulation Funda-
mentals”, Prentice Hall, 1996.

[5] Campione, M.; Walrath, K.; Huml, A. “The Java
Tutorial Continued, The Rest of the JDK”, Addison
Wesley, 1999.

[6] Clementson, A.T. “Extend Control and Simulation
Language, Users Manual”. CLE, COM Ltd, Uni-
versity of Birmingham, 1982.

[7] Costagliola, Gennaro; Lucia, Andrea De; Orefice,
Sergio and Tortora, Genoveffa. “Automatic Genera-
tion of Visual Programming Environments”, in
Computer IEEE, vol.8 nº3, March 1995, pp. 56-66

[8] De Lara Araujo Filho, W.; Hirata, C.M. “Translat-
ing activity cycle diagrams to Java simulation pro-
grams”. IEEE 37th Simulation Symposium, 2004.
18-22 April 2004 Page(s):157 - 164

[9] Dias, Luís S. “Linguagens Visuais de Programação
– Paradigmas e Ambientes”, Tese de Mestrado,
Universidade do Minho, 1997

[10] Dias, Luis S. and Rodrigues, A. Guimarães. “Lan-
guage independent modelling of discrete event

simulations - AIMS”, AIS’2002 – AI, Simulation
and planning in High Autonomy Systems, pp.195-
200, 2002.

[11] Dias, Luis S.; Rodrigues, A. Guimarães, “Towards
simplicity in modelling for simulation”, Operational
Research Society, Simulation Study Group Work-
shop, Birmingham, UK, 2002.

[12] Fishwick, Paul A. “Simulation Model Design And
Execution; Building Digital Worlds”, Prentice
Hall, 1994.

[13] Garrido, José M. "Object-Oriented Discrete-Event
Simulation with Java - A Practical Introduction",
Kluwer Academic/Plenum Publishers, 2001.

[14] Harrell, Charles R. et.al. "Simulation using
PROMODEL", McGraw-Hill, 2nd edition, 2003.

[15] Henriques, Pedro Rangel. “Atributos e Modularida-
de na Especificação de Linguagens Formais”, PhD
thesis, Universidade do Minho, 1992.

[16] James Swain. “Simulation Software Survey”.
OR/MS Today magazine from Institute for Opera-
tions Research and the Management Sciences
(INFORMS). Lionheart Publishing, 1991-2003.

[17] Karayanakis, N. M. “Advanced System Modeling
and Simulation W/ Block Diagram”,
Springer, 1995.

[18] Kelton, W. David; Sadowski, Randall P. and Strur-
rock, David T. “Simulation With Arena (third edi-
tion)” McGraw-Hill, 1998-2004.

[19] Kheir, Naim A., (Ed.). “Systems Modeling and
Computer Simulation”, 2nd Ed., Dekker, 1996.

[20] Law, Averill M. and Kelton, W.David. “Simulation
Modeling & Analysis”, McGraw-Hill, 1991.

 10

[21] Martins, F. Mário. “Programação Orientada aos
Objectos usando Java”, Universidade do Minho,
1998.

[22] Mooney, Christopher Z.. "Monte Carlo Simulation",
Sage Publications, 1997.

[23] Morgan, B.J.T.. “Elements of Simulation”, Chap-
man&Hall, 1984-1995.

[24] Odum, Howard T. and Odum, Elisabeth C. “Model-
ing for all Scales: An Introduction to System Simu-
lation”, Academic Press, 2000 .

[25] Pidd, Michael. “Computer Simulation in Manage-
ment Science”, Wiley, 1984-1990.

[26] Repenning, Alex and Sumner, T. “Agentsheets: A medium
for Creating Domain-Oriented Visual Languages”, Com-
puter IEEE, vol.8 nº3, March 1995, pp.17-25.

[27] Rocha, Jorge Gustavo. “Especificação de Lingua-
gens Visuais de Programação”, Tese de Mestrado,
Universidade do Minho, 1995

[28] Rodrigues, A. Guimarães and Dias, Luis S. “To-
wards simplicity in modelling for simulation”, Op-
erational Research Society – Simulation Study
Group Workshop, Birmingham, 2002.

[29] Rodrigues, A. Guimarães. “Simulação”, Universi-
dade do Minho, 1987-98.

[30] Rodrigues, A. Guimarães. “Modelação em simula-
ção discreta”, (lição de síntese), Universidade do
Minho, 1995.

[31] Ross, Sheldon. "Simulation" Elsevier Academic
Press, 2002

[32] Rubinstein, Reuven Y., and Melamed, Benjamin.
"Modern Simulation and Modeling", Wiley, 1998.

[33] Sarjoughian, Hessam S.; Cellier, Francois E. and
Zeigler, Bernard P. (Editors). "Discrete Event Mod-
eling and Simulation Technologies: A Tapestry of
Systems and Ai-Based Theories and Methodologies:
A Tribute to the 60th Birthday of Bernard P.
Zeigler", Springer Verlag, 2001 .

[34] Tocher, K.D. “The Art of Simulation”. UNIBOOKS
– English Universities Press, 1963.

[35] Tumay, H. Harrington Kerim. "Simulation Model-
ing Methods To Reduce Risks and Increase Per-
formance", McGraw-Hill, 2000.

[36] Varanda M. J., Henriques P. e Rocha J. “Concep-
ção, especificação e implementação de Processado-
res de Linguagens Visuais”. II Simpósio Brasileiro
de Linguagens de Programação, 1997.

[37] Zeigler, Bernard P. ; Praehofer, Herbert and Kim,
Tag Gon. "Theory of Modeling and Simulation: In-
tegrating Discrete Event and Continuous Complex
Dynamic Systems", Academic Press; 2nd ed., 2000.

AUTHOR BIOGRAPHIES

LUÍS MIGUEL SILVA DIAS is a Lec-
turer at the Department of Production and
Systems Engineering at the University of
Minho. He has earned a degree in Informat-
ics and Systems Engineering, and a Master
in Informatics from the University of

Minho. His interests are in modelling & simulation, op-
erational research and visual languages.

<lsd@dps.uminho.pt>
<http://www.dps.uminho.pt>

ANTÓNIO JOSÉ M. GUIMARÃES
RODRIGUES is a full Professor in the
Department of Production and Systems En-
gineering at the University of Minho. He is,
since 2002, the Rector of the University. He
has earned a Master’s Degree and Ph.D.

from the University of Birmingham in Production Engi-
neering. Prof. Guimarães Rodrigues interests are in simu-
lation, operational research and mathematical program-
ming. He is Associate Editor of Investigação Opera-
cional, the Portuguese Journal of OR.
 <agr@reitoria.uminho.pt>

GUILHERME AUGUSTO BORGES
PEREIRA is a Professor in the Department
of Production and Systems Engineering at
the University of Minho. He is the director
of the industrial engineering and manage-
ment licenciatura (first degree). He has

earned a Master’s Degree in Operational Research. and
Ph.D. in Manufacturing and Mechanical Engineering
from the University of Birmingham. His interests are in
simulation, operational research.

 <gui@dps.uminho.pt>

University of Minho was founded in 1973, is located in
Braga and Guimarães, in the north of Portugal. Has more
than 15000, and around 500 Ph.D. Teachers.
<www.uminho.pt>

